
On the Distributed Computation of Load Centrality

and Its Application to DV Routing

Leonardo Maccari∗, Lorenzo Ghiro∗, Alessio Guerrieri†, Alberto Montresor∗, Renato Lo Cigno∗

∗DISI, University of Trento
†SpazioDati srl

Abstract—Centrality metrics are a key instrument for graph
analysis and play a central role in many problems related to
networking such as service placement, robustness analysis and
network optimization. Betweenness centrality is one of the most
popular and well-studied metric. While distributed algorithms
to compute this metric exist, they are either approximated
or limited to certain topologies (directed acyclic graphs or
trees). Exact distributed algorithms for betweenness centrality
are computationally complex, because its calculation requires
the knowledge of all possible shortest paths within the graph.
In this paper we consider load centrality, a metric that usually
converges to betweenness, and we present the first distributed
and exact algorithm to compute it. We prove its convergence, we
estimate its complexity and we show it is directly applicable–with
minimal modifications–to any distance-vector routing protocol
based on Bellman-Ford. We finally implement it on top of the
Babel routing protocol and we show that, exploiting centrality,
we can significantly reduce Babel’s convergence time upon node
failure without increasing signalling overhead.

Our contribution is relevant in the realm of wireless distributed
networks, but the algorithm can be adopted in any distributed
system where it is not possible, or computationally impractical, to
reconstruct the whole network graph at each node and compute
betweenness centrality with the classical approach based on
Dijkstra’s algorithm.

Index Terms—Multi-hop networks; Mesh networks; Ad-hoc
networks; Bellman-Ford; Load centrality; Distributed Algo-
rithms; Failure recovery

I. INTRODUCTION

A centrality indicator measures the prominence of a vertex

with respect to the graph structure, based on a specific metric.

A vertex with high centrality, depending on the metric defini-

tion, is either one with many neighbors, or with low average

distance to all other vertices, or one that controls many flows

between other vertices, and so forth. Centrality is relevant in

many sciences interested in network analysis. It was initially

introduced by social scientists to identify influential people in

social networks, but it has become a common tool in computer

and communication networks too [1], [2].

Among the several centrality indexes proposed in the lit-

erature, a noteworthy one is Betweenness Centrality (BC): it

measures, for each vertex, the fraction of global shortest paths

This work has been partially funded by the European Commission, H2020-
ICT-2015 Programme, Grant Number 688768 ’netCommons’ (Network In-
frastructure as Commons) and the H2020 GA No. 645274 “Wireless Software
and Hardware platforms for Flexible and Unified radio and network controL
(WiISHFUL)" with the project “Pop-Routing On WiSHFUL (POPROW)"
financed in Open Call 3.

passing through that vertex [3]. In computer networks, BC has

been used for service placement [4], to improve routing [5],

[6], for topology control [7], [8], security [9], [10], and for

several other uses [2], [11]. The application of load centrality

in this paper is toward improving scalability and resilience of

routing protocols.

BC requires information about all shortest paths between

any pair of vertices, so it implies a full network graph

knowledge and is generally computed off-line. Such central-

ized implementations do not integrate well with distributed

protocols; this observation alone hampers the adoption of

centrality metrics to improve, for instance, distance-vector

(DV) routing protocols.

Distributed, approximated algorithms are available for

generic graphs [12], [13] and exact ones only for selected

topologies. To the best of our knowledge there is currently

no distributed algorithm able to exactly compute BC on a

generic network graph without relying on the knowledge of

the complete topology.

In this paper we consider a variant of BC, called Load

Centrality (LC) [3], [14], that lends itself to be computed

in a distributed way. We present an efficient distributed al-

gorithm to calculate it defined on top of Bellman-Ford. It

is thus directly applicable to any DV routing protocol with

minimal modifications. Our algorithm computes the exact LC,

which estimates the expected load on a vertex contemplating

multipath routing on paths with equal weight. In the simpler

case, with only one minimum-weight path per pair of vertices,

LC converges to BC (see Sec. III). Still, our algorithm can be

applied to any kind of weighted and unweighted graphs. Its

convergence time grows linearly with the network diameter D:

after a time proportional to at most 3×D, every node knows

its own centrality and the centrality of all the other nodes.

In light of this discussion, our core contributions are pre-

sented in the four sections of this paper: Sec. IV introduces

the algorithm and gives a proof of its convergence, Sec. V

shows how to integrate it into Bellman-Ford; Sec. VI presents

the convergence properties using synthetic topologies with

controlled properties; Sec. VII documents our extension of

babeld, the open-source implementation of the widely used

DV routing protocol for mesh networks specified in RFC

6126 [15]. It also shows that, exploiting the notion of LC,

the protocol convergence time can be improved up to 13%

without increasing signalling overhead.

The paper is completed by a state-of-the-art analysis

(Sec. II) and by the problem definition (Sec. III); Sec. VIII

concludes the paper.

II. STATE OF THE ART

Centrality measures have been used to enhance traffic moni-

toring [5], [9], intrusion detection [16], resource allocation [2]

and topology control [7].

Among all, Betweenness Centrality (BC) is a remarkable

centrality index which is computed, for all nodes of a network,

with the well-known centralized Brandes’ algorithm [17]. It

executes an instance of Dijkstra’s algorithm rooted on each

vertex of the graph and in parallel it updates the BC indexes.

In a network with n nodes and m weighted edges, the com-

putational complexity of this approach is O(nm + n2 logn).
Brandes’ algorithm can be adapted to compute other centrality

indexes based on minimum-weight paths [3]. For example,

Dolev et al. proposed a generalization of BC to deal with

different routing policies [5].

