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Abstract—A Community Network is a bottom-up network
created by a community of people with the goal of gaining
control of their communications and overcoming digital divide.
Community Networks are blooming, they range from small
ones (tens of nodes) to gigantic ones (tens of thousands of
nodes). They are made primarily of wireless links but in some
cases they mix wired and wireless technologies. Community
Networks are generally unplanned and non-layered, and the
community tries to mirror the same approach in its governance,
avoiding unnecessary management structures and relying on self-
organization and spontaneous interactions. Community Networks
are Peer Production platforms, a community of people that
pools resources and contributes to build a shared value. While
this value is generally immaterial (as in WikiPedia) Community
Networks instead realize a distributed, peer-to-peer physical
communication network.

This paper analyses ninux.org, the largest community network
in Italy, and one of the eldest in Europe. The goal of the paper is
to understand if the spontaneous growth of the network and
the community leads to a technically robust network and a
socially robust community, or it hides the presence of (potentially
interdependent) points of failure. We will show that, in spite of
the original motivations of the ninux community, the network is
fragile under several aspects, and we suggest ways to improve it.

Index Terms—community networks, centrality, social network,
robustness, network hierarchy

I. INTRODUCTION

Community Networks (CNs) are distributed mesh networks
realized using a grassroots approach with two goals: i) building
completely decentralized, bottom-up, open networks, with an
alternative model compared to commercial Internet Service
Providers (ISPs); ii) connecting otherwise unconnected re-
gions. CNs are not only a low-cost alternative to last mile
connections, they support a different vision of connectivity that
is not-for-profit, participatory, Peer-to-Peer (P2P), and neutral.
People in CNs oppose a model in which e few Internet Service
Providers (ISPs) limit the user freedom in a way or another.
They perceive the need of a distributed network infrastructure
as the first step to build an ecosystem of P2P applications
that can locally replace (or at least complement) the current
mainstream, centralized, cloud-based web applications. CNs
rely on decentralization and redundancy to achieve this goal,
as in the original spirit of the Internet [1]. CNs try to apply the
same decentralized, non-hierarchical infrastructure also to the
governance of the network, which tends to be horizontal and
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peer-to-peer. In this sense, CNs are unique techno-social Peer
Production platforms with the goal of building an open, de-
centralized, participatory communication infrastructure. CNs
are blooming, networks made of hundreds or even thousands
of nodes daily used by thousands of people have been doc-
umented [2]. Given the state of the current market-driven
Internet model, which introduces failures (approximately 50%
of the world population was still disconnected in 2017 [3])
and power asymmetries [4], CNs appear as the building block
of a new Internet model based on participation and bottom-
up initiatives. For this reason they are gaining attention from
different disciplines: the “subversive” potential of CNs is
studied by social scientists [5] [6] [7], their peculiar features
are interesting for networking researchers [8], [9] and they
become the playground for distributed applications, such as
P2P live streaming [10] and self-hosted community cloud
services [11], [12].

Nevertheless, even systems that have been initially thought
to be decentralized and resilient can degenerate in hierar-
chical and fragile structures. The goal of this paper is to
perform a multi-layer analysis of one of these networks in
order to understand if both the communication and the social
networks are effectively distributed and robust. The research
question we answer is: are the network and the community
effectively decentralized and resilient, or their spontaneous
growth produces hidden points of failure? This question is of
fundamental importance for a CN; if it grows spontaneously
with a robust infrastructure and a balanced participation of
people in the project, its growth is sustainable. If instead
the CN grows hiding some embedded paths of centralization
and single points of failure, it may not survive the failure of
one of its components, or the withdrawal of one of its key
members. In practice, its bottom-up organization can not offer
a level of reliability comparable to the top-down approach of
a commercial Internet Provider, thus, it fails to reach its goals.

This paper studies ninux, the largest Italian CN. It applies
the appropriate metrics to analyse the physical network and
the logical communication network. It infers the social ties
among the participants from the analysis of the discussion
mailing lists and verifies its level of decentralization. It also
introduces an algorithm to re-assign the ownership of some
network nodes in order to rebalance the control among key
participants of the community.

To the best of our knowledge this is the first paper that
offers a deep analysis of a CN (or a communication network,
in general) including three fundamental layers: its spatial
distribution, its communication network, its social network.
The three layers with their cross-implications influence the
future sustainability of the CN.
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The rest of the paper is organized as follows: Section II
introduces CNs, Section III delineates the motivation of this
paper, Sections IV to VI singularly analyse the layers of a CN,
Section VII does a cross-layer analysis, Section VIII comments
on the findings of the previous sections, Section IX introduces
the node re-assigning algorithm, Section X reports on the state
of the art and Section XI draws conclusions.

II. INTRODUCTION TO COMMUNITY NETWORKS

A CN is a communication network set-up by a community
of people with a bottom-up, participatory approach. It is
generally a wireless mesh network [13], extended when needed
with wired connections. Wireless links are the building blocks
of most of the CNs. The participants install devices on their
roofs to create links that in turn create a multi-hop wireless
mesh network. Today, with a budget of less than 150$, a
wireless link with a capacity up to 400Mb/s (using the IEEE
802.11ac standard) can be realized on a distance up to tens of
miles (with line of sight). With this low-cost technology such
networks grow to tens, hundreds of even thousands of nodes
that cover entire cities with a minimal fraction of the cost of
the wired equivalent [2]. Each network node generates traffic,
receives traffic and also routes traffic, similarly to an Internet
router. Some CNs are closed networks with internal services,
some are connected to the Internet. In the latter case, they
replace the last-mile connection that is typically offered by a
commercial ISP. There are large examples of both systems,
like the AWMN network of Athens1, that is mostly focused
on internal services, or the FreiFunk network in Germany,
that instead is primarily an access network2. Guifi.net is by
far the largest network3 documented in the literature [14].
While the technical concepts behind CNs are not new [15]
their development in the last period was remarkable. Today,
CNs represent an extremely interesting and timely research
topic with many communities rapidly growing [2], [16].

