
Pop-Routing: Centrality-based Tuning of Control
Messages for Faster Route Convergence

Leonardo Maccari, Renato Lo Cigno
DISI – University of Trento, Italy – Email: leonardo.maccari@disi.unitn.it; locigno@disi.unitn.it

Abstract—Fast and efficient recovery from node failure, with
minimal disruption of routes and the consequent traffic loss is
of the utmost importance for any routing protocol. Link-state
protocols, albeit preferred to distance vector ones because of
faster convergence, still suffer from a trade-off between control
message overhead and performance. This work formalizes the
routes’ disruption following a node failure as an optimization
problem depending on the nodes’ centrality in the topology,
constrained to a constant signaling overhead. Next, it shows
that the solution can be found using Lagrange Multipliers. The
solution complexity is low enough to be computed on-line on the
network routers, thus obtaining the optimal setting of control
message timers that minimize the traffic loss following a node
failure. The gain obtained is quantified in power-law synthetic
topologies, and it is also tested on real network topologies
extending the OLSR protocol to use the modified timers, showing
that the inevitable approximations introduced in the analysis do
not hamper the very good results achievable through this novel
approach. The technique can be applied to any link state protocol,
including OSPF, and improves route convergence not only upon
failures but on every topology modification.

Index Terms—Multi-hop networks; mesh networks; ad-hoc
networks; centrality; signalling overhead; failure recovery.

I. INTRODUCTION

Fast recovery after a node (or link) failure is one of the
key features of a link-state routing algorithm. Highly critical
networks use redundant hardware configurations, hardware
mechanisms to quickly detect the failure of a node, and they
implement proprietary extensions to fast re-route the traffic
upon a failure. In many other cases, from small Autonomous
System (AS) to fixed and mobile Wireless Mesh Network
(WMN), this is not possible, thus the failure recovery still
depends on the exchange of layer-3 control messages.

Albeit Dijkstra algorithm ensures fast and efficient min-
imum weight paths computation, the protocol convergence
is still limited by two factors: i) failure discovery; and ii)
propagation of the new topology information. These two
functions are implemented in all major links-state routing
protocols through different periodic messages: HELLO (H)
sent every tH s, and Link-State Advertisement (LSA)
sent every tA s. H messages are sent by every node on every
network interface to announce itself and discover neighbors.
LSA messages are sent by every node to update the routing,
i.e., confirm (or change) the topology of the network and they
are propagated in the entire network to allow every node to

This work has been partially funded by University of Trento with the
grant for the project “Wireless Community Networks: A Novel Techno-Legal
Approach”.

build and maintain the routing table. LSA messages can also
be sent upon failure discovery to speed up convergence.

Whenever a node fails, all the routes passing through the
failed node also fail, creating temporary malfunctions and
traffic loss until the surrounding nodes identify the node
failure (through missing and unanswered H messages) and
start recomputing routes and propagate the changed topology
through LSA messages. Moreover, temporary routing loops
can be created before the information is correctly propagated
to the whole network [1], leading to further service disruption.
Fast convergence requires very small tH and tA; however, this
not only imply a large overhead, but also triggers the risk
of oscillations in case of short, temporary failures, and fast
modifications of link costs, as possible for instance, in wireless
networks with bandwidth- or load-based routing.

There is a clear trade-off between increasing performance
(minimizing route disruption and loops after a failure) and
keeping tH and tA large enough to keep the overhead to a
reasonable level and avoid oscillations. Finding such trade-
off can be formalized as an optimization problem: given a
target overhead find node-dependent values of tH and tA that
maximize the speed of route convergence.

The contribution of this paper is exactly the formulation and
solution of this optimization problem. We derive a method-
ology that enables every node ni of the network to locally
solve it, and to find the values of tH(i) and tA(i) that, based
on the node centrality in the topology, maximize the network
performance. The solution is exact and finds the optimum;
however, the modeling process introduces some inevitable
approximations, thus to validate the model and to show the
viability of our proposal, we implemented it in the Optimized
Link State Routing (OLSR) daemon to test its performance on
real topologies taken from working large scale WMNs.

