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Abstract

Optimized Link State Routing (OLSR) is a widespread routing protocol in wire-
less mesh networks: static, mobile, ad-hoc, and even sensor networks. The selec-
tion of Multi-Point Relays (MPRs) that form a signaling backbone is at the heart
of the protocol and it is a crucial process to reduce the signaling overhead. Since
the protocol proposal and specification, the original heuristic for MPRs selection
has been largely studied showing it has good local properties; however, this does
not give insight about the properties of the global set of MPRs. Here lays the
contribution of this paper: First we define the problem of the minimization of
the global MPR set (the union of all the MPR sets) as a centralized integer linear
programming problem, which is NP-hard. We are able to solve it for networks
of practical size, up to 150 nodes. Second, we define a bound that we call the
“distributed optimum,” which we show to be a lower bound for distributed MPR
selection algorithms, still requiring considerable power to be computed. Finally,
we set-up an experimental performance evaluation methodology and we show that
a heuristic that we recently proposed performs very close to the distributed opti-
mum, and always outperforms the original heuristic.
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1. Introduction

Wireless mesh and ad-hoc networks are the subject of a very large body of
literature that studied their characteristics and performances. They are an estab-
lished reality for mainly two reasons: i) the continuous improvement of the 802.11
standard, and ii) the steep decrease in the price of professional wireless devices.
Today it is possible to realize a full duplex, point-to-point, stable communication
link based on 802.11ac with more than 100 Mbit/s for less than 150$; and this
on distances of several kilometers. The consequence is the possibility to realize
city-wide mesh networks made of hundreds of nodes. Some of them have been
deeply analysed in the recent literature [1, 2, 3], highlighting advantages, results
achieved, but also critical points to be solved [4, 5]. The trend to build large wire-
less metropolitan (and beyond) mesh networks continues, helped by the evolution
of 802.11. For instance, the support of beamforming in 802.11ac standard opens
new possibilities to achieve both the flexibility of omnidirectional antennas and
the performance of directive ones [6].

In parallel with the evolution of citizens-based, bottom-up wireless networks,
the mesh paradigm is entering also in enterprise access networks, where so far
the typical design consists in using a structured, wired Distribution System to
connect all the Access Points (APs) to a centralized network controller. With
gigabit access networks the wired infrastructure is strained and overloaded, and
the so-called “tromboning” effect must be avoided1.

Newer network products re-distribute the intelligence in the APs, which can
decide to create mesh networks to keep the local traffic out of the wired infras-
tructure. As a result, some mainstream vendors of wireless products have recently
started to produce purely wireless mesh devices and implementing cooperative
control that transform an access network into a distributed wireless-wired hetero-
geneous network2. Aerohive whitepaper [7] explains the fundamental concepts of
this new trend.

As mesh networks grow larger and carry more traffic, it becomes of the utmost
importance to improve the scalability of distributed routing protocols that build

1The term tromboning is used to broadly identify unnecessary use of backbone or backhaul to
carry traffic that would be naturally limited within the access network.

2See for instance the products by Ubiquiti https://unifi-mesh.ubnt.com/ and
Aerohive http://www.aerohive.com/solutions/technology/cooperative-
control-wlan-architecture.html two of the largest world vendors of wireless
enterprise products.

2



and maintain the mesh topology. One key theme that has been largely studied is
the “topology reduction,” that is, the choice of a subset of nodes of the network
that behaves as a virtual backbone. Several techniques have been proposed, such
as clustering strategies, connected dominating sets, and MPRs [8]. We concentrate
on MPRs, since they are at the base of OLSR [9], which is widely used in real
mesh networks and has been largely studied in literature [10, 11, 12].

MPRs are defined as follows: given a node in a network graph, the set of its
MPRs is a subset of its 1-hop neighbors (nodes with direct radio connection) that
guarantees to reach all its 2-hop neighbors. Each node independently selects its
MPR set, and only nodes that have been selected by at least one of their neighbors
generate and forward topology-control (TC) messages. TCs are flooded to the
whole network and represent the largest part of the control traffic. Thus reducing
the total number of MPRs is a key factor to improve the scalability of the network.
The selection of the smallest MPR set for a node is known to be an NP-complete
problem, OLSR adopts a heuristic algorithm that produces an MPR set whose
size is within a logarithmic bound from the local minimum [13]. Unfortunately,
the minimization of each MPR set does not guarantee the minimization of the
global MPR set (the union of all the MPR sets) that is the real goal to be pursued.

Focusing on the local selection of the MPR set and on its local properties is
thus not the right way to tackle the problem. Only a few papers like [12, 14, 15]
have considered the problem of the minimization of the total number of MPRs in
the network. The lack of literature is due to two reasons: The first one is that the
computation of MPRs is done locally by each node, so there is no easy way to
perform a global coordination; the second one is that even a centralized approach
would not scale for any meaningful network size, since minimizing the global
MPR set is obviously NP-complete as selecting the local MPR set at each node
is NP-complete. The works above compare their proposals with the outcome of
the standard MPR selection or with some other heuristic; in doing this they show
improved performance, but cannot discuss how far their results are from the global
optimum, nor the residual improvement margin of any of these techniques.

In light of this discussion, the optimal selection of a global MPR set requires
to know the real minimum set size and then to find an implementable distributed
heuristic that gets reasonably close to the real optimum. The contribution of this
paper lays exactly in filling these missing pieces.

First, we formalize the global MPR set minimization problem as an ILP (In-
teger Linear Programming) problem that can be solved efficiently for networks of
small to medium size on off-the-shelf hardware. This is a key contribution that
makes it possible to compare any technique with the true global minimum. To
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achieve this goal we split the problem in two steps: i) Enumerate all the local
solutions; and ii) Choose one solution per node in order to minimize their union.
This global minimum is not of practical use as it requires a centralized coordina-
tion and high computation power. It represents a lower bound that can be taken
as a reference, but no distributed protocol running on embedded hardware can
implement it.

A second contribution is the derivation of an approximate algorithm that re-
duces the number of solutions generated by the first step so that it can be possibly
handled by a mesh node, and transmitted to the rest of the network nodes. If the
network is stable enough (for instance, a very dense mesh network used for indoor
coverage) this strategy may be used without a centralized coordination, thus, we
call this the ‘distributed minimum’, as it is a more reasonable bound to compare
real protocols with, rather than the true NP-complete optimum.

The third contribution of this paper is a simple albeit essential modification of
the standard OLSR heuristic. We proposed it in a preliminary work [16], it is fully
distributed and does not need increased resources compared to the standard OLSR
heuristic. We compare our proposal directly with those values, showing that it
performs very close to the distributed minimum and also to the global minimum
in some topologies. As a reference, we include in the comparison also the results
obtained with the standard OLSR heuristic, which is still relevant as it is included
in both the first and the second version of the OLSR RFC.

2. Related and Background Work

OLSR is one of the most widely used routing protocol, deployed in running
mesh networks made of hundreds of nodes [1, 17, 18] and currently at its second
generation [19]. The presence of MPR and their selection is one of the distin-
guishing features of OLSR.

