
Centrality-based Route Recovery
in Wireless Mesh Networks

Michele Segata, Nicolò Facchi, Leonardo Maccari, Gabriele Gemmi, Renato Lo Cigno
Dept. of Information Engineering and Computer Science, University of Trento, Italy
{name.surname}@unitn.it; gabriele.gemmi@studenti.unitn.it

Abstract—Wireless Mesh Networks are subject to frequent
node and link failures, and routing protocols currently used,
such as Optimized Link State Routing (OLSR) or Babel, suffer
from relatively long recovery times characterized by broken and
looped routes due to long management timeouts that can not
be shortened to keep the overhead at an acceptable level. This
paper experiments a novel timer management technique named
Pop-Routing on top of OLSR. Pop-Routing exploits the notion of
betweenness centrality to tune timers depending on the node
position in the network, so that failures that lead to larger
traffic losses can be recovered faster. Pop-Routing maintains
the overhead constant, but favors the most central nodes, whose
failure is devastating from the performance point of view, and
penalizes peripheral ones, whose failure has a very little impact
on the entire network. Pop-Routing has been implemented as a
plug-in in the OLSR daemon, coupled with an external process,
named Prince, that computes centrality and timer values without
interfering with the routing daemon. Experiments are run on the
WiSHFUL1 showing the benefit of Pop-tuning OLSR Hello and
Traffic Control timers.

I. INTRODUCTION

One of the key features that make link-state routing protocols
attractive is their ability to rapidly react to a change in the
network topology, for instance, after the failure of a node. This
requires two phases, first, the nodes that are the neighbors
of the failed one need to detect the failure and change their
routing table accordingly. This local fix can possibly introduce
routing loops, since nodes that are not direct neighbors do
not know that the topology changed, and they might still use
the old route. In the second phase the information about the
change in the topology is propagated to all the other nodes in
the network. After that, all the nodes have the same information
base and take consistent routing decisions.

In a wireless mesh network the detection phase happens
thanks to HELLO messages (Hs from now on), which are
broadcast messages generated by every node. Hs are used to
estimate the link quality and to perform link sensing, the loss
of a sequence of Hs is interpreted as a link failure. It is intuitive
to understand that the lower is the timer used to generate Hs,
the faster is the protocol in detecting the link failure. On the
other hand, the timer can not be arbitrarily reduced because
control messages subtract resources to useful network traffic.

This work has been supported by the H2020 GA No. 645274 “Wireless
Software and Hardware platforms for Flexible and Unified radio and net-
work controL (WiSHFUL)" with the project “Pop-Routing On WiSHFUL
(POPROW)" financed in Open Call 3.

1WiSHFUL is a European H2020 project supporting an experimental
distributed testbed for wireless networks http://www.wishful-project.eu/

A trade-off must be found between convergence speed and
overhead. The propagation phase works in a similar way, and
needs a similar trade-off (details are given in Section II-B).

After many years of research on routing protocols for
wireless mesh networks the optimal solution to the trade-off
problem was proposed with Pop-Routing [1]. Pop-Routing
performs an optimal equalization of the generation timers that
maintains the total overhead constant and minimizes the damage
produced by a node failure. With Pop-Routing the timers of
the nodes that are more central in the network topology (see
Section II-A for a precise definition) are decreased, while the
timers of the nodes that are more peripheral are increased.
Therefore, the network recovers quickly from the failure of
important nodes. Pop-Routing was designed for the Optimized
Link State Routing (OLSR) protocol [2] and was so-far tested
only in emulation.

This paper documents the implementation of Pop-Routing
and the improvement in convergence speed in a real network.
We analyze the process of route recovery in different network
topologies and we measure the impact of node failures. We
show that in a generic network most of the damage is due to
the failure detection phase, while temporary loops have a lower
impact. We quantify the gain that Pop-Routing introduces in
absolute and relative terms, and we give valuable insights on
the role of link-quality metrics in route recovery.