There are two main problems that hinder the use of cen-

tralized algorithms in a network of routers. First of all, only

link-state (LS) protocols provide information on the whole net-

work topology to nodes; a mandatory requirement to perform

the centralized BC calculation. DV protocols are completely

excluded. Secondly, even in LS protocols, as the network size

becomes increasingly large, centrality metrics may require

excessive computational resources. Despite the introduction

of several heuristics [18], the online computation of the

indexes on low-power hardware requires several seconds and

is generally not possible in real-time on large networks [10].

One natural approach to speed-up the computation is ran-

dom sampling [12], [13], [19]–[22]. Independently from each

other, Jacob et al. [12] and Brandes and Pich [13] proposed

approximated algorithms that only consider contributions from

a subset of vertices sampled uniformly at random. Later

proposals [23], [24] can compute BC with adjustable accuracy

and confidence. More recently, dynamism has been taken into

consideration, with several algorithms able to update BC on

evolving graphs [25]–[28].

These randomized algorithms are fast, but still centralized.

Distributed algorithms for the exact computation of centrality

with sufficiently good scalability properties have been pro-

posed, based on a dynamical system approach, but only for

specific topologies (DAGs and trees) [29]–[31].

The LC metric is similar to BC, and sometimes it is

confused and mistaken for it [3]; indeed, they converge to

the same metric when there is a single minimum-weight path

between any couple of nodes. To the best of our knowledge,

this paper provides an algorithm for the exact distributed

computation of LC for the first time.

III. DEFINITIONS

Let G(V , E) be a graph where V is the set of vertices

and E is the set of edges. Our contribution is not limited to

communication networks, so we provide definitions as general

as possible. To clarify the context we use the terms ver-

tices/edges when referring to a generic graph, and nodes/links

when referring to a communication network.

Load Centrality is defined as follows [3]:

Definition 1 (Load Centrality (LC)). Consider a graph

G(V , E) and an algorithm to define the (potentially multiple)

minimum weight path(s) between any pair of vertices (s, d).
Let θs,d be a quantity of a commodity that is sent from vertex s

to vertex d. We assume the commodity is always passed to the

next hop following the minimum weight paths, and in case of

more than one next hop, traffic is divided equally among them.

We call θs,d(v) the overall commodity forwarded by vertex v.

The Load Centrality of v is given by:

LC(v) =
∑

s,d∈V
θs,d(v)

Normally it is assumed that s 6= d, s 6= v, d 6= v and in

general also θs,d = 1. The latter makes LC a property fully

defined by the graph structure and by the algorithm used to

discover minimum weight paths. In that case, if the graph is

undirected there are
N(N−1)

2 couples (s, d) and LC can be

normalized as

LC(v) =
2

N(N − 1)

∑

s,d∈V
θs,d(v)

BC is instead formally defined (see Freeman [32]) as

follows:

Definition 2 (Betweenness Centrality (BC)). We call σsd the

number of minimum weight paths between vertex s and vertex

d, and we call σsd(v) the number of those minimum weight

paths passing through vertex v. Betweenness Centrality is

defined as:

BC(v) =
2

N(N − 1)

∑

s,d∈V

σsd(v)

σsd

(1)

Again, normally it is assumed that s 6= d, s 6= v, d 6= v.

LC and BC are very similar, but they do not coincide.

Consider Fig. 1, reporting a sample network annotated with

the values of LC and BC on each node, assuming every edge

has the same weight. If the commodity moving from s to d

is split equally between two next hops that lie on two paths

with equivalent total weight, intuitively node v and w will

both carry half of it. This is what LC measures. BC, instead,

s d s d

1/21/2

1/2

1/4

1/4

1/3 1/3

1/3

1/3
2/3

v

w

v

w

Figure 1. Difference between values of normalized load (left) and between-
ness (right) centrality in the same network, taken from [3].

reflects that at the right side of node v there are more minimum

weight paths towards d than at the right side of node w. Since

BC counts the fraction of minimum weight paths, v turns out

to be more central than w.

Note that, in communication networks, if centrality is used

to estimate IP traffic relayed by a node (bit/s, number of

open TCP connections, active HTTP sessions . . .) LC may

give a more accurate estimation than BC. If the IP routing

protocol does not support some kind of multipath routing or

load balancing, one minimum weight path is used and traffic

is never split. In this case, the normalized LC coincides with

the BC, but the modern trend to use multiple paths as in SCTP

(Stream Control Transport Protocol) or Multipath TCP makes

LC an interesting metric for traffic management.

IV. DISTRIBUTED LOAD CENTRALITY COMPUTATION

In order to compute LC for each network’s vertex, we

propose a distributed algorithm that can be easily integrated

into any routing protocol that keeps a routing table up-to-

date. The algorithm, as executed by vertex v, is shown in

Algorithm 1, while Tab. I lists all information maintained by

v. Recall that having an updated routing table is in general not

sufficient to compute centrality metrics, since they mandate a

full topological knowledge, not only the next hop toward a

destination.

Algorithm 1 is based on the commodity diffusion process

described in the definition of LC (see Definition 1). Each ver-

tex generates a unitary amount of commodity for all possible

destinations; such commodity is split and aggregated along the

route to destinations.

