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Abstract—One of the key features of a routing protocol is
its ability to recover from link or node failures, recomputing
routes efficiently without creating temporary loops. Indeed, in
real conditions there is always a trade-off between the overhead
due to the periodic generation of control messages and route
convergence time. This work formalizes the problem of the choice
of timers for control message generation as an optimization
problem that minimizes the route convergence time, constrained
to a constant signaling overhead. The solution requires the
knowledge of nodes’ centrality in the topology and can be
obtained with a computational complexity low enough to allow
on-line computation of the timers. Results on both synthetic
and real topologies show a significant decrease of the transient
duration with the consequent performance gain in terms of
reduced number of unreachable destinations and routing loops.
Our proposal is general and it can be applied to enhance any
link-state routing protocol, albeit it is more suited for wireless
networks. As a concrete example, we present the extension of
OLSRv2 with our proposal, named Pop-Routing, and discuss
its performance and the stability of centrality metrics in three
large-scale real wireless mesh networks. This exhaustive analysis
on traces of the topology evolution of real networks for one entire
week show that Pop-Routing outperforms the non-enhanced
protocol in every situation, even when it runs with sub-optimal
timers due to centrality computation on stale information.

Index Terms—Multi-hop networks; mesh networks; ad-hoc
networks; centrality; signaling overhead; failure recovery.

I. INTRODUCTION

Recovery when a node or link fails is one of the key
performance indicators of a routing algorithm, and link-
state protocols have proven to perform better than distance-
vector ones in this respect. Critical wired networks and high-
bandwidth backbones use hardware redundancy, ad-hoc node
and link failure detection, and pre-defined failover routes to
minimize network disruption upon failure, often extending
standard protocols to achieve the goal [2]. In many other
cases, especially for fixed and mobile Wireless Mesh Network
(WMN), this is not possible or too expensive, thus layer-3
control messages are used for: i) failure discovery; and ii)
propagation of the new topology information. These two func-
tions are implemented in all major link-state routing protocols
through different periodic messages: HELLO (H) sent every
tH s, and Link-State Advertisement (LSA) sent every
tA s. LSA messages are called Topology Control messages in
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some protocols. H messages are sent by every node on every
network interface to announce itself and discover neighbors.
LSA messages are sent by every node to update the routing,
i.e., confirm (or change) the topology of the network, and they
are propagated in the entire network to allow every node to
build and maintain the routing table.

Whenever a node fails, all the routes passing through it also
fail, creating temporary malfunctions and traffic loss until the
surrounding nodes identify the node failure (through missing
and unanswered H messages) and start recomputing routes
and propagate the changed topology through LSA messages.
Before the information is correctly propagated to the whole
network, temporary routing loops can be created leading to
further service disruption [3]. Fast convergence requires very
small tH and tA; however, this not only implies a large
overhead, but also triggers the risk of oscillations in case of
temporary failures and frequent modifications of link costs (we
describe the state of the art in this field in Sec. II). There is
a clear trade-off between increasing performance (minimizing
route disruption and loops after a failure) and keeping tH and
tA large enough to keep the overhead to a reasonable level and
avoid oscillations. So far this problem, albeit being at the core
of any routing protocol, was not deeply investigated. In par-
ticular, no practical technique emerged to self-tune tH(i) and
tA(i) per-node even if many protocols support differentiated
per-node timers: Pop-Routing does exactly this.

We formalize the trade-off as an optimization problem:
given a target overhead, for each ni find the timers tH(i) and
tA(i) that maximize the speed of route convergence (Secs. III
to V). We derive a methodology that enables every node ni of
the network to locally solve it, and to find the exact optimal
values of tH(i) and tA(i) that, based on the node centrality
in the topology, maximize the performance (Sec. VI). Our
approach is general, it can be applied to tune tH(i) (which
are at the base of any wireless routing protocol) or tA(i)
(for link-state protocols) in any routing protocol that makes
it possible to compute betweenness centrality. We validate our
approach on the open source implementation of the Optimized
Link State Routing (OLSR) daemon and we show that route
convergence of OLSRd in emulated networks with realistic
topologies considerably improves when the routing daemon
is configured with the optimal parameters derived with Pop-
Routing (Secs. VII and VIII).

Pop-Routing requires every node to compute the between-
ness centrality of every other node in the network. The com-
plexity of this computation using the state-of-the-art algorithm
is polynomial with the number of nodes [4], but still, it can
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be hardly performed in real-time in resource-limited devices
such as wireless routers [5]. In the second part of the paper
(Secs. IX and X) we use a data-set describing the behavior of
three large-scale mesh networks to verify that re-computing
tH(i) and tA(i) can be safely performed with an interval of
tens of minutes incurring into a negligible sub-optimization.
As a whole, the contribution of this paper covers the full
spectrum of the subject, from the theoretical analysis down
to the constraints for its implementation, which is currently
undergoing and documented in Sec. IX.

The name Pop-Routing (abbreviated PopR) comes from a
similarity with equalization presets that can be found on media
players: they increase the loudness of central frequencies and
decrease the loudness of extreme frequencies when listening
to pop music. Since we increase the amount of information
generated by central nodes and decrease it for peripheral
nodes, we call our approach Pop-Routing.

II. RELATED WORKS

Many works concerned with reducing network disruption
after a failure have studied wireless networks, where the
problem is more important and overhead more critical, thus
we start with these works, and specially with those based on
OLSR. Initially the values of tH and tA have been studied to
understand how they influence the delivery of packets [6], [7].
In [6] the authors introduce a measure called Route Change
Metric that quantifies the impact of the H timer in terms of
routes’ reliability. The results confirm the intuition that the
timers strongly influence the routes convergence speed after
a modification of the topology. It also shows that the effect
of tuning tH and tA strongly depends on the network charac-
teristics. A potential improvement strategy is to pre-calculate
optimal values for the timers, which has been investigated in
a series of works, the latest by Toutouh et al. [8] that uses
optimization techniques and meta-heuristics. This approach
assumes that there is an optimal static tuning of parameters for
a large family of networks. Instead, we dynamically adjust the
parameters based on the position of each node in the topology.

A few works try to autonomically tune the timers in
mobile networks. A network cartography approach is used
in [9], requiring the knowledge of the position of the nodes,
while parameters are changed as a function of the network
size in [10]. Protocol parameters have been studied for their
obvious impact on the convergence times of routes and energy
consumption in heterogeneous networks [11]. None of these
works use centrality metrics or apply an approach similar to
PopR.

The extreme case of timers tuning is setting them to ∞
for some nodes, building a virtual backbone: only a subset of
nodes generates LSA messages. There is a very rich literature
on virtual backbones, with two well studied approaches:
Connected Dominating Sets (CDS) and Multi-Point Relays
(MPR). See [12] for a recent review on CDS, [13] for a survey
on MPRs, and also recent works [14]–[16] exploring MPR and
CDS nodes selection. PopR does not use a binary on/off flag
for the generation of timers, but a continuous function which
makes it possible to fine-tune the timers and achieve global
optimality.

Fisheye routing [17] is a smart technique to reduce over-
head. With Fisheye, LSA messages are sent with a constant
timer, but with a variable time-to-live (TTL) field. Fisheye has
important scalability properties [18] but also a serious risk:
whenever two nodes in the network have a different view of the
topology, they might take contrasting decisions and introduce
routing loops [19]. PopR does not suffer from this problem.