The performance of MPR-based flooding in terms of number and distribution
of MPRs has been initially investigated using a theoretical approach [20, 21]. This
led to the definition of the RFC heuristic and to the description of its properties,
showing that it performs reasonably well in reducing the size of each single MPR
set [13].

Further improvement of the MPR choice has proven difficult. A wide body of
literature focused on the study of heuristics that exploits the knowledge of more
information to reduce the MPR sets, or to achieve some other goal. For instance,
[22] shows that if a node knows the physical position of its neighbors it can com-
pute the minimal MPR set in polynomial time. In [23] four variations of the same
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heuristic are proposed that try to maximize MPR properties such as in-degree or
overlapping of neighbors sets. In [24] the concept of MPR is extended in order
to take into account energy-preserving strategies for battery powered networks.
Another set of works address the problem of (locally) choosing the best MPR set
taking into account link quality metrics [25]. Note that link-quality is essential for
routing, but reducing broadcast is equally important, in fact, the last revision of
the OLSR standard introduces two sets of MPRs (one for topology dissemination,
and the second for traffic routing). While in Section 3 we review the relationship
between routing and MPRs, the general problem of MPR minimization remains
open. A comprehensive, albeit not very recent, survey on these strategies, includ-
ing QoS-based ones, is presented in [26].

More recently the problem has been tackled again using other approaches. A
new heuristic that increases the robustness of message diffusion, based on ge-
ometrical consideration, has been presented in [27]. Trust-based MPR choices
have been analysed [28] to enhance the security of the system. In [29] the authors
propose an heuristic that better takes into consideration the willingness of nodes to
be chosen as MPRs. The same work also formalizes the problem of local MPR se-
lection as a mixed-integer problem which can be solved with enough computation
power to compare the proposed heuristics with the optimal result. In this paper
we took a similar approach, but we do not limit our analysis to the local problem,
we tackle the problem of global minimization of MPRs in the whole network.

Another set of works addressed the problem of minimizing the global MPR set
(and not only each MPR set). In [11] and [15] the authors introduced a centralized
algorithm to find the smallest global MPR set. The same authors in [14] propose
a QoS based MPR selection scheme that introduces the notion of inefficient MPR
(an MPR with few selectors). In [12] a cooperative MPR selection algorithm is
presented in which nodes are split in master and slave roles and the MPR choice
is performed accordingly. In [30] a theoretical analysis is presented that com-
plements our work and a centralized scheme is also proposed that improves the
original heuristic of about 10%.

Other works, non strictly OLSR-related, rely on MPRs. The authors of [31] in-
troduce a basic pruning algorithm to produce a Connected Dominating Set (CDS)
out of a non optimized MPR set. The CDS is a set of nodes that achieves the
same broadcasting function of MPRs, but is created with a different logic and
uses different rules to re-distribute the packets. The same direction is followed
by [32] and [33], which improve the initial idea optimizing the CDS formation.
Further improvements are proposed in [34]. Interestingly, these papers move from
the same problem we described (overlapping MPR sets), but instead of minimiz-
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ing the global MPR set while building it, they first compute an over-sized global
MPR set as a base for a CDS, then introduce a mechanism to reduce the CDS a
posteriori. The interest in MPRs is not limited to the context of mesh networks;
as an example, MPR have been proposed to broadcast messages in distributed
peer-to-peer systems [35] also reducing the risk of collusion attacks [36].

In a previous work [16] we have introduced a distributed strategy to minimize
the global MPR. We called this strategy Selector Set Tie Breaker (SSTB) since
it changes the original heuristic in the tie-break criteria. SSTB is revisited in
Section 3 in light of this paper contributions, improving the insight on why tie-
breaks are so important to minimize the global MPR set. SSTB does not interfere
with the standard OLSR protocol, it is completely back-compatible, can even be
deployed on just a subset of the nodes in a network, which makes it suitable for
gradual migrations of existent networks. SSTB is fully distributed and does not
need more information than OLSR already distributes.

After we proposed SSTB, the authors of [8] discussed two MPR selection
improvement approaches, one of which is basically SSTB, albeit they seem to be
unaware of our work.

3. OLSR Primer

We recall only the concepts related to OLSR and MPR selection which are
instrumental to follow the paper, since it is a subject very well treated in the lit-
erature. Table 1 collects the most relevant definitions used in the paper, some of
them will be introduced later on.

In OLSR each node periodically sends an HELLO message, used by the neigh-
bors to sense its presence. HELLO messages from node i contain the IP addresses
of the 1-hop neighbors known at the time, so that at steady state each node will
have a full knowledge of its 2-hop neighborhood.

Given this, the MPR setM(i) of a node i is an arbitrary subset of its symmetric
1-hop neighborhoodN1(i) that satisfies the following condition: Every node in the
2-hop neighborhood N2(i) of i must have a symmetric link3 with at least a node
in M(i). More formally:

{i ∪N2(i)} ⊆
⋃

j∈M(i)

N1(j) (1)

3A link is said symmetric if i receives HELLO form j and j receives HELLO from i, it is not
required that the link quality is the same. OLSR filters out links that are not symmetric.
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Symbol Meaning
N size of the network (number of nodes)

N1(i) (N2(i) ) 1 (2) hop neighbor set of node i
N(i) N1(i) ∪N2(i)
M(i) one possible MPR set for node i
M?(i) one minimal MPR set for node i (local minimum)
Mg Global MPR set: the union of M(i) for all i
M̂(i) MPR set for node i that minimizes Mg

M?
g Minimal global MPR set, (union of M̂(i) for all i)

Sg (S?
g ) Size of Mg (M?

g )
W (i) (W ′(i)) the collection of all M(i) (M?(i)) for node i

ri the size of W (i)
M1(i) Forced MPRs for node i
Nu

1 (i) Set of useful neighbors of i for optimal MPR sel.
s(i) Selectors set size for i (0 if i is not an MPR)

Table 1: Notation and symbols definition

If j ∈M(i), then j “covers” some of the 2-hop neighbors of i. ClearlyM(i) =
N1(i) is always a solution that corresponds to a basic link-state protocol without
any optimization. When j chooses i as MPR, it notifies i of its choice, we say that
j selects i and that j is one of the MPR selectors of i.

Every MPR behaves as follows:

• Periodically generates a TC message containing the list of its selectors;

• Re-broadcast (flood) the TC messages it receives from its selectors.

Each node in the network must receive a copy of each generated TC. TCs
contain an approximation of the local topology around an MPR sufficient to al-
low the construction of shortest path routing tables between any couple of nodes.
Each MPR generates a TC once every given time interval. This TC is re-broadcast
once by all the MPRs, thus, as a first approximation the overall signaling grows
quadratically with the number of MPR. Without MPRs, the same scales quadrat-
ically with N . Note that the constant generation of signalling messages is one
of the critical scalability problems of link-state routing protocols. If topology re-
duction does not compensate the growth of the network the only alternative is to
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use the Fisheye strategy, which is known to create temporary loops [37], or to
reduce the frequency of the generation of messages. This last solution is pretty
drastic, as it reduces the reactivity of the network. It has been shown that the
time needed to repair a broken route grows linearly with the TC timer, and thus,
large timers worsen the impact of temporary outages and reconfigurations. Even
in a non-mobile mesh network, in fact, local changes to the routing topologies are
frequent; these can be due to shadowing, interference, or congestion of links, and
need to be sensed and propagated to the rest of the network in a timely manner.
While HELLO messages are used to locally detect these changes, TCs are needed
to notify the rest of the network in order for all the routing tables to be recalcu-
lated. In [38, 39, 40] we introduced Pop-Routing as a technique (fully compatible
with MPRs) that addresses this issue and we give a detailed analysis of the rela-
tionship between TCs and network convergence showing how this timer influences
route convergence time.

