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Abstract—Low-Earth Orbit constellations are one of the
recent advancements that could provide a fresh perspective on
Internet connectivity. They are appealing because they provide
global coverage, they offer low round-trip-time, and they can
grow to tens of thousands satellites to increase the offered
capacity. However, simulating large urban areas is challenging
due to the scalability limitations of the simulators. We present
the results of a simulation campaign in which we improve the
current state-of-the-art vehicular network simulator, Veins, in
its satellite-based variant (Space Veins). We introduce a precise
three-dimensional analysis that allows us to use detailed city
maps, which in turn allows us to use realistic traffic patterns.
We show that the parameters that most impact the results of the
simulators are two: the assumptions on the building height and
the positioning of the vehicles in the map. Results are extremely
sensitive to these factors, underscoring the need for more open
data and standardized, repeatable scenarios that can facilitate
better research evaluation in this field.

I. INTRODUCTION

Over the last decade the cost of space launches per kg
of payload has steeply decreased, and as a consequence, the
number of satellites skyrocketed. One killer application is
of course telecommunications, with several operators that al-
ready launched their constellation of Low-Earth-Orbit (LEO)
satellites to offer network connectivity. Starlink is probably
the most developed one (with thousands of active satellites)
and Iridium is one of the most known and studied [1]. The
fast advancement of LEO constellations have led researchers
to analyse the possibility of connecting mobile terminals
directly to the satellite infrastructure. The current proposals
plan to exploit mmWave frequencies (from 30 to 300 GHz)
in order to provide enough capacity [2], but that comes with
many challenges. Among them, we need scalable and accu-
rate tools to design and assess the performance of satellite
connectivity. We can exploit theoretical models to estimate
upper and lower bounds, we can leverage on experimental
evaluation for link-level measurement, however, when we
need sufficiently detailed evaluation together with scalability,
network simulators play a fundamental role.

Recently, some works have integrated satellite constel-
lations into vehicular network simulators [3]. The chal-
lenge with this approach is to simulate large-scale urban

areas with hundreds of thousands of vehicles and tens of
satellites offering connectivity in a certain area. Given the
multitude of parameters to study (location of the vehicles,
latitude/longitude of the scenario, accuracy of the simulation
map) it is important to use models that provide a good trade-
off between accuracy and performance, but it is absolutely
not trivial to set the bar on the level of detail needed to
retain realistic results. The goal of this paper is to showcase
that merging very recent approaches for vehicular network
simulators, we are able to study satellite coverage in realistic
three-dimensional (3d) scenarios with a precise calculation
of the presence of Line-Of-Sight (LOS). We focus on the
evaluation of LOS because at high frequencies, it is very
unlikely to use Non Line-Of-Sight (NLOS) links, and even
if possible, the performance is strongly penalized [4].

Our approach consists of three steps: i) we run a vehicular
simulation in order to sample the density of vehicles per
square meter, in a real city map; ii) we reproduce the 3d
scenario using open data that describe the city map and the
building height, and we place static vehicles based on the
density previously estimated; iii) we run a 24h simulation
using the orbits of the Iridium network.

Our results show that each of these steps has a relevant
impact on the results, and simple configurations like a Man-
hattan grid leads to results that are far from those obtained
with more realistic assumptions.

II. STATE OF THE ART

Using non-terrestrial networks to connect mobile devices
is a topic that has raised the interest of researchers, as it
would ensure an ubiquitous connectivity for mobile phones
and vehicles in urban and non-urban areas. In particular, the
idea of integrating non-terrestrial networks using mmWave in
6G has been explored because it can provide high capacity to
moving devices [5], [2]. The telecommunication challenges
are however non trivial at all, because NLOS communication
is almost impossible in the highest portion of the mmWave
spectrum. This calls for a very high density of satellites or the
possible adoption of relays (High Altitude Platforms (HAPs)
or drones) that repeat the signal towards the vehicles. How-



ever, this kind of infrastructure is extremely challenging to
design [6] so it is very important to estimate the availability
of LOS from LEO satellites to vehicles directly.