Convergence speed of link-state routing protocols is im-
portant also in wired networks. Route convergence for Open
Shortest Path First (OSPF) has been largely studied. A survey
on the issues related to convergence of OSPF and the proposed
workarounds can be found in [2]. Among these, we mention IP
fast re-routing or incremental update of link weights [3], [20].
These techniques also rely on failure detection and may be
coupled with PopR like techniques, albeit extension to wired
networks may require some further tuning.

In conclusions, PopR differs from all the known approaches
because it does not define categories of nodes but increases
or decreases tH and tA using a continuous function computed
locally by each node and it does not need negotiations (as
MPRs and CDNs elections) and changes naturally with the
evolution of the network. Moreover, PopR is perfectly com-
patible with any other approach as long as the routing protocol
allows differentiated timers: indeed, PopR can also be applied
together with CDS, MPRs, or in general clustering techniques.

A. Centrality in Networks

A centrality metric estimates how much a node is in the
core or in the periphery of the network, with a meaning that
is highly dependent on the context of the analysis. Centrality
has been used in social science since the ’70s to identify
the most influential elements in social networks [21], but
was not applied to communication networks until recently
[22]. Centrality can be used to enhance network monitoring
[23], intrusion detection and firewalling [24], [25], resources
allocation [26] and topology control [27], [28].

PopR exploits betweenness centrality: the fraction of all
possible shortest paths potentially routed by a node. Given
a graph with N nodes and E links, the computation of
the shortest path rooted at a node with Dijkstra’s algorithm
scales as O(E + Nlog(N)). Betweenness computation with
a straightforward application of Dijkstra’s algorithm scales
as O(N3). The fastest algorithm in literature is by Brandes
and achieves exact computation of centrality in O(EN +
N2log(N)) [29]. Recently Puzis et al. proposed an heuristic
for centrality computation that introduces a speed-up in graphs
with some specific topological features, that are common in
real networks [4]. Puzis’ algorithm pre-processes the topology
and splits the problem in smaller domains. It computes the
exact value of centrality: It is heuristic in the sense that it
does not change the worst case complexity and it improves
the performance only in graphs that can be split in several
bi-connected components. For graphs that have only one giant
component there is no time gain and some loss due to pre-
processing.

We use state-of-the art algorithms to compute centrality,
as it is not part of our proposal to improve the complexity
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Table I: Main symbols used in the paper

Symbol Description

ni node i

N , E set of edges and vertexes of the graph
N , E size of E and N
tH(i), tA(i), tH, tA timers for H and LSA messages and default values
VH, VA threshold of lost H and LSA messages
R number of messages for network-wide flooding
bi, B betweenness of ni, array of all bi

L(k), LH, LLSA
theoretical loss due to: nk failure, its detection,
information propagation

L̃A, L̃R, L̃g absolute, relative and global empirical loss reduction
OH, OLSA total overhead when tH(i) = tH, tA(i) = tA resp.
pi,j,={ni . . . nj} sequence of nodes in a shortest path ni → nj

Td, Tp failure detection and information propagation time
di degree of node ni

of centrality computation. Indeed, leveraging Puzis’ heuristic
it is possible to show that, even using a very low-power
device, the exact computation can be carried out for networks
made of hundreds of nodes in seconds [5]. We exploit this
result to further study how sensitive the betweenness metric
is to topology changes in real networks. Topology analysis
was carried out in several papers (see Vega et. al. and the
reported bibliography [30]), but none of them, to the best
of our knowledge, analyses the time variation of centrality
metrics on a large time-window.

III. FORMULATION OF THE PROBLEM

Consider a network graph G(N , E) where N is the set
of vertexes and E is the set of edges with ||N || = N and
||E|| = E. Tab. I reports the main notation and symbols we
use in the math analysis of the problema. The graph represents
a multi-hop network, where each vertex corresponds to a node
and each edge corresponds to a link. We do not distinguish
between the terms vertex/node and edge/link. Link endpoints
correspond to logical interfaces at the IP level, thus in a
wireless network router two or more links may share the same
network interface.

When we refer to 1-hop broadcast, we mean that the node
sends the packet to the IP broadcast address on every logical
interface with TTL set to 1, so the packet is not re-broadcast
by the neighbors. For simplicity, each edge has weight 1, so
no quality metric is used to build the routing tables. Results
can be directly extended to link-quality routing.

Refer to the sample network in Fig. 1. Suppose the routing
table of n1 uses n2 as a next-hop to reach n4, so the shortest
path from n0 to n4 will be p0,4 = {n0, n1, n2, n3, n4}. If n3

fails, before the routing tables converge to an alternative path
every route that includes n3 will fail too. The position of n3 in
the network is important to understand how critical its failure
is for the network. It is intuitive that the failure of n3 impacts
a number of routes, while the failure of n0 impacts only traffic
to/from n0 itself. The core of our proposal is to formalize this

aFrom now on we will use the calligraphic style to refer to sets, as in N
and the bold style to refer to arrays, as in B and we refer to the size of a set
with || · ||
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Figure 1: Sample topology used to exemplify PopR.

difference and to embed it in the protocol logic, in order to
define differentiated timers tH(i) and tA(i) for every node ni.
We show that with a simple formulation that allows a compact
solution, we can justify the goodness of our approach, not only,
with some modifications we also allow to take into account
more complex constraints, as we describe in Sec. VIII-C.

PopR can be applied to a variety of link-state protocols, for
this reason we do not target a specific one, but we describe
a generic protocol model that includes features of many link-
state routing protocols. Since our interest is primarily directed
to large wireless mesh networks we also implement PopR on
OLSR to test it on a real protocol. We chose OLSR since it is
a widely known and used protocol, with a stable open source
implementation on which we can directly apply PopR.

A. Link-state protocol model

Let’s consider a generic proactive, link-state routing proto-
col. Every node ni sends H messages every time interval tH(i).
H messages use 1-hop broadcast to discover and maintain
di neighbors. Each H message contains a validity field. A
neighbor nj of ni sets a timer to the validity time at the
reception of any H from ni, if a new H is not received before its
expiration, nj considers link {ni, nj} broken. The validity is
generally set to a multiple of tH(i), so that validity is defined
as VHtH(i) with VH an appropriate constant. Every node ni
also sends LSA messages every time interval tA(i) (generally
with tA(i) > tH(i)). An LSA generated by ni contains the
valid links {ni, nj} for every neighbor nj . LSA messages are
flooded and reach every node in the network so every node nk
is aware of the full topology and can compute the shortest path
to any destination and build its routing table. Similarly to what
happens with H messages, LSA messages include a validity
timer so that when nk does not receive a new LSA from ni
before the expiration of the validity timer, nk will recompute
its routing table removing the links that were included in the
expired LSA message. Again, we express validity as VAtA(i).

We also introduce two simplifying assumptions, that do
not influence the results, but ease the theoretical analysis.
Link-state protocols have a protocol-internal logic that ensures
that every LSA is received by all the nodes passing through
a minimal number of links (we call this number R). Our
conclusions are independent from the minimization strategy
used, the only assumption we do is that R does not depend on
the source of the LSA, which is perfectly plausible. The second
assumption is that tA(i) dominates both propagation delays and
transmission delays. Since the transmission time in a wireless
link is in the order of a few ms, the average number of hops in
a network of hundreds of nodes is below 10 [31], and tA(i) is
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in the order of seconds, again, this is a legitimate assumption.
If intermediate nodes add a non-negligible delay before re-
transmitting an LSA packet to perform message aggregation,
our theory is still valid if the total information diffusion time
is still dominated by tA(i). To validate this assumption we
test PopR on the OLSRd routing daemon, which introduces
an aggregation delay, and we show that also in this case PopR
achieves a large loss reduction.