To minimize the size of eachM(i) OLSR introduces the heuristic described in
Algorithm 1, whose performance is guaranteed within a logarithmic bound from
the optimal [13]. The reasoning of the heuristic is to introduce first the forced
MPRs, i.e., those nodes that cover 2-hop neighbors that would otherwise remain
unreachable, and then use a greedy algorithm starting from the node that covers
the highest number of uncovered 2-hop neighbors (a property called reachability).
If two nodes have the same reachability, a tie-break is needed. In the greedy
algorithm the tiebreak function determines the direction in which the solution tree
is navigated, so it has a relevant impact in the final choice. The first tiebreaking
criterion (see Algorithm 2) is through the willingness, a configuration parameter
that encourage or discourage neighbors to select a node as MPR. However, unless
a network is planned in advance, the willingness is set to the default value for all
the nodes, thus it is rarely useful.

The second tiebreak criterion prefers the neighbor u with the highest connec-
tivity degree in the set N1(u) \N1(j), i.e., the one that has more neighbors not in
common with j. If also this second criteria fails, then no further tiebreak rule is
specified and the choice becomes implementation-dependent.

Let M?(i) be the optimal (minimal) M(i) and M1(i) the MPR set of forced
MPRs generated by the first step of the algorithm4. It is intuitive that M1(i) ⊆

4M?(i) may not be unique, there can be more than one solution with minimal size. For sim-
plicity and without loss of generality whenever it is not relevant we refer to the minimum as if
there is only one.
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Input: N1(j), N2(j)
N ′2(j) = N2(j);

// Step 1
for w ∈ N2(j) do

if N1(w) ∩N1(j) = u then
u→M(j);
N ′2(j) = N ′2(j) \ w;

end
end
// Step 2
while N ′2(j) 6= ∅ do

N ′1(j) = N1(j) \M(j);
Rank(N ′1(j))
if Tie then

Tiebreak(N ′1(j))
end
u→M(j);
N ′2(j) = N ′2(j) \ [N1(u) ∩N2(j)];

end
// Function Rank
Input: N ′1(j)
for w ∈ N ′1(j) do

w.reach = ||N1(w) ∩N ′2(j)||
end
Sort(N ′1(j), u.reach);

Algorithm 1: The OLSR MPR selection heuristic

M?(i), since the nodes inM1(i) are necessary for coverage. Let S?(i) = ||M?(i)\
M1(i)|| be number of additional nodes in the optimal solution and S(i) = ||M(i)\
M1(i)|| the number of additional nodes given by a run of the heuristic. In [13] it
is shown that the following relation holds:

S ≤ log2(∆)S? (2)

where ∆ is the maximum number of nodes inN2(i) that a node inN1(i) can cover.
This property is independent from the tie breaking mechanism5.

5The OLSR RFC suggests a further step to reduce a-posteriori the MPR set after it has been
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// Function Tiebreak
Input: N ′1(j),TopReach
T ieSet = ∅;

for w ∈ N ′1(j) do
if w.reach = TopReach then

u→ TieSet;
end

end
Sort(TieSet, u.willingness);

if Tie then
for w ∈ TieSet) do

w.cdeg = ||N1(w) \N1(j)||;
if w.cdeg < max willingnes then

TieSet = TieSet \ w
end

end
Sort(TieSet, u.cdeg);

end

Algorithm 2: The standard OLSR tie-breaking: TopReach is the highes value of reachability in
the set of possible MPRs

3.1. Selector Set Tie Breaker (SSTB)
In the SSTB strategy we proposed in [16], the only difference from the original

heuristic is the tie-break. Before applying the original tie-break we introduce an-
other step, which simply prefers among the possible nodes the one that is already
an MPR for another node, and among MPRs, the one with the highest number
of selectors. More formally, when node i needs to break the tie between two po-
tential MPRs k and m, i will choose k if s(k) > s(m). If s(k) = s(m) the tie
is not broken, and the OLSR tie-break applies. Even if the tie is not explicitly
broken by Algorithm 2, we assume that an implementation of the heuristic will
produce the same outcome when executed twice with the same input (i.e., when
the topology does not change from one run to the next). The number of current
selectors is known because an MPR generates TC messages that carry exactly this
information. This simple strategy polarizes the choice of the MPRs towards the

built. To the best of our knowledge this further step does not improve the theoretical performance
of the heuristic, and in any case it does not address the problem of the global MPR set, so we do
not consider it here.
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most “popular” ones, and thus increases the overlapping between MPR sets of
neighbor nodes. Note that SSTB is different from other tie-breaking strategies,
which generally use some specific node property (such as the willingness in [29])
to break ties. A tie-breaking strategy uses an ordering o(·) between nodes (for
instance based on the originator IP address) and gives a preference based on the
orderding. Consider node i and j that have to break the tie between two potential
MPRs (let’s say k and m). If o(k) > o(m) they will both choose k and this locally
polarises the choice. Now consider a slighlty different case in which node i needs
to break the tie between k and m while j needs to break the tie between m and
another node n, for which o(n) > o(m). Then a local tie-breaking strategy may
force i and j to choose k and n respectively. Instead, with SSTB, when i chooses
m then s(m) is incremented, this increases the chances that s(m) > s(n), and that
also j chooses m instead of n. SSTB is not a local static tie-breaking criteria, it is
a dynamic tie-breaking criteria with the property of self-reinforcement.

It is important to note that the choice of MPRs does not directly influence the
routing decision. Unless forced to do so, OLSR does not route through MPRs
only. MPRs are used to spread the knowledge of the network topology, includ-
ing links to non-MPR nodes. Each node uses the information contained in TC
messages, plus the information on the two-hop neighbors contained in HELLO
messages to compute its routing tables with Dijkstra’s algorithm. Therefore, re-
ducing the number of MPRs does not reduce the number of nodes that perform
routing; non-MPR nodes can easily be part of the shortest paths and be used as
next-hop. For this reason we do not test the consequences of MPR choice on rout-
ing performance, because in normal conditions there should be none, as already
observed in [1]. If the links are extremely lossy then the number of MPRs influ-
ences the reliability of the broadcast function, as reducing the number of MPRs
also reduces the redundancy of the shared information. While the geneal strategy
must always be the minimization of the global MPR set, specific techniques can
be introduced to improve redundancy for extreme cases. A deep analysis of the
robustness implications of MPRs minimization are out of the scope of this paper,
and it is a theme under active research in the MANET field [41, 42]. The inter-
ested reader can refer to an ongoing work from the authors on this subject [43]
compatible with the technique we describe in this paper.

