
Routing overlay case of study: PASTRY

Andrea Marin

Università Ca’ Foscari di Venezia
Dipartimento di Informatica
Corso di Sistemi Distribuiti

2009

Introduction
Design overview
Self-adaptation

Improving the routing performance

Presentation outline

1 Introduction

2 Design overview

3 Self-adaptation
Node join
Node departure

4 Improving the routing performance

Presentation based on the original paper: A. Rowstorn and P. Druschel.

PASTRY: Scalable, decentralized object location and routing for large-scale

peer-to-peer systems.

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

What is PASTRY?

PASTRY is an implementation of a Distributed Hash Table
(DHT) algorithm for P2P routing overlay

Defined by Rowstron (Microsoft Research) and Druschel (Rice
University) in 2001

Salient features:

Fully decentralized
Scalable
High fault tolerance

Used as middleware by several applications:

PAST storage utility
SCRIBE publish/subscribe system
. . .

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Design of PASTRY: summary

Any computer connected to the Internet and running
PASTRY node software can be a PASTRY node

Application specific security polices may be applied

Each node is identified by a unique 128 bit node identifier
(NodeId)

The node identifier is assumed to be generated randomly
Each NodeId in is assumed to have the same probability of
being chosen
Node with similar NodeId may be geographically far

Given a key, PASTRY can deliver a message to the node with
the closest NodeId to key within dlog2b Ne steps, where b is a
configuration parameter (usually b = 4) and N is the number
of nodes

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Sketch of the routing algorithm

Assume we want to find the node in the PASTRY network
with the NodeId closest to a given key

Note that NodeId and key are both 128 bit sequences

Both NodeId and the key can be thought as sequence of digits
with base 2b

Routing idea

In each routing step, a node normally forwards the message to a
node whose NodeId shares with the key a prefix that is at least one
digit longer than than the key shares with the present node. If
such a node is not known, the message is forwarded to a node that
shares the same prefix of the actual node but its NodeId is
numerically closer to the key,

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

State of a node

Each PASTRY node has a state consisting of:

a routing table

used in the first phase of the routing (long distances)

a neighborhood set M

contains the NodeId and IP addresses of the |M| nodes which
are closest (according to a metric) to the considered node

a leaf set L

contains the NodeId and IP addresses of the |L|/2 nodes
whose NodeId are numerically closest smaller than the present
Nodeid, and the |L|/2 nodes whose NodeId are numerically
closest larger than the present NodeId.

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

The routing table

The routing table is a dlog2b (N)e × (2b − 1) table

b is the configuration parameter
N is the number of PASTRY nodes in the network

The 2b − 1 entries at row n each refers to a node whose
NodeId shares the present node NodeId in the first n digits
but whose (n + 1)th digit has one of the 2b − 1 possible
values other than (n + 1)th digit in the present node id.

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Routing table example

Assuming 16 bit NodeId, b = 2, number are expressed in base
2b = 4.

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Routing table dimension

The choice of b and N determine the routing table size

The size is approximatively dlog2b Ne × (2b − 1)

The maximum number of hops between any pair of nodes is
dlog2b Ne
Larger b increases the routing table size but reduces the
number of hops

With 106 nodes and b = 4 we have around 75 table entries

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Neighborhood set

The Neighborhood set M contains the NodeIds and IP
addresses of the |M| nodes that are closest (according to a
metric that usually depends on the network topology) to the
local node

This set is not normally used in the routing process

It is useful in maintaining local properties

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Leaf set

The leaf set contain the |L| NodeIds closest to the current node’s
NodeId

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Routing algorithm: notation

D: key to route

R i
` the entry in the routing table R at column i with

0 ≤ i ≤ 2b and row `, 0 ≤ ` ≤ b128/bc
Li the i-th closest nodeId in the leaf set L,
−b|L|/2c ≤ i ≤ b|L|/2c
D` the value of the l ’s digit in the key D

shl(A, B): the length of the prefix shared among A and B in
digits

A address of the current node

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Routing algorithm

if L−b|L|/2c ≤ D ≤ L+b|L|/2c then
/* Route to a leaf */
forward to Li s.th. |D − Li | is minimal

end
else

` ← shl(D, A)
if RD`

` 6= null then
/* Route to a node in the routing table */

forward to RD`
`

end
else

/* Get as close as you can ... */
forward to T ∈ L ∪ R ∪M s.th. shl(T , D) ≥ l ,
|T − D| < |A− D|

end

end Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Example: how do we route?

10233131⇒ 10233122 (leaf)
10210221⇒ 10211302

Target not in L because 102331024 − 102102214 = 222214 and
102331024 − 12330004 = 1024 and
102332324 − 102331024 = 1304

shl(10233102, 10210221) = 3
R1

3 = 10211302Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Routing performance

Theorem (Expected number of routing steps)

The expected number of routing steps with PASTRY algorithm is
dlog2b Ne.