Finally, note that failure detection via H must happen before
information propagation via LSA, thus it is reasonable to
optimize separately tH(i) and tA(i), else the optimization
could yield mathematically valid but non-realistic values for
the two timers (such as tH(i) >> tA(i)). Albeit separate
optimization does not guarantee that the optimized timers lie
in an acceptable region from the protocol point of view, all the
tests we did resulted in timers within acceptable boundaries.

IV. FAILURE DETECTION AS AN OPTIMIZATION PROBLEM

Referring to Fig. 1, after n3 fails at time T0, nodes n2 and
n4 will sense the event after the timer set to VHtH(i) expires
and recompute their routing tables to use an alternative path.
Considering the worst case scenario in which n3 fails right
after generating the H, the detection time is Td = T0+VHtH(3).

Given all the shortest paths pi,j = {ni, . . . , nj} in the
network, we call bk the shortest path betweenness of nk:

bk =
1

N(N − 1)

∑
i,j∈N ; i6=j

||{pi,j |nk ∈ {ni, . . . , nj}}||
||{pi,j}||

(1)

bk is a generic graph-based definition that is often used in
the literature [21]. When the graph represents an IP network,
at each instant there is only one shortest path from ni to nj
so that ||{pi,j}|| = 1. In a directed connected graph without
self loops the sum in Eq. (1) ranges from a minimum of
2(N − 1) paths that start or terminate at nk, to a maximum
corresponding to the total number of paths given by N(N−1)
implying bk ∈ [ 2

N , 1] as in the central node of a star topologyb.
We define the potential loss due to the failure of nk as:

L(k) = VHtH(k)N(N − 1)bk (2)

L(k) is the number of broken paths due to the failure of nk
multiplied by the time these paths stay broken.

If we assume that the traffic matrix is uniform, then L(k)
also estimates the total amount of traffic lost due to the failure
of nk. In case we have precise information on the amount
of traffic per link (which is plausible if such information is
conveyed in LSA messages) then the definition of bk can be
modified to use a weighted graph, where each node is weighted
by the carried traffic so that bk measures the importance of nk
as a function of the traffic it routes. This can be particularly
useful when the network is connected to a gateway node,
which may be topologically peripheral, but may be routing
a large amount of traffic.

bIn some formulations bk does not include the endpoints in the computation
so bk ∈ [0, 1]; we instead use a variant that includes also the paths that have
one endpoint in nk , so that bk is never 0 and singularities are avoided when
bk is at denominator of a fraction.

Finally, the average loss due to the failure of any node in
the network is given by:

L =
1

N

N∑
k=1

L(k) = VH(N − 1)

N∑
k=1

tH(k)bk (3)

Eq. (3) formalizes something that is intuitively easy to under-
stand. Since the time needed to reconstruct a broken route is
linear with the interval between each H, the average packet loss
due to the breakage of a route grows with tH(k). Moreover,
the failure of nodes with high centrality (that are traversed by
many routes) generates a higher loss compared to the failure
of peripheral nodes.

The overhead generated by node ni with H messages is
given by the number of H messages per second per link,
multiplied by the size of the H messages. Our strategy does
not modify the size of H and LSA messages, so from now on
we refer to the number of control messages when using the
term overhead.

Each H is sent on all the links exiting ni, so the number of
H messages per second is simply:

Oi =
di
tH(i)

(4)

and the total overhead generated per second on the network is
given by:

O =

N∑
i=1

di
tH(i)

(5)

Note that we consider the overhead of a packet as proportional
to the number of nodes that receive it, more details on this
model can be found in Appendix A. Setting tH(i) = tH for
all nodes, we obtain the overhead of the unmodified protocol:
OH =

∑N
i=1

di

tH
.

We can now formalize the problem of failure detection as
an optimization problem defined by Eq. (5) and Eq. (3). Since
the optimization is not influenced by the constants, we can
safely remove them:

minimize LH =

N∑
i=1

tH(i)bi (6)

subject to OH =

N∑
i=1

di
tH(i)

(7)

Eq. (6) minimizes the loss in the network, while Eq. (7) sets
the total overhead to be constant. The solution technique we
use ensures that all tH(i) have the same sign, so it is easy to
select all tH(i) positive.

V. INFORMATION PROPAGATION: OPTIMIZING tA(i)

Every node ni sends LSA messages every tA(i), and each
LSA is forwarded R times in the network for flooding (a good
flooding algorithm does not send the same message twice on
the same link, so we can set R = E). The overhead due to
LSA messages is:

O =

N∑
i=1

R

tA(i)
(8)
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while OLSA =
∑N

i=1
R
tA

= NR
tA

is the total overhead in a
network configured to have tA(i) = tA.

To estimate the route disruption caused by delay in LSA
messages we need more insight on the protocol. Refer again
to the failure of n3 in the network in Fig. 1. After the
detection time Td, n2 knows that link {n2, n3} is not active
anymore; it computes a new path to reach n4, which is given
by p2,4 = {n2, n1, n5, n6, n4}; n1, instead, still doesn’t know
of the breakage, so a temporary loop is created between n1 and
n2, which is typical of link-state protocols. The loop will be
solved at time Tp when n1 detects the change in the topology,
which can happen in two different ways: i) after the timer
VAtA(3) expires, so that n1 assumes n3 is dead, removes n3

and its outgoing links from the network graph, and recomputes
the correct path p2,4 = {n1, n5, n6, n4}; or ii) n1 receives a
LSA from n2 (or n4), which does not include n3, so that
n1 knows that link {n2, n3} (or link {n4, n3}) does not exist
anymore, and it recomputes its routing table excluding n3.

The first way of discovery means that loops may exist at a
node for a period Tp − Td = VAtA(i), where ni is the failed
node; VA is constant for all nodes, so it does not play any
role in the optimization. In the second way of discovery the
period Tp − Td does not depend on tA(i) when ni fails, but
it depends on tA(k) of some node nk neighbor of ni, since
only neighbors can propagate a topology change before timer
VAtA(i) expires. In PopR we use the betweenness centrality of
nk to tune its timers and betweenness is correlated: neighbors
of a node with high betweenness probably also have a high
betweenness. This means that in this second case we can state
that Tp−Td is proportional to some tA(k) of a neighbor of ni,
which is probably close to tA(i) of the failed node: Tp−Td ∝
tA(k) ' tA(i). Constants do not influence the optimization,
so we can safely state that also in this case minimizing the
routes’ disruption through tA(i) optimization is correct, albeit
approximated. Thus, to solve the optimization problem, we
simply consider Tp − Td ∝ tA(i).

A link-state protocol can also behave in a reactive way: It
can anticipate the generation of an LSA when it senses the
failure of a link, so in principle Tp could be very close to
Td. This feature is optional in OLSR and, in our experience,
rarely used. The reason why is that while in a wired network
link failure can be detected with link-level sensing and it is
normally a long-lasting condition, in a wireless network failure
detection can be due to temporary degradation and even to con-
gestion conditions that leads to successive message collisions.
If the protocol reacts too quickly to temporary conditions,
then it can produce route flapping and consequent instability.
Instead, quality link metrics with some hysteresis can be used
to penalize a link that periodically faces congestion. Even if for
simplicity we only deal with link failures, we note that PopR
is effective also against other situations in which the reactive
behavior simply can not be applied. If ni does not fail, but
for some reason the quality of its links decreases substantially
(e.g., the node is subject to temporary shadowing), the effect
is similar to a node failure (ni is removed from many, and
sometimes all, the shortest paths), but it is harder to detect
since it is not an on/off situation. It can be detected and reacted
upon using link quality thresholds, that introduce yet another

tunable parameter in the protocol. Our model does not suffer
from this complexity and behaves smoothly with the evolution
of the network.