The new version of OLSR [19] introduces two different sets of MPRs, one for
topology dissemination and another one as routing backbone. The techniques we
devise in this paper apply only to the first one, leaving the second one, and hence
routing, unchanged. Finally, we note that given a certain network topology, SSTB
converges to a stable MPR set. Here we give a concise sketch of proof, which can

11



be easily extended to the general case in future works.
We already noted that if the network topology does not change, two runs of

SSTB executed by node i will deterministically choose the same MPRs up to the
first tie-break. At the tie-break if the selector sets of the candidate MPRs did not
change from the previous run, SSTB will do the same choice. If this is true for
all tie-breaks, then SSTB will deterministically choose the same M(i). If instead,
between one run and the next, the selector sets of the candidates change due to
the choices of some other node, i may break the tie in a different way and M(i)
may change. A condition of instability happens when, ∀ k, without any change
to the network topology, if node i runs SSTB k times, a number ∆ exists so that
running SSTB k + ∆ times produce an M(i) different than the one at step k. For
this to happen a feedback loop should be established between two nodes so that
a tie-breaking decision by node i influences the decision taken by node j, which
in turn influences the decision of node i and so on. Consider a node i and a node
j ∈ N(i) and two nodes k,m ∈ N1(i)∩N1(j). We show that a loop between i and
j on the choice of k and m is impossible if nodes are not perfectly synchronized.
Consider the initial condition in which s(k) > s(m), then:

1. At time t1 node i executes SSTB, and needs to break a tie between neighbors
k and m. k is chosen and s(k)− s(m) > 1;

2. At time t2 node j runs SSTB and needs to break a tie. We have four cases:

(a) The tie-break is between k and m. j will choose k and the situation
does not change anymore,

(b) The tie-break is between w 6= k and m. s(m) can be incremented of
one unit, the situation does not change anymore,

(c) The tie-break is between k and w 6= m. s(k) can be decremented of
one unit (if k ∈M(j)) but the situation does not change anymore,

(d) The tie-break does not involve k or m, irrelevant.

Now consider the initial condition in which s(k) = s(m), it is important to
note that when node i runs SSTB, as a first step in the execution, it clears M(i),
and internally decreases s(·) for all its MPRs:

1. At time t1 node i executes SSTB, and needs to break a tie between neighbors
k and m. k is chosen and s(k)− s(m) = 1;
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2. At time t2 > t1 node j executes SSTB and needs to break a tie. We have
four choices:

(a) The tie is between k and m: then j must choose k and the situation
does not change anymore,

(b) The tie is between k and w 6= m: if k is chosen the situation does not
change anymore. Else, if w is chosen, there are two sub-cases:

i. At time t < t2 k /∈ M(j): Then s(k) is not decremented and the
situation does not change anymore,

ii. At time t < t2 k ∈ M(j): Then at time t > t2, s(k) = s(m).
When i re-runs SSTB, it will first clear M(i), and contrarily to
what done in t1 it will choose m. Now i and j converged on m
and the situation does not change anymore;

(c) The tie is between w 6= k and m: if w is chosen, the situation does not
change anymore. Else, two sub-cases may happen:

i. At time t < t2 m ∈M(j): Then s(m) is not incremented and the
situation does not change anymore,

ii. At time t < t2 m /∈ M(j): Then at time t > t2, s(k) = s(m).
When i re-runs SSTB, it will first clear M(i), and contrarily to
what done in t1 it will choose m. Now i and j converged on m
and the situation does not change anymore;

(d) the tie does not involve k or m: irrelevant.

As we said, this is not a full demonstration, because a feedback may be created
in a loop involving more than two nodes. The demonstration is similar but more
elaborated and we leave it for future work.

If the choices are taken at the same time, then a loop may occur. Consider the
following case in which at time t0, s(k) = s(m) = 0:

1. At time t1 node i executes SSTB, and needs to break a tie between k and m.
k is chosen and s(k) = 1; s(m) = 0;

2. At the same time t1 node j executes SSTB, and makes a different choice,
then s(m) = s(k) = 1;

3. At time t2 node i receives a TC message fromm, which says that s(m) = 1.
Now i repeats SSTB: clears M(i) and chooses m. At this point, two things
may happen:
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(a) At time t3 node i generates an HELLO message. This message is re-
ceived by k, that now knows that i is not a selector anymore. No loop
is created,

(b) At time t3, before receiving an HELLO from i, node k generates a TC
message that says that s(k) = 1. Now j will behave as node i at time
t2, will prefer k instead of m and a loop is created.

Solving this issue it is pretty straightforward, we have to ensure that all nodes
re-compute their MPRs right before sending an HELLO, so that their choice is
notified to their MPRs without delay, and condition 3.b never verifies.

4. A different problem: Minimizing the total number of MPRs

Let Mg be the global MPR set, i.e., the union of all the MPR sets chosen by
each node in the network, and let Sg be its size:

Mg =
⋃

i∈{1...N}

M(i); Sg = ||Mg|| (3)

Let M?
g be the choice of Mg with minimal size6, and let S?

g = ||M?
g ||. We call

M̂(i) the MPR set chosen by node i that satisfies

M?
g =

⋃
i∈N

M̂(i) (4)

As it often happens in combinatorial problems, the local minimization of each
M(i) does not always lead to the minimization of Mg. Consider the network of
Figure 1 that represents a small portion of a larger network, and consider only
numbered nodes for the sake of simplicity. For this portion of the network, the
standard MPR choice of nodes 1, 6, 7 is

M?(1) = {2}; M?(6) = {3, 7}; M?(7) = {4, 6}

and the contribution of nodes 1, 6, 7 to Mg is

M1,6,7
g = M?(1) ∪M?(6) ∪M?(7) = {2, 3, 4, 6, 7}

6Again, note that there can be more than one solution with minimal size. To improve readability
and without loss of generality we do not introduce a set notation, but we refer the the general choice
of one possible solution.
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Figure 1: A small portion of a larger network

However, for node 1, the coverage given by node 2 could be replaced with the
coverage given by node 3 and 4. Thus, the choice M(1) = {3, 4}, even if it is
not a local optimum for node 1 would exclude node 2 from Mg. Since node 1, 6, 7
are all the neighbors of node 2, if none of them selects node 2 no other node can
select it, and the Mg of the whole network is reduced of one unit, independently
from the behaviour of the other nodes of G. We can thus say that

M̂(1) = {3, 4}; M̂(6) = {3, 7}; M̂(7) = {4, 6}

M1,6,7
g = {3, 4, 6, 7}

and that ||M̂(1)|| > ||M?(1)||. This example is generalized by Proposition 1.

