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Tuning the Robustness of Routing Information
Diffusion with Multi-Point Relays

Leonardo Maccari, Renato Lo Cigno

Abstract—Optimized Link State Routing is one of the most
used routing protocol in wireless networks: static, mobile, ad-
hoc, mesh, and even sensor networks. The selection of Multi-Point
Relays (MPRs) to build a backbone for signalling traffic, which is
often also used to route user traffic, is at the hearth of the protocol
and its efficiency is crucial to the protocol efficiency as well as to
the entire network topology management. Several heuristics exist
that try to minimize the number of MPRs in order to reduce
the overall signaling traffic. A recent one, called Selector Set
Tie Breaker (SSTB) showed that the number of MPRs can be
reduced to a few units in dense networks with hundreds of nodes.
This greatly reduces the signaling traffic but also the redundancy
of the information that is spread in the network. This paper
investigates the consequences of the reduction of the number of
MPRs on the robustness of the routing function and introduces
a coefficient and a tuning parameter to influence it.

Index Terms—Optimized Link State Routing,Multi-Point Re-
lay, Wireless Networks Management, Signalling Traffic

I. INTRODUCTION

The selection of Multi-Point Relays (MPRs) in Optimized
Link State Routing (OLSR), as well as the selection of
backbone nodes in other protocols, is a well studied problem,
known to be in general NP-complete. OLSR adopts a heuristic
algorithm to select MPRs that yields a selection of MPRs that
is within a logarithmic bound from the local minimum [1], i.e.,
it guarantees that each node will select a local set of MPRs,
which is fairly good. Unfortunately, it does not give bounds
or properties for the global set of selected MPRs, and good
local properties are not always a guarantee of good global
performance. In [2] we have shown that local optimization is
not a sufficient condition to achieve the principal goal of MPR
selection: The minimization of their global number in order
to minimize the signaling traffic. The proposed technique,
Selector Set Tie Breaker (SSTB), significantly reduces the total
number of MPRs, and for dense network topologies the gain
offered is very large.

Minimizing the global number of MPRs means removing
(almost) all redundancy from the signaling backbone. In some
cases this can lead to fragility, i.e., the failure of one or
two MPRs can lead to network partition and require the
entire re-computation of the topology and routing, which in
real networks made of hundreds of nodes [3], [4] may be
devastating from the performance point of view. Unfortunately,
the identification of these situations do not depend solely on
the number of MPRs, i.e., two different networks with the
same number of nodes and the same number of MPRs can
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have a different fragility. We introduce a metric that is easy to
evaluate for each node and does not require additional infor-
mation (no additional signaling overhead), and that identifies
quite well these situations. When this metric is below a given
threshold the network can implement countermeasures, also
presented and discussed in this paper, that selectively raise
the number of MPRs to make the network more robust.

To introduce and describe the problem we will make use of
a set of symbols defined in table I.

Symbol Meaning
N size of the network (number of nodes)

N1(i) 1 hop neighbor set of node i
n(i) or simply n size of N1(i)

N2(i) 2 hop neighbor set of node i
N(i) N1(i) ∪N2(i)
M(i) MPR set of node i
Mg Global MPR set, (union of M(i) for all i)
Sg Size of Mg

S(i) Selector set of node i; i is MPR for all nodes in S(i)
Cc(i) Local clustering coefficient of node i

Table I
NOTATION AND SYMBOLS DEFINITION

II. MEASURING CLUSTERING

Our previous work confirmed that SSTB can reduce Sg

close to the minimum number of nodes necessary to keep
the network logically connected, which, in some very dense
network may with 100 nodes and a diameter of 4 hops can
correspond to as few as 4 MPRs. This means that the signalling
is reduced to the minimum necessary to keep the routing tables
up-to-date, but on the other hand we are removing redundancy.
The key question is: will this process make the network more
fragile and prone to failures, or will it only bring advantages?