The name Pop-Routing (abbreviated PopR) comes from a
similarity with equalization presets that can be found on media
players: they increase the loudness of central frequencies and
decreases the loudness of extreme frequencies when listening
to pop music. Since we increase the amount of information
generated by central nodes and decrease it for peripheral
nodes, we call our approach Pop-Routing.

II. RELATED WORKS

Most of the works concerned with our problem have studied
wireless networks, where the problem is more important and
overhead more critical, thus we start with these works, and
specially with those concerning OLSR. Initially the values of

tH and tA have been studied to understand how they influence
the delivery of packets [2], [3]. In [2] the authors introduce a
measure called Route Change Metric that quantifies the impact
of the H timer in terms of routes’ reliability. The results con-
firm the intuition that the timers strongly influence the routes
convergence speed after a modification of the topology. It also
shows that the effect of tuning tH and tA strongly depends
on the network characteristics. An improvement has been to
pre-calculate optimal values for the timers, which has been
investigated in a series of works, the latest being [4], using
optimization techniques and meta-heuristics. This approach
assumes that there is an optimal static tuning of parameters for
a large family of networks. Instead, we dynamically adjust the
parameters based on the position of each node in the topology.

A few works try to autonomically tune the timers in
mobile networks. A network cartography approach is used
in [5], requiring the knowledge of the position of the nodes,
while parameters are changed as a function of the network
size in [6]. Protocol parameters have been studied for their
obvious impact on the convergence times of routes and energy
consumption in heterogeneous networks [7]. None of these
works use centrality metrics or apply an approach similar
to PopR. The extreme case of timers tuning is setting them
to ∞ for some nodes, building a virtual backbone: only a
subset of nodes generates LSA messages. There is a very
rich literature on virtual backbones, with two well studied
approaches: Connected Dominating Sets (CDS) and Multi-
Point Relays (MPR). See [8] for a recent review on CDS,
[9] for a survey on MPRs, and also recent works [10]–[12]
exploring MPR and CDS nodes selection.

Fisheye routing [14] is a smart technique to reduce over-
head. With Fisheye LSA messages are sent with a constant
timer, but with a variable time-to-live (TTL) field. Fisheye
has a serious risk: whenever two nodes in the network have
a different view of the topology, they might take contrasting
decisions and introduce routing loops [15]. PopR does not
suffer from this problem.

Convergence speed of link-state routing protocols is im-
portant also in wired networks. Route convergence for Open
Shortest Path First (OSPF) has been largely studied. A survey
on the issues related to convergence of OSPF and the proposed
workarounds can be found in [16]. Among these, we mention
IP fast re-routing or incremental update of link weights [1],
[17]. These techniques also rely on failure detection and can
be coupled with PopR.

PopR does not define categories of nodes, but increases
or decreases tH and tA using a continuous function com-
puted locally by each node, it does not need negotiations
(as MPRs and CDNs elections) and changes naturally with
the evolution of the network. Moreover, PopR is perfectly
compatible with any other approach as long as the routing
protocol allows differentiated timers: indeed, PopR can also
be applied together with CDS, MPRs, or in general clustering
techniques. All application, but specially real time ones and
live streaming [13] greatly benefits from faster convergence
of routing protocols after topology changes.

Table I
MAIN SYMBOLS USED IN THE PAPER

Symbol Description

ni node i

N , E set of edges and vertexes of the graph
N , E size of E and N
tH(i), tA(i), tH, tA timers for H and LSA messages and default values
VH, VA threshold of lost H and LSA messages
R number of messages for network-wide flooding
bi, B betweenness of ni, array of all bi

L(k), LH, LLSA
theoretical loss due to: nk failure, detection, prop-
agation

L̃A, L̃R, L̃g absolute, relative and global empirical loss reduction
OH, OLSA total overhead when tH(i) = tH, tA(i) = tA resp.
pi,j,={ni . . . nj} sequence of nodes in a shortest path ni → nj

Td, Tp failure detection and propagation time
di degree of node ni

A. Centrality in Networks

A centrality metric estimates how much a node is in the
core or in the periphery of the network, with a meaning that
is highly dependent on the context of the analysis. Centrality
has been used in social science since the ’70s to identify
the most influential elements in social networks [18], but
was not applied to communication networks until recently
[19]. Centrality can be used to enhance network monitoring
[20], intrusion detection and firewalling [21], [22], resources
allocation [23] and topology control [24].