From their technical organization derives also a very in-
teresting social aspect: since the technical layer allows the
construction of a decentralized network, communities try to
keep also the network governance decentralized and cooper-
ative. In CNs, each network node corresponds to a person,
a family, an association or a small business and there is no
single owner or the network. CNs use a participatory approach
which is a key to reduce costs because nodes are installed
on private spaces and people collectively contribute to install
and maintain them. The network grows “organically” when
the underlying community grows and does not require signif-
icant capital expenditure to bootstrap. In this sense, CNs are
Peer Production platforms, i.e. Internet-enabled peer-to-peer
organization platforms that allow communities to create social
good, like Wikipedia or the many Free Software communities
[17]. Community networks extend this concept to the material
world, they borrow the principles of Peer Production and apply
them to the construction of a communication network.

1see http://awmn.net.
2see http://freifunk.net
3Guifi is a mixed wireless/wired network that counts tens of thousands of

nodes in eastern Spain, see http://guifi.net

Attribute Value

# nodes 114
# edges 128
average degree 2.246
diameter 13
average path length 6.014
modularity 0.79
density 0.02
average clustering coefficient 0.067

Table I: Main attributes of the ninux communication network,
Jan. 2014.

Note that the fact that both the network and the governance
are distributed is not by chance. Being distributed alleviates
the community from the burden of managing a hierarchical
technical and social structure. People in a CN focus on the
most important part of the work, setting-up new links, instead
of getting carried away by statues, internal rules and time-
consuming discussions. As this paper shows, the will to be
“distributed” does not guarantee a distributed outcome.

Note that there are CNs that use wired technologies and
have a large success in fighting digital divide. Yet in that case,
their evolution model and motivation is different from the one
we consider in this paper.

A. The Ninux Community Network

As other community networks ninux has strong political
motivations: the construction of an independent, robust, de-
centralized network infrastructure [18] [19]. ninux participants
have a critical opinion of ISPs and service providers motivated
by the recent discussions about neutrality, privacy and forced
disconnections. They identify the root cause of these problems
in the centralization (both in the technical and governance
sense) of the networks and of the services, and for this reason
they build their own decentralized network. The ninux com-
munity did not create a formal association, it does not assign
formal roles or responsibilities to people. The discussions in
the community are primarily carried on in the mailing lists
and in weekly face-to-face meetings, and decisions are taken
with a consensus-based method. In this sense, ninux is a
full do-ocracy [20] that was able to build a network made
of hundreds of nodes along the whole Italian peninsula but
especially concentrated in Rome [21].

Table I reports the main characteristics of the ninux network
in Rome, and Fig. 1 reports a snapshot of the topology of the
network. Throughout the paper we refer to ninux as only the
nodes of the network concentrated in Rome.

III. MOTIVATIONS OF THE PAPER

A strictly hierarchical organization has a few critical ele-
ments, if these elements fail, the consequences can be catas-
trophic. For this reason, when planning such an organization
some redundancy must be included. This is true for com-
munication networks that must be designed to avoid single
points of failure and provide alternative routes, but also for
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Figure 1: A snapshot of the topology of the ninux CN in Jan
2014.

governance structures, which generally include several bodies
that counterbalance each other and offer redundancy (a CEO,
a Board of Governors, Vice-Presidents. . . ). When instead an
organization evolves with an horizontal “spontaneous” pattern
there is no “by design” hierarchy, and thus, people involved
develop a naive belief that the network will grow without
single points of failure. The objective of this paper is to study
if the mix of social and technical approach that generates a
CN effectively produces a distributed and resilient network, or
it hides embedded patterns of centralization that make the CN
fragile.

Intuitively, the more a CN is hierarchical (but people do
not realize it) the less it will be resilient to technical failures,
or to the departure of a small number of key individuals. To
make this intuition concretely measurable we need to analyse
the three layers that compose the CN (physical network,
communication network and social network) and apply the
correct metrics to understand how robust they are. The rest
of this paper analyses ninux in order to answer the following
questions:

1) Is the physical network topology strongly hierarchical?
2) Is the control on the communication network distributed

fairly among the node owners?
3) Is the social network inferred by the analysis of the

project mailing list fragile, i.e. a few people play a
dominant role in the exchange of information?

Furthermore, a joint analysis of the various layers can be made
to answer another question:

4) Are the single points of failure in the various layers

related? (i.e. are node owners that control critical portions
of the network also dominant in the social network?).

Sections IV to VII analyse each of these questions respectively.
Each section first defines the relevant graph-theoretic metrics,
then applies them to the specific case of ninux. In Section IV
we also compare the results with another network for which we
have the exact position of nodes. ninux is the only network for
which we can access data to perform the analysis of the other
layers. Finally Sections VIII and IX show that the network
presents correlated points of failure, and propose an heuristic
algorithm to redistribute node ownership.

The inspiration for this work comes mainly from two
research areas. The first is the study of scale-free networks,
that showed that many networks critically rely on a minimal
number of densely connected hubs. In practice, even if there
is no intentional design, different networks build an internal
hierarchy and produce the well-known “robust-but-fragile”
effect [22]. The second source of inspiration comes from
social science. History is full of cases in which people in a
community join forces to produce some common good with
a democratic approach but their outcome is far from being
democratic. Sociologist Robert Michels, at the beginning of
the 20th century called this the “Iron Law”: the tendency of
horizontal and democratic communities to degenerate into oli-
garchies. Recently, Shaw and Mako Hill showed that the same
pattern emerges on some well-known on-line Peer Production
platforms in which a few individuals govern large communities
and concentrate power, contradicting their original spirit [23].

A. The data-set

Three sources of information were used for this paper, here
a brief introduction is given, while Appendix A contains more
details, pointer to the data-sets and source code. All the data
refer to the period 2013-2016, when the data-collection was
carried on.

The first source is the database of the nodes maintained by
the community and used to visualize the network topology4.
The database contains the nodes (active or not), their position,
the owner of the node with an e-mail address, and the active
links. While the DB contains all the nodes that have ever
been activated, it does not maintain a history of the links,
it just shows the links available at the time the map is
accessed. As the topology changes, and we wanted to obtain
the snapshot with the largest size, we matched this information
with an archive of dumps of the topology obtained by one of
the network users. Each timestamped dump reports the link
between active nodes in the period Mar. 2011 - Feb. 2016.
From this set of dumps we obtained all the links that were
activated in this period of time and derived the snapshot of the
largest possible physical network. We call this graph G and we
used it to perform the spatial analysis in Section IV. Table I
and Figure 1 refer to G. A similar database was accessed to
analyse the FunkFeuer network, which is another network used
as a comparison in Section IV.