This task can be approached using several techniques, on
the one extreme some works use an analytical approach [7],
[8], that is very useful to assess the macroscopic properties
of the system, but of course lack the granularity that is
required to design and optimize a real network. On the
other extreme we have experimental works that use real
networks to measure their performance [9]. These papers are
valuable to model the performance of communication links
but are very expensive to realize, so their scale is intrinsically
limited. Moreover, they can only use available infrastructure
and thus they can not be used to test non existing network
set-ups. A middle approach is the simulation-based one, that
exploits the models produced by theoretical and experimental
works, and it can be tailored to the scale and the scenario
that the researcher wants to explore.

Not many works have explored the feasibility of non-
terrestrial connectivity for vehicular networks. Initial works
by Franke et al. have addressed the feasibility of simulating
satellite-based vehicular networks [3] and introduced realistic
datalink layer strategies [10]. More advanced works by
the same authors improved the open source simulators1 to
introduce real satellite trajectories and accurate geometric
approximations to map satellite orbits to the local projection
used in the simulator [11]. On this basis the availability
of LOS in simplified city models was studied, making an
initial estimation of the impact of the geometry of the urban
environment on the vehicle connectivity [12]. The scarcity
of results is in part due to the fact that vehicular network
simulators use statistical path loss models that are not tailored
to mmWave communications. In mmWave communications
the impact of LOS/NLOS, and eventually diffraction requires
a precise 3d modelling of the scenario. However there is a
lack of data and software to correctly model 3d vehicular
networks [13], and ray-tracers are computationally expensive
[14]. A similar problem has been addressed recently for 5G
connectivity [15], [4] and led to the release of new, up-to-date
algorithms that can be efficiently used to simulate detailed 3d
scenarios in urban vehicular networks without incurring in
the computing overhead introduced by classical ray-tracing
simulators [16].

This paper pushes forward the state of the art merging
three approaches: the simulator tools by Franke et al. [12],
the LOS estimation by Zanotto et al. [16], and the density-
based approach by Gemmi et al [4] for an accurate position-
ing of vehicles. We exploit precise models for the satellite
orbits, and we represent an urban area with a detailed,
realistic, 3d scenario, to efficiently compute the presence
of LOS with a scalable approach2. Our results confirm a
strong dependency on the building heights and highlight the

1See https://sat.car2x.org/
2Our code is available at:

https://github.com/UniVe-NeDS-Lab/space veins/tree/space veins 3d

Fig. 1: A pictorial representation of the Iridium Next con-
stellation.

importance of vehicle density, that can be derived only using
realistic traffic patterns.

III. SIMULATION SET-UP

We divide the scenario description in two parts, the satel-
lite network and the ground devices. We base the analysis
on the Iridium Next constellation, that is well documented
[1], and its integration in OMNet++ is thoroughly discussed
in [11]. Here we provide only the details that are relevant
for our analysis.

A. The Satellite Network

A LEO constellation is a set of satellites orbiting around
the globe, at an altitude in the order of hundreds of kilo-
meters. With such a low altitude the satellites complete a
whole orbit in roughly 90-100 minutes, which means that
satellites travel at a speed of tens of thousands of km per
hour. Besides the altitude, a LEO satellite orbit is defined
using an inclination angle, that is the angle of the orbit plane
with reference to the equator plane. Iridium currently uses a
constellation of 75 satellites at an altitude of 780km, with a
nearly polar orbit, which means that the inclination is 86.4◦,
close to the inclination of a meridian. Satellites then pass
close to the north and south pole, which means that coverage
can be provided even in regions with an extreme latitude.

As shown in Fig. 1, the 75 satellites are distributed over 6
orbits spaced 30◦ each3. Satellite orbits are defined by a so-
called Two-Line Element Set (TLE), that contains all the data
that are needed to reconstruct the orbit. For each satellite, its
TLE can be downloaded by observation websites4.

3Note that not all the constellation is used all the times, as 5 satellites
are left as a spare backup, but we include them in our simulation for
completeness.

4http://celestrak.org/NORAD/elements/gp.php?GROUP=iridium-NEXT\
&FORMAT=tle



Fig. 2: A pictorial representation of an orbit to illustrate its
geometry. Dashed line: equator, orange line: orbit, red dot:
receiver, purple dot: satellite position. i is the inclination
angle and θ the elevation angle

.