Proposition 1. Given a graph G and an optimal solution M?
g for the global MPR

choice problem, such that

S?
g = ||

⋃
i∈{1..N}

M̂(i)||
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then
S?
g ≤ ||

⋃
i∈{1..N}

M?(i)|| (5)

Proposition 1 simply states that in general the locally optimal solutions M?(i)

do not give rise to a globally optimal solution so we must look for M̂(i) also
among the MPR sets with non-minimal size, as the example showed. We need an
algorithm to find a suitable set of M̂(i) whose union yields an optimal M?

g .
Let W (i) = {M1(i), . . . ,Mri(i)} be the set made of all the solutions to the

MPR problem for node i, where ri is the size ofW (i). W (i) contains the solutions
of minimal size plus all the other non locally optimal solutions. Finding an Mg is
an optimization problem that entails finding a suitable set of M̂(i). This problem
can be decomposed into two sub-problems in cascade:

1. For each node i enumerate all the elements of W (i);

2. From each W (i) pick one element M̂(i) so that the union of all the chosen
elements is minimized.

Sections 4.1 and 4.2 analyze the two sub-problems separately. Before that, we
demonstrate how minimizing Mg reduces TC overhead, and that this reduction is
to be added to the reduction obtained by minimizing eachM(i). We define the TC
overhead (O) as the total number of TC packets that all wireless radios receive per
second. As interference is measured at the receivers, this is a better metric than
the number of generated packets. Given a certain choice Mg with a corresponding
Sg, we want to show that another choice M ′

g with a corresponding S ′g < Sg will
reduce the overhead. Proposition 2 gives an approximate upper and a lower bound
for the reduction of the overhead, under two realistic constraints:

||s(k)|| > 1 ∀k (6)∑
k∈Mg

||s(k)|| >> Sg (7)

Equation (6) allows us to assume that every MPR will forward the TC it re-
ceives at least once (MPRs do not forward TCs to the selector they received
it from). Consider that if k ∈ M1(i) then there exist another node j so that
k ∈ M1(j) and k has more than one selector. If k ∈ M(i) but k /∈ M1(i) this is
not granted but highly probable. We can craft pathological cases in which an MPR
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has less than 2 selectors (as the 4-node diamond network we described [16]), but
we consider this condition very unlikely in real networks. The second condition
generalizes the first, saying that the average number of selectors per MPR is much
larger than one.

These assumption are based on a previous work in which we showed that the
distribution of the selector set sizes in realistic networks has a very small number
of MPRs with selector set size equal to 1 and is long tailed, so the average is
dominated by the MPRs with the highest number of selectors [44]. In general,
they hold when the graph density is high, which is the case in which it makes
more sense to use MPRs.

Proposition 2. Given a connected network graph G, and two choices for MPRs
Mg and M ′

g corresponding to a total size Sg, S ′g < Sg and a choice of MPRs for
every node j given by M(j) and M ′(j), and given that the following conditions
are true:

||s(k)|| > 1 ∀k, (8)∑
k∈Mg

||s(k)|| >> Sg (9)

if: ∑
j=1...N

||M(j)|| =
∑

j=1...N

||M ′(j)||, (10)

then for the generated overheads O and O′ holds that:

O′

O
≈
(
S ′g
Sg

)2

(upper bound) (11)

O′

O
≈
S ′g
Sg

(lower bound) (12)

Proof. Let’s assume a TC is generated by each MPR every time unit, then a net-
work with Sg MPRs generates Sg TCs per time unit. By definition, each MPR i
receives every generated TC at least once and re-forwards all of them at least once
(Eq. (8)), and at most ||s(i)|| − 1 times. We consider two cases that represent the
extremes of the possible gamma of configurations, all the other configurations fall
in this range.
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In the first case, each node is equipped with a single wireless radio, which
receives and re-broadcasts the TC. In this case the overhead is given by:

O = Sg

∑
k|k∈Mg

||N1(k)|| = S2
gd (13)

where d is the average degree of the MPRs. Equivalently O′ = (S ′g)
2d′, and thus:

O′

O
=

(
S ′g
Sg

)2
d′

d
≈
(
S ′g
Sg

)2

(14)

the approximation comes Eq. (9) as ||N1(k)|| ≥ ||s(k)|| and thus the average
degree of the MPRs is not strongly influenced by their number. This is actually a
known and intuitive results which demonstrates Eq. (11).

In the other case, an MPR uses a different wireless radio for each of its selec-
tors. The total network overhead is given by:

O = Sg

∑
k|k∈Mg

(||s(k)|| − 1) ' Sg

∑
k|k∈Mg

||s(k)|| (15)

where we used Eq. (8). Note that two different choices of Mg can yield relevant
differences in values of ||s(k)||. For instance, in the example of Fig. 1 reducing
Sg of one unit increases ||M(2)|| of one unit, and thus increases the sum, and this
effect may replicate in all the MPRs.

It must be noted that for any choice of Mg Eq. (16) holds:∑
k|k∈Mg

||s(k)|| =
∑

i=1...N

||M(i)|| (16)

meaning that the sum of the number of selectors per MPR equals the total number
of selections per node. Thus, if we plug Eq. (16) into Eq. (15) and Eq. (8) holds,
also Eq. (12) is demonstrated.

For any situation in between (MPR i has a number of radios from one to
||s(i)||) the overhead reduction is a linear combination of these boundaries.

The best case of Proposition 2 is very common, as small mesh networks, ad-
hoc networks and sensor networks generally fall in that category. For large-scale
mesh networks, in which every node can have more than one radio, Proposition 2
shows that as long as the goal of minimizing Sg does not impact the goal of mini-
mizing the sum of ||M(j)||, reducing Sg has an impact at least linear on the over-
head. In these networks, the use of multiple radios per node enables to have nodes
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with a high number of neighbors (nodes with tens of neighbors were described in
the literature [1, 2]) and justifies the approximation of Eq. (15). Note that this is
exactly what happens when we compare SSTB to the original heuristic, as modi-
fying only the tie-break we do not change its theoretical properties and thus we do
not increase

∑
j=1...N ||M(j)||. In fact, SSTB would have not changed the initial

assignment in Fig. 1.
Summing up, reducing Sg without increasing

∑
j=1...N ||M(j)|| (as with SSTB),

produces a reduction of overhead that is at least linear and at most quadratic with
Sg under assumptions we consider realistic.

4.1. Generating all the W (i)

Algorithm 3 reports a straightforward implementation that enumerates all the
W (i) noting that ri is upper-bounded by the number of all possible MPR sets,
which in turn is upper bounded by the number of all the possible combinations of
neighbors of i of any size:

ri ≤
||N1(i)||∑
j=0

(
||N1(i)||

j

)
(17)

thus enumerating all the possible elements of W (i) is NP.
To reduce ri we introduce a heuristic that limits the number of iterations in

the outer loop of Algorithm 3. The heuristic is based on the observation that
w ∈M1(i)→ w ∈M?

g . So any neighbor j of w can choose w without increasing
Sg and this in many cases can greatly reduce the number of iterations required to
compute W (i). The baseline of the heuristic is to reduce the number of possible
MPR sets W (i), or in other words find a smaller upper bound to r(i).