The second source is the topology as exported by the OLSR
(Optimized Link-State Routing) routing protocol, a link-state

4See http://map.ninux.org
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routing protocol that makes it possible for each node to be
aware of the whole weighted network graph. We collected this
information from running nodes and derived the routing graph
(each node corresponds to an IP address of a router), which
we refer to as R(V,E), and we used it in Section V. Note
that R(V,E) differs from G in two aspects. First, R(V,E)
is larger than G, as some nodes in R(V,E) are actually a
collection of co-located devices and were merged into one
single node in G. Second, edges in R(V,E) are weighted
using the quality metric used by the routing protocol, so that
we can apply Dijkstra’s algorithm exactly as the protocol does
in real life. Please refer to [24] for more details on how the
routing topology was derived.

Finally, the third source is the archive of the mailing lists
of the ninux community of Rome that was monitored in the
period Jan. 1st 2013 - Mar. 31st 2014. In that period a total of
5139 emails have been sent among which 4351 were answers
to previous emails. Aggregating multiple email addresses to
unique users is a tricky task that has been carried on with
the techniques described in [25] for both node owners in the
database and mailing list users. After aggregation, 85 distinct
node owners were identified in the database, and 106 distinct
senders in the mailing list. A first interesting observation is that
only 44 out of the 85 owners participated to the mailing list
in the observed period. Direct interaction with the community
was necessary to supervise the email address aggregation and
in general to give a qualitative interpretation of the quantitative
results extracted from this data-set in Section VI.

IV. IS NINUX A HIERARCHICAL SPATIAL NETWORK?
Before we analyse ninux, we have to introduce the notion

of spatial networks, and the “separation metric” that is used in
the literature to assess their degree of centralization/hierarchy.

A. Separation in Spatial Networks
A spatial network is a graph G(V,E) made of a set V of

nodes and a set E of edges in which every node has a “posi-
tion” attribute. Spatial networks are used to represent physical
systems, such as road networks or power-line distribution
networks [26]. Their growth can be modelled using a Cost-
Benefit Analysis (CBA) framework which seeks a balance
between two competing effects [27]. The first is the classical
”rich gets richer” effect, in which the probability that a new
node vi is connected to an existent node vj increases with the
number of neighbors that vj already has (as in the Preferential
Attachment model [28]). The second effect is given by a
technological constraint: the cost of a physical edge increases
with its length, so the probability of adding an edge between
vi and vj decreases with the length of the edges between vi
and vj . It has been shown that when the second effect has
a non-negligible influence, spatial networks tend to become
hierarchical networks [27]. Intuitively, a graph G on which we
define a notion of distance between two nodes is hierarchical
if three things happen:

1) A “root” node can be somehow identified
2) If vi to vj are at the same distance from the root, to go

from vi and vj the shortest path climbs up towards the
root and then descends again.

3) If we assign to each node an area of pertinence (in the
physical space) and we navigate on a path that goes from
the root towards the fringes of the network, the area
assigned to a node is always included in the area of the
previous node in the path.

In order to quantify this intuition, we introduce the “separa-
tion” metric, which is used in the literature to expresses how
much a network can be considered hierarchical [27] (please see
Appendix B for details on how we customized the metric to
fit our case). First, we need to define a root node. In a network
graph with loops, centrality metrics are generally used to rank
the importance of a node. We tested several centrality metrics
to define the root node, and we finally chose the node with the
highest eccentricity. Then we call l(vi) the distance (in terms
of hops on the shortest path) of vi from the root node. Given
N(i), the neighbor set of vi, we define a subset N ′(i) ⊂ N(i)
as:

N ′(i) = {vj | vj ∈ N(i) ∧ l(vj) > l(vi)}. (1)

Given N ′(i), an “influence zone” is defined, that is a
geographical area that contains N ′(i). The definition of the
influence zone is context-dependent, we use the convex hull
of all the nodes in the subset (again, see Appendix B for more
details). Given a level l and a node vi | l(vi) = l we call Iil
the influence zone of vi, and we call Il = ∪iIil . A spatial
network is said to be geographically separated if both these
conditions hold:

Iil ∩ I
j
l = ∅ ∀ l, i 6= j (2)
Il+1 ⊂ Il ∀ l (3)

A network that is fully separated is strongly hierarchical:
Eq. (2) says that nodes at the same level can not communicate
without first ascending and then descending again in the
network tree. In such a network the nodes that are close
to the root node are more important than the others, and
their failure will dramatically impact the rest of the network.
Equation (3) says that the influence of every node is included
in the influence of its parent, in practice, the network does not
grow if the root node does not enlarge its influence zone (and
the same stands in cascade for the other levels).

Real networks are never completely separated, so a metric
to measure their degree of separation is needed. The separation
of two zones in the same level is defined as:

sl(i, j) = 1−
Area(Iil ∩ I

j
l )

min(Area(Iil ),Area(Ijl ))
(4)

We call sl the intra-level separation index for level l, given
by the average of the separation between every couple of zones
in the same level. Let Vl be the subset of V containing all the
nodes at level l, then:

sl =
2
∑||Vl||

i=0

∑||Vl||
j=i+1 sl(i, j)

||Vl||(||Vl|| − 1)
(5)

Where |Vl|(|Vl|−1)
2 is the number of all the possible couples

(vi, vj) of nodes in Vl and || · || is the size of a set. If sl is
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close to 1, then the zones inside level l are almost perfectly
separated, if it approaches 0, there is overlapping between
zones.

We also define a metric to measure inter-level separation:

ŝl = 100 ∗ Area(∪i=l
i=0Ii)

Area(∪i=lmax
i=0 Ii)

(6)

Where lmax is the number of levels in the network. The
progression of the values of ŝl tells if the levels of the network
are progressively covering larger portions of the territory or the
levels are organized like Russian dolls.

The reason why we are interested in spatial separation is that
the literature shows that in spatial networks modelled with a
CBA the average value of sl quickly saturates to 1 as soon as
the cost-per-mile of a link becomes non-negligible [27]. We
want to verify to what extent the ninux community unwillingly
built a hierarchical, not redundant and thus, fragile network.

B. The separation of the ninux network

As a first observation, we note that in a CN both the effects
needed in the CBA exist. Consider a node vi placed in a
dominating position such as on the top of a hill. Potentially,
many newcomer nodes will have line of sight with vi, and thus,
vi will probably have many neighbors. As a consequence, the
community will improve the node adding radio devices, which
will increase the horizontal angle covered by the node (recall
that large-scale CNs primarily use directive antennas). This
will make it even more likely that new neighbors can be added,
so the “rich gets richer” effect takes place. However in a CN
the performance of a wireless link decreases with its length.
The longest the link, the higher its cost, considering both the
higher price of devices with highly directive antennas and the
complexity of pointing them, which is a non-trivial operation.
Therefore, it is realistic to apply a CBA to CNs.