The routing protocol keeps an up-to-date list of next hops

in vector NH , where NH [d] are the next hops to reach

destination d. Our algorithm computes the complementary

vector PH , where PH [d] are the previous hops from which

the commodity going toward d is coming. This is obtained

by periodically sending a message 〈v,NH , contrib〉 to all

neighbors of v; when these messages are received by each

next hop, PH is updated. The previous hops stored in PH [d]

Table I
VARIABLES USED BY EACH VERTEX v IN ALGORITHM 1

Symbol Description

V The set of all vertices

neighbors The set of neighbors of v

NH
For each destination d 6= v, the vector NH [d] is the set of
vertices used by v as next hops to reach d

PH
For each destination d 6= v, vector PH [d] is the set of
previous hops, i.e., vertices that list v as one of the next
hops to reach d

loadOut
For each destination d 6= v, loadOut [d] is the overall
commodity passing through v to reach d

contrib
For each destination d 6= v, contrib[d] is the contribution
that v will send to each of its next hops to reach d, equal
to loadOut [d]/|NH [d]|

loadInu
For each neighbor u and for each destination d 6= v,
loadInu[d] is the commodity’s contribution that vertex u
sends to v toward d (as reported by u to v)

load The approximation of load centrality known so far

Alg. 1: General distributed Protocol (executed by v)

1 Init:
2 foreach d ∈ V − {v} do
3 foreach u ∈ neighbors do
4 loadInu[d] = 0;

5 PH [d] = [];

6 Repeat every δ s:
7 load = 0;
8 loadOut [v] = contrib[v] = 0;
9 foreach d ∈ V − {v} do

10 loadOut [d] = 1 +
∑

u∈PH [d] loadIn
u[d];

11 contrib[d] = loadOut [d]/|NH [d]|;
12 load = load + loadOut [d];

13 send 〈v,NH , contrib〉 to neighbors ;

14 on receive 〈u,NH u, contribu〉 from u do
15 foreach d ∈ V − {v} do
16 if v ∈ NH u[d] then
17 PH [d].add(u);
18 loadInu[d] = contribu[d];
19 else
20 PH [d].delete(u);

are used to aggregate all the incoming commodity toward d

before splitting it among all next hops.

The rest of Algorithm 1 is designed to maintain information

about incoming and outgoing commodity. In particular, dictio-

nary loadOut stores the overall commodity passing through

v to reach every possible destination, while contrib stores

the commodity’s contributions that v sends to each of its

next hops. Note that having both loadOut and contrib is

redundant; loadOut is introduced only to clarify the algorithm

and simplify the proof that load converges to LC.

During initialization (line 1-5), the commodity coming from

every neighbour is set to 0, while waiting for more up-to-date

information to come. PH entries are initialized to the empty

vector as well.

Periodically, each vertex v re-computes (for every des-

tination d) its contribution to load for its next hops and

sends this contribution to all its neighbors with the message

〈v,NH , contrib〉 (line 6-13). The contribution is given by

1 (its unit contribution to the load addressed to d) plus all

contributions received so far, divided among all vertices which

are next hops for destination d (computed on line 10-12).

Whenever a message is received from vertex u, vertex v first

updates the previous hop set PH , by either adding (line 17) or

deleting (line 20) the vertex u. Then, it copies the contributions

toward every d computed by u and received in the message

〈u,NH u, contribu〉 into loadIn
u (line 18).

We show now that at steady state, under sufficiently stable

conditions, load in Algorithm 1 converges to the correct LC

for each vertex.

Theorem 1. Let G = {Gd = (V , Ed) : d ∈ V} be the

collection of all routing graphs induced by all nodes running

an underlying routing protocol:

Ed = {(i, j) : i ∈ NHj}
If G remains stable for a long enough period of time then,

for each node v, the ‘load ’ variable maintained by v will

eventually converge to the correct LC for v.

Proof. Given a node v, we prove that for each destination

d, the commodity that v forwards toward d is eventually

computed in a correct way. Since the overall commodity for-

warded by v towards any possible destinations is periodically

aggregated into variable load , this proves the theorem.

For each destination d, the routing protocol generates a

routing graph: a loop-free directed acyclic graph (DAG) made

of all the (potentially multiple) minimum weight paths ending

in d. Let S = {s = u0, u1, u2, . . . , u|V| = d} be a sequence

representing a topological sort of the DAG Gd. We prove that

each node in the sequence correctly computes the load that is

passing through v, by induction on the sequence of nodes.

In the first node u0, PH [d] is empty (because Gd is a DAG).

Thus, loadOut [d] is set to 1, which is the correct value for

the load passing through this node. This load is then divided

equally among all nodes in NH [d].
Now, consider node uk and assume all preceding nodes

in the sequence have already computed the correct value

for their variable loadOut [d]. Each node u ∈ PH [d] is

included in {u0 . . . uk−1}, thanks to the topological sort. Thus,

eventually all of them will send a message to v, updating the

corresponding entries in variable loadIn .

As soon as node v receives all the necessary information

from all nodes in PH [d], variable loadOut [d] will contain the

correct value.

A special case is given by node d, where loadOut [d] = 0.

The theorem assumes minimum weight paths are stable long

enough to allow the centrality computation to converge. In case

of dynamism, results can be temporarily different from the

correct ones, until routing paths stabilize again. At that point,

given all the needed information is periodically broadcast to

all vertices, Algorithm 1 converges again to the correct LC

values.

We can estimate the convergence time of Algorithm 1 in the

worst case scenario. We assume all clocks are synchronized

and time required to propagate data along an edge is very

small compared to δ, but not null. Therefore, vertex v always

receives updates from neighbors after it sent its own updates,

and time needed to propagate information on x hops is

always x× δs. We also assume that our algorithm starts after

the routing protocol convergence. Under this assumption, the

following corollary holds:

Corollary 1. Given a graph G with diameter D, the con-

vergence time ∆t of our algorithm is in the worst case

proportional to D − 1.

Proof. A vertex v converges when its load sums all contribu-

tions from all minimum weight paths crossing v. Consider the

load on v generated from s and directed to d for which v is in

at least one of the minimum weight paths. If v = s or v = d,

convergence is immediate, as no contribution will be received.

Let S be the graph ordering relative to Gd, and v = uk. If

k = 1 then v converges after receiving the contribution from

s, that is, after δs. Otherwise v converges when the load is

propagated from s to v, which requires k× δ intervals. In the

worst case v = uD−1 and the load of v converges in δ(D−1)s.