We show that Pop-Routing can be further improved in a way
that is counter-intuitive, that is, removing from the optimization
those nodes that are cut-point of the network topology graph.
These nodes, albeit being central produce a physical network
partitioning which simply can not be solved with routing, so
that they could be removed from the optimization problem (see
Section IV-A).

The paper is organized as follows. Section II provides
some background on betweenness centrality, OLSR, Pop-
Routing, and Prince. Section III describes the test-bed setup, the
experiments, and the metrics used in the evaluation. Section IV
analyzes the experiment results, while Section V concludes the
paper and provides some future work ideas.

II. BACKGROUND AND RELATED WORK

A. Centrality

Betweenness centrality is a graph metric that represents the
fraction of all the shortest paths that pass through a single
node. Given a network graph G(N , E) where N is the set of
all nodes (of size N) and E is the set of edges (of size E) we

call pi,j = {ni, . . . , nj} the sequence of nodes that represents
the shortest path from node ni to node nj . Since in our case
the graph represents an IP network, we assume that at each
instant only one shortest path from ni to nj is used, so we
consider pi,j unique. We call bk the betweenness centrality of
node nk defined as:

bk =
1

N(N − 1)

i=N∑
i=1

j=N∑
j=1
j 6=i

Ipi,j
(nk), (1)

where Ipi,j (nk) is the indicator function that takes value 1
if nk ∈ pi,j and 0 otherwise. In a directed connected graph
without self loops, for each node nk there are exactly (N -
1) destinations. A leaf node nk has minimum centrality. We
include endpoints in paths computation so there are 2(N -1)
paths in which nk is present, and its centrality is 2

N . If instead
nk is the center of a star topology, it has maximum centrality
since it is present in all the N(N-1) possible shortest paths,
thus bk ∈ [2N , 1]. Computing centrality on wireless routers has
been shown to be feasible for N as large as 1000 [3].

Another concept that we use in the paper is the “cut-point”,
a node ni that, if removed, partitions the graphs in two or
more components. A cut point has non-minimal betweenness
by definition, because it is the connection between at least two
disjoint components.

B. Link-State Routing and OLSR

A link-state routing protocol is a protocol in which all
the nodes have the knowledge of the full network graph and
can populate their routing tables as the result of applying
Dijkstra’s algorithm to the network graph. OLSR is one of the
most studied link-state routing protocols for mesh networks,
it powers hundreds of existing networks and recently it was
fully re-engineered with a new protocol definition, see [4] and
all RFCs it updates. One of the most notable use of OLSR is
in Wireless Community Networks: bottom-up initiatives that
use WiFi-based networks to improve Internet accessibility2

In extreme synthesis OLSR has two functions concurrently
running:
• Every node ni sends one H message every tH(i) sec-

onds. Hs use 1-hop broadcast to discover and maintain
neighborhood relationships. Each H message contains a
validity field whose value is tH(i) · Hmult, where Hmult is a
configurable multiplier. A neighbor nj of ni sets a timer
to the validity time at the reception of any H from ni,
if a new H is not received before the timer expiration,
nj considers link {ni, nj} broken. Hs are also used to
estimate the link loss and assign a link quality using
the ETX metric [7]. ETX is an additive metric whose
minimum value (best quality) is 1.

• Every node ni also sends Topology Control messages
(TCs from now on) every tTC(i) seconds (generally with
tTC(i) > tH(i)). A TC generated by ni contains the valid

2See for instance [5], [6], and sites as http://netcommons.eu, http://guifi.net,
http://https://freifunk.net/en/

links {ni, nj} for every neighbor nj . TC messages are
flooded and reach every node in the network so every
node nk is aware of the full (weighted) topology and can
compute the shortest path to any destination and build
its routing table. As for H messages, TC messages have
a validity computed as tTC(i) · TCmult, where TCmult is
configurable.

As any link-state routing protocol, OLSR generates a large
amount of control messages, and several techniques have been
proposed to reduce it. Among them it is worth to mention
Fisheye [8] which has the drawback of introducing temporary
loops [9], and Multi-Point-Relays (MPRs) [10] which are
natively supported by OLSR [11].