When there are few MPRs, if one of those fails, get
congested, or simply some packets collide and are not received
by the selectors it may happen that large areas of the network
may have outdated/wrong information on the topology for a
transient phase. Intuitively with regards to the routing function,
we call fragile a network in which the performance of the
whole depends on a very limited set of nodes. Depending on
the kind of network these effects can be critical or bearable,
and can be counter-balanced (or not) by the signalling reduc-
tion. For instance, ad-hoc and sensor networks are normally
battery-powered; if the user traffic is sporadic or even rare as
in some sensor networks, the signalling traffic may be a large
portion of the overall traffic so the reduction of signalling has
a critical effect on the lifetime of the network. Moreover, if the
network has large periods of inactivity it also has more time to
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react to failures and can better handle the transient phases. In
such a scenario the network manager will be more interested
in minimizing the number of MPRs to prolong the lifetime
of the network. Instead, in a mesh network intended for web
browsing, the failure or congestion of some critical nodes can
trigger repeated reconfigurations of the routing tables making
the network hardly usable for large periods. In this case having
a less fragile network can be traded with having redundant
signalling.

However, there is no guarantee that a network with more
MPRs is also less fragile, as the fragility of a network depends
on the number of nodes that are critical for its survival, and
not on the total number of MPRs, many of which can simply
be the outcome of a suboptimal choice. For this reason, we
need to define a metric to express the fragility of the network
that is both easy to compute and easy to understand so that
the countermeasures can be triggered depending on the needs
for the specific network.

The routing fragility is a combination of two events. First,
the physical topology of the network produces a high density
of links, otherwise the network is scattered and there is very
little room for reducing Sg . A network composed of few
very dense clusters generally matches this situation. Second,
the logical topology generated by SSTB depends on a very
small set of nodes and is prone to partitioning if a node fails,
triggering a re-computation of all the paths.

The fraction of nodes elected MPRs is not a good parameter
to identify fragility. Consider Fig. 1(a) where N = 10. In the
first case Sg = 1 (10% of N ), if the central nodes fails, a
complete re-computation of the MPR sets and of the routing
tables for every node will happen. This will take some time
(depending on the timers used for TC and HELLO messages)
and in the transitory phase the routing tables can be pointing
to dead links. In Fig. 1(b) N = 10 and Sg = 3, three times
larger, but the failure of the central node will still produce
a re-computation of the routing tables for a large part of the
nodes. A low Sg is an indication of a potential fragility, but
as we will see, even when Sg is not critically low the network
can be fragile too, and a small Sg can be the consequence of
the physical topology, and no routing protocol can correct it.

(a) (b)

Figure 1. Two examples of logical topologies: solid nodes are MPRs, empty
ones are not.

A. The local clustering coefficient

A measure used in literature to express clusterization is the
local clustering coefficient of node i, Cc(i) that says how
dense the topology is around node i. The higher Cc(i), the
more the neighborhood of i is a clique, the lower Cc(i)

the more the topology around i resembles a star centered
on i. In social science a node that has a low clustering
coefficient is called a broker, that is, a node that is able
to negotiate convenient conditions with his neighbors since
his betweenness in N1(i) is high and he is critical for the
connectivity of every couple of nodes around him. If instead
Cc(i) is high, then the network around i is highly connected
(clustered) and i is not very influent. The distribution of the
values of Cc(i), is an important parameter to estimate the
properties of a graph, the average Cc computed on every
node is often used to estimate the macroscopic properties of a
network, for instance, a small-world graph will have a higher
Cc than a random graph.

We start from the local clustering coefficient and manipulate
it to achieve a metric that is suitable to estimate the network
fragility. Let l(k, j) be a variable defining the existence of
a symmetric link between nodes k and j. Then L(i) is the
total number of symmetric links among nodes within the 1-
hop neighborhood of i, and Cc(i) can be defined based on
it.