Generally, at v the own centrality value is useful only if

compared to other’s centrality. This is why after the complete

convergence of centrality in the network another message

could be sent (and forwarded) by each vertex carrying its own

value of centrality. In conclusion, always in the worst case

scenario and after routing table convergence, the time required

to perform centrality computation and dissemination will be

proportional approximately to 2×D.

So far we described how to compute LC with a distributed

algorithm on an arbitrary topology when an abstract routing

protocol is available, thus the convergence proof and also

the convergence time are fully general. The next section

documents the implementation of Algorithm 1 integrated with

a popular DV routing protocol, instead of applying it after the

routing has converged.

V. IMPLEMENTATION ON TOP OF DV ROUTING

A DV routing protocol (like the classical RIP, or Cisco

EIGRP, or the Babel protocol adopted in this work) uses the

Bellman-Ford algorithm to maintain a Routing Table (RT)

mapping each destination to a next hop and a distance. We

extended the RT as shown in Tab. II, in which d and m are

the typical entries of any RT , and the other data structures

associated to d are added by our algorithm1. Note that NH is

an array of next hops, therefore we support routing protocols

which implement multipath routing.

Table II
EXTENDED ROUTING TABLE

Field Notation Description

Destination d the destination identifier d

Metric m
the distance of v from d according to a
given metric

Next-hop list NH a list of next hops NH

Incoming Load loadIn
a dictionary mapping a neighbour u in
PH to its contribution c for destination
d

Load load the load centrality of d, as far as v knows

The computation of LC together with DV routing works as

described in Algorithm 2. At start-up, the RT is initialized,

we store the load for node v running the protocol in its own

1We use square brackets operator to represent access to a tuple related
to destination d, i.e., RT [d] = (m,NH , loadIn , load). We use the dotted
notation to access single fields of the tuple, as in RT [d].load. For a
dictionary, the ’()’ operator returns the list of the keys of the dictionary, i.e.,
RT() = [d0, d1 . . . dN]. The ’[]’ and ’{}’ symbols refer to the empty list
and dictionary, respectively.

RT and we set it to zero (line 1-2). Line 5-10 compute the

distance vector and send it to neighbors. The vector contains

the destination and the metric plus all available next hops

(in case there are multiple equivalent paths to destination).

It also includes the load sent by v toward the destination,

aggregated in line 7-9, and the current estimate of destination’s

load as far as v knows. Here we use the distance vector

also to propagate the supposed load of each node, including

v itself, without requiring another packet after convergence.

Note that the “send” action in line 10 is generally batched

in order to send one single message containing the whole

vector. Line 12-16 are the core of Bellman-Ford algorithm,

with multipath routing (line 15-16). Note that we assume

there is another process performing link sensing, for instance

with neighbors exchanging periodic HELLO messages. This

is fundamental in any routing protocol and keeps updated a

dictionary of neighbors with respective link costs C[·]. Line

17-20 computes the contribution of u towards d, dividing it by

the size of the next hop array, to take multipath into account.

Line 21-22 updates load of d if the value is proposed by the

neighbour chosen as next hop towards d. Finally, on line 23-

26, v computes its own value of load, which will be propagated

with the next distance vector.

Compared to Algorithm 1, in Algorithm 2 we do not wait

DV convergence to start computing centrality; instead, the

two processes run concurrently (but do not interfere, so both

converge). This, together with the removal of perfect syn-

chronization introduced in the theoretical analysis, improves

average convergence properties of the algorithm. The next

section studies the convergence time of Algorithm 2 with

simulation experiments.

VI. CONVERGENCE STUDY

We developed a Python simulator which takes as input

a network graph and implements all the send and receive

actions of Algorithm 2. The simulator uses a virtual clock

and triggers a send-event once per virtual time unit for each

node, thus δ = 1, and we can refer to convergence time simply

as multiples of δ. A small random jitter is added to events

scheduled by nodes to avoid perfect synchronization.

A simulation ends when all nodes converge to steady state,

i.e., when the RT has one line per destination and the NH

and the load fields do not change anymore. We separately

measure the time needed for full convergence of NH (TNH)

and load (Tl). Full convergence is determined by the slowest

node convergence time. Since we demonstrated that conver-

gence time should grow, in the worst case, linearly with

the network diameter D, we generated graphs with growing

D ∈ {3, 4, 5, 6, 7}. For each D, we tested two different graph

models: The classical Erdős and the Barabási-Albert model.

For both we averaged results over 40 different graphs with

1000 nodes each.

Figs. 2a and 2b report the average (with 99% confidence

intervals) of TNH and Tl simulated over Barabási-Albert and

Erdős graphs respectively. Both figures show how the growth

of convergence time is approximately linear with the diameter

Alg. 2: Integration with DV protocol (executed by v)

1 Init:
2 RT [v].m = RT [v].load = 0;
3 RT [v].NH = [];
4 RT [v].loadIn = { };

5 Repeat every δ s:
6 foreach d ∈ RT () do
7 loadOut = 1;
8 foreach u ∈ RT [d].loadIn() do
9 loadOut += RT [d].loadIn [u];

10 send 〈d,RT [d].m,RT [d].NH , loadOut ,RT [d].load〉
to neighbors ;

11 on receive 〈d,m,NH u, loadOutu, load〉 from u do

/* Bellman-Ford */
12 if d /∈ RT () OR m+ C[u] < RT [d].m then
13 RT [d].NH = [u];
14 RT [d].m = m+ C[u];
15 else if m+ C[u] == RT [d].m then
16 RT [d].NH .append(u);

/* Manage load contributes */
17 if v ∈ NH u then
18 RT [d].loadIn [u] = loadOutu/|NH u|;
19 else
20 RT [d].loadIn .remove(u);

/* Load indexes propagation */
21 if u ∈ RT [d].NH then
22 RT [d].load = load ;

/* Own load update */
23 RT [v].load = 0;
24 foreach d ∈ RT ()− {v} do
25 foreach u ∈ RT [d].loadIn() do
26 RT [v] += RT [d].loadIn[u];

/* Dictionary C[·] contains the cost of the links to neighbors */

growth, confirming the theoretical result of Sec. IV. Note

also that it takes approximately D time units to let the RT

converge, which is expected, because the distance vector must

be propagated from every node to every other node, so TNH

depends on the network diameter. Since we add some jitter,

generation of distance vectors is not synchronized, thus it may

be that node i receives an update from a neighbor j before

generating its own. In this case, in the same time unit, the

information is sent from j to i and propagated from i to its

neighbors, so it can take less than D time units for information

to travel on the longest path. This explains why in the figures

TNH is generally smaller than D.