Satellites can communicate with ground terminals directly.
The communication link has a different length depending
on the elevation angle θ: the angle formed by the segment
representing the communication link and the plane tangent
to the earth surface (see Fig. 2). If θ = 90◦ then the
satellite is exactly at the Zenith of the observer point, in
absence of obstacles, the lowest angle that Iridium allows
for communications is 8.2◦ [1].

Given these constraints, one ground terminal remains in
LOS with a satellite for only a few minutes and needs
to hand-over the communication frequently. Iridium does
not use mmWave communication with ground terminals,
however, our goal is not to study a specific communication
network, it is to verify what are the factors that impact
the most the simulation of a satellite network. We then use
Iridium as an example of a realistic network deployment,
but the same experiments could be repeated with other
constellations, such as Starlink.

Note that since the orbit period is lower than the earth
revolution period, when an orbit is completed, the satellite
finds itself on the Zenith of a different ground point com-
pared to the previous passage. Since the earth revolution
period is not a precise multiple of the orbit duration, after
24 hours the satellite finds itself on the Zenith of yet another
ground point. This means that even after 24 hours the state
of the simulation is not the initial one, so the configuration of
satellites did not explore all the possible states. In this work
we stop the simulation after 24 hours for practical reasons.

B. The Ground Network

We simulate two scenarios in the terrestrial part of the
network, in both cases we placed static vehicles on the
streets. The first one is a classical Manhattan grid scenario
with buildings of height 10m, 16.2m, 30m, that we refer to as

M-10/16/30 (16.2m is the average height of the buildings in
the Luxembourg scenario that we describe next). We use an
area of roughly one square km with a target density of 100
cars per square km distributed with a deterministic algorithm
that places cars at regular intervals along the streets, that is
the basic strategy adopted in other papers [12]. The center
of the area is placed at the same latitude and longitude of
the center of the scenario we describe next.

The second scenario is extracted from Luxembourg city
(we refer to it as Lux). We use Luxembourg due to the
availability of accurate data, that increases the realism of our
results. First, Veins/SUMO can be integrated with the LuST
traffic generator, that uses a highly realistic synthetically
generated traffic demand, validated using the traffic traces
measured in site [17]. Second, we obtained the precise
description of the 3d representation of the city (the so-called
Digital Surface Model (DSM)) that enables us to reproduce
the city buildings with great accuracy. In Lux we use the real
map of the city extracted from OpenStreetMap, the building
shapes and their real height. We approximate the buildings
to prisms and we admit both convex and concave prisms,
thanks to the techniques introduced in a previous work [16].
This is the first time in our best knowledge that a precise 3d
simulator is used to study a satellite-based vehicular network.

When using Lux we could simulate a network with moving
vehicles, but this has high scalability problems. Even if the
area under analysis is relatively small (we select a rectangle
of 1.46 square km, that corresponds to a neighborhood of the
city delimited by avenues), the traffic patterns have sources
and sinks of vehicles outside the area we select. So we
would still need to simulate a city-wide area with hundreds
of thousands of cars plus all the satellites. Another issue
with this approach is that we could hardly compare it with
the Manhattan scenario that would have completely synthetic
and regular traffic patterns.

We then decided to use an approach that has been already
successfully used in similar works [15], [4]. We run a 24h
simulation of only the vehicular traffic in the Luxembourg
scenario, without considering any communication (involving
more than 200,000 cars). At every second we sample the
position of the vehicles, and we quantize the samples using
units of one square meter. We then have two integer indices
0 ≤ x ≤ X and 0 ≤ y ≤ Y where X × Y is the size
of the area. We obtain a matrix γ where γx,y = n means
that n vehicles have passed in cell (x, y) during the whole
simulation. We refer to n as the number of samples per point
and we call G the set of all coordinates where at least one
sample was measured:

G = {(x, y) s.t.γx,y ̸= 0} (1)