PopR exploits betweenness centrality: the fraction of all
shortest paths routed by a node. Given a graph with N nodes
and E links, the computation of the shortest path rooted at a
node with Dijkstra’s algorithm scales as O(E + Nlog(N)).
Betweenness computation with a straightforward application
of Dijkstra’s algorithm scales as O(N3). Other approaches
take advantage of the sparsity of real networks, that have a
small number of links compared to a full mesh, and achieve
exact computation of centrality in O(EN +N2log(N)) [25].
According to this work, betweenness centrality for all the
nodes in a network with 500 nodes can be computed in
few seconds on commodity hardware. Approximations and
heuristics particularly efficient in real networks are presented
in [26], [27]. These make it possible to compute centrality
on-line with thousands of nodes.

III. FORMULATION OF THE PROBLEM

Consider a network graph G(N , E) where N is the set
of vertexes and E is the set of edges with ||N || = N and
||E|| = E. Tab. I reports the main notation and symbols
we use in the math analysis of the problema. The graph
represents a multi-hop network, where each vertex corresponds
to a node and each edge corresponds to a link. We do not
distinguish between the terms vertex/node and edge/link. Links

aFrom now on we will use the calligraphic style to refer to sets, as in N
and the bold style to refer to arrays, as in B and we refer to the size of a set
with || · ||

0 1

2 3

4

5 6

Figure 1. Sample topology used to exemplify PopR.

correspond to logical interfaces at the IP level, thus in wireless
networks two or more links may share the same physical
resource (radio interface).

When we refer to 1-hop broadcast, we mean that the node
sends the packet to the IP broadcast address on every logical
interface with TTL set to 1, so the packet is not re-broadcast
by the neighbours. For simplicity, each edge has weight 1, so
no quality metric is used to build the routing tables. Results
can be directly extended to link-quality routing.

Refer to the sample network in Fig. 1. Suppose the routing
table of n1 uses n2 as a next-hop to reach n4, so the shortest
path from n0 to n4 will be p0,4 = {n0, n1, n2, n3, n4}. If n3
fails, before the network reconfigures every route that includes
n3 will fail too. The position of n3 in the network is important
to understand how critical its failure is for the network. It is
intuitive that the failure of n3 impacts a number of routes,
while the failure of n0 impacts only traffic to/from n0 itself.
Formalizing this difference and embed it in the logic to define
differentiated timers tH(i) and tA(i) for every node ni is the
core of our proposal.

PopR can be applied to a variety of link-state protocols, for
this reason we do not target a specific one, but we describe
a generic protocol model that includes features of many link-
state routing protocols. Since our interest is primarily directed
to large wireless mesh networks we also implement PopR on
OLSR to test it on a real protocol. We chose OLSR since it is
a widely known and used protocol, with a stable open source
implementation on which we can directly apply PopR. To the
best of our knowledge no other link-state protocol implements
any similar optimization strategy.

