
S.T.R.E.S.S. : Stress Testing and Reverse
Engineering for System Security

Matteo Rosi, Leonardo Maccari, Romano Fantacci
Department of Electronics and Telecommunications - University of Florence

Telecommunication Network Lab
tel. : +390554796467 - fax : +390554796485 Florence, Italy

Email: {rosi, maccari, fantacci}@lart.det.unifi.it

Abstract—
In modern wireless networks the functions included into layer

II have to deal with complex problems, such as security and
access control, that were previously demanded to upper layers.
This growing complexity led some vendors to implement layer
II primitives directly in software, e.g. IEEE 802.11i has been
largely distributed as a software patch to be used with legacy
802.11b/g hardware. In any extremely complex software the
likelihood of committing errors during the implementation raises,
and it is well known that software bugs can lead to instability
of the system and possibly to security vulnerability. Software
bugs are the most common cause of successful attacks against
any kind of network and represent a real plague for system
administrators. Stress test is a widely used methodology to
find and eliminate software bugs. In this paper we present a
platform to perform a stress test of generic network protocols
implementations but especially optimized for Layer II stress tests,
that present specific problems. With our approach a generic
network protocol described with ABNF language can be tested
transmitting arbitrary frame sequences and interpreting the
responses to verify consistence with the communication standard
used. Our platform can interact dynamically with the tested
machine (an access point, a router etc.) to verify its robustness
and its compliance with the standard. Experiments confirmed the
validity of our approach both as a stress test technique for system
under development and as a reverse engineering technique for
interaction with closed source system.

I. INTRODUCTION

With the enrichment of the functionalities included in layer
II for modern wireless standards, the functions included into
MAC Layer are growing in complexity. As an example in
IEEE 802.11i [1] the MAC layer is responsible for authen-
tication and cryptography, so that complex protocols such as
TLS handshakes (Transport Layer Security) or WPA (Wireless
Protected Access, defined in the standard) have to be pushed
down in the protocol stack. Traditionally, MAC functions are
implemented as firmware primitives in the physical interfaces
or as low level software primitives included into the drivers.
The growing complexity, and the continuous need to update to
new standards led many vendor to move as much features as
possible into software driver. As said, IEEE 802.11i standard
is a security enhancement that can be partially applied to
existing IEEE 802.11 interfaces; several vendors decided to
give driver updates to support this enhancement also on legacy
hardware.

The more complex a software is, the higher is the possibility

of committing errors during the implementation. An error, as
explained in following sections, can lead to instability of the
software or in worse cases can be exploited by an attacker
to force the platform to perform actions controlled by the
attacker himself. Moreover, well known attack techniques such
as buffer overflow of format bugs that are commonly used in
higher layer software now apply also to layer II primitives,
so that exploits can be publicly available. For the outlined
reasons, during driver development it is extremely important to
minimize the number of errors, performing stress tests on the
products and verifying that the responses given are consistent
with the standard used. Performing a test basically means
sending to the device under test a sequence of frames and
verify its reactions; a stress test is a chain of tests containing
also malformed data. As we will see later, stress tests for
layer II software has some specific difficulties that we plan
to address with our platform. These are mainly the direct
interaction with low level drivers and the need to filter layer II
frames that can be coming from any sufficiently close network.

In this article we present S.T.R.E.S.S., a modular, dynamic
platform for layer II software testing, that respects the follow-
ing requisites:

• It must be generic and not bound to a specific standard. A
key feature of S.T.R.E.S.S. is the possibility of interpreting
any standard protocol described with a high level syntax.

• It must be modular, so that extending the use to new
physical devices must be easy.

• It must be dynamic, the platform should not just blindly
inject a packet sequence into the network, but it should
reinterpret the responses and react accordingly.

• Tests must be easy to perform and easily repeatable with
different devices using the same protocol.

Reverse engineering is the activity of reconstructing the
behaviour of a software or hardware component whose source
code is not public, with the aim of extending its compatibility.
S.T.R.E.S.S. can be also used as a reverse engineering platform;
during our experiments we successfully used it to understand
why the application of a custom protocol (described in [2])
to a CISCO access point was not successful. S.T.R.E.S.S. can
be used to verify that a certain device is standard compliant
as it declares to be. Lastly, S.T.R.E.S.S. can be very useful for
penetration testing and bug hunting activities.