Based on this initial data we distribute the vehicles,
downsampling the space to reduce the complexity. Given a
target density of vehicles per square km D, we tessellate
the 2d space with a number r × q of squares so that we
have D squares per square km, each one identified with two
indices i ∈ [0, r − 1], j ∈ [0, q − 1]. We create γi,j that is a



submatrix of γ restricted to the coordinates (x, y) that fall
in the square identified by indices i, j, we call Gi,j ⊆ G
the subset of coordinates in the square. Note that not all the
squares contain valid points, as some can be entirely included
in buildings, we call R ≤ rq the number of sets Gi,j with
non-zero size. We now need strategies to choose (on average)
one point in each Gi,j , so that the chosen point(s) can be
considered somehow representative of square i, j.

1) Uniform Downsampling Strategies: In the first down-
sampling strategy (which we refer to as the uniform strat-
egy), for each couple i, j we just select the point in Gi,j

whose distance to the center of the square (computed as
the intersection of its diagonals) is minimal. This strategy
produces coordinates that are spread uniformly in the 2d
space but are not representative of the density of vehicles.
Moreover, we can not guarantee a certain density D as
R ≤ rq. Fig. 3 reports the distribution of the receivers in the
simulation using the uniform placement. The grid determines
the number of squares, the grayed out squares are the ones
that contain no samples, the color gamma represents γx,y .
We see that the range of samples is limited to about 1000
samples per point, and most of the points are in the low
region of the gamma.

Fig. 3: Uniform placement. The points are distributed uni-
formly to cover the largest portion of the area, but the
samples per point are very low.

We need a second strategy that, given two coordinates
couples x1, y1 and x2, y2 so that γx1,y1

> γx2,y2
selects

x1, y1 with higher probability.
2) Weighted Downsampling Strategy: We could simply

use the points in the area with the highest γx,y , however
when using a realistic traffic pattern, we know that the
distribution of γx,y is very skewed. The average is less
then one sample per minute, but top values are orders of
magnitude higher than the average and are all concentrated
on crossroads with a high vehicular traffic [4]. Choosing the
top-R coordinates based on the number of samples would
generate a set of positions that are all concentrated in a few
locations.

In the second strategy (which we refer to as the weighted
strategy) we then operate as follows. We call s = |γ| and
si,j = |γi,j | (where | · | is the sum of all the elements of

the matrix). Given R we computed in the uniform placement
strategy, for every submatrix we compute

gi,j = ⌊ R si,j
s

⌋ (2)

ri,j = R
si,j
s

− gi,j (3)

Where gi,j is R scaled by the ratio between the sum of
the samples measured in block i, j and the total number of
samples, rounded to the lowest integer. Instead, ri,j is the
residual difference with the floating point value. Note that
gi,j can be larger than one, and due to the rounding, gi,j can
be also zero, so

∑
i

∑
j gi,j = R′ ≤ R.

We take the list L = {gi,j ∀ (i, j) | gi,j ̸= 0} and then
for each block (i, j) ∈ L we take gi,j coordinates starting
from the ones with the highest number of samples. This will
assign R′ coordinates to S ≤ R′ squares. If R′ < R we
order the blocks by decreasing values of ri,j and assign the
remaining R − R′ points, one per square. This strategy can
provide any given density D of points, however, in order
to compare the absolute values of the performance metrics,
we use the same number of coordinates R generated by the
uniform strategy.

As a comparison, Fig. 4 shows the same area we used
for Fig. 3 on which we applied the weighted sampling.
The choice clearly covers a smaller area, but each point is
associated with a larger number of samples (note that the
color map is the same, but the gamma extremes are 50 times
larger than in Fig. 3). In practical terms this means that
the coordinates chosen with the weighted algorithm are less
representative in terms of space density, but are way more
representative of the probability of having a vehicle in that
position.

Fig. 4: Weighted placement. The covered area is smaller, but
the samples per point are one order of magnitude higher.