After convergence of NH , our theoretical analysis predicts

a time of 2 × (D − 1) to achieve full load convergence,

while simulations show that it requires much less than that.

This improvement is given by the parallelization of the two

processes and can be seen in Fig. 3, which reports all values of

TNH and Tl, together with another value Tsl which indicates

the time at which each node converges to its own value of

centrality. We call this value self convergence time, as opposed

 2

 4

 6

 8

 10

 12

 14

 3 4 5 6 7

V
ir

tu
a

l
ti
m

e
 [
δ

]

Network Diameter

TNH
Tl

(a) Barabási-Albert networks.

 2

 4

 6

 8

 10

 12

 3 4 5 6 7

V
ir

tu
a

l
ti
m

e
 [
δ

]
Network Diameter

TNH
Tl

(b) Erdős networks.

Figure 2. TNH and Tl Vs network diameter, with 99% confidence interval,for
Barabási-Albert and Erdős networks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9 10 11 12 13

lo
a
d
 c

e
n
tr

a
lit

y
 (

L
C

)

Virtual Time [δ]

TNH
Tl

Tsl

Figure 3. TNH , Tl, Tsl for all the nodes, 40 simulations, Erdős graphs with
diameter 7.

to the full convergence time defined before.

Fig. 3 was computed for all the 40 Erdős graphs with

diameter 7 (networks with different parameters are not shown

as they behave similarly) and shows that at time 6, when the

last RT converges, some nodes already reach self convergence.

Similarly at time 10, when all nodes reached self convergence,

some nodes already reached full convergence. This is because

the three processes are concurrent and thus, on typical net-

works, full convergence time is smaller than in the worst case

scenario. In conclusion, note the small group of nodes which

reach self convergence in only one time unit. This is a minimal

fraction of leaf nodes produced by the Erdős generator.

VII. TUNING BABEL WITH CENTRALITY

Out of the many contexts in which our algorithm can be

exploited, we focus on advantages it can give to optimize

DV routing protocols in wireless mesh networks. Consider

for instance that routing protocols, to perform link-sensing in

wireless networks, define a timer tH used by each node to

control the generation of link-level HELLO messages. This

timer is crucial for a fast re-convergence in case of failures.

A trade-off must be found between a short timer, which

guarantees fast detection of link failures but subtracts link

capacity to data traffic, and a long timer, that is more resource-

aware but makes route convergence slow.

The authors of [6] introduce an optimization of tH based

on betweenness centrality. Initially they define the average

overhead per link (OH) when every node is configured with

the same tH. Then they compute the average estimated loss

due to a node failure for the same case (LH), and they show

that keeping OH constant, the average loss can be reduced if

tH is configured per-node as follows:

tH(i) =

√
di√
bi
tH

∑N

j=1

√

bjdj
∑N

j=1 dj
∝

√
di√
bi

(2)

Where bi and di are the betweenness and degree of node

i. In practice, if a node knows di and bi for all nodes, it can

auto-tune its tH(i) to achieve a convergence time distribution

that minimizes the average network disruption after a node

failure, keeping a constant signalling overhead in the network.

The authors apply this technique to the OLSR protocol but,

in principle, it can be applied to any link-state protocol where

every node is aware of the whole topology. Conversely it

cannot be applied to DV routing protocols because, in this

latter case, nodes have a limited topological knowledge and

cannot compute Eq. (2). Algorithm 2 does not mandate nodes

to know the entire topology and it is fully distributed, therefore

implementation on a DV routing protocol is straightforward

and we effectively integrated it with the Babel protocol [15],

a well known DV routing protocol2.

We implemented the distributed centrality computation al-

gorithm in babeld, the open source implementation of Babel,

in order to verify that centrality can be correctly computed.

The evaluation strategy and performance metrics are those

proposed by the authors of [6]; here we just briefly review

them while a detailed description is provided in the original

paper. We run our code in an emulated network using the

Mininet platform, at time tf we trigger the failure of node

k, and we let all routing tables stabilize again; we repeat this

procedure for a subset of Nf ≤ N nodes. Note that generally

Nf < N because some nodes are irrelevant (their centrality

is zero) or they badly partition the graph so that it is not

possible to route around the failed node. During experiments

we dump the routing tables RT
j
i [d] = nh every 0.5s: a dump

contains the matching between a destination d and the next

hop nh for node i at time tj (only one path is used in Babel).