A. Link-state protocol model

Let’s consider a generic proactive, link-state routing proto-
col. Every node ni sends H messages every time interval tH(i).
H messages use 1-hop broadcast to discover and maintain
di neighbors. Each H message contains a validity field. A
neighbor nj of ni sets a timer to the validity time at the
reception of any H from ni, if a new H is not received before its
expiration, nj considers link {ni, nj} broken. The validity is
generally set to a multiple of tH(i), so that validity is defined
as VHtH(i) with VH an appropriate constant. Every node ni
also sends LSA messages every time interval tA(i) (generally
with tA(i) > tH(i)). An LSA contains all the valid {ni, nj}
links. LSA messages are flooded and reach every node in the
network so every node nk is aware of the full topology and
can compute the shortest path to any destination and build
its routing table. Similarly to what happens with H messages,

LSA messages include a validity timer so that when nj does
not receive a new LSA from ni before the expiration of the
validity timer, nj will recompute its routing table removing the
links that were included in the expired LSA message. Again,
we express validity as VAtA(i).

We also introduce two simplifying assumptions, that do
not influence the results, but ease the theoretical analysis.
Link-state protocols have a protocol-internal logic that ensures
that every LSA is received by all the nodes passing through
a minimal number of links (we call this number R). Our
conclusions are independent from the minimization strategy
used, the only assumption we do is that R does not depend
on the source of the LSA, which is perfectly plausible. The
second assumption is that tA(i) dominates both propagation
delays and transmission delays. Again, a legitimate assumption
with almost any modern network. If intermediate nodes add
a non-negligible delay before retransmitting an LSA packet to
perform message aggregation, our theory is still valid if the
total information diffusion time is still dominated by tA(i). To
validate this assumption we test PopR on the OLSRd routing
daemon, which introduces an aggregation delay, and we show
that also in this case PopR achieves a large loss reduction.

Finally, note that failure detection via H must happen before
information propagation via LSA, thus it is reasonable to
optimize separately tH(i) and tA(i), else the optimization
could yield mathematically valid but non-realistic values for
the two timers (such as tH(i) >> tA(i)). Albeit separate
optimization does not guarantee that the optimized timers lies
in an acceptable region from the protocol point of view, all
the test we did yielded results within acceptable boundaries.

IV. FAILURE DETECTION AS AN OPTIMIZATION PROBLEM

Referring to Fig. 1, after n3 fails at time T0, nodes n2 and
n4 will sense the event after the timer set to VHtH(i) expires
and recompute their routing tables to use an alternative path.
Considering the worst case scenario in which n3 fails right
after generating the H, the detection time is Td = T0+VHtH(3).

Given all the shortest paths pi,j = {ni, . . . , nj} in the
network, we call bk the shortest path betweenness of nk:

bk =
1

N(N − 1)

∑
i,j∈N ; i 6=j

||{pi,j |nk ∈ {ni, . . . , nj}}||
||{pi,j}||

(1)

bk is a generic graph-based definition that is often used in the
literature. When the graph represents an IP network, at each
instant there is only one shortest path from ni to nj so that
||{pi,j}|| = 1. In a directed connected graph without self loops
the sum in Eq. (1) ranges from a minimum of 2(N −1) paths
that start or terminate at nk, to a maximum corresponding
to the total number of paths given by N(N − 1) implying
bk ∈ [2

N−1 , 1]
b.

We define the potential loss due to the failure of nk as:

L(k) = VHtH(k)N(N − 1)bk (2)

bTypically bk does not include the endpoints in the computation so bk ∈
[0, 1]; we instead use a variant that includes also the paths that have one
endpoint in nk , so that bk is never 0 and singularities are avoided when bk
is at denominator of a fraction.

L(k) is the number of broken paths due to the failure of nk
multiplied by the time these paths stay broken.

If we assume that the traffic matrix is uniform, then L(k)
also estimates the total amount of traffic lost due to the failure
of nk. In case we have precise information on the amount
of traffic per link (which is plausible if such information is
conveyed in LSA messages) then the definition of bk can be
modified to use a weighted graph, where each link is weighted
by the carried traffic so that bk measures the importance of nk
as a function of the traffic it routes. This can be particularly
useful when the network is connected to a gateway node,
which may be topologically peripheral, but may be routing
a large amount of traffic.