C. Pop-Routing

Pop-Routing is a recently introduced technique that exploits
the presence of the validity field in the Hs and TCs to
differentiate the timers [1]. Pop-Routing generalizes the ideas
that lead to both Fisheye and MPR without the drawbacks
of these solutions. With Pop-Routing tH(i) and tTC(i) are not
the same for every node, but are dynamically computed by
a function that depends on the node centrality. The rationale
of Pop-Routing is that the failure of a node ni with high
betweenness triggers the re-computation of a large number of
shortest paths, and thus possibly impacts a high amount of
traffic: It is convenient to decrease tH(i) and tTC(i) in order
to quickly detect the failure of ni and quickly propagate this
information to the rest of the network nodes. Instead, the failure
of a node nj with low centrality has a low impact and we can
use large values for tH(j) and tTC(j). The equalization of the
timers proposed by Pop-Routing maintains the total amount of
control messages equal to the case in which the timers are set
to their default value, tH(i) = 2 s and tTC(i) = 5 s, but reduces
the average time for which a shortest path remains broken due
to a node failure.

The exact computation of the timers is given in Eqs. (2)
and (3) where di is the degree of ni and OH is a constant (see
the original paper for the details [1]).

tH(i) =

√
di√
bi

1

OH

N∑
j=1

√
bjdj (2)

tTC(i) =

√
E√
bi

1

OH

N∑
j=1

√
bjE (3)

D. Prince

Prince3 is an open source software that implements Pop-
Routing on top of the two versions of OLSR and it is a
separated daemon from OLSRd (the daemon that implements
the OLSR protocol). This design choice was necessary because
the computation of the centrality value may take several seconds
in large networks on constrained device [3], and OLSRd can
not freeze for such an amount of time. Furthermore, using a
separate daemon makes it possible to support any other routing

3See https://github.com/AdvancedNetworkingSystems/poprouting

iptables filtering

Figure 1: Custom topology through MAC layer filtering.

protocol with a plug-in system. OLSRd offers a set of interfaces
that can be used by external applications to extract the network
topology and set the configuration parameters. Prince exploits
these interfaces to periodically receive the topology, calculate
the correct values for tH(i) and tTC(i) according to Eqs. (2)
and (3) and feed them back to the running instance of OLSRd.

III. EXPERIMENTS SETUP

We carry out our experiments using the WiSHFUL federate
w.iLab14 test-bed. The test-bed is composed of 44 nodes
disposed in a 4 × 11 grid, each row being spaced by 2m
and each column by 2.5m. Each node is equipped with an
IEEE 802.11abgn NIC card for wireless experimentation and
with an Ethernet interface for remote control.

Due to nodes’ proximity, the topology of the test-bed is
almost fully-meshed, with the exception of a few links. We
exploit this characteristic to reproduce arbitrary topologies on
top of the fully meshed network by means of MAC filtering
through iptables (Fig. 1).

We developed a set of scripts which automatically take
care of setting up the nodes, starting the required software,
applying filtering rules to obtain the required topology, waiting
for network convergence, and killing a node depending on a
criterion at a certain point in time. Each experiment is repeated
for standard OLSR and for Pop-Routing (i.e., with Prince) and
can be performed multiple times to gain statistical confidence.

During the experiment, we periodically sample the routing
table and the OLSR topology of all nodes, which makes it
possible in post-processing to reconstruct the state of the
network at any time. Nodes perform data sampling in a
synchronous manner thanks to Network Time Protocol (NTP),
giving us a synchronization precision in the order of 20ms,
which is more than enough for our sampling interval (300ms).

In the post-processing phase, we collect all the timestamped
routing tables from all the nodes and we navigate them for
each source and each destination node in all sampling points,
computing the number of broken and looped paths (non-
functioning paths from now on)5. Broken paths are those where
the routing table of one of the nodes along the route either

4http://doc.ilabt.iminds.be/ilabt-documentation/wilabfacility.html
5The post-processing phase is quite complex, and it is only summarised

here for brevity. It is the same procedure described in details in [1].

points to the failed node or does not have an entry for the
destination. In a running network they generate the ICMP

“Destination unreachable” message. Paths with loops, instead,
are the ones where one node appears twice in the route, causing
packets to bounce back and forth until the Time to Live (TTL)
expires. In a running network they generate the ICMP “Time
exceeded” message.