Table II reports the intra-level separation at each level in
the ninux network, together with the number of zones per
level. Table II shows that for each level, sl is fairly high, that
means that the nodes of the network in the same level are not
densely connected and the chances that there are “horizontal”
paths from a node to another are few. If a link going from
level l to level l− 1 breaks, there is no way to re-route traffic
across other zones in the same level, as the interest regions do
not overlap. Thus, the lower the level of a node, the higher the
number of shortest paths that pass through it, and the harder
it is to repair its potential failure. This shows that there is no
direct incentive in making the network dense and redundant,
while there are incentives in connecting the highest number of
nodes with the lowest number of edges. As it happens to other
spatial networks, ninux tends to evolve towards a hierarchical
organization.

Table III reports the values of the inter-level separation, the
corresponding percent of the total area covered by level l,
and the percentage of nodes included in each level. Inter-level
separation shows that, contrarily to other networks, a CN does
not enlarge from its center, but from its edges. This means the
network is not strictly hierarchical and allows the fringe of
the network to expand without having to add antennas on the

level zones sl

0 1 -
1 1 -
2 3 0.93
3 4 0.95
4 6 0.90
5 9 1.00
6 6 0.80

Table II: Average intra-level separation in ninux.

level ŝl Area (%) Nodes (%)

0 0.37 0.37 5
1 22.85 22.85 44
2 31.33 7.78 63
3 54.87 12.55 78
4 66.37 45.66 81
5 100.00 31.60 100
6 100.00 9.63 100

Table III: ninux inter-level separation, percent of area covered
at each level and corresponding percentage of nodes. Since
areas are overlapping the third column does not sum to 100%,
and the sixth level is fully included in the previous ones.

nodes in the center of the network. This characteristic is quite
evident observing Fig. 2, that shows the covered area for each
level.

level zones sl

0 1 -
1 4 0.78
2 10 0.53
3 14 0.82
4 11 0.98
5 4 1.00

Table IV: Average intra-level separation within each level in
FFWien.

level ŝl Area (%) Nodes (%)

0 1.39 1.39 6
1 18.59 15.33 46
2 54.62 45.56 77
3 74.95 48.80 92
4 99.63 41.42 97
5 100.00 0.72 100

Table V: FFWien inter-level separation, percent of area cov-
ered at each level and corresponding percentage of nodes.
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(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5 (g) Level 6

Figure 2: The Interest zone for the levels of the ninux network. Note that level 0 is made of a single zone that is very narrow
and thus, barely visible in the picture.

C. Comparison with the FFWien CN

The spatial coverage of ninux depends on a number of
factors that are specific to that network. In order to broaden
our analysis we were able to collect the geo-referenced data of
another network, the FunkFeuer network in Vienna (Austria),
which we refer to as FFWien5. FFWien is a much denser
network, made of 196 nodes and 249 edges, concentrated in an
area that is 13 times smaller than the area or ninux. Tables IV
and V report the separation metrics for FFWien and show a
quite different situation, with lower average values, especially
in the first 3 layers, which contain 77% of the nodes.

This difference outlines that a CN is strongly influenced
by the external conditions, such as the density of nodes, the
capacity and reach of the wireless devices, and the altitude
profile of the area.

V. IS NODE OWNERSHIP IN NINUX EVENLY DISTRIBUTED?

This section introduces the association between the nodes
in the routing network R(V,E) and their owners, derived
from the node database. It also correlates the owners with
their importance in the network graph. Owner importance is

5See http://funkfeuer.at

evaluated with the group centrality metric and with the “owner
robustness” defined as follows.

A. Owner Group Centrality and Owner Robustness

a) Group Centrality: In a weighted graph R(V,E) where
Pi,j = {vi . . . vj} is the set of nodes that constitute the shortest
path from node vi to node vj , the group centrality of a set of
nodes S = {v1 . . . vn} ⊂ V is given by:

B(S) =
||{Pi,j i, j ∈ (1 . . . |V |) , i 6= j | S ∩ Pi,j 6= ∅}||

||{Pi,j i, j ∈ (1 . . . |V |) , i 6= j }||
(7)

The group betweenness centrality is the fraction of shortest
paths that pass through at least one node in the group. The
centrality metric is computed running Djikstra’s algorithm on
the weighted network topology, and, without information on
the traffic matrix is the best estimation of the number of traffic
flows that a group of nodes can intercept. This definition is
functionally equivalent to the original definition by Borgatti
ad Everett [29] with two marginal differences: first, it includes
also the shortest paths that use a node in S as an endpoint,
second it assumes there is only one shortest path between any
couple of nodes. The second assumption derives from the fact
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Figure 3: The number of nodes per user in the ninux network,
top-20 users.

that IP networks generally don’t support multipath routing, so
one shortest path is used at every instant.

b) Network Robustness: One classical way to inspect the
robustness of network graphs is to remove some nodes in
the topology and check the connectedness of the remaining
network [30]. A network is fragile if removing a small amount
of nodes it is split in many small separated networks. Let Si

be the set of nodes owned by owner i, and let RG(Si) be the
size of the largest connected component when Si is removed
from the network. RG(Si) is a robustness metric, the closer to
||V ||, the better. With a little abuse of notation we call RG(Si)
the robustness of owner i (instead of calling it “the robustness
of the network to the failure of all nodes owned by “i”). A
related metric is the number of disconnected components left
in the network when Si is removed, which we call the fragility
of i: FG(Si).

B. ninux node Ownership

Fig. 3 presents the number of nodes possessed by the top-20
ninux participants, ordered by nodes owned. Over a total of 85
owners, one user possesses 17% of the nodes and the top-five
people own 31% of the nodes, top-13 people own roughly 50%
of the nodes, 61 people own just one node. If we exclude the
first individual (that we call Ptop), the ownership distribution
is not particularly skewed, reflecting the fact that the number
of owned nodes is generally limited by the number of physical
locations to which the person has access (home, workplace,
houses of relatives etc. . . ). Ptop owns 24 nodes and is not the
owner of all the locations where the nodes are placed, he is
simply a technically skilled person that very often offers his
help to set up the network for newcomers. As a result, in the
database he appears to be the owner and, in practice, he is the
technical manager of the nodes.