In the area under analysis (1.46 square km) we pick a
density D = 70, that creates a tessellation made of 112
squares (higher than 70*1.46 due to border conditions). The
properties of the sampled points are reported in Tab. I, where
we report the number of chosen coordinates, the number of
occupied squares and the percentage of the occupied squares
with reference to the non-empty squares. We can see that



strategy R occupied squares non-empty squares (%)
uniform 106 106 100%
top-R 106 18 16.1%

weighted 106 59 52.7%

TABLE I: The properties of the sampled coordinates set.

given a certain target density, we obtain the number of non-
empty square from the first strategy, that corresponds to all
the squares that have at least one coordinate in it. The top-R
strategy will distribute the coordinates in only 18 of the 106
available squares, while the weighted strategy occupies 59
squares.

Note that the use of static vehicles with a downsampling
strategy has another advantage we can exploit in the future,
as we could remove the whole simulator from the loop and
replace it with a GPU. In fact the positions of the satellites
are deterministic and given, and the positions of the vehicles
are static. We could extract the data from one simulator run
and then use the power of parallelisation offered by a GPU
to compute the presence of LOS in areas that are otherwise
impossible to simulate due to their size.

IV. THE EVALUATION METRICS

Every second, every satellite sends a broadcast packet that
is potentially received by all the vehicles. The channel model
simply computes the segment line between the sender and the
receiver, checks if this segment intersects any of the buildings
in the 3d scenario and verifies the presence or absence of
LOS. If LOS is present we consider the frame delivered,
else we consider it not delivered. When the elevation of the
satellite with reference to the vehicle position is below 8.2◦

the frame is never delivered. At the end of the evaluation
the simulator produces a comma-separated-values file that
contains for each receiver a line of log for each frame,
including the position of the receiver, the availability of
LOS, the elevation angle of the satellite with reference to
the vehicle position, and the distance. We set the number of
vehicles to 100 on every scenario in order to have comparable
absolute numbers.

To evaluate the results of the simulation we use several
evaluation metrics. The first one is the fraction of frames F
that were delivered using LOS over the total sent frames,
measured in each receiving vehicle. We compute Fv for
each vehicle v and we report the empirical distribution of
this value. For each delivered frame we save the elevation
angle θ of the satellite that generates the frame, computed
with reference to the vehicle position. This is obviously
affected by the geometry of the scenario, by the height of the
buildings and by the positions of the vehicles. It is extremely
important because it determines the length d of the link from
the satellite to the vehicle. The value of d depends on sin(θ)
and thus the distance is non linear with θ. On top of this we
also know that the expected capacity of the link depends
non-linearly on d. In order to clearly show the impact of θ
we then compute the Shannon capacity of the link used to
deliver the frame, similarly to Giordani et al. [5]. The exact

equations and parameters are reported in Appendix A. We
show the distribution of the Shannon capacity as a binned
histogram.

Before moving to the results let us summarize the goals
of the evaluation: we can group the scenarios in 3 sets:
M10 and M30 that require only synthetic data; M-16 that
uses an estimation of the average building height; Lux-
U that requires the real city map and the real building
heights; Lux-W that requires also accurate traffic patterns.
For the Manhattan scenarios, LOS is computed with simple
techniques, because the obstacles are convex ones. For the
Lux scenario (and any other real-world 3d scenario) we need
a more robust 3d ray-tracing techniques as the one in Zanotto
et al. [16], as the building bases can be concave. Every
step increases the complexity of the simulator and we want
to evaluate what is the impact on the results. As both the
vehicles positions and satellite trajectories are deterministic,
we show the results of one single run that lasts 24 hours.

V. RESULTS

A. Fraction F of LOS Frames

The first results we present show the fraction of LOS
frames that are received by the vehicles. Fig. 5 shows the
sorted values of Fv , for all the scenarios. We can clearly
see that Manhattan scenarios are strongly influenced by the
choice of the building height, which is a sensitive parameter.
This confirms previous results with similar settings [12]. We
also notice that the road grid introduces a synthetic clustering
of the data, with vehicles that are distributed in the same
direction, or the same street, that behave in a similar way.
Some of the vehicles (the ones that are placed in a crossroad)
have a higher visibility. It is intuitive to understand that since
Iridium orbits are almost polar, the streets that have a North-
South orientation have a better coverage than ones with East-
West orientation. In principle, the same effects exists also in
the Luxembourg scenario, but streets are not on a grid, so the
distribution of Fv is smooth and does not have sharp steps.
We also notice that the Lux-W curve has significantly better
performance than the Lux-U. This is a key observation of
our results: uniform 2D sampling strongly underestimates the
performance of the system, compared to weighted sampling.
We will give an intuitive explanation in Section VI.