With the analysis above, the total average potential loss due
to LSA messages when a node fails is proportional to

LLSA =

N∑
i=1

tA(i)bi (9)

having removed any constant that do not enter in the opti-
mization procedure. The minimization of Eq. (9) subject to
the constraint expressed by Eq. (8) is structurally the same
optimization problem formulated by Eq. (6) and Eq. (7), so
the same kind of solution can be applied to both problems.

Finally, note that a loop is not deterministically created
when a node fails, since its neighbors may recompute an
alternative route that does not create a loop, so Eq. (9) is
a worst case, and the network performance after a failure may
be better than this. It must be considered, though, that a loop
not only breaks some routes, it generates a flood of packets in
the interested link which makes it (almost) unusable for other
routes. In some cases loops may persist for tens of seconds,
bringing havoc to the entire network. This justifies to use the
worst case scenario to tune tA(i).

VI. OPTIMIZED LINK-STATE TIMERS

The problem we defined for both tA(i) and tH(i) can be
solved analytically; the full demonstration can be found in
[1], here we report only the solution and its interpretation.
The optimal values for tA(i) and tH(i) are given by:

tH(i) =

√
di√
bi

1

OH

N∑
j=1

√
bjdj (10)

tA(i) =

√
R√
bi

1

OH

N∑
j=1

√
bjR (11)

and we can use them to compute the average performance loss,
i.e., the expectation of the product of the number of disrupted
routes times the disruption duration if nodes failure probability
is uniform:

LH =
1

OH

( N∑
i=1

√
bidi

)2

(12)

LLSA =
1

OLSA

( N∑
i=1

√
biR
)2

(13)

Eqs. (10) and (11) state that if ni knows the betweenness
and degree of the other nodes, it can easily compute the
optimal value for tH(i). They give a fundamental insight: once
the network topology is known to every node, which is an
intrinsic property of link-state protocols, each node has enough
information to compute the optimal values for tH(i) and tA(i)
in order to minimize the routes’ disruption due to node failures
while keeping the total overhead constant.

Note that we could further reduce the theoretical loss min-
imizing LH + LLSA in a single minimization problem, instead
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of splitting the problem in two different ones. Since the space
of the solutions would be larger we could find a distribution
of timers that minimizes the loss even more. This has two
drawbacks, that convinced us to split the problem in two. The
first is that there is a functional relationship between H and
LSA, that is, LSA propagate information that has been detected
by using H. If we optimize both values together it may be that
the best configuration for a certain ni is given by tA(i) < tH(i).
This means that the process that performs link-sensing has a
slower dynamic than the process that propagates link-sensing
informations, which practically makes no sense. Splitting the
optimization in two, we guarantee that the proportion between
tA(i) and tH(i) is respected at least in their average value per
node, and Sec. VIII shows that meaningful values are almost
always computed. The second reason is that we want to outline
that PopR is of general interest even for protocols that use
only link-sensing based on H, possibly coupled with recent
fully distributed techniques that make it possible to compute
centrality without knowledge of the full topology [32]. For this
reason we are interested in showing the benefits obtainable by
tuning only H messages.

A. Applicability of PopR

The improvement achieved by PopR is perfectly compatible
with any protocol that supports a differentiated timer for
each node, and it can be used on top of any topology
reduction strategy, like MPRs or CDS [33]. Indeed, our
approach supersedes those strategies. In fact, the basic idea of
topology reduction is to apply a binary label to each node that
enables or disables the generation of LSA messages depending
on some properties that are locally computed (for instance,
the betweenness computed on the 2-hop neighborhood for
MPRs in OLSR). Our approach, instead, uses a continuous
function to fine tune every timer, with two advantages: first
and foremost, PopR reaches optimality, second, PopR does not
need any negotiation to select MPR or CDS nodes. Thus, there
are no transitory phases in which the state of the network is
logically disconnected. This happens instead any time a CDS
node, a cluster head, or an MPR fails and the neighbors have
to select a new one.

In principle, the logic of PopR can be applied also to link-
state protocols used in wired networks, such as OSPF. In
practice, there are several reasons that make this impractical.
Among therm, those protocols tend to be more reactive than
protocols designed for wireless networks, for instance, a node
using OSPF sends LSA messages periodically with a timer
set to tens of minutes (in order to remove stale entries),
but also generates LSA messages asynchronously when its
neighborhood changes. Moreover, high-end routers use link-
level signalling to detect neighbor failures. Still, low-end
routers that use the simple Bidirectional Forwarding Detection
(BFD) protocol (which is based on HELLOs) can benefit from
PopR to tune the frequency of H messages.

Finally, note that the array of betweenness values B changes
with time, so periodically each node has to re-compute its own
timers. However, with a minor change of B values PopR does
not result in a service disruption, but just in a slightly sub-

optimal generation of control messages. Sec. X is dedicated
to the quantitative analysis of this mismatch.

VII. EVALUATION SET-UP

The rest of the paper presents three distinct sets of results
that validate the theoretical approach of PopR, and its real
world applicability. The first one is obtained applying directly
the optimization derived in Sec. IV and Sec. V on syntetic
graphs with controlled properties; the second set is obtained
modifying the OLSRd code and running it on real topologies
in an emulated environment; the third set is dedicated to study
the behavior of running mesh networks to understand if PopR
is compatible with real world constraints.

A. Evaluation on synthetic and real graphs

The first result set is the evaluation of the two loss formulas
given by equations Eq. (12) and Eq. (13). Given a network
graph G(N , E) we set R = E (as typical for flood-based LSA
distribution), tH = 2 s, tA = 5 s (the OLSR default values) and
we compute the optimal values of tH(i) and tA(i).

Let LH and LLSA be the value of performance loss (routes’
disruption) obtained with the standard version of the protocol,
i.e., with all timers equal to tH and tA, and L?

H and L?
LSA the

loss computed with the optimal values of tH(i) and tA(i). The
absolute value of the performance loss is highly influenced
by the topology, and also by the many constants that do not
influence the optimal operation point. For this reason we use
relative metrics of performance defined as

LR
H = 1− L?

H

LH
; LR

LSA = 1− L?
LSA

LLSA

We use topologies generated following two popular mod-
els: i) The well known Barabási-Albert (BA) preferential
attachment algorithm, that generates graphs with a power-law
degree distribution; and ii) the model developed by Milic and
Malek (MM) in [34]. This is a mixed geometrical-statistical
model that has been created from the observation of large
existing German wireless mesh networks. To further confirm
the results, we also test the performance reduction on the
topology of three real networks: the wireless community
network of Wien (FunkFeuer Wien, abbreviated FFWien), the
community network of Graz (FFGraz) and the community
network of Rome (the Ninux network). These are three large
mesh networks made of 227, 143, and 126 nodes respectively,
which are used daily by hundreds of peoplec [31].

B. Evaluation using Mininet

The second result set is produced using the Mininet network
emulatord. Mininet enables the emulation of entire networks
with custom topologies, and it is the perfect instrument to
experiment with real implementations of routing daemons in
large topologies made of hundreds of nodes that can not be
recreated in a lab. This second set of results validates the

cFor further nes and details on these mesh network visit http://www.
funkfeuer.at/ and http://ninux.org/

dSee http://mininet.org/ for a full description of the tool.
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model of link-state protocols we used in the optimization
answering three key issues: i) How much the approximations
we did in the theoretical formulation affect the results; ii)
What is the effect on PopR of heuristic improvements used
by real protocols, such as link-quality metrics and message
aggregation that we omitted in the analysis; and iii) What is
the global effect due to the application of PopR to both H and
LSA messages, since it is clear that the loss reduction due to
the two effects can not be just summed, but it blends in ways
difficult to predict.