We compare the performance of OLSR against Pop-Routing
by analyzing how many routes were non-functioning for how
much time. More formally, let e be the total number of
samples (timestamped routing tables for each node), rh and
Th the number of non-functioning paths and the time-stamp
of sample h, respectively. We define the “combined empirical
loss reduction” L̃ as

L̃ =

e∑
h=1

rh · (Th − Th−1), (4)

which can be seen as the integral of the number of non-
functioning paths over time. This concept is clarified in detail in
Section IV (Fig. 3). The value L̃ is averaged over all repetitions.

To compare OLSR with Pop-Routing, we compute the
absolute integral difference L̃olsr − L̃pop for each of the failed
nodes. In addition, we compute the global absolute and relative
loss reduction as

L̃A =

Nf∑
i=1

L̃olsr(i)−L̃pop(i), L̃g = 1−
∑Nf

i=1 L̃pop(i)∑Nf

i=1 L̃olsr(i)
, (5)

where L̃(i) indicates the loss reduction computed when killing
the i-th most central node that is neither a cut-point nor a leaf
and Nf is the number of experiments.

We test our approach in several scenarios, selecting topolo-
gies that have different characteristics. The first topology
(Fig. 2a) is a simple chain with a bisection in the middle, and
we use it to explain the phenomena. The two bisection branches
are of length 5 and 6, respectively. Since the ETX values of the
links are all close to 1, the shortest branch is always preferred
to the longest one. A second test topology is a Barabási-
Albert [12] with m = 3. In both cases we run experiments
with 42 nodes to fine tune the configuration parameters of
OLSRd. From this testing phase we observed that the default
multiplier values used by OLSRd (TCmult = 60 and Hmult = 10)
are definitely more stable than the value of 3 suggested in the
RFC, albeit this imply that after a failure the performance loss
can be very large. In addition, we disable Fisheye as it often
produces inconsistent routes coupled with small values of Hmult
and TCmult.

Next, we considered two well-known topology types with
40 nodes: caveman (Fig. 2b) and Waxman (Fig. 2c). The
former is characterized by multiple, well-connected cliques,
inter-connected by rewiring a few links [13] and is generally
used to model human communities, and thus, ad-hoc networks.
The latter is often used to model communication networks [14].

Depending on the topology, we use different strategies for
selecting the nodes to kill. For the linear topology, we kill the

Hmult TCmult Killed node

Line 3, 10 60 Center node in shortest branch

Barabási-Albert 10 60 Most central

caveman 10 60 Five most and five least central

Waxman 10 60 Five most and five least central

Table I: Experiment parameters.

......

(a) line graph

(b) caveman (c) Waxman

Figure 2: Topologies considered in the experiments.

node in the middle of the shortest branch. In the Barabási-
Albert topology, we kill the node with the highest betweenness
centrality bi. In the caveman and the Waxman topology, we
kill the five nodes with the highest and the lowest betweenness
centrality bi. Table I summarizes the experiment parameters.

IV. RESULTS ANALYSIS

We begin the analysis by qualitatively comparing Pop-
Routing with standard OLSR in the line topology in terms of
time needed to fix non-functioning paths. Figure 3 shows the
evolution of the number of non-functioning paths starting from
the moment we kill one node. For both OLSR and Pop-Routing,
killing a node breaks all the shortest paths passing through that
node. As the topology is the same, the number of broken routes
is equal. After approximately Hmult ·tH(i) seconds the neighbors
of the killed node update the routing table by removing the
killed node as a possible next hop. This causes the number
of broken routes to decrease quickly but, on the other hand,
creates some routing loops. These loops are removed when
TC messages are sent and the information about the topology
change is propagated.

As the killed node has a high betweenness centrality, the
corresponding tH(i) (and thus the validity tH(i) ·Hmult) is lower
than with OLSRd. As expected, the time taken to repair the
routes is shorter when Pop-Routing is enabled.