Finally, the average loss due to the failure of any node in
the network is given by:

L =
1

N

N∑
k=1

L(k) = VH(N − 1)

N∑
k=1

tH(k)bk (3)

Eq. (3) formalizes something that is intuitively easy to under-
stand. Since the time needed to reconstruct a broken route is
linear with the interval between each H, the average packet loss
due to the breakage of a route grows with the values tH(k).
Moreover, the failure of nodes with high centrality (that are
traversed by many routes) generates a higher loss compared
to the failure of peripheral nodes.

To have a faster route convergence upon a failure we can
thus decrease tH(k), which in turn will increase the overhead
due to control traffic. The overhead generated by node ni with
H messages is given by the number of H messages per second
per link, multiplied by the size of the H messages. Our strategy
does not modify the size of H and LSA messages, so from now
on we refer to the number of control messages when using the
term overhead.

Each H is sent on all the links exiting ni, so the number of
H messages per second is simply:

Oi =
di
tH(i)

(4)

Thus, the total overhead generated per second on the network
is given by:

O =

N∑
i=1

di
tH(i)

(5)

Setting tH(i) = tH for all nodes, we obtain the overhead of the
unmodified protocol: OH =

∑N
i=1

di

tH
.

We can now formalize the problem of failure detection as
an optimization problem defined by Eq. (5) and Eq. (3). Since
the optimization is not influenced by the constants, we can
safely remove them:

minimize LH =

N∑
i=1

tH(i)bi (6)

subject to OH =

N∑
i=1

di
tH(i)

(7)

Eq. (6) minimizes the loss in the network, while Eq. (7) sets
the total overhead to be constant. The solution technique we
use ensures that all tH(i) have the same sign, so it is easy to
select all tH(i) positive.

V. INFORMATION PROPAGATION: OPTIMIZING tA(i)

Every node ni sends LSA messages every tA(i), and each
LSA is forwarded R times in the network for flooding. The
overhead due to LSA messages is:

O =

N∑
i=1

R

tA(i)
(8)

while OLSA =
∑N

i=1
R
tA

is the total overhead in a network
configured to have tA(i) = tA.

To estimate the route disruption caused by delay in LSA
messages we need more insight on the protocol. Refer again
to the failure of n3 in the network in Fig. 1. After the
detection time Td, n2 knows that link {n2, n3} is not active
anymore; it computes a new path to reach n4, which is given
by p2,4 = {n2, n1, n5, n6, n4}; n1, instead, still doesn’t know
of the breakage, so a temporary loop is created between n1 and
n2, which is typical of link-state protocols. The loop will be
solved at time Tp when n1 detects the change in the topology,
which can happen in two different ways: i) after the timer
VAtA(3) expires, so that n1 assumes n3 is dead, removes n3
and its outgoing links from the network graph, and recomputes
the correct path p2,4 = {n1, n5, n6, n4}; or ii) n1 receives a
LSA from n2 (or n4), which does not include n3, so that
n1 knows that link {n2, n3} (or link {n4, n3}) does not exist
anymore, and it recomputes its routing table excluding n3.

Since loops may be created also farther away from the
failure, and they may also include more than two nodes, the
complete description of Tp − Td for each case and each node
is a complex stochastic problem, which is outside the scope
of this paper.

The first way of discovery means that loops may exist at
a node for a period Tp − Td = VAtA(i), where ni is the
failed node; VA is constant for all nodes, so it does not play
any role in the optimization. In the second way of discovery
the period Tp − Td does not depend on tA(i) when ni fails,
but it depends on tA(k) of some node nk neighbor of ni,
since only neighbors can propagate a topology change before
timer VAtA(i) expires. The centrality bk of nk depends on the
position in the network of nk and betweenness is correlated:
neighbors of a node with high betweenness probably also have
a high betweenness. This means that in this second case we
can state that Tp − Td is proportional to some tA(k) of a
neighbor of ni, which is probably close to tA(i) of the failed
node: Tp − Td ∝ tA(k) ' tA(i). Constants do not influence
the optimization, so we can safely state that also in this case
minimizing the routes’ disruption through tA(i) optimization
is correct, albeit approximated. Thus, to solve the optimization
problem, we simply consider Tp − Td ∝ tA(i).