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1429

vect = malloc(10);
// allocate a vector of 10 char

strcpy(vect, buffer);
// copy into vect the value of buffer

printf("%s", vect);
// print the content of vect

Fig. 1. Example C code containing a bug

In section II we will introduce testing methodologies and
examine possible approaches, in section III we will describe
S.T.R.E.S.S. in detail and in last section we will illustrate
results of applications in a real scenario.

II. STRESSING APPROACH

Testing is the process of discovering errors present in
software programs or hardware’s firmware. This process is
based on the definition of a chain of events made up of
three states: error, fault and failure. An error in a software,
commonly called bug, is a mistake in software development
committed by the programmer. An error may not manifest
itself every time a program is run, but only within particular
conditions. Whenever the error shows off, it generates a fault.
A fault is an incorrect condition of the program, for example, a
wrong I/O operation on the memory or a method that returns
a wrong result. A fault may generate a failure: a software
produces a failure when it cannot accomplish its requisites, in
other words it doesn’t do what the user expects from it. With
software Testing we can try to find errors in source code and
to certify if the program under test is fail safe, that is, a fault
never generates a failure.

As an example, consider the C code in fig. 1: If buffer
is longer then vect the second line writes into a memory
zone that is not allocated. This code can be considered an
error, but it may be inserted in a program in which it never
causes any faults (i.e. if the lenght of vect always equals the
lenght of buffer). Otherwise, let’s say buffer is longer
than vect, this situations depicts a fault because the result
of the action may be unpredictable (it is unclear what the
printf will do). In the worst case, writing into an unchecked
buffer may completely block the program, that will exit with
a segmentation fault error, producing a failure.

There are two main types of software testing:
• Structural Testing (White-Box)
• Functional Testing (Black-Box)
Structural testing tries to obtain its goal using implementa-

tion details that must be available to the tester, i.e. source code.
On the other hand, functional testing feeds the program with
various inputs and analyzes the program output verifying that
the requisites of the program are respected. Structural testing
can be done on open source (whose source code it’s publicly
available) projects or during the development of the product
while functional testing can be performed by anybody using
the software, such as the committers of the software or security
experts whose role is evaluating the software security.

Our goal is to develop a platform to evaluate security and
standard compatibility of networking software and hardware
solutions; since source code or other technical details about the
implementation are rarely available, we choose a functional
approach.

Stress testing is a specific type of functional testing, it is
aimed at inducing the software to enter an incorrect state feed-
ing it with malformed or uncommon inputs. The idea behind
this technique is that software errors often reside in uncommon
situations that are rarely handled by the software and less
carefully reviewed by the developers. To find software errors
we try to force the software to manage uncommon situations
and verify its reactions. Basically, for testing we introduce into
the communications some faults, that we create artificially,
these faults are called anomalies. In network testing, the input
to the application under test is a sequence of frames to be
transmitted over the physical media and anomalies can be
frames of a wrong type, or some incorrect value in a particular
frame; injecting an anomaly we force the system to enter
a wrong state, as said, we artificially introduce a fault. We
expect the tested application to handle anomalies in a correct
way, reporting an error according to the standard procedures
withouth falling into a failure.

Testing applied to layer II software presents some peculiar
difficulties, expecially with a wireless media:

• for a complete test of a wireless protocol we must
communicate to a low layer in ISO-OSI stack, so we
have to interact with a non human readable protocol that
must be formalized at high level of detail (each single
byte).

• we have to interact with a wireless NIC that transmits
and receives packets on a channel that can be carrying
high traffic, so we must be able to filter out messages at
MAC layer.

• to inject layer II frames we need to communicate directly
with interface driver, since different wireless interfaces
require different drivers there must be an easy way to
integrate the code with new hardware driver.

• a common situation encountered to perform certain tests
is the need to use two wireless devices, one for sending
frames and one another for reading them, therefore we
must manage different devices and synchronize them to
create a correct sequence of events.

While there are various publications focused on protocol
testing to verify standard conformance (see [3], [4] for an
overview) the only security targeted work we found is the
Protos project, described in section III-B.

III. S.T.R.E.S.S.

S.T.R.E.S.S. is an acronym meaning Stress Testing and
Reverse Engineering for System Security, it’s a software for
automatic generation of test suites that respects the requisites
needed for performing tests on networking software, as illus-
trated in the previous section.

S.T.R.E.S.S. is targeted to the generation and injection of
tests for layer II applications but it can be used at any level

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1430

Auth Req Auth Res

Assoc Req Assoc Res

Authentication
Model

Association
Process

Fig. 2. ABNF tree for 802.11 authentication and association

of the OSI stack; before the test a set of anomalies are chosen
and the platform itself generates a number of tests sufficient
to combine them all.