In addition, we see that the time required to detect the
death of the nodes is related to Hmult. The lower Hmult, the
faster the detection. However, given that our logical topology
is implemented on top of a physical full-mesh, the interference

0 5 10 15 20 25 30

0

100

200

300

400

500

600

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

(a) Hmult = 3, TCmult = 60

0 5 10 15 20 25 30

0

100

200

300

400

500

600

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

(b) Hmult = 10, TCmult = 60

Figure 3: Number of broken and loop paths as function of time for
OLSR and Pop-Routing, for different values of the hello validity
multiplier.

level might easily lead to consecutive packet losses. We
observed that setting a low Hmult can pollute our results by
mistakenly invalidating routes during the experiment. For this
reason in the remaining experiments we keep the default
OLSRd Hmult = 10.

Figure 4 reports an interesting behavior observable when
multiple paths from a source to a destination exist, like in a
Barabási-Albert model. The figure shows that the network starts
to re-converge before the expiration of the H validity time. This
happens because OLSRd implements the ETX metric, which
causes link quality to decrease for each missed H message. Even
before the link is considered broken its quality degrades, and
this information is propagated with TCs. Nodes progressively
decide to switch to other shortest paths, and the dead node
becomes less central. Pop-Routing still performs better than
OLSRd, but the gain is smaller. This phenomenon is not
observable in Fig. 3, as in this specific scenario the cost of
the additional hop makes the shorter path preferable until the
node failure is discovered.

We continue the analysis considering the caveman and the
Waxman topology types. Figure 5 shows tH(i), tTC(i), and
betweenness bi for a single run using the Waxman topology.
The nodes are ordered by decreasing values of bi. Points drawn
in light red are cut-points and leaves, i.e., the ones that can not
be killed without partitioning the network. In addition, the plot
shows the default tH and tTC values for comparison. The plot
shows that most central nodes are assigned lower tH(i) and
tTC(i) with respect to the standard values tH and tTC. On the

0 5 10 15 20 25 30

0

100

200

300

400

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

Figure 4: Stairs-like behavior due to link quality degradation in a
Barabási-Albert graph (Hmult = 10).

ce
n
tr
al
it
y
b i

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

0

2

4

6

8

nodes by decreasing bi

ti
m
er

(s
)

tH
tTC

tH(i)
tTC(i)

bi

Figure 5: tH(i), tTC(i), and bi for one run using the Waxman topology.
Light red dots identify nodes that failing would partition the network.

other hand, least central nodes are penalized and are assigned
higher timer values.

Figure 6 shows the absolute integral difference L̃olsr(i)−
L̃pop(i) for all killed nodes. The node index does not consider
cut-points and leaves. Pop-Routing shows a positive perfor-
mance gain with respect to OLSRd when killing the five most
central nodes. When killing the five least central nodes (negative
node index), in most cases the performance loss is null, as
there is no shortest path passing through the failing node. In
the remaining cases, the loss is negligible compared to the
gain obtained by increasing the H and TC message frequency
for the most central nodes.

We would expect the absolute performance gain to be
monotonically decreasing with the node index, as the timers
in Fig. 5 are monotonically decreasing. The values in Fig. 6,
however, are heavily affected by noise as the shortest paths
might change from one experiment run to the next. Indeed, as
highlighted in Fig. 5, the two most central nodes have a very
similar betweenness centrality value, so slight fluctuations in
signal quality can lead to route changing and affect the results.

To obtain a complete comparison we would need to repeat the
experiments killing each possible node; however, this requires
an enormous amount of time to run the experiments. As an
alternative, we complement experiments with the theoretical
gain that Pop-Routing can achieve on a certain network (the
relevant computations and formulas are reported in [1]). Table II
reports the theoretic gain L̃g computed considering all nodes.
The gain is smaller than when considering the five most and

1 2 3 4 5 -5 -4 -3 -2 -1

0.0

0.2

0.4

0.6

0.8

dead node index

ab
s
in
te
gr
al

ga
in

(×
1
0
4
)

caveman waxman

Figure 6: Absolute integral gain as function of the killed node index,
for two different topology and two different interpretations of the
degree. Nodes are ordered by betweenness centrality. Negative indexes
indicates the least central nodes.