We tested PopR on the OLSRd daemon, and evaluated how
fast the network reacts to the failure of a node. Typically, such
evaluation in real scenarios is done measuring lost packets at
the application layer on a subset of the nodes in the network.
Since we control all the nodes in the emulation we can instead
use a more comprehensive metric, computed as follows:

1) Run OLSRd on every emulated node in mininet with
a given topology G. At steady state each instance of
OLSRd has a routing table with valid next-hops to any
destination. The routing table for ni at time t is stored
as a dictionary Ri

t[·] that associates a destination node
nk to the next hop nj , so that Ri

t[nk] = nj ;
2) Each Ri

t[·] is saved by every node every 300 ms together
with the associated timestamp;

3) At time T0 node nk is forced to fail;
4) At time Te, larger than the expected Tp for all nodes,

when all Ri
t[·] are stabilized the emulation is stopped;

5) For each timestamp h navigate the routing tables from
every source ni to every destination nj recursively, using
the saved routing tables of intermediate nodes. For each
h, count the broken routes rh (i.e., those that still include
the failed node or that contain loops). This produces an
array {(T0, r0) . . . (Te, re)}, each couple associates an
instant after the node failure to the corresponding number
of broken routes;

6) Define the combined empirical loss reduction (L̃) as the
integral of the step function stored in the array

L̃ =

e∑
h=1

rh ∗ (Th − Th−1)

L̃ gives the exact measure of the number of broken routes
multiplied by the time they remain broken, which is an
effective measure for routing protocol convergence and its
performance loss due to a failure. L̃ combines the effect of
the optimization of both tH(i) and tA(i) and is the empirical
equivalent of the theoretical loss we computed on synthetic
graphs.

Fig. 2 reports a sample run emulating the failure of a
node in the Ninux network. The curves show the number
of broken paths due to both the detection phase (broken
routes) and the propagation phase (paths with loops). L̃ is
the area subtended by the envelope of the broken and looped
paths. We repeat each scenario with standard OLSR and with
PopR optimization, obtaining two values of L̃: L̃olsr and
L̃pop respectively. The absolute performance loss reduction is

L̃A = L̃olsr − L̃pop, and the normalized one is L̃R =
L̃A

L̃olsr

.
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Figure 2: Values of rh for a sample run in the Ninux topology.
The three curves represent the number of broken paths (paths
that pass through a failed node), the paths in which a loop is
created, and the sum of the values.

To evaluate the average performance loss in a graph G, we
perform Nf emulations, in each one a different node fails.
Clearly, it is interesting to study the effect of the failure of
nodes that have an influence on the rest of the network. We
are instead not interested in analyzing the convergence, for
instance, when a leaf node fails, as only the traffic that was
directed to that node will be affected. Thus in our emulations
Nf is given by the number of nodes that, if removed from the
network, will impact the other nodes’ routes to some reachable
node. Tab. II reports Nf for the three scenarios we emulated.

Once all the emulations have been run we need another
metric that gives a measure of the average impact of PopR on
the topology, we thus define the global loss reduction:

L̃g = 1−
∑Nf

i=1 L̃pop(i)∑Nf

i=1 L̃olsr(i)

where i is the index of the failed node. L̃g is the average
routes’ failure reduction due to the failure of any node in
the network that potentially carries traffic generated by other
nodes.

Summing up, we compute four metrics that, albeit in-
creasing the complexity of the analysis, are all needed to
have an exhaustive evaluation of the theoretical and empirical
performances of PopR:
LR
H , LR

LSA: relative theoretical loss reduction computed on a
network graph, due to PopR applied to H and LSA
messages respectively in the abstract model of a link-
state protocol;

L̃A: absolute empirical loss reduction obtained emulating the
failure of a generic node ni;

L̃R: relative empirical loss reduction obtained emulating the
failure of a generic node ni;

L̃g: overall relative empirical loss reduction evaluated on all
meaningful nodes’ failures.

VIII. EXPERIMENTAL RESULTS

Fig. 3 reports the relative loss reduction LR
H and LR

LSA on
BA and MM synthetic topologies increasing the number of
nodes. These metrics are computed averaging the losses on
30 randomly generated topologies. The performance of PopR
improves as networks become larger, and results for LR

LSA are
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Figure 3: The relative theoretical loss reduction values due to
PopR computed on Milic-Malek and Barabási-Albert graphs.
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Figure 4: Relative loss reduction computed on the network
topology of three running mesh networks made of 227, 143
and 126 nodes.

those yielding the most advantage, with routes’ disruptions
that are reduced by 25% in case of MM networks. Recall
that PopR does not increase the overall number (and size) of
control messages, so this gain is, in some sense, “for free”. The
difference between BA and MM networks can be explained
by the absence/presence of leaf nodes. A BA graph has no
leaf nodes by construction, while MM graphs do have leaf
nodes. Since leaf nodes have the minimal betweenness, B is
less skewed if there are no leaf nodes and there is less room for
optimization. As a clarifying example, consider a ring network,
each node has the same centrality value and PopR will produce
tH(i) = tH. Real networks do have skewed centrality values,
so we expect that PopR in real networks will behave as well as
in MM networks. For the same reason, the loss reduction LR

H

is practically negligible with BA networks while it oscillates
between 5% and 10% in MM networks.

A. Tests on real topologies

Fig. 3 shows that the improvement given by PopR depends
on the network topology and that a topology with skewed
centrality values has more room for improvement. Fig. 4
reports LR

H and LR
LSA for the three real topologies we consider,

and it confirms that in a real topology that has a balanced ratio
between leaf nodes and core nodes, LR

LSA is around 25% and
LR
H ranges from 5% to 10%, aligned with the results obtained

using MM graphs.
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Figure 5: Absolute empirical loss reduction for each node
computed on the Ninux network (126 nodes), with the average
value reported as the dotted blue line.

B. Tests On Mininet

Fig. 5 reports L̃A for each node failure and its average in
the Ninux topology. The results show that for the majority of
the nodes there is a substantial absolute improvement in L̃A,
while there is only a slight performance loss when the least
central nodes fail. For some of the failed nodes recovery time
is slightly larger than what would be with standard timers,
but on average (the dotted blue line) the gain is remarkable.
L̃A results for FFWien and FFGraz are qualitatively equal to
Ninux and we do not report them.

Table II reports the relative loss reduction L̃R computed on
the ten nodes with the highest centrality for the three real
topologies considered. These results are obtained implement-
ing PopR in the OLSRd daemon and running it in Mininet
emulations and show that on those nodes, which are the most
critical ones for the whole network, PopR achieves up to 69%
loss reduction. The figure also reports the average global loss
reduction (L̃g , computed on all the failures) that lies between
0.20 and 0.28, which confirms the overall efficacy of our
approach implemented in real code.
L̃R is not monotonically increasing with centrality; this is

due to two factors. The first one is that in some cases the
failure of a very central node partitions the network, some
nodes remain isolated and we have to reduce the overall
number of considered routes. The second is that strictly
imposing the equivalence in the total amount of H messages
in Eq. (7) penalises the nodes that have many neighbors,
because Eq. (10) depends linearly from

√
di. Frequently,

central nodes also have many neighbors and their tH(i) is
limited by this factor. For these reasons the values of tA(i)
grow monotonically with the centrality while the values of
tH(i) don’t show this trend. A possible modification could be to
relax condition Eq. (7) replacing the term di with the average
node degree. This would modify the overall number of control
messages, but would not penalize nodes with high centrality,
possibly producing even better results (see Appendix A for a
detailed discussion on this choice).