Definition 1. 1-hop Neighborhood connectivity

L(i) =
∑

k,j∈N1(i)
l(k, j) where

{
l(k, j) = 1 if k ∈ N1(j)

l(k, j) = 0 if k /∈ N1(j)

Definition 2. Local clustering coefficient for node i:

Cc(i) =
L(i)

n(n− 1)

Since L(i) ranges from 0 to n(n− 1), Cc(i) ranges from 0
to 1. We consider only symmetric links, so l(k, j) = l(j, k),
so if k ∈ N(i), then i ∈ N(k). OLSR provides detection
of symmetric links using HELLO messages and avoids using
asymmetric links, so this assumption is realistic. Cc(i) is
meaningful when i has at least two neighbors.

Definition 3. Average local clustering coefficient for a net-
work:

Cc =
1

N

∑
i

Cc(i)

i j k

Figure 2. A topology showing the properties of Bc(i).

However, to estimate fragility we do not need a clustering
measure, we need a measure of how much a node is a broker
for its neighborhood. Consider a network as in Fig. 2. Both
nodes j and k have Cc(·) = 0, but obviously the failure of
node k has a much higher impact on network connectivity
than the failure of node j. This is due to the fact that Cc(i)
measures the clustering coefficient only relatively to N1(i),
but doesn’t take into account how big is N1(i) compared to
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the network size. To take into account this factor we multiply
it for the size of the neighborhood of i and we normalize
by the global size of the network. Finally we can define the
brokering coefficient Bc(i) that correctly captures how a node
is critical to network failure.

Definition 4. Brokering coefficient for node i

Bc(i) = [1− Cc(i)]
n(i)

N

The Bc(i) and the average Bc on the whole network can
be used on a graph of any kind. If we consider the logical
topology built by OLSR, we observe that only MPR nodes
send and forward the signalling traffic so we can define an
average value only for MPRs.

Definition 5. Average brokering coefficient in an OLSR net-
work

Bc =
1

Sg

∑
i∈Mg

Bc(i)

III. PRELIMINARY RESULTS

We used Omnet++ to generate realistic topologies and
to run OLSR in an outdoor scenario. Simulated nodes are
equipped with 802.11g wireless radios using the Omnet++
channel model (based on the corrected NIST BER tables [5])
together with a realistic ray-tracing fading model [6] that takes
into consideration the presence of obstacles. The “Outdoor
scenario with Obstacles” (OO) reconstructs the campus of
our university in a 600 × 600m area, as depicted in Fig. 3,
where the obstacles are only the main buildings. The area is
split in squares of 8 × 8m (OO) and 4 × 2m (IN), that can
include points of interest for the users (bar, library, classroom
etc.). Nodes are grouped in clusters, each cluster is assigned
a point of interest in one of the square areas. Each point of
interest is placed in the middle of the area, and nodes are
distributed around it with a uniformly random chosen radius
(lower than half of the longer edge of the block) and angle
(which generates a higher density close to the center). We
keep constant the number of nodes (100) and we increase the
number of clusters from 3 to 9, so that the average number of
nodes per cluster reduces.

Figure 4 reports the number of MPRs when using standard
OLSR and SSTB, we can see that there is a notable reduction
of the number of MPRs for any number of clusters.

Fig. 5 reports the average Bc computed on all the nodes. Bc

is a good measure of the effect we want to identify: when there
are many clusters, the density in each cluster is lower and there
is a higher number of brokers, which makes each broker less
critical. In this case Bc is low. Contrarily, less clusters of larger
size imply a higher Bc. We also reported the max/min interval
for each point to show that large oscillations can be observed
in networks with the same number of clusters, so supposedly
with a similar number of MPRs. This confirms that a low Sg

is an indicator of the fact that the network can be fragile,
but it is not a necessary condition. To better understand this,
Figs. 6(a) and 6(b) report the number of selectors per MPR,
||S(i)||, for two pairs of runs where Sg are similar but Bc

are very different. Note that for the run with higher Sg , the

Figure 3. An approximated map of Trento University Campus. Thick dashed
lines contour the relevant obstacles and how they are reproduced in the
simulator
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Figure 4. The values of Sg n the OO scenario increasing the number of
clusters with 100 nodes.
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Figure 5. Bc increasing the cluster number, with max-min ranges