Waxman caveman

Absolute 2803.31 1606.06

Relative 0.26 0.21

Relative (theory) 0.18 0.20

Relative (theory, all nodes) 0.10 0.04

Table II: Absolute and relative gains for Waxman and caveman
topology.

least central nodes as well, but it is in any case positive,
showing a performance improvement by 10% and 4% for
the Waxman and the caveman topology types, respectively,
with no additional protocol overhead. It is interesting that
the experimental gain is larger than the theoretical when
we consider the same modes. This is probably due to noise
in experiments, as already mentioned, but its interpretation
requires additional investigation.

A. Dealing With Cut-points

Cut-points are nodes that cannot be removed without
partitioning the network. A bi-connected component instead is
a sub-graph of the network for which the removal of one node
will not partition the network. Any graph can be decomposed
in a so-called block-cut tree made of biconnected components
and cut-points, as shown in Fig. 7. This representation shows
that typically cut-points have high betweenness, and thus we
expect their timers to be lower than the timers of other nodes.

On the other hand, if a cut-point fails the network is
physically partitioned, and the routing protocol can not fix
it. That is the reason why in our experiments we never kill a
cut-point, because some routes would never converge, and the
network before and after the failure would not be comparable.
In general for node ni, knowing that a piece of the network
is not reachable anymore is not particularly useful: if ni is
exchanging traffic with nj and due to a failure there exist
no path anymore from ni to nj applications stop working,
and routing cannot do anything about it. If we look at Pop-
Routing as an optimization strategy, given a certain amount of a
resource (the airtime devoted to control messages) Pop-Routing
distributes it among nodes (tuning their timers) to reduce the

(a) (b)

Figure 7: An example decomposition in a block-cut tree.

Waxman caveman

Relative (theory, all nodes) 0.14 0.10

Table III: Absolute and relative gains for Waxman and caveman
topology with modified centrality (Eq. (6)).

outage due to failures. The problem is that Pop-Routing assigns
resources to cut-points, but their failure can not be fixed.

A straightforward conclusion would be to artificially treat
cut-points as nodes with minimum centrality and distribute their
resources to other nodes. This is not entirely correct, because
part of the centrality of a cut-point is due to the shortest paths
that connect nodes in the same block. If we do not consider
this we ignore the fact that, when the cut-point fails, some
of the shortest paths that pass though it can actually be fixed.
The correct decision would be to compute centrality for cut-
points considering only the shortest paths whose endpoints
are in the same block, and ignore the paths that have both
endpoints in different blocks. More formally, if nk is a cut-
point belonging to a number l of bi-connected components
{B1, . . . , Bl}, Nh the size of each bi-connected component,
and bhk the betweenness centrality of nk in Bh computed using
Eq. (1), then its modified betweenness b′k is defined as:

b′k =
1

N(N − 1)
(

l∑
h=1

bhk(Nh(Nh−1))+2·(N−
l∑

h=1

Nh)) (6)

where the multiplication by (Nh(Nh−1)) is needed to remove
the normalization applied by Eq. (1) and the term 2 · (N −∑

h Nh) takes into account the shortest paths that have as
endpoints nk and any another node ni 6∈ Bh when nk is
considered in the component Bh. This is a further optimization
we will introduce in Prince in the future. We can anyhow
compute the theoretical expected gain, which is reported in
Table III. By comparing these values with the ones in Table II
a clear further advantage emerges.

One exception to this rule that requires a special treatment
would be the case of gateways. When the block containing a
gateway is not reachable anymore, then it is crucial to know
it as soon as possible, in order to switch to another working
gateway (if it exists). This special case will be treated directly
in the implementation in Prince.