Proof

If the target node is reached using the routing table, each step
reduces the set of possible target of 2b

If the target node is in L, then we need 1 step

The third case is more difficult to treat. It is unlikely to
happen, experimental results with uniform NodeId, give:

If |L| = 2b, probability < 0.02
If |L|2b+1, probability = < 0.006

When case 3 happens it adds an additional step

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Reliability

In the event of many simultaneous node failures the number
of routing steps may be at worst linear with N (loose upper
bound)

Message delivery is guaranteed unless b|L|/2c nodes with
consecutive NodeIds fails simultaneously. (Very rare event)

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

PASTRY API (simplified version)

PASTRY exports the following operations:

nodeId = pastryInit(Credentials, Application)
Join a PASTRY network or create a new one
Credentials: needed to authenticate the new node
Application: handle to the application that requires the services

route(msg,key)
PASTRY routes message msg to the node with NodeId
numerically closest to key

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Application API (simplified version)

An application that uses PASTRY services must export the
following operations:

deliver(msg,key)
PASTRY calls this method to deliver a message arrived to
destination

forward(msg,key,nextId)
PASTRY calls this method before forwarding a message. The
application may change the message, or nextId. Setting nextId
to null terminates the delivering.

newLeafs(leafSet)
Used by PASTRY to inform the application about a change in
the leaf set

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Scenario and assumptions

Node X wants to join a PASTRY network

X ’s NodeId is computed by the application

E.g. may be a SHA-1 of its IP address or its public key

X knows a close (according to the proximity metric) node A

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Join message

Node X sends to A a message of join whose key is X ’s NodeId

The messages is treated by A like all the other messages

A tries to deliver the message to send the message to node Z
whose NodeId is closest to key, i.e., closest to X ’s NodeId

Each node in the path from A to Z sends its state tables to X

X may require additional information to other nodes

X builds its own tables

The interested nodes update their state tables

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Neighbourhood set and leaf set

A is assumed to be close to X so X uses A’s neighbourhood
set to initialise its own

Z leaf set is used as base leaf set of X

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Building the routing table

Let ` = shl(X , A) ≥ 0

Rows from 0 to ` of A become rows from 0 to ` of X

Row ` + 1 of X is row ` + 1 of B, where B is the node after A
in the path to Z

X sends M, L and the routing table to each node from A to
Z . These update their states

Simultaneous arrivals cause contention solved using timestamp

Messages sent for a node join are O(log2b N)

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Dealing with node dapartures

Node can fail or depart from the network without warnings

A node is considered failed when its immediate neighbours (in
NodeId space) cannot communicate with it:

In this case the state of the nodes that refer to the failed node
must be updated

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Repairing the leaf set

Scenario:

Node X fails

Node A has X in the leaf set

Actions performed by A to repair its leaf set:

If NodeIdA > NodeIdX then A requires the leaf set of the leaf
node with lowest NodeId

If NodeIdA < NodeIdA then A requires the leaf set of the leaf
node with highest NodeId

A uses the received set to repair its own

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Repairing the routing table

Scenario:

Node X fails

Node A has X as target in the routing table in position Rd
`

Actions performed by A to repair its routing table:

A asks the entry Rd
` for each target in its routing table R i

`

with i 6= d

If none answers with a live node then it passes to row R`+1

and repeats the procedure

If a node exists this procedure finds it with high probability

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Node join
Node departure

Repairing the neighbourhood set

Note that the neighbourhood set is not used in the routing,
yet it plays a pivotal role in improving the performance of
PASTRY algorithm

A PASTRY node periodically tests if the nodes in M are live

When a node does not answer the polling node asks for the
neighbourhood set of the other nodes in its M. Then it
replaces the failed node with the closest (according to the
proximity metric) live one.

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Main idea

PASTRY routing algorithm may result inefficient because few
steps in the routing procedure may require long time

The distribution of NodeIds does not take in account locality

Close NodeIds may be geographically far ⇒ long delays for
message delivering

The neighbourhood set is used to improve the performance

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Assumptions and goal

Assumptions:

Scalar proximity metric

E.g.: number of routing hops, geographic distance

The proximity space given by the proximity metric is
Euclidean

Triangulation inequality holds

If the metric is not Euclidean PASTRY routing keeps working
but it may be not optimized

Goal:

The nodes in the path of a message delivery from A to B are
close according to the proximity metric.

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Locality in the routing table

Scenario:

Assume a network satisfies the required property

We show that when a new node X joins the network the
property is maintained

X knows A that is assumed to be close to X

Idea:

R0 of A is used for X . If the property holds for A and A is
close to X then the property holds for S

R1 of X is R1 of B, i.e., the node reached from A. Why can
B be considered close to X? The distance should be weighted
on the number of possible targets!

The same argument applies to the other routing table rows

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Further improvements

The quality of the described approximation may decade due to
cascade errors

PASTRY incorporates a second stage in building the locality
route tables

Node X joining the networks requires the state from each of
the nodes mentioned in the routing table and in the
neighbourhood set
Node X replaces in its state the nodes in case it received
better information
E.g. Rd

` of X may be replaced if node addressed by R i
` has a

closest address (according to the proximity metric) that fits in
Rd

` .

Andrea Marin Routing overlay case of study: PASTRY

Introduction
Design overview
Self-adaptation

Improving the routing performance

Locality property

PASTRY locality features grant that a good route is found
but not that the best route is found

The process approximates the best routing to the destination

The routing decisions are taken locally!

Recall that a resource is present in the network with k
replicas. But the addressed one could be not the closest
(according to the proximity metric)

Andrea Marin Routing overlay case of study: PASTRY

	Introduction
	Design overview
	Self-adaptation
	Node join
	Node departure

	Improving the routing performance