When the emulation is over, we group the dumped routing

tables according to timestamps, next we recursively navigate

each group to take a snapshot of all shortest paths from every

source s to any destination d. Then, we call Lj the number

of broken shortest paths that, for tj > tf , are incomplete or

still pass through node k. We call Lbabel(k) =
∑

j Lj the total

loss value when the emulation runs with the original babeld

and Lcent(k) the same value but computed using the optimized

2Eq. (2) uses betweenness centrality, while our approach computes load

centrality. However, in a mesh network links are weighted by their quality
(with any metric the protocol supports) which makes it hard to have multiple
paths with the same exact weights, therefore, in real world mesh networks load
centrality converges to betweenness centrality. This said, we do not attempt
any comparison with [6], if not for else because comparing a DV and a link-
state protocol goes well beyond comparing centrality metrics.

timers. Finally we compare the two approaches computing the

relative loss value averaged over all possible failures as:

L = 1−
∑Nf

k=0 Lcent(k)
∑Nf

k=0 Lbabel(k)
(3)

If L > 0, then the tuned version of babeld, averaged

over Nf failures, produces less losses compared to the non-

modified version, always keeping the same overhead due to

control messages. We test the protocol on several topologies

extracted from real world networks. Two of them are the

same ones used and published by authors of [6], and are

topologies of two large scale wireless mesh networks. We were

able to collect two more real networks topologies analyzing

information provided by the FreiFunk German community

network (CN). FreiFunk is an umbrella name that gathers

together hundreds of wireless CNs in Germany: some of them

are made of few nodes, some other are made of hundreds,

anyway all of them are mesh networks used to offer Wi-

Fi connectivity. Information on these network topologies is

freely available (with some effort to understand the format)

from the community website3. We use two topologies that are

heterogeneous networks, with a mix of wireless and wired

links inside a single routing domain. Finally, we also use two

others extracted from the well known Topology Zoo [33]; these

are 4 wired topologies of similar size that we use to extend

our analysis.

Before presenting results, it is worth to discuss some modi-

fications to Algorithm 2 that we had to implement in babeld

and are in general required for any real DV protocol.

a) Nodes Vs Routers: The common approach of the

literature focused on centrality is to treat nodes as sources,

targets and forwarders of traffic. In real networks, sources and

targets are IP addresses and routers have several interfaces with

distinct IP addresses. In our case, we were able to aggregate

all route-updates coming from the same node based on the

“router-id” field defined by Babel to uniquely identify a router.

This field is included in all packets generated by a router and

is propagated by all others, therefore we can aggregate the

centrality contributions pertaining to different interfaces of the

same router and do a mapping between IP addresses and graph

nodes.

b) Load Estimation: In our implementation, every router

generates a unit of traffic θs,d = 1, but in real networks

this value can be arbitrarily tuned. It can be proportional to

the dimension of attached subnets (assuming more IPs will

generate more traffic) or it can be replaced with an estimation

of the real outgoing traffic measured locally. This way load

centrality would effectively represent the expected load on the

node.

c) Protocol-specific Heuristics: In our tests we used

networks that have more than one shortest path with the same

weight connecting the same endpoints (s, d). The version of

Babel that we used does not support multipath routing: in

3See https://api.freifunk.net/, and the visualizer https://www.freifunk-karte.
de/.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140

lo
a

d
 c

e
n

tr
a

lit
y
 (

L
C

)

Nodes sorted by loadof�line

LCo��line
LC�a�el

Figure 4. Comparison of LC computed on-line with babeld and off-line
with networkx on the same topology computed by Babel

these cases Babel performs a tie-break to select one path over

another. We also noticed that babeld sometimes selects paths

that are not minimum weight. This is probably due to an

implemented heuristic that prevents to change from one path to

another if their weight is similar, just to avoid route flapping.

Our algorithm follows choices taken by babeld, which is the

correct behavior on-line even if the computed LC minimally

diverges from the theoretical one. Sec. VII-A further details

and explains this issue.

Finally, note that if anybody wants to use Eq. (2), the

propagated distance vector should also contain the degree

of node i. If we drop this requirement, then we can set

tH(i) =
√
ti√
bi
K for some constant K . This will still optimize

the timers and keep a constant level of global overhead, but it

will not produce exactly the same overhead OH of the default

configuration. In return, it greatly simplifies the protocol as

long as every node can take decisions based only on its own

centrality. For our purpose we used the correct value of OH ,

generated with tH = 1s.

A. Experimental Results

Babel is an event-driven protocol, where messages are

sent in reaction to detected changes and expiration of local

timers. This, together with the heuristics mentioned in the

previous section, introduces slight differences in the centrality

computation compared to the ideal protocol studied in Sec. VI.

Fig. 4 presents a validation of our implementation in babeld

and reports a comparison between empirical and theoretical

LC values computed for all nodes in a network. On one hand,

LC has been computed on-line using the modified babeld

and, on the other hand, running Python networkx libraries off-

line on the same topology built by babeld and saved in JSON

format. The network we use is ninux, and babeld runs in an

emulated network with the same topology and characteristics

of ninux4. First of all we verified that the sum of all LC values

is identical in both cases, which means that Babel never uses

a minimum weight path that is longer (in terms of hops) than

4ninux, as all the other networks we mention, are production networks,
thus running experiments like these in the real network is not conceivable
even having access to the network itself. Instead, as mentioned already, we
use Mininet to emulate the network and run a real instance of the software
developed in the virtual nodes/routers in Mininet.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70

#
�
��
�
	

�
�

�
�
��
j)

Time [sec]

cent
�����

Figure 5. Comparison of the network loss in ninux topology after the failure
of one of the most central nodes

the shortest one computed by networkx. Next, we noticed that

nodes’ rankings are not exactly the same, but very similar.

Fig. 5 reports the number of broken paths vs. time after

one of the most central nodes of the ninux topology has failed

around time t = 5 s. A path is said to be broken if it contains

a node with an invalid next-hop. Babel with centrality reacts

slightly faster, but above all recovers more routes in less time

compared to standard Babel. Thus we achieve a resilience gain

without adding (almost) any cost, as long as the complexity of

LC computation is minimal: in fact, the signalling overhead in

terms of number of messages is constant, while only messages’

dimension increases marginally.

To get exhaustive results, we run the modified version of

babeld in a total of 8 emulated networks representing real

topologies. Fig. 6 and Tab. III report the results summary.