The last row for each topology in Table II reports the max-
imum value for tH(i) and tA(i) to show that the optimization
problem is well conditioned so that the timers do not diverge to
unusable values. Moreover, it reports the global loss reduction
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Ninux (top ten nodes ranked by centrality, total nodes: 126)

L̃R 0.50 0.36 0.43 0.43 0.25 0.38 0.25 0.41 0.38 0.32

tH(i) 1.42 1.33 1.48 1.36 1.06 0.89 1.83 2.17 1.96 2.20

tA(i) 1.81 1.81 2.01 2.18 2.20 2.28 2.32 2.47 2.49 2.50
L̃g : 0.28 Max tH(i): 4.5s Max tA(i): 8.1s Nf : 43

FFGraz (top ten nodes ranked by centrality, total nodes: 143)

L̃R 0.31 0.60 0.40 0.30 0.49 0.31 0.48 0.26 0.36 0.16

tH(i) 1.34 1.40 1.49 1.68 1.38 1.53 1.09 1.53 0.74 1.87

tA(i) 1.38 1.44 1.66 1.72 1.77 1.86 1.87 1.97 2.03 2.08
L̃g : 0.27 Max tH(i): 4.6s Max tA(i): 7.2s Nf : 45

FFWien (top ten nodes ranked by centrality, total nodes: 227)

L̃R 0.44 0.29 0.40 0.69 0.34 0.30 0.24 0.20 0.37 0.26

tH(i) 1.25 1.36 1.43 1.04 1.65 1.35 1.51 1.60 1.22 1.61

tA(i) 1.15 1.47 1.50 1.59 1.63 1.76 1.88 1.99 1.99 2.00
L̃g : 0.20 Max tH(i): 4.2s Max tA(i): 7.4s Nf : 165

Table II: Normalized loss reduction L̃R and value of timers
when each of the 10 most central nodes fail for the three real
topologies considered; the last row for each topology reports
the overall gain L̃g , the maximum values of timers and Nf .

which means that assuming a uniform traffic matrix, the use
of PopR would decrease the packet loss during recovery
proportionally.

The key observation about this result is that this gain
is obtained at no cost, i.e., without increasing the protocol
overhead. The optimal equalization of the protocol timers
alone reduces the convergence time of up to 28% in average
and 69% as a peak when computed on real network topologies.
Another key observation is that the relative gain metrics are
ratios between loss equations defined in Eqs. (12) and (13).
In the ratio, the terms OH and OLSA are cancelled, so that
the gain compared to the standard configuration that PopR
can achieve tuning H and LSA does not depend on the values
chosen for tH and tA. PopR exploits a specific property of the
network graph (the distribution of the centrality values) and
its gain does not depend on how aggressively the timers are
set. Whatever configuration is used as a base comparison (as
long as the timers are all the same) PopR will always improve.
This is key to understand the value of our proposal, which is
generic enough to be used in any similar context in which
link-sensing is performed with H and/or link advertisement is
performed by LSA.

C. Further Improvements

The results we showed confirm that PopR, leveraging a com-
pact solution of an optimization problem can tangibly improve
the recovery time upon node failure. Some modifications to
PopR can be easily made to tailor its behaviour to different
but related goals, while more work on the theoretical model
would be needed to apply it to different cases. In this section
we briefly review some ways to further improve PopR that
will be the base for future works.

A first, minimal modification would be to allow an in-
crease in the overhead to guarantee that no nodes incurs in
a performance loss. In practice, one would set two upper
bounds t̄H and t̄A for the timers that guarantee raising the
values of the right tail of the curve in Fig. 5 to 0. The

total overhead would be increased of a quantity that is graph-
dependent. Another simple modification would be to protect
some important traffic flows, removing some nodes from the
optimization, and setting a fixed (low) timer for them. This
would preserve some traffic flows that are known to be passing
through those nodes and are considered particularly important.
This would again produce an increase in the overhead, and
possibly also a sub-optimal results for a given overhead, but
it is straightforward to implement.

A more general approach is to impose upper bounds to
the timers, complicating the minimization problem with in-
equalities of the kind tH(i) < t̄H and tA(i) < t̄A. Similarly, if
one wants to optimize both timers together while maintaining
a specific difference between them, conditions of the kind
tH(i)k ≤ tA(i) for some given k can be introduced. These
modifications require a different solution as Lagrange Multi-
pliers can not be used with inequalities. Some other technique
(possibly the Karush-Kuhn-Tucker conditions) are needed to
implement them, leading to a novel contribution.

Another interesting extension can be exploring the effects
of imposing a finite set of choices for the timers, for exam-
ple because an operator doesn’t fully trust the algorithm to
automatically set the timers, but wants to manually set them
choosing from a set of pre-defined values. In this case PopR
could simply suggest the best value to the operator, who can
confirm or change the choice. This would move the problem
in the discrete space and make it close to a classical knapsack
problem, again, requiring a different solution technique. All
these modifications to PopR are possible, and can be the base
for future research.

IX. IMPLEMENTING POP-ROUTING: PRINCE

Results of Sec. VIII are obtained pre-configuring each
OLSRd daemon with the optimal timers, and running a series
of emulations. While pre-configured values can be used for
testing purposes, this approach is hardly usable in a real
application, since mesh networks are dynamic and frequent
re-computation of the centrality values may be needed. Thus,
we realized Prince, an open source daemon that implements
PopR on top of the OLSRd daemon in quasi real time. The
implementation of Prince incorporates real world constraints
that opened new challenges for PopR, that we discuss and
solve in the next sections. The next set of results are key
to appreciate the value of PopR not only as a theoretical
contribution but also as a technology ready to be adopted.

A. Implementing Puzis’ Heuristic

The asymptotic complexity of centrality computation in a
network graph is dominated by the computation of all the
shortest paths, so it is polynomial with the number of nodes
in the network. Brandes’ algorithm achieves a complexity
of O(NE + N2log(N)) and it is the fastest algorithm for
weighted graphs. Puzis’s heuristic [4] can reduce the compu-
tation time of Brandes’ algorithm for networks with certain
features. The first step to design Prince was to implement
Puzis’ heuristic and test its performance on real hardware.
Preliminary results have shown that for a network made of
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Figure 6: The interaction of Prince and OONF.

236 nodes, a low-cost wireless router (an Ubiquiti M5 wireless
router, equipped with a MIPS 390MHz processor and 32M of
RAM) requires 7 seconds to compute the centrality of each
node using Puzis’ heuristic, less than 1

3 of the time required
by Brandes’ algorithm [5].

This outcome shows three facts: i) even low-power devices
can compute centrality for networks made of hundreds of
nodes; ii) centrality computation can not be performed in
real time; iii) centrality computation can not be performed
in the same process of the routing daemon since the routing
daemon can not be frozen for several seconds. Centrality
computation needs a separate process with low priority that
will not interfere with the routing daemon, and thus may take
several tens of seconds to update the centrality values on large
networks. Sec. IX-B and Sec. X address two challenges for
the real implementation of Pop-Routing: i) the interactions
between the two processes, and ii) the correct timing for the
re-computation of the centrality array B.