Furthermore, consider that a node failure is not the only
case that leads to route breakage and topology modification,

and in wireless networks it is surely not the most usual one.
If ni does not fail, but for some reason the quality of its links
decreases substantially (e.g., the node is subject to temporary
shadowing), the effect is similar to a node failure: ni is
removed from many, and sometimes all, the shortest paths.
Our model is still valid and tA(i) optimization is beneficial.
This scenario is however not considered in the rest of the paper
for lack of space.

With the analysis above, the total average potential loss due
to LSA messages when a node fails is proportional to

LLSA =

N∑
i=1

tA(i)bi (9)

having removed any constant that do not enter in the opti-
mization procedure. The minimization of Eq. (9) subject to
the constraint expressed by Eq. (8) is structurally the same
optimization problem formulated by Eq. (6) and Eq. (7), so
the same kind of solution can be applied to both problems.

Finally, note that a loop is not deterministically created
when a node fails, since its neighbors may recompute an
alternative route that does not create a loop, so Eq. (9) is
a worst case, and the network performance after a failure may
be better than this. It must be considered, though, that a loop
not only breaks some routes, it generates a flood of packets in
the interested link which makes it (almost) unusable for other
routes. In some cases loops may persist for tens of seconds,
bringing havoc to the entire network. This justifies to use the
worst case scenario to tune tA(i).

VI. OPTIMIZATION SOLUTION

One approach to solve some combinatorial problems is
the use of Lagrange multipliers that can be used to find the
necessary conditions for the extremes of a function subject to
a constraint. We use this approach since it leads to a concise
and elegant solution for our optimization problem.

If x = [x1, . . . , xm] is an array of variables, f(x) is the
function to be minimized/maximised, and the constraint can
be expressed with a function g such as g(x) = 0, then critical
points are defined as the points that satisfy∇f(x) = −λ∇g(x)
for some constant value λ. Critical points include all the
maximum and minimum values of the constrained system.

Consider first H message timers, in this case x =
[tH(1), tH(2), . . . , tH(N)], f(x) is given by Eq. (6), and g(x)
by Eq. (7), so that the gradients are:

∇f(x) = [b1, . . . , bN] (10)

∇g(x) = [− 1

tH(1)2
d1, . . . ,−

1

tH(N)2
dN] (11)

The Lagrange Multiplier generates the set of N independent
equations given by:

bi =
λ

tH(i)2
di; i = 1, . . . , N

and, given we are interested only in positive values of tH(i):

tH(i) =

√
diλ

bi
(12)

enforcing the constraint (7) yields:

λ =
(1

OH

N∑
i=1

√
bidi

)2
(13)

Substituting λ into Eq. (12), we finally obtain tH(i) as a
function of bi and di only:

tH(i) =

√
di√
bi

1

OH

N∑
j=1

√
bjdj (14)

Given the optimal set of timers tH(i), we can use Eq. (6)
to compute the average performance loss, i.e., the expectation
of the product of the number of disrupted routes times the
disruption duration if nodes failure probability is uniform:

LH =
√
λ

N∑
i=1

bi

√
di
bi

=
1

OH

N∑
i=1

√
bidi

N∑
i=1

√
dibi =

1

OH

(N∑
i=1

√
bidi

)2
(15)

Eq. (14) states that if ni knows the betweenness and degree
of the other nodes, it can easily compute the optimal value
for tH(i). If all the nodes in the network apply the same
formula, then the expectation of the traffic disruption upon a
node failure is minimized maintaining the overhead constant
and equal to OH.