Fig. 6 compares Lbabel(k) and Lcent(k) where nodes k =
1, 2, . . . , 15 are the 15 most central ones for each topology.

The chosen networks are ninux (Fig. 6a), Graz (Fig. 6b), and

Ion (Fig. 6c), because they well represent different classes

of networks; however results would not change significantly

selecting other networks. As we can see, in general Lcent

is smaller than Lbabel, but sometimes the fine-tuned timers’

frequency does not provide any gain, or even leads to a small

loss. However, a close look to Tab. III which reports the mean

loss reduction for all the 8 considered networks, reveals that

averaging over all possible failures we obtain a global gain,

ranging from 3% up to 13% depending on the topology; still

it is always a clear advantage in favour of tuning timers based

on centrality.

In general, wireless and heterogeneous networks achieve

larger gains compared to wired and uniform networks due

to structural properties of the network graphs. In fact, the

optimization level that can be achieved exploiting centrality

strongly depends on the array of values of bi and di and on

the availability of alternative paths to route around a failure.

Consider the extreme case of a ring network, or in general

an n-regular network over a torus: in such networks all nodes

have same degree and centrality and Eq. (2) returns the same

value for all timers. In these cases no optimization is possible.

0

50 k

100 k

150 k

200 k

250 k

T
o
ta

l
L
o
s
s

Failed node sorted �y LC

Lcent
L�a�el

(a) Ninux.

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k

400 k

T
o
ta

l
L
o
s
s

�ailed node sorted �y LC

Lcent
L�a�el

(b) Graz.

250 k

300 k

350 k

400 k

450 k

500 k

550 k

600 k

650 k
T
o
ta

l
L
o
s
s

�ailed node sorted �y LC

Lcent
L a!el

(c) Ion.

Figure 6. Comparison of the loss induced by the failure of the 15 more
central nodes in ninux (a) Graz (b) and Ion (c) when standard Babel is used
(Lbabel) or the modified version is used (Lcent)

VIII. CONCLUSIONS

After decades of research on network protocols, there is no

accepted way to tune protocol parameters according to position

(and thus importance) of nodes in the network. Centrality is

a key instrument to address this issue, make nodes network-

aware and differentiate their behavior to achieve better scala-

Table III
LOSS REDUCTIONS IN REAL NETWORKS

Network |V | |E | Nf Loss Reduction Type

Interoute 110 148 63 8.37% Wired
Ion 125 146 58 3.10% Wired
GtsCe 149 193 98 6.05% Wired
TataNld 145 186 68 7.34% Wired
Ninux 126 147 17 10.65% Wireless
FFGraz 141 200 19 13.11% Wireless
Auerbach 123 223 70 11.29% Heterogeneous
Adorf 123 225 65 13.27% Heterogeneous

bility.

Betweenness Centrality (BC) has been used to approach

several problems related to networks but so far, research

focused on BC to improve protocols was hampered by the lack

of a usable, fully distributed algorithm for BC computation.

In fact, among existent algorithms there are those requiring a

full topological knowledge, those that are distributed but only

approximated and those which are exact and distributed but

applicable only on special topologies (like DAGs or trees). We

considered Load Centrality (LC), a metric coinciding with BC

in the most common case (lack of multi-path routing), which

however in general better embodies the idea of network load.

This paper presents, to the best of our knowledge, the first

algorithm for the exact computation in bounded time of LC

in a generic graph. We show that if there is a routing protocol

already in place, it can exploit the existent information to com-

pute centrality in a distributed way, otherwise it can be directly

integrated with minimal modification into a distance-vector

(DV) routing protocol. We demonstrated its convergence, the

worst case convergence time, and we confirmed theoretical re-

sults with computer simulations. Finally, we provided a direct

use-case implementing the distributed algorithm in Babel, a

widely used standard DV protocol, showing it can tangibly

improve the convergence time in case of nodes’ failure for all

tested topologies, taken from real networks.

We believe there are many more applications that can benefit

from our approach and we can propose improvements as well.

Among our future works, we will consider how to integrate

the same technique in different routing schemes, such as the

so called “source-routed”, used by several protocols for mesh

networks, or in the widely known “path vector”, used by

Border Gateway Protocol (BGP).

REFERENCES

[1] D. Katsaros, N. Dimokas, and L. Tassiulas, “Social Network Analysis
Concepts in the Design of Wireless Ad Hoc Network Protocols,” IEEE
Network, vol. 24, no. 6, pp. 23–29, Nov. 2010.

[2] M. Kas, S. Appala, C. Wang, K. M. Carley, L. R. Carley, and O. K.
Tonguz, “What if Wireless Routers were Social?” IEEE Wireless Com-

munications, vol. 19, no. 6, pp. 36–43, Dec. 2012.
[3] U. Brandes, “On Variants of Shortest-Path Betweenness Centrality and

their Generic Computation,” Social Networks, vol. 30, no. 2, pp. 136–
145, May 2008.

[4] P. Pantazopoulos, M. Karaliopoulos, and I. Stavrakakis, “Distributed
Placement of Autonomic Internet Services,” IEEE Trans. Parallel Dis-

trib. Syst, vol. 25, no. 7, pp. 1702–1712, Jul. 2014.
[5] S. Dolev, Y. Elovici, and R. Puzis, “Routing Betweenness Centrality,”

J. of the ACM (JACM), vol. 57, no. 4, pp. 25:1–25:27, Apr. 2010.
[6] L. Maccari and R. Lo Cigno, “Pop-Routing: Centrality-Based Tuning

of Control Messages for Faster Route Convergence,” in IEEE Conf. on

Computer Communications (INFOCOM), Apr. 2016, pp. 1–9.
[7] A. Vázquez-Rodas and L. J. de la Cruz Llopis, “A centrality-based topol-

ogy control protocol for wireless mesh networks,” Ad Hoc Networks, vol.
24.B, pp. 34–54, Jan. 2015.