Heuristic ri

1. For every node i compute M1(i) and set M1 =
⋃N

i=0M
1(i), this step is

straightforward and computationally light;

2. For every node i setM1(i) = N1(i)∩M1, in practice we set the initial kernel
of MPRs not only to the locally mandatory MPRs, but to all neighbors that
are also mandatory MPR for any node;

3. For every node i define the set of useful neighbors Nu
1 (i) = N1(i) \M1(i),

i.e., the set of neighbors that are not mandatory MPR;
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// G = The whole network graph
Input: G
N1(i), N2(i) = GetNeighbors(i, G)
W (i) = ∅;
for j ∈ 1...||N1(i)|| do
// combinations(j,M) enumerates all the possible

combinations of size i from a set M
C = combinations(j,N1(i));

for c ∈ C do
// IsMPRSet(c, i, G) checks if the set c is a

valid MPR set for i
if IsMPRSet(c, i, G) then

W (i).add(c);
end

end
end
return W(i)

Algorithm 3: Straightforward enumeration of all the elements of W(i)

4. Purge from Nu
1 (i) all nodes that have zero reachability because the nodes in

M1(i) already cover all their neighbors, these nodes will not be selected as
MPR in any case.

This heuristic reduces the upper bound of ri to:

ri ≤
||Nu(i)||∑

j=0

(
||Nu(i)||

j

)
≤
||N1(i)||∑
j=0

(
||N1(i)||

j

)
(18)

with an improvement given by the relationship ||Nu(i)|| ≤ ||N1(i) \M1||.
Algorithm 4 reports the enumeration of all W (i) modified with Heuristic ri.

Algorithm 4 stills find the optimal solution, and the problem remains NP since
there is no theoretical guarantee that ||Nu(i)|| ≤ ||N1(i) \ M1||, as for certain
graphs it can be M1 = ∅ and thus ||Nu(i)|| = ||N1(i)||. In Section 6 we present a
numeric estimation on the difference between ||Nu(i)|| and ||N1(i)|| in the graphs
we analyzed and we show that Algorithm 4 allows the enumeration all the so-
lutions for network graphs of practical size (up to 150 nodes) generated with a
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// G = The whole network graph
Input: G
Nu(i) = ∅ ; M1 = ∅ ; W (i) = ∅
// Compute the set of mandatory MPRs. It is done

once per graph and not repeated for every node i.
for k ∈ {1...N} do

N1(k), N2(k) = GetNeighbors(k,G)
for j ∈ N2(k) do

if N1(j) ∩N1(k) = u then
u→M1

end
end

end
M1(i) = N1(i) ∩M1

// Compute the reachability of nodes in M1(i)
R = ∅

for j ∈M1(i) do
R = R

⋃
(N1(j) ∩N2(i))

end
// Add to Nu(i) the nodes that have reachability > 0
for j ∈ N1(i) do

reach = ||(N1(j) ∩N2(i)) \R||
if reach 6= 0 then

j → Nu(i)
end

end
// Finally compute W(i)
for j ∈ 1...||Nu(i)|| do

C = combinations(j,Nu(i));
for c ∈ C do

if IsMPRSet(c, i, G) then
W (i).add(c);

end
end

end
return W(i)

Algorithm 4: Enumeration of all the elements of W(i) exploiting Heuristic ri
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realistic topology generator. Instead, the brute force Algorithm 3 fails (i.e., does
not finish within a predefined time boundary) for much smaller networks.

4.2. Finding M∗
g

Algorithm 4 enumerates all the useful MPR setsW (i), so it solves the first sub-
problem of the optimization. The second sub-problem is choosing one suitable
M̂(i) per node. The problem can be described as follows: given a family of sets
W (i); i = 1 . . . N select one and one only element M̂(i) from each set W (i) so
that their union is minimal. This is a problem known in the literature and called
Maximum Subset Intersection [45], and it was proven to be NP-hard since it can
be reduced to a Max-Clique problem.

In our case it is possible to formalize it as an ILP problem as follows. Given
the set of available solutions W (i) = {M1(i), . . . ,Mri(i)} for every node i let:

• δik be a binary variable equal to 1 when node i chooses the k-th set from
W (i), that is when M(i) = Mk(i);

• γj be binary variable equal to 1 when node j is selected as MPR by at least
one node, so that, given a solution Mg, Sg =

∑n
j=0 γj;

so that the Maximum Subset Intersection problem can be programmed as:

minimize
N∑
j=1

γj (19)

subject to
ri∑

k=1

δik = 1 ∀ i ∈ {1, . . . N} (20)

γj = δik ∀ j, i, k : j ∈Mk(i) (21)

The objective function Eq. (19) states that we want to minimize the number of
nodes used as MPRs. Constraint Eq. (20) imposes that exactly one solution k is
chosen for each node i. The constraint is expressed as one equation per node, each
equation with ri variables. Constraint Eq. (21) ties the value of δ and γ, imposing
that γj must be one if the j-th node is an MPR for node i in the k-th solution. For
each node i this constraint is made of ri ∗

∑ri
k=1 ||Mk(i)|| equations.

With this formulation, state-of-art ILP solvers can find the optimal solution
for the input generated by networks up to 150 nodes, which is a reasonable size to
study the behavior of mesh/ad-hoc wireless networks.
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// Compute W’(i)
for j ∈ 1...||Nu(i)|| do

C = combinations(j,Nu(i));
f = false
for c ∈ C do

if IsMPRSet(c, i, G) then
W (i).add(c)

if not f then
f = true

end
end

end
if f then

break
end

end
return W(i)

Algorithm 5: Modified heuristic to compute the subset W ′(i)

4.3. A lower bound on distributed heuristic algorithms
The ILP and the algorithms in Sections 4.1 and 4.2 allow the computation of

the global optimal solution M?
g given the topology graph. With OLSR each node

in the network knows the full network topology, so it can theoretically compute
W (i)∀i, solve the ILP problem and select the best M̂(i) for itself. In practice this
is not possible. The main obstacle is the size of W (i) which grows as the number
of all the subsets of N1(i) of any size. In our powerful servers we were able to
solve the problem for the mentioned network size, but in a real distributed network
devices do not have the processing power and the storage space to compute and
save W (i) for every node. Therefore, M?

g is to be considered as a theoretical
lower bound, and it is very useful to understand the gain margin available, but it is
not meaningful to compare distributed, on-line algorithms usable in real systems
against it.

For this reason we introduce a cooperative heuristic approach that is the best
that can be done under the following assumptions:

• Let W ′(i) ⊂ W (i) be the subset of W (i) made of only the solutions of
minimal size. Every node can heuristically compute W ′(i) replacing the
last loop of Algorithm 4 with the code in Algorithm 5.
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• The network is stable enough so that every node has enough time to compute
W ′(i) and to share it with all the other nodes in the network.

• Since ||W ′(i)|| << ||W (i)|| the number of input values to the Maximum
Subset Intersection ILP problem defined by Eqs. (19) to (21) is small enough
to be solved locally by each node.

The generated solutionM?
d , that we call the distributed minimum, is the perfor-

mance bound for distributed approaches realistically implementable on networks
with acceptable (albeit demanding) computational resources and can be used as a
fair comparison for other distributed heuristics.