distribution of selectors per MPR is much more skewed: few
MPRs have a very large S(·). This means that even if the
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number of MPRs is similar, in one case there are some MPRs
that have a number of selectors much larger than the average,
so that many nodes depend on them to receive signalling. In
such cases the computation of the average value of Bc(i) is
not practical, due to the presence of a long tail of MPRs with
few selectors that derive from physical topology constraints.
In general this tail cannot be eliminated: as shown in Fig. 2
for each isolated node in the network (as node i is) there is at
least one node (node j in this case) chosen as MPR, because
it is needed to reach the isolated one. There are cases where
Sg is large, but the distribution of selectors makes the network
fragile anyway, and this can be hidden by the presence of the
long tail of “mandatory” MPRs.
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Figure 6. Distribution of the selectors’ set size ||S(i)|| for two pairs of
topologies with similar Sg but different Bc. MPRs are in ascending order of
||S(i)||.

A. Computing the effective brokering coefficient
The discussion in Sect. II-A suggests that in practice we

can simplify and make more effective at the same time the
computation of the brokering coefficient. Since what we want
to identify is the fragility of the network in face of loss of
routing information, we can restrict the computation of Bc to
the sole MPRs, using only the information on their selectors.
Recall that every node receives TC messages from every MPR,
and that each TC message includes the number of selectors
for the MPR. In practice, every node in the network can build
the distributions we reported in Fig. 6. Moreover, to take into
account the skewed distribution shown in Fig. 6, when Sg is
higher than a certain threshold TSg

1 we limit the computation
of Bc only to the 50% of MPRs with highest ||S(i)||, so
that the computed brokering coefficient (call it effective) is
not too much influenced by the tail of the distribution with
few selectors per MPR.

Let M ′
g be the set of nodes in Mg to which we want to limit

the computation, and assume that nodes in Mg = {i1 . . . iSg
}

1The value of the TSg threshold is not critical, it is used to apply the filter
only on distributions that effectively have a long tail; numerical results are
reported for TSg = 5, but a value of 6 or 7 would not make much difference.

are ordered in ascending value of ||S(i)||, then M ′
g is defined

as:

M ′
g =

{
Mg if Sg < TSg

{iSg/2 . . . iSg
} otherwise.

We can thus give the following definition of the effective
brokering coefficient B′

c.

Definition 6. Effective brokering coefficient in an OLSR
network

B′
c =

2

Sg

∑
i∈M ′

g

||S(i)||;
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Figure 7. Bc and B′c increasing the number of MPRs

Fig. 7 reports both Bc and B′
c as a function of the Sg of the

network for a set of networks with Sg < 20. This is the most
interesting region as the most clustered networks fall here. The
two curves have a very similar trend, but B′

c behavior is less
noisy and shows less spikes.

Studying the detailed behavior of B′
c, its sensitivity and its

correlation to network characteristics is outside the scope of
this paper, but we foresee that interesting insight can be gained
in studying Bc and B′

c as a function of different topological
properties (and fragilities) of the network.

IV. SSTB AND BROKERING AT WORK

SSTB and B′
c can be effectively used to manage networks

with OLSR. SSTB ensures that the signalling traffic is very
close to the minimum achievable, while B′

c provides a
monitor that warns when the network is very fragile, so that
countermeasures can be taken prior to network disruption, if
possible.

The methodology we present is general, does not require
human intervention, operates strictly on MPR selection, which
means it is limited to the network layer and does not require
complex cross-layer communications or optimization. The
generic goal is to use B′

c as an indicator of the presence
of nodes with very high brokering coefficient, which indicates
that the network is fragile with respect to these nodes, and
that they may also be overloaded2, and to force the reduction

2Actual overloading strictly depends on the traffic pattern, but collecting the
traffic of a large number of nodes when MPRs operate as network backbone
is a strong indication of potential congestion.
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of ||S(i)|| for MPRs with the largest selector set until B′
c

is reduced below a given threshold. We deem that this is an
effective way to control the network fragility, and it is also
extremely simple and safe compared to other techniques.