To obtain maximum generality and re-usability S.T.R.E.S.S.
is not bound to a particular communication standard but it
is able to use any protocol defined with a generic grammar.
To represent a protocol we used a meta-syntax, a formal
language to describe it. The chosen meta-syntax is the Aug-
mented Backus-Naur Form (ABNF, see [5]), an IETF standard
specifically designed to represent complex Internet protocols
that perfectly suites also for layer II protocols, whose structure
is often simpler.

With ABNF a communication protocol is described as a tree
data structure; as an example in fig. 2 and 3 it is represented
authentication and association phase of plain 802.11 protocol.
At a high level of abstraction the handshake is made of 4
packets:

• From Client station to access point: Authentication re-
quest

• From Access point to Client station: Authentication re-
sponse

• From Client station to Access Point: Association request
• From Access Point to Client station: Association response
if the tree in fig. 2 is traversed from top to bottom and

from left to right (following the arrows) the handshake is
reproduced. This simple representation intuitively explains the
packet exchange needed by the handshake.

At a higher level of detail, each of the frames will be
composed by a message header and eventually a message
body, as specified in IEEE 802.11; figure 3 represents the
authentication request frame (6 fields in the header, from frame
control to sequence and eventually the frame body). Figure 3
substitutes the Auth Req block in fig 2, again if traversed in the
correct way it intuitively represents the handshake in a higher
detail. The same tree is reported, as ABNF code in figure 4
where recursive definitions describe to a increasing detail the
protocol structure.

While internal nodes represent syntax and alternatives, leaf
nodes normally represent data to be sent or received by the
platform. In ABNF syntax the word beginning the line is
interpreted as a command, so that if the definition of a node

Auth Req

Frame Header Frame Body

Frame Control

Station
Mac Address

Access Point
Mac Address

Bssid
AddressDuration

Sequence

Fig. 3. ABNF tree for authentication frame, this tree expands the node
labeled Auth Req in fig. 2

AuthenticationModel = AuthReq AuthRes
AssociationProcess

AssociationProcess = AssocReq AssocRes
AuthReq = FrameHeader FrameBody
FrameHeader = FrameControl Duration

StationMacAddress
APMacAddress Bssid Sequence

FrameControl = 0x0080
FrameBody = ...

Fig. 4. Example ABNF code

starts with send or receive a packet will be sent to or
received by the interface. Data from received packets can be
saved and used as variables, so that more complex commands
such as crypto functions or CRC can be implemented,

Using this language S.T.R.E.S.S. can be programmed to
perform a conversation with a real access point, not blindly
injecting packets but forging correct packets and interpreting
received data to perform different actions (taking a certain
direction into the tree). This dynamism makes it easy to check
whenever the device under test is behaving correctly; since
S.T.R.E.S.S. interprets the received frames, it can verify that the
responses are consistent with the standard and with the internal
state machine. For example the machine under test might
answer with a frame containing a header value that doesn’t
correspond to what the standard mandates in that moment
of the execution, or might not respond at all (a configurable
timeout is started for every expected frame).

So far we explained how S.T.R.E.S.S. can be instructed to
realize a correct communication with a standard compliant
device, for operating real stress tests we must insert inside the
communication some anomalies. An anomaly might be a field
containing a wrong or unusual value according to the protocol,
as an UTF string in a field that should contain an ASCII
string, or a field longer than its declared length. Software
bugs are normally hidden in parts of the code that are rarely
executed and might cause a failure in interpreting the data.
We try to find them injecting anomalies in different parts of
the communication, so the first step is to individuate some
points in the protocol that are suitable to be exploited. Once

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1431

...
eapol2 = "send" %x08013a01 Bssid Sta Ap

%x909d llchdr wpaversion wpatype
lenght2 descriptorType keyInfo2
keyLenght replay1 nonce2 KeyIV
WPAKeyRSC WPAKeyID WPAKeyMIC2
WPAKeyLenght WPAKey

; Second frame in WPA 4 way handshake
; for WPA-PSK in standard IEEE 802.11i
WPAKeyLenght = CorrectValue /

AnomaliesValues
CorrectValue = %x0018
AnomaliesValues = %x0000 / %xffff
...