B. The Architecture of Prince

Prince is the open source implementation of the Pop-
Routing principle for the successor of the OLSRd routing
daemon. Recently, the standardization of the second version of
OLSR was completed with a set of RFCs [35]–[38] that detail
the messages, the metrics and the way this link state protocol
works. The collection of these specifications takes the name
OLSRv2. OLSRv2 maintains the basic functions we described
of OLSRv1, so PopR can be applied to OLSRv2 as well. The
OLSRd daemon was upgraded to OLSRv2 and in the process
it was rebranded as “olsrd.org Network Framework”, OONF
[39]. OONF is under active development and supports plugins
that help developers to add new features to the daemon. In
particular three plugins are relevant, the NetJSON, the “remote
config”, and the Telnet plugin. NetJSON is a recently proposed
format to describe network topologiese and OONF is one of
the several implementation of routing protocols that can export
the network topology using NetJSON. The remote config
plugin allows changing the configuration parameters at run-
time; finally the Telnet plugin can be used to access the other
plugins remotely.

Prince is a separate daemon that communicates with OONF,
it periodically polls OONF to receive the NetJSON topology,
it computes the new timers for the node and pushes them
to OONF via the Telnet plugin. The structure of Prince is
described in Fig. 6. Prince is made of a main process in
C language and a separate centrality library that implements

eSee http://netjson.org

Puzis’ heuristic. The communication with OONF takes place
via a dedicated plugin. This simple structure and the well-
defined interface makes it possible to decouple centrality
computation from the routing daemon and to extend Prince
with new plug-ins for other link-state protocols. Prince is open
source and freely availablef.

X. RE-COMPUTING CENTRALITY

In a network of N nodes every ni receives roughly N−1
tA

LSA per second. Every LSA potentially carries the information
related to a topology variation, and the substantial modification
of even only one link quality can modify the shortest paths
between many couples of nodes. Thus, in principle, for every
received LSA the array of centrality should be re-computed
together with the values of tH(i) and tA(i). As we have
commented in Sec. II-A the computation of betweenness
centrality is polynomial with the number of nodes, but we
have showed in [5] that computing the centrality in real
networks with the elaboration power of an embedded device
(a wireless router) may take up to tens of seconds, which
in realistic conditions (more processes running on the router)
may increase even more. It is clear that centrality can not be
re-computed in real time every time a new LSA is received,
but must be periodically updated. Using a large update interval
has a small impact on the router CPU, but it also implies that
for a long time tH(i) and tA(i) will be set according to an
optimization done for a topology that possibly changed in the
meantime, and thus far from the optimal ones. In the worst
case, they could behave worse than the default values. We
have to decide a re-computation timer ∆ that is large enough
to allow the computation even on low-power devices but short
enough to follow the evolution of the network. From now on
we will refer to a small, medium and large ∆ when it falls
below 5 minutes, from 5 to 20 minutes and from 20 to 60
minutes respectively.

The only way to estimate a suitable value of ∆ is to analyze
data extracted from real networks and verify the trend of
variation of the value of centrality per each node. We analyze
the three middle-size networks that we introduced in Sec. VII
for a period of 7 days. For each network we downloaded the
snapshots of the topology exported by OLSRd: One snapshot
every 5 minutes for FFW and ninux, one every 10 minutes
for FFG, corresponding to roughly 2000 and 1000 snapshots
respectively. For each snapshot and for each node i we
compute tH(i) and tA(i) as per Eqs. (12) and (13) and we
analyze their trend in time.

A. Timers’ Stability

Fig. 7 reports the average and standard deviation of tH(i)
and tA(i) computed on all the snapshots, for every node i in
each of the three networks (for readability the plots do not
contain the values relative to nodes that remain leaf nodes
in all the samples, since their value never changes). The plot
shows that the coefficient of variation is sufficiently small (the

fThe source code can be found at https://github.com/
AdvancedNetworkingSystems/poprouting
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Figure 7: The average and standard deviation of tH(i) and
tA(i) for the three networks under consideration. Each curve
is ordered for increasing average value.

average lays below 8% for both tH(i) and tA(i)) even in a week
sampling time. At the right extreme of tA(i) curves there is
a set of nodes with a very stable timer. These nodes are not
leaf nodes (they are not in the plot) but behave as such. They
have one good link that they primarily use, plus other bad
links whose cost is high enough that they are never used to
route traffic. Since betweenness is computed on the weighted
graph, their betweenness takes the minimal value (exactly as
a leaf node) and changes only marginally. The same effect
does not appear in the graph of tH(i) since di is present in
Eq. (10) so nodes with different degree take different values of
tH(i), and when the number of neighbors of node i changes,
tH(i) changes too. In Appendix A we give a more detailed
interpretation of the value of di.

Fig. 7 suggests that the values taken by timers have a
small interval of variation, but does not help understanding
the time correlation of the timers, which is what we are
mostly interested into. Before generalizing, we analyze the
nodes with the extreme behaviour: we choose the nodes that
have the largest coefficient of variation for tH(i) and tA(i),
and report the values of the timers in Fig. 8. In ninux the
high variation depends on a sharp transition from one state
to another; before and after the transition, the values of tH(i)
and tA(i) are pretty stable. This change reflects a topology
modification that directly impacts the centrality of the node. In
FFW the trend is similar to ninux, but with a higher deviation
in the stable states, indicating that FFW topology changes
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Figure 8: The samples of tH(i) (upper graph) and tA(i) (lower
graph) for the three nodes with the highest coefficient of
variation (FFG: red circles, FFW: green triangles, ninux:blue
squares).

are more frequent that in ninux. Remember that Eqs. (10)
and (11) include the centrality of all the nodes, so a single
modification in the network topology may cause small changes
in the timers of all the nodes. In practice this oscillation is
negligible, but from one snapshot to the next the timers are
likely to fluctuate lightly even in stable conditions. In FFG,
instead, timers oscillates between 2 or 3 different states, with
one that is more likely (the one with the lowest value). This
behaviour is probably related to some flapping link, a faulty
router that periodically reboots, or temporary congestion.

This analysis shows that in general the optimal timers are
stable, and even the nodes that display the highest variability
have a stable operation, but for some sharp transitions due
to topology changes. This indicates that using a large re-
computation interval ∆, should not lead to unacceptable
performance loss, except, maybe when a state transition for
a node occurs, and this require further investigation.

B. Stability Impact on Performance

As we have seen, tH(i) and tA(i) are subject to variations
with topology changes, some of them are small, noise-like, and
should not affect the optimization; others are larger and may
lead to loss of performance. Thus, we present a sensitivity
analysis on the re-computation interval ∆: How much it
influences the potential loss that derives from a node failure?

Let PS be the period used to take snapshots of the network
(five or ten minutes in our case). k indexes the snapshots G[k],
and δ =

⌊
∆
PS

⌋
measures how many snapshots pass between

the re-computation of the optimal timers done every ∆ s. With
this notation we extend the loss metrics LH and LLSA to take
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into account time evolution. Starting from Eqs. (12) and (13)
we derive LH[k, δ] and LLSA[k, δ] that are the theoretical loss of
PopR computed on snapshot k of the network, with the timers
that were computed to optimize convergence in snapshot k−δ.
For the sake of clarity we separate the three cases:
• δ = 0 in which we optimize at every step. Clearly this

is the optimal case as the metric is updated continuously
and LH[k, 0] = L?

H and LLSA[k, 0] = L?
LSA;

• 1 < δ < k− 1 that is a generic sub-optimized version of
PopR;

• δ = ∞: This is the limit case in which we optimize
the timers for k = 0 and never again, and we refer to
loss values in this case as LH[k,∞] and LLSA[k,∞] to
highlight the fact that there is no update of the timers
during normal network operation.