First of all, note that an MPR node i cannot in general
selectively avoid to be chosen as MPR by node j, as the MPR
is the passive agent in the selection procedure. A node can set
its willingness to the lowest value, but this will affect all its
selectors. The only way to selectively remove a node j as a
selector, is to drop j as a neighbor, and this is what we force
nodes to do, simply by not echoing the neighbor IP in HELLO
messages. This action makes the link asymmetric and force j
to deselect i as MPR, and chose another one if needed. This
procedure must guarantee that nodes are not isolated, as we
explain in the following.

Let β′
c be a global threshold on B′

c that identifies a
potential fragile situation. When B′

c > β′
c a distributed

procedure is triggered that forces the MPRs with the largest
||S(i)|| to reduce the number of their selectors. This will
always result in a smaller B′

c, and most often also in a larger
Sg . We call this procedure controlled-SSTB or simply cSSTB.
Algorithm 1 describes the purging procedure that all nodes run
in cSSTB as part of the standard MPR selection procedure; δ
is a sleep timer to ensure that the network stabilizes between
purging attempts, and λ is a hysteresis threshold that tries to
avoid that a node j that has been forced to deselect MPR i,
ends up selecting another MPR k with ||S(i)|| close to the
maximum that will most probably force j to deselect itself in
the near future.

Input: δ, λ, β′
c

secondBestPurge = purgedList = [];
while true do

if B′
c > β′

c and ||S(i)|| = max{||S(k)||, k ∈Mg}
then

for j in S(i) do
// Condition A
find k ∈ N1(i) ∩N1(j);
if 6 ∃ k then

continue
purgedList.push(secondBestPurge)
if purgedList.size() ≥ λ then

break
end

if purgedList.size() = 0 then
no purging is possible

sleep(δ)
end

Algorithm 1: Selectors purging procedure in cSSTB for all
nodes i.

The procedure is activated only when B′
c > β′

c (so the
network metric is higher than the treshold) and it is applied
only to the MPRs with highest B′

c(i). When node i puts node
j in its purgedList i will not sponsor j as a neighbor in
its HELLO messages. After 3 HELLO messages (using OLSR
default parameters) j will consider the link with i asymmetric
and will therefore unselect i as MPR, this choice will be
reflected in the next HELLO message from j. Condition A

is necessary to avoid network partitions, node j will not be
isolated from i since there is at least another node k that
connects them (thus j ∈ N2(i)). Note that node j will need
an MPR to be connected with node i. The best choice would
be to choose another node that is already an MPR in order to
produce a redistribution of selectors and not the creation of
new MPRs.

The choice of applying the procedure only to the node with
the highest number of selectors ensures that the procedure will
stop after a transitory phase. In fact each node knows the list
of MPR Mg and the size of each selector set from the TC
packets. When j unselects i, in the next TC message i will
state that its selector set size has decreased. If i still has the
largest selector set size, it will keep purging nodes, else, it
will stop. If B′

c is still higher than β′
c then another MPR

will start the same procedure. Using such an approach only
one node is performing the procedure and every other MPR is
acknowledged of its end at the same time. When the MPR with
highest number of selectors cannot purge any neighbor, the
procedure stops, since the network topology cannot be changed
without the risk of breaking the connectivity of the graph. Note
that even if i removes j from the HELLO messages they are
actually still neighbors, so that i will still route packets from
j, so that we do not introduce forced packet loss (especially
in the transitory phase).

The overall effect of cSSTB is to increase Sg and decrease
B′

c (and Bc too) in networks that are critical (B′
c > β′

c) for
their fragility. Since we want to quantify the real impact on
the fragility of the network, we introduce two new metrics
that catch this property. The first one is the shortest path
betweenness of the MPR with the highest number of selectors
imax. This metric expresses the fraction of shortest paths
(longer than 1 hop) between any couple of nodes that passes
across imax. The shortest path betweenness for node imax

gives a good measure of how much imax is central in the
network, and how many potential traffic flows will be affected
if imax fails. Betweenness can be used for several networking
applications, among which routing and firewalling [7]–[9].