Fig. 5. Example ABNF code with anomalies for WPA-PSK

we have a list of entry points and for each of them a list
of anomalies, all these information are added to the ABNF
grammar as alternatives to the original, correct grammar.

Therefore the final tree has all the information about pro-
tocol syntax, packet structure, point of inclusion and type of
anomalies needed to perform the test.

As an example we consider the 4 way handshake for
WPA-PSK authentication defined in IEEE802.11i. Our aim
is to stress test the implementation of various access points
emulating the behaviour of a client machine entering the
network. Therefore we create a model for a WPA supplicant
in ABNF and then we select entry points for fault injection.

The 4 way handshake is composed of EAPoL packets and
it is started by the access point, we decided to put anomalies
in the frame sent by the client as a response to the first packet.
In that frame there are two interesting fields, a WPAKey and
WPAKeyLeght, the first one contains a key to be exchanged
between the machines, the second defines the length of the
first field, we try to trigger an underflow or overflow error
inserting a null value 0x0000 and e a huge value 0xffff
into this last field.

In figure 5 it is reported the ABNF definition of the
second EAPoL frame of the 4 way handshake. The frame is
constituted by a number of uninteresting fields and the two
fields described before, the WPAKeyLeght field is expanded
with a CorrectValue (hexadecimal 0x0018) or (or symbol in
ABNF is represented by the slash) two possible anomalies,
(hexadecimal 0x0000 and 0xffff). In figure 6 the derived tree
is reported, the or symbol instructs the platform that the two
sub-trees are alternatives, so each of them will be traversed in a
different execution. To be completely explored, the handshake
will be repeated three times, the first one with the correct
value and following ones with the anomalies. If anomalies are
added in multiple points as in this example S.T.R.E.S.S. will
run enough execution to combine them all, if we had added
another anomaly with only one incorrect value, our program
would generate six test cases.

As said it is possible to call various commands to execute

eapol2

"send"

WPAKeyLenght2

CorrectValue AnomaliesValues

Or

Or

WPAKey

...etc...

 First Run

 Second Run Third Run

 Second and
 Third Run

%x0018

%x0000 %xffff

Fig. 6. ABNF tree for WPA-PSK example

particular actions like frame sending and receiving. In the
previous example of ABNF model, we used only the ”send”
command; a more complex function is used to authenticate
data using a message integrity function as required by the
standard with the following syntax:
WPAKeyMIC2 = "hmac_md5" kck dataMic2 %d16

It is out of the scope of this paper to enter in the details of
the implementation, for more information about functions and
grammar definition we suggest to visit the SVN repository
of the project [6]. However, we want to focus on three key
features described so far:

• The platform is flexible enough to perform a complex
handshake with a device. As seen, cryptographic func-
tions can be easily added, so that any authentication
protocol implementation can be tested.

• It is fundamental to note that whenever an ABNF file
is realized , the resulting test suites can be used to test
any number of compatible devices. We tested the 4 way
handshake, with access points of different brands, so that
the platform offers maximum re-usability.

• The chosen approach guarantees that once understood
how to describe a protocol with ABNF, any protocol
representable with that syntax can be tested.

A. Software Planning

S.T.R.E.S.S. is completely written in C++ and released with
a GPL license, the platform is split in two separate parts:

• ABNF interpreter
• Interface with multiple devices
S.T.R.E.S.S. takes as input the ABNF specifications file, it

validates that file and then recreates in memory the logical
tree. To every node of the tree is associated a specific C++
method that will be called whenever the node is traversed, this
way we can easily separate single functions, such as syntax
elements or commands. This high modular structure is easily
expandable, adding new syntax constructs or functions. Special

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1432

ABNF Validator ABNF

File
ABNF Interpreter

libwforge

Wireless Device Wired Device

Stress Internal
Protocol Model

 Create

 Frame Exchange

Generic Device ...

Fig. 7. Software organization for S.T.R.E.S.S.

attention has been devoted to re-usability of the code, using
Design Patterns [7] for code development and planning.

Interaction with physical interfaces is realized with a spe-
cific C library for forging wireless frames called libwforge,
developed together with S.T.R.E.S.S.. Libwforge is able to
manage the interface, pre-filter unwanted packets based on
rules that S.T.R.E.S.S. defines, sending and reading frames.