Fig. 4 shows the group betweenness centrality computed
on all the nodes owned by the same person. Fig. 4 shows
two metrics, the “node-to-node owner centrality” and the
“person-to-person owner centrality”. The first metric is exactly
Eq. (7) when S groups all the nodes of a single person.
The second metric is a modified version of Eq. (7) when
Pi,j is not computed on every couple of nodes but only
on the shortest path that interconnects nodes belonging to
two different people. It expresses the centrality of an owner
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Figure 4: The owner centrality for the participants to the ninux
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Figure 5: The size of the largest connected component remain-
ing after the removal of the set Si of the nodes belonging to
owner i.

between couples of other owners. Both metrics show that Ptop

can potentially control between 80% and 90% of the traffic
flows.

High centrality gives to Ptop an advantage position to
control the network. He would be able to spy on a large
quantity of the traffic and to filter it. While there is no reason to
believe the person was actually enforcing those behaviours, the
important observation here is that such a large predominance
in the network topology potentially gives to one single person
a strong influence and a high decision power.

C. ninux Owner Robustness

To guarantee robustness some level of network design is
generally required [31], and we have already shown that
community networks are not in general robust to targeted
attacks [24]. It is interesting to observe what happens if one
person leaves the network or turns off all its nodes. Figs. 5
and 6 show both robustness and fragility of the owners ordered
by the number of nodes owned (as in Fig. 3).

Again it is clear that there is one person that represents
a single point of failure of the network. When the nodes
belonging to Ptop are removed the main connected component
is reduced to less than half the size of the original network and
the remaining nodes are distributed on more than 30 isolated
components.
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removal of the set Si of the nodes belonging to owner i.

VI. IS THE NINUX SOCIAL INTERACTION WELL
BALANCED?

The analysis of the mailing list messages helps understand-
ing who are the individuals that lead the discussion inside
the community. Two metrics defined in the literature have
been chosen for this task [25]. The first is the normalized
number of answered email per user: given a number X of
total messages that reply to some other message, and being xi

the cumulative number of replies to any message sent by the
ith person, R(i) = xi

X is the relevance metric. This is a basic
metric that assumes that people that receive a high number of
replies are able to generate interesting discussion topics, thus
are considered important in the community.

Fig. 7 shows that the relevance to the mailing list is not
equally distributed among the participants, a very small num-
ber of people lead the discussion. The cumulative distribution
in Fig. 8 shows that as little as 6 people receive 50% of all
the answers. This is not uncommon, for instance, in open
source projects a minority of people leads the discussion [32].
Unfortunately ninux does not represent an exception.

The second metric is the centrality of a person in the mailing
list social graph. The social graph is an undirected graph
G(V,E) in which every node vi is a person in the mailing list
and there is an unweighted edge between two nodes vi, vj if
person vj ever answered to person vi (or vice-versa). Mailing
list centrality for vi is computed on the social graph as in
Eq. (7) when S = {vi}. Betweenness centrality on mailing
lists is used to understand who is able to make other people
join the same discussion, so that he/she can facilitate the flow
of information in the community. Again, Fig. 9 shows that
there is a small number of people connecting all the other
participants, and one in particular whose centrality is at least
the double of the others.

Another layer of analysis is given by the identification of
communities in the mailing list graph. We applied the Louvain
community detection algorithm [33] to the ninux mailing
list. The algorithm identified 9 communities, among which
4 made of a single user, the partition modularity is 0.156.
Fig. 10a shows the interaction graph between the communities
of more than one person. The size of each community and the
strength of each link is reported in Figs. 10b and 10c. The
graph shows that the ninux mailing list is quite “compact”,
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meaning that there are only five communities, three of which
include 80 users and are very well connected with each other.
The modularity is not high. Finally, apart from a small set
of 4 source email addresses, everybody belongs to some
community.

VII. MATCHING THE COMMUNICATION AND THE SOCIAL
NETWORK

Fig. 11 reports the percentage overlap on the two between-
ness rankings from Fig. 4 and Fig. 9. The percentage overlap
gives a measure of the correlation between the two rankings.
Given a family of sets Bi and the respective ordering functions
oi(v) on their elements, we call Bk

i the first k element of Bi
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Figure 9: The ranked centrality of the top 20 participants in
the ninux mailing list.
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4 143 22 634 679 569
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Figure 10: (a) The communities identified in the ninux mail-
ing list. Circle size reflects community size, edges gradient
represent the relative strength (% of exchanged emails) of
the connection: deep-blue strong connection, light blue weak
connection. (b) The size of each community. (c) Number of
emails exchanged between communities.

ordered by oi(v): Bk
i = {v|v ∈ Bi, oi(v) ≤ k}. Given two

sets B1 and B2 the percentage overlap p(k) is a function of
k that shows the percentage of elements present in both sets
when considering only the first k elements:

p(k) =
100

k
× ||Bk

1 ∩Bk
2 || (8)

Fig. 11 shows two fundamental points: the first is that
Ptop, the person that owns more nodes and has the highest
person network centrality is the same one that has the highest
centrality in the social graph. Ptop contributes to the growth
of the network and to the mailing list discussion in a way
that gives him a tremendous power to steer the direction of
the community. The second point evidences a different, and
more encouraging trend. If we exclude Ptop the correlation
between the communication and the social network centrality
is not strong since p(10) = p(20) = 30%. Therefore it seems
that there is diversity between the owners of the most critical
nodes and the leaders of the discussion in the mailing list.
The general idea that the use of open communication and
discussion tools guarantees plurality and participation is only
partly matched by reality.

Another encouraging element raises from Fig. 12 that re-
ports the number of owners grouped by the community they
belong to among the top 5, 10, 15, and 20 node owners.
Communities are ordered for their size from the largest to
the smallest. The figure shows that the distribution of the top
owners per community is not particularly skewed towards one
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Figure 11: The percentage overlap metric computed on the
ranked mailing-list and group node centrality.
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Figure 12: For the top 5, 10, 15, and 20 owners of network
nodes, the percentage of nodes belonging to each community.

community. At least three communities are present in all the
bars so there is not a single clique of users that dominates
the communication network and the mailing list discussion.
Another key element is that the owners with more nodes
actually participate to the mailing list. Even if only 44 owners
over 85 are present in the mailing list, only 20% of the top
10, 15, and 20 owners do not participate to the mailing list.