We also summarize the distribution of F with box-plots,
shown in Fig. 6. We see that the decrease in the median
of the three Manhattan scenarios is almost the same (0.14
between M-10 and M-16 and 0.13 between M-16 and M30),
even if the building height is not linearly increasing, as the
first interval is 6.2m and the second is 13.8m. This can be
explained because the portion of sky that one point in the
street can see without obstruction doesn’t reduce linearly
with the building height, so there is a threshold effect that
could be captured with a denser sampling of the buildings
height. From these results we can draw three conclusions: i)
Manhattan scenarios are sensitive to the building heights,
especially in the low heights range; ii) a periodic road
topology (like a grid) introduces an artificial clustering effect;
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Fig. 6: The boxplots summarising the distribution of Fv in
all the scenarios.

iii) when using an accurate 3d topology, the distribution of
vehicles has a strong impact on the final results.

B. Elevation Angle θ

We first illustrate in an intuitive way the measured values
of the elevation θ, to visualize the peculiarity of the satellite
network. Fig. 7 reports 260 minutes of the M-16 scenario,
and shows that the performance of the satellite network
oscillate with two periods. The first is α ≃ 8min that
represents the time between the passage of two satellites
belonging to the same orbit over the simulation area. We see
that in the Iridium constellation the satellites in one orbit are
not dense enough to avoid a huge oscillation of the angle
when the receiver passes from one satellite to the other. If
the density was higher the angle would be the convolution
of more curves with a lower fluctuation. The second period
β ≃ 120min is the time difference between two separate
orbits, that is consistent with having 6 orbits that split the 24
hours in 12 passages per day. We notice that the descending
part of one curve has a small overlapping with the ascending
part of the next one, confirming that the density of Iridium
is not sufficient to avoid strong fluctuations.

Fig. 8 reports the distribution of θ binned on intervals of
10◦, for all the scenarios. There are several relevant things
to note. The first one is that the curves for the Manhattan
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scenarios are well separated, that confirms that the building
heights is a very sensitive parameter. The second is that
the Manhattan scenario with building heights 16.2 has a
performance that is close to the Luxembourg scenario with
uniform distribution of vehicles. However, when we consider
the Luxembourg scenario with the weighted distribution of
vehicles, we see that the difference is again, very relevant.
This suggests that to have realistic results for a specific urban
area, the building heights and the vehicles distribution have
a stronger influence than the city map.

C. Link Capacity

Finally we present the results on the estimated link ca-
pacity, that is reported in Fig. 9. Here we can make three
key observations: the first one is that the distributions have a
similar shape, meaning that the factor that mostly influences
it is the latitude of the urban area and the geometry of
the constellation, rather than the topological properties of
the urban area. However, the curve in the Lux scenarios is
more compact and skewed, as the mode of the distribution
is shifted right and the tail of the distribution is more steep.
This is pretty evident when comparing the Lux-U with the
M-16 curves, that cross each other twice.
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VI. DISCUSSION AND LIMITATIONS

The results we presented must be translated into practical
advice for the researchers that use simulation tools to study
the performance of LEO communications in the mmWave
bandwidth:

The Building Heights Must Be Accurate: The results
are very sensitive to the building height, so that accurate
data for the urban area under analysis is of paramount
importance. Unfortunately, open data of buildings height are
scarce, and thus, there is a need to estimate and produce
more open data that researchers can use to set-up accurate
3d representations of urban and non urban areas.

The City Map Influences the Distribution of Fv but not
the Median: If the average value of the building heights is
given and the distribution of vehicles is uniform, then the
median of Fv for the Manhattan scenario is close to the
realistic one. However, the Manhattan scenarios introduces
non realistic clustering and distorts the curve of the link
capacity.