S.T.R.E.S.S. structure is represented in fig. 7, it has been
designed to be extremely modular so that it is easy to add
new interfaces. A new interface might be a wireless device
that requires a different driver (so far driver for PrismII and
Atheros chipset have been developed) or some completely
different hardware NIC, such as a bluetooth or wired ethernet
card. It might also be some higher layer socket, such as a
TCP connection; due the generic protocol description used
once realized the interface any TCP based protocol might
be tested. Another important feature we implemented is the
possibility to filter packets based on dynamical interaction
between S.T.R.E.S.S. and libwforge. The platform can instruct
the library to receive packets according to a certain pattern
to be matched against selected fields in the frame, with this
feature we greatly reduce the possibility to evaluate in the
stress test a frame which is not part of the communication
under test.

B. Protos

In present literature, a similar approach to the same problem
can be found in the Protos project [8]. The project has
produced a software to perform stress tests for high layer
protocol implementation in network software. It is a java and
tcl based platform that produces and injects a large number of
test cases with an automatic process.

Protos project has been used to test several network proto-
cols with positive results, in most cases it was able to detect
some critical vulnerabilities in commercial devices (see [8] for
test results and bug publications). Protos uses BNF syntax,

that is a simpler version of ABNF with less representation
capabilities; once defined the grammar and the entry points
for the anomalies it produces all the possible test-cases and
saves them off-line, afterwards, it injects the sequences one
by one. Packets are blindly injected, so there is no on-line
evaluation of received packets, after the completion of all the
test-cases the analyst must review all the logs produced by
protos and eventually by the device under test to verify the
results.

As said, protos software has achieved important results in
isolating bugs in various software and hardware, S.T.R.E.S.S.
is inspired to Protos with the aim of expanding its possibilities
and making it more complete and usable. The main difference
can be summarized as:

• Layer II usage: Protos is based on java sockets, so it
doesn’t approach wireless layer II testing. S.T.R.E.S.S.
has been planned and used for interaction with wireless
devices and can be easily expanded to any protocol and
device.

• Run-time evaluation: blind packet injection can be suffi-
cient to test protocols with low complexity (especially re-
quest/response protocols), on the other hand S.T.R.E.S.S.
is able to interpret data received from the device under
test allowing us to communicate with complex protocols
that need dynamic interaction, such as authentication pro-
tocols. Moreover off-line production of the tests produces
a high amount of data, while S.T.R.E.S.S. dynamically
produces tests so doesn’t need high storage or memory
requirements.

• Log evaluation: S.T.R.E.S.S. produces logs in a human
readable form and is able to detect failures in the re-
sponses of the tested device.

IV. RESULTS

During our experiments we used S.T.R.E.S.S. to test some
software and hardware products; in this section we report
the most significative results of the tests done with Cisco
Aironet 1200 access point and with the hostapd [9] software
access point. For both platforms the authentication phase has
been tested, being the most delicate and complex part. Three
kinds of authentication have been tested, standard shared-
key authentication, authentication with WPA shared key (the
so called four-way handshake) and the first packets (identity
request/response packets) of the EAP-TLS packets. This last
test has been performed to verify the interaction between the
two access points and the RADIUS server connected to them
(FreeRADIUS software).

A. Cisco Aironet 1200

The aim of this test was to verify the standard compliance
of this product with regards of the RADIUS protocol. In
particular in a custom EAP modification developed in our
laboratory (see [2]) we were adding some information to the
identity field of the first EAP packets. In our modifications
we include in the identity field a security TOKEN with the
following syntax:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1433

Length Identity EOL TOKEN
where:
• lenght: is the total lenght of the frame fields
• Identity: is the EAP required field
• EOL: end of line symbol (0x00)
• TOKEN: security token we need for our custom protocol
If correctly implemented, we expect an EAP/RADIUS

compatible access point to evaluate the lenght field, pack
all the data into a RADIUS packet and forward it to the
authentication server. The authentication server itself will read
the identity field until the EOL symbol, then if aware of our
modifications will read the TOKEN, otherwise it will just
drop these informations. We successfully used the TOKEN
with hostapd based access points without any modifications
to the hostapd software, but we could not use it with Cisco
hardware. Using S.T.R.E.S.S., with multiple test we were able
to reconstruct the behaviour of this device, performing a suc-
cessful reverse engineering. We realized that Cisco hardware
does not consider the lenght field but interpretates the identity
until the EOL character, drops the following data, reformats
a new EAP packet with modified lenght and encapsulates it
into a RADIUS packet. This behaviour makes it impossible
to use our modifications with cisco hardware even if protocol
compliant.

Other less relevant results showed that the device didn’t
consider the value of certain fields of the 4-way handshake,
such as the Descriptor Type or Key Info.