[8] L. Baldesi, L. Maccari, and R. Lo Cigno, “On the Use of Eigenvector
Centrality for Cooperative Streaming,” IEEE Communications Letters,
vol. 21, no. 9, pp. 1953–1956, 2017.

[9] P. Zilberman, R. Puzis, and Y. Elovici, “On network footprint of traffic
inspection and filtering at global scrubbing centers,” IEEE Trans. on

Dependable and Secure Comput., vol. PP, pp. 1–16, Oct. 2015.
[10] L. Maccari, Q. Nguyen, and R. Lo Cigno, “On the Computation of

Centrality Metrics for Network Security in Mesh Networks,” in IEEE
Global Communications Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[11] L. Maccari and R. Lo Cigno, “Betweenness estimation in OLSR-based
multi-hop networks for distributed filtering,” Jou. of Computer and
System Sciences, vol. 80, no. 3, pp. 670–685, May 2014.

[12] R. Jacob, D. Koschützki, K. A. Lehmann, L. Peeters, and D. Tenfelde-
Podehl, “Algorithms for Centrality Indices,” in LNCS Vol. 3418: Network

Analysis, U. Brandes and T. Erlebach, Eds. Springer, 2005.
[13] U. Brandes and C. Pich, “Centrality Estimation in Large Networks,” Int.

J. of Bifurcation and Chaos, vol. 17, no. 7, pp. 2303–2318, Jul. 2007.
[14] K. I. Goh, B. Kahng, and D. Kim, “Universal Behavior of Load

Distribution in Scale-free Networks,” Physical Review Letters, vol. 87,
no. 27, pp. 1–4, Dec. 2001.

[15] J. Chroboczek, “The Babel Routing Protocol,” RFC 6126, Apr. 2011.
[Online]. Available: https://rfc-editor.org/rfc/rfc6126.txt

[16] R. Puzis, M. Tubi, Y. Elovici, C. Glezer, and S. Dolev, “A Decision
Support System for Placement of Intrusion Detection and Prevention
Devices in Large-Scale Networks,” ACM Trans. Modeling Computer
Simulation (TOMACS), vol. 22, no. 5, pp. 1–26, Dec. 2011.

[17] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” J. of

Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.
[18] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes, “Heuristics

for Speeding Up Betweenness Centrality Computation,” in ASE/IEEE

Int. Conf. on Social Computing and Int. Conf. on Privacy, Security,

Risk and Trust, Sep. 2012, pp. 302–311.
[19] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating

Betweenness Centrality,” in 5th Int. Conf. on Algorithms and Models

for the Web-Graph (WAW’07), Dec. 2007, pp. 124–137.
[20] R. Geisberger, P. Sanders, and D. Schultes, “Better Approximation

of Betweenness Centrality,” in Meeting on Algorithm Engineering &

Expermiments, Jan. 2008, pp. 90–100.
[21] Y. Lim, D. S. Menasché, B. Ribeiro, D. Towsley, and P. Basu, “Online

Estimating the k Central Nodes of a Network,” in Network Science
Workshop (NSW). IEEE, Jun. 2011, pp. 118–122.

[22] A. Maiya and T. Y. Berger-Wolf, “Online Sampling of High Centrality
Individuals in Social Networks,” in Pacific-Asia Conf. on Knowledge
Discovery and Data Mining, Jun. 2010, pp. 91–98.

[23] M. Riondato and E. M. Kornaropoulos, “Fast Approximation of Be-
tweenness Centrality through Sampling,” Data Mining and Knowledge

Discovery, vol. 30, no. 2, pp. 438–475, Mar. 2016.
[24] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres, “Fast Exact Com-

putation of Betweenness Centrality in Social Networks,” in IEEE Int.

Conf. on Advances in Social Networks Analysis and Mining (ASONAM),
Aug. 2012, pp. 450–456.

[25] E. Bergamini and H. Meyerhenke, “Fully-dynamic Approximation of
Betweenness Centrality,” in LNCS 9294: Algorithms – ESA 2015,
N. Bansal and I. Finocchi, Eds. Springer, 2015, pp. 155–166.

[26] E. Bergamini, H. Meyerhenke, and C. L. Staudt, “Approximating
Betweenness Centrality in Large Evolving Networks,” in 17th SIAM

Workshop on Algorithm Engineering and Experiments (ALENEX), Jan.
2014, pp. 133–146.

[27] N. Kourtellis, G. De Francisci Morales, and F. Bonchi, “Scalable Online
Betweenness Centrality in Evolving Graphs,” IEEE Trans. on Knowledge

and Data Engineering, vol. 27, no. 9, pp. 2494–2506, Apr. 2015.
[28] Y. Yoshida, “Almost Linear-Time Algorithms for Adaptive Betweenness

Centrality using Hypergraph Sketches,” in 20th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, Aug. 2014, pp. 1416–1425.
[29] K. You, R. Tempo, and L. Qiu, “Distributed Algorithms for Computation

of Centrality Measures in Complex Networks,” IEEE Trans. Autom.

Control, vol. 62, no. 5, pp. 2080–2094, May 2017.
[30] W. Wang and C. Y. Tang, “Distributed Computation of Node and Edge

Betweenness on Tree Graphs,” in 52nd IEEE Conf. on Decision and

Control, Dec. 2013, pp. 43–48.
[31] ——, “Distributed Computation of Classic and Exponential Closeness

on Tree Graphs,” in American Control Conf. (ACC), Jun. 2014, pp.
2090–2095.

[32] L. C. Freeman, “A Set of Measures of Centrality Based on Between-
ness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[33] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE Jou. on Selected Areas in Communications

(JSAC), vol. 29, no. 9, pp. 1765 –1775, Oct. 2011.