We can now introduce the corresponding relative performance
metrics:

LR
H [k, δ] = 1− LH[k, δ]

L?
H

; LR
LSA[k, δ] = 1− LLSA[k, δ]

L?
LSA

(14)

L?R
H [k] = 1− LH[k,∞]

L?
H

; L?R
LSA[k] = 1− LLSA[k,∞]

L?
LSA

(15)

LR
H [k] = 1− LH[k,∞]

LH
; LR

LSA[k] = 1− LLSA[k,∞]

LLSA
(16)

These metrics express the relative gain of a strategy against
another, computed on loss measures. The metrics in Eq. (14)
measure the relative performance of PopR with δ > 0 against
PopR with δ = 0. We expect these two metrics to be negative,
as for δ > 0 the timers are sub-optimal and the performance
loss should be larger. Those in Eq. (15) compare the ex-
treme case when timers are optimized only once at network
start-up against the case with times continuously optimized.
These metrics should degrade (become more negative) as
k becomes larger as we expect topologies and centrality to
slowly change in time, but it is difficult to predict the trend of
this degradation. The metrics in Eq. (16), finally, compare the
performance when timers are set at network start-up against
the performance of standard OLSR. In this case the metric
should be positive, as we expect in any case that tuning the
timers to the topology properties leads to better performance
than no tuning at all, but again it is very difficult to have
quantitative predictions.

Since there are several plots to discuss, we present only
the results for FFW, which in the previous analysis was the
less stable network. Results for ninux and FFG are in general
slightly better and confirm the discussion.

Fig. 9 reports LR
LSA[k, δ] for the first 5 hours of network

evolution and δ = 1, 4, 9 and helps to have a qualitative
understanding of the metrics before we show plots based on a
larger dataset. The curves return to zero with an interval equal
to δ + 1, when timers are recomputed; the relative loss never
exceeds −2% compared to the optimal. The graph also shows
that in some cases the values of tH(i) and tA(i) computed for
snapshot k − δ perform even better than the ones computed
for snapshot k. This behaviour is counter-intuitive, but it can
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in FFW (one snapshot every 5 minutes).
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Figure 10: Binned values of LR
H [k, δ] for δ = 1, 4, 9 (upper

plot) and LR
LSA[k, δ] for δ = 1, 4, 9 (lower plot) in FFW.

be explained easily. Recall that tH(i) and tA(i) are derived
from the optimization of the convergence time constrained to
a constant overhead. In some cases the old timers perform
better than the new ones because the topology is changed and
they generate more overhead compared to the optimal solution.
For instance, when some nodes are removed from the network,
the constant OH should be recomputed to rescale the values
of all timers. If this is not done the timers may remain more
aggressive and lead to a slightly better performance.

Fig. 10 generalizes these results and shows the binned
distribution of the relative loss metrics for the same three
values of δ. The bin size is 1.5× 10−3 and the statistic is
computed on the samples of the whole week. As expected,
the average loss slightly increases with the increase of δ and
the mass of the value is mostly confined in the [−0.02, 0]
interval, while in the keys the average value is also reported.
In practice, we can say that sub-optimization has a negligible
impact on the performance of PopR.

Finally, Figs. 11 and 12 further extend the results and
corroborates the idea that ∆ can be large. The colored filled
dots are the values of LR

H [k, δ] and LR
LSA[k, δ] for δ ranging

from 1 to 19. For every possible value of k on the k axis there
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are 19 separate dots, one per value of δ. We use a distinct
color for each value of δ, but the goal of the plot is not to
discriminate between the dots corresponding to distinct values
of δ: it is to show that even if we hold the values of tH(i) and
tA(i) for 20 intervals (corresponding to ∆ = 100 minutes)
the sub-optimization is limited to less than 6.3%. The green
empty boxes are the values of L?R

H [k] and L?R
LSA[k], and the

purple crosses are the values of LR
H [k] and LR

LSA[k]. These
series show that even if we never re-compute the timers for a
whole week, the performance of pop-routing deteriorates (with
some oscillations) but still remains close to the optimal value
and always outperforms standard OLSR, and that for LSA the
gain remains fairly high.

The results (consistent with the results for FFG and ninux)
confirm that in a real network we can safely recompute the
timers using a large ∆ with a very small sub-optimization. In
general, it is not worth to track temporary and limited topology
changes: Even if they have a non-negligible local impact the
global behaviour of the network is not strongly affected.

XI. CONCLUSIONS

Tuning the generation of control messages is of the utmost
importance for the performance of routing protocols, link-state
protocols in particular. One of the key performance indexes is

the capability of fast recovery after a node (or link) failure. Yet,
after decades of use, experience with, and research on link-
state protocols, there is not an automatic, let alone optimal,
procedure to tune the timers for control message generation.

This work formalized the problem of route convergence
after a node failure as an optimization problem in the space of
the timers for the generation of control messages (HELLO and
Link-State Advertisement), subject to the constraint
that the total overhead in terms of messages per second
remains constant for each category of control messages. The
solution of the problem is computationally efficient, and it
makes it possible for every node in the network (even on
low-power devices) to auto-tune its own timers. Our results
on emulated networks using the OLSR routing protocol show
that the reduction of the convergence time after a node fails
can reach 69% in the best case, and stays stably above 20%
in the average case when tested on real network topologies.

From the initial tests performed on real hardware we ob-
served that the performance of centrality computation does
not allow to re-compute centrality in real-time. Therefore,
we analyzed the behavior of three real mesh networks to
identify the sensitivity of the optimization to the changes in
the network topology. We observed that running networks
are pretty stable and the impact of topology modifications
on the optimization is marginal if we update the centrality
computation with an interval of tens of minutes.
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APPENDIX A

In this section we better justify how we model di and how
this impacts our results. The number of links of a node in
a wired network is easy to define, while in wireless mesh
networks this is not the case, and specific protocols are needed
to cover the many possible cases [39]. A mesh protocol
running on ni generally maintains a set of nodes Li with which
it can potentially create links, and a set of neighborsMi. The
former is the set of nodes that ni received H messages from,
the latter is the set of nodes that ni has a bi-directional link
with, and could be used as next hop in the routing tableg. Some
nodes that appear in Li may not have a quality decent enough
to become neighbors, so Mi ⊆ Li. Node ni will also be in
the set Lj of some other node nj . We call Rli the reverse link
set of ni, that is, the set of nodes that can receive H packets
from ni: Rli = {nj |ni ∈ Lj}.

We are interested in defining the resources occupation of a
H packet. As a first approximation, we consider H all of the
same size (we could easily add a dependency on the neighbor
size in our formulation, but we actually believe that it is more
important to model the number of packets instead of the their
size, to keep the model simple). In principle, we could simply
say that a H packet always occupies the same airtime, so
the model could simply preserve the number of H packets
generated per second in the whole network. Actually, we go
further than that, and we consider that a H packet generated
by ni uses network resources that are proportional to ||Rli||,
because it actually keeps occupied a number of radios given
by ||Rli||. As links may be asymmetric, ni does not know
Rli, and we approximate it with Mi. A better choice in the
real world would be to use Li, but in Mininet we don’t have
this information and thus we set di = ||Mi||. Note that if we
chose the much simpler optimization of preserving the total
number of H per second, we could just set di = 1 (or to some
other constant) and achieve a higher gain.

gActually, depending on the protocol implementation, these lists may refer
to nodes, or IP addresses of network interface, or any other suitable identifier,
but we use the generic term ‘node’ for simplicity.