With the same procedure we can derive the optimal solution
for Eq. (9) subject to Eq. (8) with O = OH:

tA(i) =

√
R√
bi

∑N
j=1

√
bjR

OH
(16)

LLSA =
1

OH

(N∑
i=1

√
biR
)2

(17)

A. Interpretation of the solution

Eq. (14) and Eq. (17) give a fundamental insight: once
the network topology is known to every node, which is an
intrinsic property of link-state protocols, each node has enough
information to compute the optimal values for tH(i) and tA(i)
in order to minimize the routes’ disruption due to node failures
while keeping the total overhead constant.

This improvement is perfectly compatible with any protocol
that support a differentiated timer for each node, and it can be
used on top of any topology reduction strategy, like MPRs or
CDS [28]. Indeed, our approach supersedes those strategies. In
fact, the basic idea of topology reduction is to apply a binary
label to each node that enables or disables the generation of
LSA messages depending on some properties that are locally
computed (for instance the betweenness computed on the 2-
hop neighborhood, for MPRs in OLSR). Our approach, in-
stead, uses a continuous function to fine tune every timer, with
two advantages: first and foremost, PopR reaches optimality,
second, PopR does not need any negotiation to select MPR or
CDS nodes. Thus, there are no transitory phases in which the
state of the network is logically disconnected. This happens

instead any time a CDS node, a cluster head, or an MPR fails
and the neighbors have to select a new one.

So far we considered nodes’ failure, but routing protocols
for wireless networks use link-quality estimation which make
topological changes more frequent. The loss of H messages
increase the link cost and may trigger route re-computation
even if the link does not effectively break. Indeed, those
dynamics still depend on the H and LSA mechanisms, therefore
PopR will be beneficial also in those cases (as our emulations
on OLSRd show in Sec. VIII).

Even in wired networks using OSPF the optimization of the
H timers is an open problem, with some differences compared
to the wireless domain. First, the requirements of a network
with multi-gigabit point-to-point links carrying real-time traffic
are very high. Detection and recovery of broken links should
be in the order of the tens or hundreds of milliseconds. On the
other hand the available bandwidth per link is generally much
higher, so the waste of resources due to control messages is
marginal compared to a wireless shared medium. Therefore,
one may think that it is safe to arbitrarily reduce tH(i). A key
difference is that a node using OSPF sends LSA messages
periodically with a timer set to tens of minutes (in order
to remove stale entries), but also generates LSA messages
asynchronously when its neighborhood changes. Since tem-
porary link congestion produces correlated packet loss if tH(i)
is very small a short congestion can cause the loss of VH
messages and trigger the generation of an LSA message, and
thus, a global reconfiguration of the routing tables. When the
congestion terminates the topology will change again, and
this will produce random routes’ fluctuations. It is thus of
paramount importance to reduce such risk in nodes that are
not critical for the network topology and concentrate it only
on those that are central, as PopR does.

Finally, note that betweenness is a feature that slowly
changes with modifications in the network: For the centrality
of nodes to change significantly, a large number of shortest
paths need to be redirected. This happens when a new node
that dramatically reduces the average shortest path is added
to the network, and this is a rare event. We believe B can be
recomputed in a static mesh network with a period in the order
of tens of minutes. This is a negligible computational effort
compared to the continuous re-computation of all the shortest
paths that a link-state protocol performs on every minimal
change in the network topology. Note also that even if B is
a little stale and thus only approximates the true betweenness
of nodes, PopR does not produce a service disruption, just a
slightly sub-optimal generation of control messages.

VII. EVALUATION SET-UP

Sec. VIII presents two distinct sets of results. The first one is
obtained applying directly the optimization derived in Sec. IV
and Sec. V on syntetic graphs with controlled properties; the
second one is obtained modifying state-of-the art OLSRd code
and running it on real topologies in an emulated environment.

The first result set is the evaluation of the two loss formulas
given by equations Eq. (15) and Eq. (17). Given a network

graph G(N , E) we set R = E, tH = 2 s, tA = 5 s and we
compute the optimal values of tH(i) and tA(i).

Let LH and LLSA be the value of performance loss (routes’
disruption) obtained with the standard version of the protocol,
i.e., with all timers equal to tH and tA, and L?