VIII. INTERPRETATION OF THE RESULTS

The spatial analysis, the distribution of the ownership, and
the person centrality show that, albeit the goal of the ninux
community is to build a technically and socially decentralized
network, the results diverge from the goal. The network is
spatially hierarchical, so nodes in the low levels have more
importance than nodes in the high levels. Moreover, one person
in ninux managed a sufficient number of nodes to be able to
control the network and to be a single point of failure. The
same person, given his technical skills was a central person in
the social network of the community, so he had an influential
voice in the email interactions.

Indeed, direct discussion engaged with people in the com-
munity revealed that this person left the community in 2015
and the nodes he managed started to fail and disconnect
entire areas. At the time of writing the main component of
the network is made of 87 nodes, and the other nodes were
disconnected from the main component. In conclusion, ninux
does not seem to be a robust do-ocracy, since the network at
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the time of data collection had a huge single point of failure
represented by Ptop.

However the situation changes excluding Ptop from the
analysis. Fig. 3 shows that the maximum number of owned
nodes is generally capped by the amount of physical locations
that the users have access to, which intrinsically limits the
chances of some individual to take over the network. Also,
even if the social network metrics show that the relevance
of the participants to the mailing list is not evenly distributed,
the correlation between the most relevant node owners and the
most relevant members of the mailing list is low (see Fig. 11).
This means that people participate to the community in diverse
ways, with the construction of new nodes or rising discussion
topics.

A simple solution to this problem would be to prevent
people to manage nodes in physical locations they do not own.
This way, Wi-Fi range limitation would not allow a single
person to be too central, and thus too critical for the network
economy. This would change the nature of a CN which instead,
to grow, must be participated not only by individuals but also
by associations and small businesses that can be physically
located in several places and thus, may own several nodes. A
better solution is to reassign the ownership of nodes or to share
the management credentials of nodes among several people as
next section proposes.

A possible mean to reduce network separation would be to
increment the density of links per node. At the current state
of things, a new node vi is connected only to the closest node
in line of sight, and then, a new device is added to it only
when some other new node vj needs to connect to vi to enter
the network. One way of increasing the density is to mount
an additional device on vi at its creation, even if there is no
other node to connect to at that time. Adding spare devices
pointing to an uncovered direction will make it more likely
that in the future new nodes will join, or that existing nodes
will be connected to more than one other node, in order to
increase the density. With an even stricter approach this could
be translated into avoiding leaf nodes, so that a new node is
added to the network only if it can connect to at least two
other nodes.

A. A Path Towards Generalization

The analysis we carried on ninux is specific to this network
and depends on the physical, routing and community graphs,
which in turn depend on the internal organization of ninux.
The only document that determines the “governance” of ninux
is the so-called picopeering agreement, which mandates a few
rules to be accepted by new node owners. The picopeering
agreement has been formulated by a group of activists and is in
use by many community networks in Europe6, which suggests
that other communities could have developed with a pattern
similar to ninux. To confirm this intuition the same analysis
should be performed on more networks, which is a daunting
task. While it is relatively easy to compare network topologies
extracted by the routing layer, it is very hard to access to data
on node position and node ownership. Even harder would be

6See https://picopeer.net/.

to access data on the on-line interactions and match them with
node owners due to the need of personal interactions with the
community and of course, language barriers.

An alternative approach would be to use synthetic algo-
rithms for the generation of the physical network topology,
the routing topology and for the corresponding communities.
While there is a large body of literature on community detec-
tion [34] and studies that describe the participation to commu-
nity projects [32], the availability of large-scale mesh network
routing topologies is very scarce. Moreover, it was shown
that synthetic topologies created with the goal of achieving
a specific topological feature (i.e. degree distribution) are
not sufficiently detailed to catch the interesting features of
real communication networks [35]. Finally, examples of the
physical topologies of real mesh networks are not available.
To overcome these limitations a possible option is to design
a network topology generator that takes into account the
real terrain conditions of a certain location. To realize such
instrument we need precise data on the terrain elevation,
including building elevation and building shapes. Many public
administrations in Europe and North America publish open
data sets on buildings altitude obtained with Lidar (light
detection and ranging) aerial surveying campaigns. From these
data sets a connectivity matrix can be built, expressing the
presence of line-of-sight between any couple of two buildings
and possibly the expected pathloss in dB (and thus, the quality
on the link in the routing graph). Matching this connectivity
matrix with data from the national census, the generator can
create realistic topologies applicable to zones with low Internet
penetration, or low-income. From these topologies, both the
physical and network layer can be analysed.

This development would make it possible to analyze the
robustness of realistic physical and routing layer in order
to generalize the observations made on ninux, and also to
fine tune the node re-assigning algorithm. It would help
characterize any mesh network that evolves with an “organic”
model as the one described so far. This activity is undergoing
but requires an amount of work that is out of the scope of this
paper7.

IX. NODE RE-ASSIGNMENT PROCEDURE

Once the community accepts that a person can administer
one node without owning the corresponding physical location,
we can leverage on this to redistribute the responsibility of
some nodes from the original owner to somebody else, in order
to reduce the importance of each single person. This section
introduces an algorithm whose goal is to raise the minimum
RG(Si) beyond a certain threshold.

Re-assigning the control of nodes can be done with any
node-labelling algorithm that maximises the fair distribution
of nodes among the people in the community. Of course, that
algorithm would not consider practical constraints, such as the
chances that the old owner would not trust the new owner, or
that the new owner must have physical access to the node.
In practice, some real-word constraints must be introduced to
make the resulting re-assignment practically useful.

7See https://github.com/AdvancedNetworkingSystems/TerrainAnalysis.



TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, SUBMITTED FOR REVIEW 11

Let C(i) be the community of node i in the social graph,
and Si the nodes owned by owner i. Let S be the set of all
the nodes in the communication network and C be the set of
all the node owners. When re-assigning a node v from owner
i to node j the proposed assignment scheme is subject to the
following constraints:

• Sj 6= ∅: In order for j to have enough technical skills
he must be the owner of at least one node before re-
assignment.

• j ∈ C(i): If this is not possible due to the previous
condition, then j will be chosen iteratively from the next
community that has the strongest link with C(i).

• The probability of owner j of being assigned the man-
agement of node v decreases linearly with the minimum
distance (in number of hops) from v to any node in Sj .