5. Evaluation Goals and Methodology

This paper has multiple evaluation goals. First of all, analyzing the global op-
timum in realistic networks, which has never been done to the best of our knowl-
edge, and compare it with the solution given by the OLSR standard. Second, we
compare the novel heuristic we have proposed (SSTB) with the global optimum,
and also with the distributed optimum introduced in Section 4.3. The evaluation
process is an integral, valuable part of our contribution. Many works analyze net-
works with random nodes placement, unit-disk communication model, no shad-
owing, and node density that can be infinitely increased. These works present
interesting asymptotic results, but to appreciate the value and the applicability of
a heuristic, it must be evaluated in realistic scenarios using either real experiments
of detailed simulations that include all the protocol and scenario features, thus the
evaluation setup becomes complex and requires some explanation.

Two separate instruments have been integrated to obtain a suitable evalua-
tion methodology: the Omnet++ network simulator7 and the Gurobi ILP solver8.
These two instruments are glued using the Python NetworkX9 graph manipulation
library. The whole code-base is published as open source code10.
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Figure 2: The map of the first floor of our department

5.1. The Omnet++ Simulator
Omnet++ is used to generate realistic topologies and to run OLSR for two dif-

ferent scenarios: i) outdoor with obstacles, and ii) indoor (we will refer to them as
OO and IN). Simulated nodes are equipped with 802.11 wireless radios using the
Omnet++ channel model (based on the corrected NIST BER tables [46]) together
with a realistic ray-tracing fading model [47] that takes into consideration the
presence of obstacles. In the IN scenario, we replicate the map of our department
(roughly 100 × 40 m) with three distinct wall thickness respecting the building
plan as depicted in Fig. 2. The OO scenario instead reconstructs the campus of
our University in a 600 × 600 m area, as depicted in Fig. 3, where the obstacles
are only the main buildings. In both cases the area is split in squares of 8 × 8 m
(OO) and 4×2 m (IN), that can include points of interest for the users (bar, library,
classroom, etc.). Nodes are grouped in clusters, each cluster is assigned a point of
interest in one of the square areas. Each point of interest is placed in the middle
of the area, and nodes are distributed around it with a uniformly random chosen
radius (lower than half of the longer edge of the block) and angle (which generates
a higher density close to the center). For each scenario a batch of simulation runs
with different random seeds is performed with two configurations: in the first one
we increase the number of nodes (from 50 to 150 in steps of 20 nodes for OO,

7http://omnetpp.org
8http://www.gurobi.com
9http://networkx.github.io

10See https://ans.disi.unitn.it/redmine/projects/mpr-papers for the
source code, generated topologies, python scripts to parse the results, and basic instructions to
replicate the simulations are available and updated as the work progresses.
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Figure 3: An approximated map of Trento University Campus. Thick dashed lines contour the
relevant obstacles and how they are reproduced in the simulator

and from 50 to 110 for IN) and we keep the number of nodes per cluster constant
(roughly around 10 per cluster). In the second we keep constant the number of
nodes (100) and we increase the number of clusters from 3 to 9, so that the average
number of nodes per cluster reduces.

Clustered nodes distributions are typical of crowded public places [48] and
represent more realistic topologies compared to randomly placed nodes. These
scenarios model a number of different situations and generate heterogeneous topolo-
gies that give a deep insight in the performance of the different algorithms.

The whole idea of MPR nodes is useful when the network is dense enough
so that the generation of signaling can be reduced selecting only a subset of the
nodes as MPRs. Nevertheless as base-line comparison, we add a third scenario:
a squared area without obstacles and random placement of nodes. We call it OR
and it is used as a sanity check to avoid the risk that the observed performance is
the result of the scenarios rather than the algorithms themselves.

For each scenario, we execute several runs with different random seeds to
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compute confidence intervals on results. Each run is considered only if the main
connected component of the graph includes more than 90% of the nodes: cases
when the network is partitioned are normal and realistic, but they make result
interpretation impossible because of border effects and the fact that two small
networks are topologically different from a large one. Each of the points in the
graphs included in the remaining sections was computed with at least 15 runs.

5.2. The ILP Solver
In each run, Omnet++ produces three outputs: i) the network topology G gen-

erated in a realistic scenario, ii) the number of MPRs generated by the standard
OLSR strategy during the simulation, and iii) the number of MPRs generated by
the SSTB strategy.

At the end of each simulation run, the network topology G is given in input to
the Python implementation of Algorithm 4 and 5, which generate the MPS (Math-
ematical Programming System) description of the ILP problem based on both the
sets W (i) and W ′(i) for every i. The MPS format is compatible with many LP
solvers. We have run both the GLPK open source solver and the GUROBI com-
mercial software11, and we have chosen the latter since it gives faster convergence
to the optimal solution. GUROBI is able to solve ILP problems using a set of
heuristics and strategies that allow the solution of problems with thousands of
constraints as the one we consider. GUROBI has been run in a server with 16
cores, 2.4 GHz CPU, and 64 GB RAM. We do not enter into the details of the pro-
cedure used by the solver because it is completely out of the scope of this paper.
In some cases, though, we interrupted the process after a maximum of 6 minutes
from its start. Considering both the global and distributed optimum computation
this happened about 7% of the cases and in particular it never happened for the
distributed optimum. In some pathological cases in fact, the network is so dense
that one single node can have up to 67 neighbors and the computation of the whole
W (i) is not feasible.

We compare SSTB with the standard OLSR and with the two bounds we de-
fined in this paper, while we do not consider other proposed techniques. There are
three main reasons for this choice. The first is that, since for the first time we are
able to compute a global (and distributed) minimum, we want to know how close
SSTB compares with these bounds, and not to other heuristics. The second is
that the original greedy OLSR heuristic is still the de-facto standard, as it was in-

11http://www.gurobi.com/resources/getting-started/mip-basics
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cluded in the last revision of the OLSR protocol [19]. The third is that most other
proposals, like the many mentioned in Section 2, improve the OLSR heuristic by
including additional features, like link quality or Willingness, which is something
we don’t require.

In conclusion, in Section 6 we show four absolute performance metrics and
two relative ones. The absolute metrics are (ordered by increasing expected per-
formance):

• Sg as obtained in Omnet++ by the standard OLSR algorithm. We refer to
this value as M-OLSR.

• Sg as obtained in Omnet++ by the SSTB strategy. We refer to this value as
M-SSTB.

• S?
d computed a-posteriori by GUROBI using as input the partial solution set
W ′. We refer to this value as M-LP-Dist.

• S?
g computed a-posteriori by GUROBI using as input the full solution set
W . We refer to this value as M-LP-Cent.