The second metric we introduce is the number of changes
in the next-hop value of a routing table when imax fails.
Considering the OO scenario we run the same simulation
twice, with SSTB and with cSSTB (with β′

c = 25). At the end
of the run we force the failure of imax. When such an event
happens, for a certain time frame there is a number ρ of routes
in the network that are pointing to a missing next-hop. In that
transitory phase (whose length depends on the timer used for
HELLO and TC packets) first the one-hop neighbors, then the
two-hop neighbors of imax will have to detect the failure and
decide a new next-hop. For all the nodes, every 0.5s we scan
the routing table and count the number of routes that have a
different next hop from the previous scan. The sum on all the
nodes in the 5 seconds right after the crash (which are enough
for the routing tables to stabilize again) is ρ.

To clarify the methodology Fig. 8 reports the value of ρ and
imax centrality versus time during a simulation. Fig. 8(a) plots
ρ during the entire simulation, Fig. 8(b) is a magnification after
imax crash, and Fig. 8(c) reports imax centrality.

From this sample run we can observe three interesting
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behaviours. First, at the beginning of the simulation, cSSTB
is turned off for 25 s and SSTB is run, because during the
unrealistic transient phase of building up the network in a
simulator it would only delay convergence. Note that cSSTB
can be turned on an off at will without any major drawback.
When cSSTB is turned on it reworks the MPR selection
and consequently the routing tables. This emerges observing
ρ at the initial stage of the simulation. Note however that
in that phase, even if the nodes are changing the routing
tables, they have valid routes for every destination and keep
routing messages even on the links that are being purged,
so this stabilization phase has no impact on the network
performance. Second, after the crash before all the routes have
been updated there will be some routes pointing to a dead link.
The more critical imax is for the network the higher is the
number of routes that have to be updated in order to have a
completely working network again. The zoomed graph shows
that the number of routes that have to be fixed (the integral
of the curve) is much higher without cSSTB. Third, after the
transitory phase the betweenness of imax is smaller for cSSTB
than for SSTB.
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Figure 8. Results on a simulation run imax forced to fail

To conclude the analysis, table II reports the average incre-
ment in the number of MPRs, the value of ρ and the centrality
for networks with 3, 4, and 5 clusters and β′

c = 25. With
this value cSSTB is never activated with a higher number of
clusters.

The number of MPRs is incremented but still much smaller
the values measured over standard OLSR and reported in Fig. 4
so that we still have a significant gain. In the event of a crash,

Clusters 3 4 5
Sg +7.4 +4.3 +2
ρ −33% −14% −14%

imax centrality 0.51/0.35 0.47/0.33 0.35/0.22
cSSTB activation 53% 25% 5%

Table II
SgVARIATION, ρ, BETWEENNESS OF imax AND PERCENTAGE OF RUNS

WHERE CSSTB IS USED INCRESING THE NUMBER OF CLUSTERS

we have from 14% to 33% decrease in the number of routes
pointing to a dead link. This makes the network in that phase
much more robust. Finally, cSSTB is able to decrease the
betweenness of imax of more than 30%.

V. CONCLUSIONS

Topology management in wireless ad-hoc mesh network
remains, after so many years of research, a key component
for these networks without a definitive solution. Recent papers
show that small (protocol and algorithm wise) changes to
the OLSR standard that yield very large improvements in the
number of chosen MPRs.

In some cases the reduction of MPRs can produce network
topologies that are fragile due to high brokerage positions
of some nodes, that have extremely large selectors’ sets. In
this paper we introduced a simple algorithm that requires no
additional signalling and is computationally light, to enable
OLSR to recompute a more robust topology by relieving the
nodes with the highest brokerage of some of their selectors.
The algorithm is based on the concept of clustering coefficient
and in the preliminary experiments we conducted showed good
performance in the reduction of broken routes upon the failure
of central nodes in the network.
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