The last point can be expressed formally as: consider owners
j and k that are two candidates for being assigned v. We call
dij = min{||Pij || ∀ i, j | vi ∈ Si ∧ vj ∈ Sj}. Then, for the
probabilities P (j) and P (k) of owner j and k respectively, to
be assigned v holds: P (j) = P (k)dik

dij
. In other words, there is

a bias in reassigning a node to owner j if owner j owns a node
that is topologically close to v. The rationale behind this choice
is twofold, first is that we assume that being topologically
close implies also being physically close, which is important
when physical maintenance is needed. Second, when v needs
to be re-configured or maintained, being “topologically” close
means that it is more likely that owner j can access node v
with a better connection than a person that is topologically far
away.

Listing 1 describes an heuristic algorithm that takes the least
robust owner and reassigns his/her nodes up to when his/her
robustness is higher than a threshold T . The procedure must
be repeated up to when RG(Si) > T ∀ i.

Before we describe the details of the algorithm, it is
important to stress on a feature that makes it suitable for
our context. The algorithm is an heuristic, iterative one which
does not require a global optimization that would probably
trigger a large number of re-assignments. It can be used on an
existing network and it can be periodically run using the CN
data as the network and the community evolves. Another key
feature is to be explainable, meaning that people can easily
understand the way it works and modify some parameters
(i.e. modify T or add exceptions for some users) to fit their
case. This is extremely important since people in a CN do not
easily accept modifications to their network that are somehow
“imposed” by some external factor they do not understand.
They are instead available to share responsibilities for the
good of the community, if they clearly see the reason. Albeit a
global optimization would produce a better solution, it would
likely make it hard to explain and accept. Finally, the algorithm
increases the robustness of each individual one after the other,
which makes it suitable to be used in CNs (like ninux) in which
the average behaviour is correct, except for a few outliers.

Summing up, we do not claim this to be the best algorithm
to solve this problem, but it is one that can be realistically
accepted by the community, and, as next section shows it
alleviates the unfair allocation of nodes.
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Figure 13: People robustness after the node re-assignment
process.

A. Algorithm Details

The first challenge is to define T , which can not be
arbitrarily high, but depends on the network structure. To
achieve this, the algorithm computes the robustness RG({v})
for every node v in the network and finds the node vl with
the lowest RG({vl}). It is intuitive that if vl ∈ Si then
RG(Si) ≤ RG({vl}), so initially we set T = RG({vl}) − 1.
If at the end of the execution a solution can not be found, T is
decremented and the algorithm is run again. Another important
observation is that when computing RG(Si) the contribution
of leaf nodes must be omitted. To understand this let Li be the
number of leaf nodes owned by node i, with Li ⊆ Si. In the
extreme case in which for the least robust owner i we have
Li = Si and thus vl /∈ Si, the algorithm will re-assign all the
nodes of Si. It makes no sense to redistribute the ownership of
a leaf node since its failure only affects the owner of the node,
so, when comparing RG(Si) with T , RG(Si) is increased of
the size of ||Li||.

Given these premises the algorithm in Listing 1 does the
following:

Lines 1-4: identify the owner i and the node nl with
the lowest robustness.

Lines 5-7: define Si and Li.
Line 9: start the re-assignment of non-leaf nodes.
Line 15: pick a random person in C(i), with a bias

on close-by people.
Line 18-19: if no person can be chosen, break (jumps to

line 38).
Line 20-24: test if re-assignment is feasible. If the new

owner after re-assignment has robustness
below threshold, blacklist him/her.

Line 26-34: check if after the re-assignment of v,
RG(Si) is still below the threshold. If not,
exit from main loop.

Line 38-42: if the re-assigning process in unsuccessful,
decrement the threshold, undo changes and
loop again.

The main loop starting at line 9 is executed once every
time T is decremented, so at most T < ||V || times. The loop
starting at line 11 runs at most ||Si|| < ||S|| times, while the
inner loop starting at line 14 runs at most ||C(i)|| < ||V ||
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1 R o = sort owners robustness ()
2 # returns a sorted l i s t of R(C)
3 R n = sort nodes robustness ()
4 # returns a sorted l i s t of (node , R(node))
5 T = R n[0] # set T to the lowest node robustness
6 least robust owner = R o[0][0]
7 sorted owned nodes =
8 get sorted nodes by owner( least robust owner )
9 # returns a l i s t of nodes for an owner,

10 # sorted by their robustness
11 leaf nodes = get leaf nodes (sorted owned nodes)
12 exit loop = False
13 while not exit loop : # main loop
14 reassigned nodes = []
15 for node in sorted owned nodes .remove( leaf nodes ) :
16 # loop on non−leaf nodes
17 black list = []
18 while True: # inner while loop
19 new friend = get random friend(node, black list )
20 # return a random person in the communitiy
21 # of the owner of node, excluding the black list
22 i f not new friend :
23 break # no one can receive this node .
24 # break inner while loop
25 i f not test reassign (node, new friend , T) :
26 # temporarily reassing the node to new friend , recompute
27 # i t s robustness , return False i f new friend
28 # is himself breaking the T, keep looping
29 black list . append(new friend)
30 else :
31 reassign node(node, new friend)
32 # reassign the ownership to new friend
33 reassigned nodes .append(node)
34 # keep track of reassigned nodes
35 new owned nodes = sorted owned nodes .remove(node)
36 new robustness = compute robustness(new owned nodes)
37 # recompute the robustness
38 i f new robustness + len ( leaf nodes ) > T:
39 exit loop = True # will exit main loop
40 break # exit inner while loop , stay in the for loop
41 i f exit loop :
42 break # exit the for loop
43 # Failed to reassign nodes : must decrement T,
44 T. decrement(1)
45 # reset a l l done and stay in the main loop and try again
46 for node in reassigned nodes :
47 reassign node(node, least robust owner )
48 return reassigned nodes

Listing 1: Re-Assigning Heuristic

times. The most complex operation in the loop is computing
RG(Si) that requires the computation of all Dijkstra’s trees
which is an operation with polynomial complexity on ||S||.
The algorithm complexity thus remains polynomial on ||V ||
and ||S||, and it instantly finds a solution for the ninux network
on a standard PC.

For ninux, the algorithm produced the reassignment of 6
nodes from Ptop to 6 different people, Fig. 13 reports the
corresponding graph of RG(Si) for the top-20 owners after re-
assignment and shows that the minimum robustness is strongly
increased.