Figure 4 reproduces the performance evaluation framework and the interactions
between each component. The two relative metrics we present to simplify the
evaluation of SSTB are:

• The relative gain of SSTB over OLSR:

GAINSSTB = 1− M-SSTB
M-OLSR

• The relative distance of SSTB from the M-LP-Dist:

DISTSSTB = 1− M-LP-Dist
M-SSTB

6. Numerical Results and Discussion

First of all let’s discuss the gain introduced by the heuristic approximation
that computes W ′(i) instead of the entire set W (i). Figure 5 reports the ECDF
of ||Nu(i)|| and ||N1(i)|| computed for each node, for each graph of the scenarios
with the highest number of hosts (OO and OR scenario with 150 hosts, IN with
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Figure 4: Methodology and framework for the evaluation

110 hosts). The figure shows that the heuristic strongly decreases the average
value, and that in particular, for more than one third of the cases (two thirds for the
OO and OR scenarios), the heuristic reduces the enumeration of all the possible
solutions to only one solution since ||Nu(i)|| ≤ 1. Even if the upper limit is not
theoretically changed, it is clear that in realistic cases the gain is huge and the
heuristic allows the computation of the optimum.

The results of the simulation with OO scenario are reported in Figure 6, Fig-
ure 7, and Figure 8, while for the IN scenario results are in Figure 9, Figure 10,
and Figure 11. The whiskers in the plots are the confidence intervals computed at
95% confidence level.

A first evidence shown in all the graphs is that the OLSR heuristic, even if it is
theoretically close to the local minimum, produces global setMg far from optimal.
The same graphs also show that SSTB always improves significantly over OLSR,
and that SSTB dramatically decreases Sg when the network topology is dense.
Figures 8 and 11, that report the relative gain, show that the gain of SSTB over
OLSR is always much larger than the distance between SSTB and the distributed
optimum, hinting that further gains over SSTB will not come easily. Recall that
the total number of TC grows quadratically with number of MPRs thus, reducing
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(a) OO (b) OR (c) IN

Figure 5: Size of N(i) and Nu(i) in the most dense network scenarios.
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Figure 6: Absolute metrics for Sg in the OO scenario increasing the number of hosts, from 50 to
150.

the total number of MPRs by 30% means reducing the signaling effort to 0.5 of it
original level, allowing to build significantly larger networks.

Figure 12 reports the results for the random placement scenario (OR) increas-
ing the number of hosts. Both the absolute metrics and the relative gain of SSTB
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Figure 7: Absolute metrics for Sg in the OO scenario increasing the number of clusters with fixed
number of hosts.
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Figure 8: Relative metrics for SSTB in the OO scenario.

are plotted in this figure, while we do not report the plots increasing the number
of clusters as in this scenario there is no clustering of nodes. This scenario is
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Figure 9: Absolute metrics for Sg in the IN scenario increasing the number of hosts, from 50 to
110.
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Figure 10: Absolute metrics for Sg in the IN scenario increasing the number of clusters with fixed
number of hosts.

less dense compared to the others and it has the least correlation among nodes
positions. In this scenario we know that Sg is larger, and we also expect less po-
tential gain, which is confirmed by the absolute metrics in Figure 12a. Even in this
scenario, however, SSTB is able to achieve more than 10% of gain compared to
standard OLSR heuristic, but most of all its results are very close to the distributed
optimum S?

g .
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Figure 11: Relative metrics for SSTB in the IN scenario.

6.1. Results with mobility
So far, we focused on static networks, where it easy to compute the optimal so-

lutions using NetworkX and GUROBI. Nevertheless, as already discussed in [16],
SSTB works also mobile networks, as it only changes the tie-breaking mechanism
in MPR selection. Unfortunately, in mobile networks not only the optimum global
MPR sets are difficult to compute, but even the definition of the optimum is dif-
ficult to define as the topology graph G(t) is time dependent. One can analyze
consecutive snapshots of the topology, but the optimization procedure is hardly
sustainable not only because of the computational complexity, but also because
the on-line routing protocol works sort of incrementally, while the ILP formula-
tion is inherently static. For these conceptual difficulties in defining an optimal
selection with mobile networks we limit the analysis to OLSR and SSTB.

We consider a network made of 100 hosts that follow the realistic mobility
model presented in [49]. This model splits the users into clusters and assigns
every cluster to an area block, hosts are free to roam everywhere but are attracted
towards the areas that contain more hosts of the same cluster. This mobility model
derives its properties from social science results and the statistical properties of
the traces generated are close to the ones measured in real experiments, for more
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(a) Absolute metrics for Sg in the OR scenario; increasing the number of hosts.

 0

 0.1

 0.2

50              70              90              110             130             150             

ga
in

Hosts

GAINSSTB
DISTSSTB

(b) Relative metrics for SSTB in the OR scenario, increasing number of hosts.

Figure 12: Results for the OR scenario.

details see [49]. In our implementation we used the same scenario as the one in
Fig. 3 and we introduced obstacle avoidance, so the hosts are able to move to their
next waypoint avoiding convex obstacles. We varied the number of clusters from
3 to 9, as we did for the stationary configurations, each node moves with a random
speed ranging from 0.2 to 1.5 m/s.

The results are reported in Fig. 13, for each run we measure the average Sg

sampled over the 500 s of the simulation (excluding the first 30s which are a tran-
sitory phase, for a total of 20 samples). Each point in the graph is the average over
32 runs.

Compared to the corresponding static scenario (see Fig. 7) the number of
MPRs is higher for both curves. This is due to the fact that with mobility the hosts
tend to explore areas that are beyond the limit of their block, so that they spread
on a larger area. The gain introduced by SSTB, anyway, is perfectly comparable
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Figure 13: Results in a mobile scenario increasing the number of clusters

with the static case and confirms that SSTB can greatly reduce Sg, especially in
dense networks.

7. Conclusions

Multi-Point Relays have been extensively studied in the past as a topology con-
trol technique with the goal of reducing the overhead in routing protocols. They
are at the base of the OLSR routing protocol and they are even more important
now that in-production mesh networks made of hundreds of nodes are emerging:
The efficient use of MPRs is a key factor for efficiency and scalability. So far,
several MPR selection heuristics were proposed and compared with the original
one, but no evidence was produced to assess how they perform compared to the
global optimum, because the global optimum was never studied.

This paper strengthens this line of research with three main contributions. First
the ILP formalization for the minimization of the global MPR set. This shows, as
expected, that this problem cannot be solved using local minimization strategies
and we introduce an approach that makes it tractable with off-the-shelf hardware
on networks of reasonable size, up to 150 nodes. The corresponding global op-
timum can be used as a theoretical lower bound, but it is impractical in real net-
works: it uses a centralized algorithm and it requires large computation power to
be calculated. Second, we introduce another bound, which we call the distributed
minimum. This technique can be implemented in a distributed network if the hard-
ware of mesh nodes is powerful enough and the network stable enough. For this
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reason we consider it a “fairer” term of comparison for distributed algorithms.
Third, with an extensive experimental campaign we show that SSTB achieves a
performance that is close to the distributed minimum, and in some cases to the
global minimum, while always outperforming the original heuristic.

There is still some room for improvement to get closer to the global optimum.
In cases in which the network topology is reasonably stable and the computation
can be offloaded to some external server, for instance, a cloud-based approach can
be used in order to reduce the gap to the global optimum.

In mobile networks instead, more research is needed to understand what is the
best trade-off between the minimization of the global MPR set and the stability of
the routing protocol and the reliability of the broadcast function based on MPRs.
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