V. CONCLUSIONS

Pop-Routing introduces a new concept in wireless routing:
it allows networks to grow organically while the protocol
seamlessly adapt the allocations of signaling airtime resources
according to node centrality optimizing the networks recovery
performance after a failure. Since betweenness centrality is a

naturally associated to routing, the idea behind Pop-Routing
can be used for several other similar optimizations. Before
extending the application field of Pop-Routing, however, it is
necessary to thoroughly validate its principles implementing
it in controlled environments. This paper does exactly this:
leveraging the infrastructure made available by the WiSHFUL
project to test the performance of Pop-Routing, it gives insights
on the way it contributes to speed up route recovery.

Our findings confirm that Pop-Routing is indeed able to
improve route recovery. We observed that, without increasing
the overall traffic, Pop-Routing reduces the metric we use to
quantify network outage by 26% and 21% in two kinds of
realistic network topology. We also observed that the presence
of the ETX metric, in a topology where there are several
alternatives to the shortest path, decreases the overall outage,
while it has no effect when the number of alternatives is
minimal. Finally, based on the experience we gathered on the
test-bed, we proposed a further improvement to Pop-Routing
which takes into account the role of cut-points in the topology.
While in this work we were able to only estimate its impact in
the theoretical framework of Pop-Routing, in our future works
we will investigate the impact of this strategy in a real network.

REFERENCES

[1] L. Maccari and R. Lo Cigno, “Pop-Routing: Centrality-Based Tuning of
Control Messages for Faster Route Convergence,” in IEEE Int. Conf. on
Computer Communications (INFOCOM), Apr. 2016, pp. 1–9.

[2] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” IETF RFC 3626, Oct. 2003.

[3] L. Maccari, Q. Nguyen, and R. Lo Cigno, “On the Computation of
Centrality Metrics for Network Security in Mesh Networks,” in IEEE
Global Communications Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[4] C. Dearlove and T. Clausen, “Multi-Topology Extension for the Optimized
Link State Routing Protocol Version 2 (OLSRv2),” IETF RFC 7722,
Dec. 2015.

[5] L. Navarro, R. Baig, F. Freitag, E. Dimogerontakis, F. Treguer,
M. Dulong de Rosnay, L. Maccari, P. Micholia, and P. Antoniadis,
“Report on the Existing CNs and their Organization (v2) – netCommons
Deliverable D1.2,” Sept. 2016. [Online]. Available: http://netcommons.
eu/?q=content/report-existing-cns-and-their-organization-v2

[6] L. Maccari and R. Lo Cigno, “A week in the life of three large Wireless
Community Networks,” Ad Hoc Networks, vol. 24, Part B, pp. 175 –
190, 2015.

[7] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,” Wireless
Networks, vol. 11, no. 4, pp. 419–434, 2005.

[8] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen, “Scalable
routing strategies for ad hoc wireless networks,” IEEE Jou. on Selected
Areas in Communications (JSAC), vol. 17, no. 8, pp. 1369–1379, Aug.
1999.

[9] Y. Faheem and J. L. Rougier, “Loop avoidance for Fish-Eye OLSR
in sparse wireless mesh networks,” in IEEE Int. Conf. on Wireless On-
Demand Network Systems and Services (WONS), Feb. 2009, pp. 231–234.

[10] O. Liang, Y. A. Sekercioglu, and N. Mani, “A survey of multipoint
relay based broadcast schemes in wireless ad hoc networks.” IEEE
Communications Surveys & Tutorials, vol. 8, no. 1-4, pp. 30–46, 2006.

[11] L. Maccari and R. Lo Cigno, “How to reduce and stabilize MPR sets
in OLSR networks,” in IEEE 8th Int. Conf. on Wireless and Mobile
Computing, Networking and Communications (WiMob), Oct. 2012, pp.
373–380.

[12] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[13] D. J. Watts, “Networks, Dynamics, and the Small-world Phenomenon,”
American Jou. of Sociology, vol. 105, no. 2, pp. 493–527, 1999.

[14] B. M. Waxman, “Routing of Multipoint Connections,” IEEE Jou. on
Selected Areas in Communications (JSAC), vol. 6, no. 9, pp. 1617–1622,
Dec, 1988.