X. RELATED WORKS

Mesh networks have been a very active area of research
in the first decade of the 2000s, with many implications
regarding their performance, [13], routing [36], security [37],
[38], support for mobility [39], [40]. In the recent years, this

technology matured, and the focus of research shifted to their
application as CNs. CNs have been the subject of a series of
works in the past years that had the goal of analysing their
topological features [41] [21] [24] [8], their routing solutions
[9] [42], and their social and management aspects [14] [43].
The only paper that deals with community networks and uses a
similar approach is from Vega et. al. and analyses the Guifi.net
community [44]. Guifi is probably the largest community
network in the world, and the analysis of the mailing lists and
interactions is hard to perform to the level of detail adopted
in this paper. In a more controlled environment it is easier
to draw solid conclusions on the techno-social dynamics of
the CN, moreover, this paper uses the social analysis of the
community to propose a way to remove the points of failure
which is a completely new contribution. This paper extends
what done in a previous work [45] in which the initial analysis
on the ninux social network was done, but the spatial analysis
and the re-assigning algorithm were not present.

XI. CONCLUSIONS

CNs are socio-technical networks spontaneously developed
by communities of people. Some of the networks have a very
clear social vision and propose a networking model different
from commercial ISPs. At the light of the growing debate
on network neutrality and network access, CNs represent
a promising alternative and/or complementary model. The
novelty of CNs lays both in the technical organization as a
mesh network, and in the governance of the network, that is
horizontal and participated on the model of Peer Production
platforms. Nevertheless, a community organized around a
distributed network and open social networking instruments
can anyway develop in an unbalanced way and hide single
points of failure. The paper showed that the network is
spatially hierarchical, meaning that, even if realized without
planning, it tends to be organized in a tree-like structure that
favours “vertical” communications compared to “horizontal”
communications. While this is a characteristic of ninux, we
also showed that another network (FFWien) shows a more
robust organization, thus, the spatial characteristics of a CN are
largely influenced by the external conditions. We also showed
that ninux let one person become the owner of many critical
nodes and a broker in the social network. Thus, spontaneity
must be helped with a set of instruments that let the community
understand the direction it is taking, in order to avoid pitfalls.
CNs, that do their best to grow with the limited resources
that they voluntarily share (and achieve excellent results) can
embed the metrics and the methodology presented in this paper
in the instruments they use to monitor the network status, and
detect the emergence of problematic situations before they
become critical. This work is actually undergoing together
with the ninux community8
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APPENDIX A
DETAILS ON THE DATA-SET

All the source code realized for the paper is released as
open source and is available online9.

The data-set for the ownership analysis in Section V was
derived from a number of sources. The first is the data-set
obtained and published in a previous work [24] that describes
the ninux network in early 2014. This is a set of topology
dumps extracted from the ninux mapserver and integrated with
the metrics exported by the OLSR protocol in the same period.
From the thousands of graphs collected, here we analyse the
one with the highest number of geo-located nodes.

APPENDIX B
SPATIAL SEPARATION

The spatial separation metrics were partly modified from
their original definition ( [27]) due to the different context
in which we use them. The first modification is due to the
fact that CNs are not tree-shaped but they are undirected
graphs (a functional Wi-Fi link must be able to transmit in
both directions, so there is no need to use directed edges to
represent the network graph, albeit, link performance can be
asymmetric). As such, in the ninux graph there is no root
node that is naturally identifiable. We repeated the measures
with three choices for the root node, selecting the node
that maximises the following metrics: closeness centrality,
betweenness centrality, and eccentricity. All the choices yield
qualitatively similar results even if they identify different root
nodes. Results are reported in Table VI.

The second difference is in the definition of Eq. (1). In a
tree vi has by definition only a neighbor with a lower level
(its parent in the tree) and all the other neighbors have a
higher level (its descendants in the tree). In a graph, among
the neighbors there can be also nodes with the same level,
and it is important to consider these links, or else separation
is artificially increased. Thus we modified 1 as follows:

N ′(i) = {vj | vj ∈ N(i) ∧ l(vj) ≥ l(vi)}. (9)

Finally, we modified the original definition of the influence
zone in order to better reflect the behaviour of a CN. In
the original definition the zone for node i is defined as “the
circle centered on the barycenter of i’s neighbours that belong
to the next level, of radius the maximum distance between
the barycenter and those points” [27]. In CN long links are
realized with directional antennas, thus, there is not a well-
defined concept or “radius” of the influence zone. Consider

9See the fromdiff repository https://github.com/leonardomaccari/fromdiff
for the email-parsing function, and the fairgraph repository https://github.
com/leonardomaccari/fairgraph for the implementation of the algorithm
in Section IX. Some of the network analysis functions are included
in https://github.com/leonardomaccari/community networks analysis and will
be better documented in the future. Finally, the code for the spatial
analysis can be found at this DOI 10.5281/zenodo.1218746. The topol-
ogy files are published at this link:https://ans.disi.unitn.it/redmine/projects/
ninux-temporal-evolution-analysis/wiki, the position of the nodes are not
public, they were disclosed by the community for this research but since
they identify the location of private houses they are not going to be released
to the public. The geo-located data of the FFWien network are published by
the community at this URL: https://map.funkfeuer.at/wien/data.php

level sl sl sl
(e) (c) (b)

0 - - -
1 - 0.93 -
2 0.93 0.86 0.93
3 0.95 0.99 0.95
4 0.90 0.88 0.90
5 1.00 - 1.00
6 0.80 0.99 0.80
7 - - 1.0

Table VI: Average separation
within each level with var-
ious choices of root node.
Dash means that there are
less than 2 zones in the level
(e: eccentricity; c: closeness;
b:betweenness).

A

B
C

Figure 14: An example defi-
nition of influence zone.

Fig. 14 in which the node for which we compute the interest
zone is the red one (vi), and the yellow nodes are the nodes
in N ′(i). The dashed circle is the influence zone as per the
original definition, and the dotted polygon is the hull envelop
of the points. The area marked with the letter B and C are areas
for which there is no assurance that vi has any coverage, since
there is potentially no antenna pointed in their direction. Area
A extends beyond an existing node, and in that direction the
line of sight may be obstructed by obstacles. Consequently, for
its application to CNs, the convex hull of the area including
N ′(i) is a more realistic choice than the original definition.
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