The Vehicles Distribution has a Strong Impact: When
vehicles are placed following a data-derived distribution the
results are strikingly different than when the placement is
uniform. Uniform placement underestimates performance:
we need more open data to create realistic and repeatable
vehicular networks scenarios.

The last point is a key one that deserves a deeper analysis.
An intuitive explanation is that using a weighted sampling we
introduce a bias towards streets that have higher traffic, and
those streets are probably larger than ones where the traffic is
lower. As a consequence, the buildings are farther away from
the vehicles, and the vehicles have a better sky visibility. This
increases the probability of being in LOS with a satellite.
However, if we compare the Lux curves in Fig. 8 and Fig. 9
we see that the largest difference is for the smaller angles
and smaller capacity. This is compatible with our intuition:
vehicles that are placed in high-traffic streets have a larger
visibility, and thus, they have LOS with satellites that have a
lower elevation θ, but this implies links with lower capacity.
This information is fundamental for the use of relays, such
as HAPs [18], or drones, that are one key component to

the success of satellite networks. A HAP can be used as a
repeater between a satellite and the user terminal when there
is no direct LOS: our results suggest that counterintuitively,
HAPs should not be placed where there is a high density of
vehicles as these are the areas in which F tends to be higher.
It might then be more convenient to use HAPs in areas with
lower vehicles density, and lower average LOS. One way to
approach this problem would be to compute some spatial
centrality metric that takes into account the traffic density,
and choose the HAPs positions in order to maximise their
overall centrality. Centrality metrics have been used in graph
analysis and routing [19], [20] and can be adjusted for many
purposes.

One limitation of this approach is that we are considering
the average behavior represented by a static snapshot of
the vehicle positions. This intrinsically hides the dynamic
behavior of the system. For instance, we don’t know what
is F computed on an average trajectory inside the urban
area, if it shows a certain continuity or it is subject to large
periods of service interruption. However, we have the data
of the original vehicle trajectories, and without changing our
approach we could model how the simulation parameters
affect the coverage of trajectories, and not of single points.

VII. CONCLUSIONS

The focus of this paper is on the identification of the most
important parameters that influence large-scale simulations
of LEO networks for vehicle connectivity. We compare three
simulation approaches, the simplest one based on a grid
topology, a second one based on an accurate 3d topology and
uniform vehicles placement, and a third one that improves
the second with a realistic placement of vehicles based
on traffic traces. We show that as long as the vehicles
are placed uniformly in the road networks, a Manhattan
scenario using the average building heights has a median
behavior that is similar to the one measured on the realistic
scenario. However, when vehicles positions are chosen based
on the realistic traffic patterns, the results change completely.
Simulations must be then tailored to the specific urban area,
and need highly detailed data about the building heights and
the vehicle density.
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name meaning value
N Noise on the Receiver (variable)
Pl Path los (variable)
C Link Capacity (variable)
k Boltzmann Constant 1.380649× 10−23

T temperature (K) 288
B bandwidth 800MHz
f frequency 28GHz

PT tx power 33 dBm
Rg antenna gain at the receiver 50 dBi
Tg antenna gain at the sender 43.2 dBi

TABLE II: Parameters used for capacity computation.

APPENDIX

Given the distance d, we use the classical Friis path loss
estimation together with the Shannon equation using only
the thermal noise as noise source. We adopt the parameters
reported in Tab. II that are extracted from Giordani et al. [5].
As we are not interested to estimate the effective capacity,
but to highlight the different estimation when using different
simulation parameters, we don’t include the effects of scintil-
lation and atmospheric absorption. As a result, compared to
Giordani et al. we measure a higher capacity. The path loss is
computed using the free space path loss equation in decibel
(Eq. (4)) and then plugged in the Friis equation (Eq. (5))
to obtain the received signal strength S. Thermal noise is
computed as in Eq. (6) and used to compute the signal-to-
noise ratio (after conversion of S in linear scale). Finally the
Shannon equation is used to compute the capacity in bit/s
Eq. (7).

Pl = 20log10(d) + 20log10(f)− 147.55 (4)
S[dB] = PT + Tg +Rg − Pl (5)

N = k ∗ T ∗B (6)

C = Blog10(1 +
S

N
) (7)