B. Hostapd software

Hostapd is a software to emulate the behaviour of an access
point when using devices that might not support access point
features. As an example, wireless NIC’s based on Prism II
chipset include a Master mode in which the NIC behaves as
a minimally functioning access point. With hostapd the NIC
can be enriched with more functionalities. Hostapd supports
several different hardware and it is used in many products
based on an embedded GNU/Linux operative system. In the
stress tests performed we feeded the software with sequences
of malformed packet, testing shared-key authentication and
WPA 4-way handshake. Test results showed that hostapd
software seems to be more respectful of the protocol compared
to products by Cisco but also less stable. In a couple of
occasions the device was completely blocked, but we were
not able to understand who was responsible for the block, if
hostapd, the driver or the physical device itself.

The most serious bug we encountered is related to the faulty
processing of the WPA key length field. We observed that a
field lenght with the value 0xFFFF caused hostapd to exit with
a segmentation fault error. The error was due to the fact that
when copying the WPA key field into system memory, hostapd
didn’t check if the field lenght corresponded to what WPA key
length field declared. In this way declaring a lenght longer then
the actual lenght of the WPA key field hostapd was writing in a
buffer shorter then needed. This kind of bug can be exploited
to produce a denial of service attack but it might also cause
more serious damages, considering that unchecked buffer are

the primary cause for remote exploits. After our experiments
we filed a bug report to the Debian security report team [10]
that has been resolved with a security patch.

V. CONCLUSIONS AND POSSIBLE DEVELOPMENTS

Software bugs are the major cause of security incidents,
virus and worm propagation and consequent crimes on Inter-
net. In the latest years, not only the great diffusion of such
dangerous software has been encouraged by an underground
market based on the trade of software insecurities, but also an
independent, professional activity of bug-hunting is considered
commercially promising. As a consequence, software houses
and open source communities spend constantly increasing
energies in finding and patching vulnerabilities. In this paper
we presented S.T.R.E.S.S., a platform aimed at finding bugs
in software implementations of network protocols, planned
to achieve re-usability, modularity and dynamic analysis of
results also for Layer II network testing. We observed that
testing network software through blind packet injection may
be enough for simple request/reply protocols, but modern layer
II protocols need active interaction to be able to make a
complete conversation and test all the hidden features of the
protocol. S.T.R.E.S.S. is able to interpret a grammar describing
any protocol to be tested and dynamically answer to complex
requests. This is fundamental to explore any possibility the
protocol offers and to have an on-line interpretation of the
results. Once realized a test suite, the test can be performed
on any number of compliant devices; last S.T.R.E.S.S. is fully
modular, so it can be expanded to support any network card
or protocol.

Our results shown the effectiveness of our approach, reveal-
ing important non standard behaviour and severe vulnerabil-
ities in commercial and open source protocols on both the
tested platforms.

REFERENCES

[1] Institute of Electrical and Electronic Engineers, Inc., Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions. Amendment 6: Medium Access Control (MAC) Security Enhance-
ments, IEEE Std., 2004.

[2] L. Maccari, R. Fantacci, T. Pecorella, and F. Frosali, “Secure, fast
handhoff techniques for 802.1x based wireless network,” 2006.

[3] Sidhu and Leung, “Formal methods for protocol testing: A detailed
study,” IEEETSE: IEEE Transactions on Software Engineering, vol. 15,
1989.

[4] D. Hogrefe, “Main issues in protocol testing,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 4, no. 4, pp. 397–
400, Aug. 2003.

[5] D. H. Crocker and P. Overell, “Augmented bnf for syntax specifications:
Abnf,” RFC 2234, 1997.

[6] L. Maccari and M. Rosi. Repository of source code for s.t.r.e.s.s.
project. [Online]. Available: http://lart.det.unifi.it/Members/rosi/stress/

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
P. Education, Ed. Addison-Wesley, 1995.

[8] R. Kaksonen, “A functional method for assessing protocol implementa-
tion security,” Technical Research Centre of Finland, VTT Publications
447. 128 p., Tech. Rep., 2001.

[9] J. Malinen. hostapd: Ieee 802.11 ap, ieee 802.1x/wpa/wpa2/eap/radius
authenticator. [Online]. Available: http://hostap.epitest.fi/hostapd

[10] Debian bug reporting system. [Online]. Available: http://bugs.debian.
org/cgi-bin/bugreport.cgi?bug=365897

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1434