H and L?
LSA the

optimal values computed with the optimal values of tH(i) and
tA(i). The absolute value of the performance loss is highly
influenced by the topology, and also by the many constants that
do not influence the optimal operation point. For this reason
we use relative metrics of performance defined as

LR
H = 1− LH

L?
H
; LR

LSA = 1− LLSA
L?
LSA

We use topologies generated following two popular models:
i) The Barabási-Albert (BA) preferential attachment algorithm,
that generates graphs with a power-law degree distribution
that are very common in real networks; and ii) the model
developed by Milic and Malek (MM) in [29]. This is a mixed
geometrical-statistical model that has been created from the
observation of large existing German wireless mesh networks.
To further confirm the results, we also test the performance
reduction on the topology of three real networks: the wireless
community network of Wien (FunkFeuer Wien, abbreviated
FFWien), the community network of Graz (FFGraz) and the
community network of Rome (the Ninux network). These
are three large networks made of 227, 143, and 126 nodes
respectively that can be considered in-production networks
daily used by hundreds of peoplec [30].

The second result set is produced using the Mininet network
emulatord. Mininet allows the emulation of entire networks
with custom topologies, and it is the perfect instrument to
experiment with real implementations of routing daemons in
large topologies made of hundreds of nodes that can not be
recreated in a lab. This second set of results validates the
model of link-state protocols we used in the optimization
answering three key issues: i) How much the approximations
we did in the theoretical formulation affect the results; ii)
What is the effect on PopR of heuristic “improvements” used
by real protocols, such as link-quality metrics and message
aggregation, which we can not capture in our theory; and iii)
What is the global effect due to the application of PopR to both
H and LSA messages, since it is clear that the loss reduction
due to the two effects can not be just summed, but it blends
in ways difficult to predict.

We tested PopR on the OLSRd daemon, and evaluated how
fast the network reacts to the failure of a node. Typically, such
evaluation in real scenarios is done measuring lost packets at
the application layer on a subset of the nodes in the network.
Since we control all the nodes in the emulation we can instead
use a more comprehensive metric, computed as follows:

1) Run OLSRd on every emulated node in mininet with
a given topology G. At steady state each instance of
OLSRd has a routing table with valid next-hops to any

chttp://www.funkfeuer.at/; http://ninux.org/
dhttp://mininet.org/

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9

F
a
il
e
d
 p

a
th

s

Time (s)

Broken paths
Paths with loops

Total non working routes (ri)

Figure 2. Values of rh for a sample run in the Ninux topology. The three
curves represent the number of broken paths (paths that pass through a failed
node) the paths in which a loop is created and the sum of the values.

destination. The routing table for ni at time t is stored
as a dictionary Ri

t[·] that associates a destination node
nk to the next hop nj , so that Ri

t[nk] = nj ;
2) Each Ri

t[·] is saved by every node once every 300 ms
together with the associated timestamp;

3) At time T0 node ni is forced to fail;
4) At time Te, larger than the expected Tp for all nodes,

when all Ri
t[·] are stabilized the emulation is stopped;

5) Post-processing all Ri
t[·] yields the exact estimation of

the routes’ disruption due to ni failure;
6) Iteration over all nodes ni measures the overall perfor-

mance loss.

Once an emulation is over, the processing the dictionaries
Ri

t[·] at point 5) above is as follows:

A) For each timestamp h navigate the graph from every
source nj to every destination nk recursively, using the
routing tables of intermediate nodes. For each h count
the broken routes rh (i.e., those that still include the
failed node or that contain loops). This produces an array
{(T0, r0) . . . (Th, rh) . . . (Te, re)} where each position as-
sociates an instant after the node failure to number of
failures;

B) Define the combined empirical loss reduction (L̃) as the
integral of the step function stored in the array

L̃ =

e∑
h=1

rh ∗ (Th − Th−1)

L̃ gives the exact measure of the number of broken routes
multiplied by the time they remain broken, which is an
effective measure for routing protocol convergence and its
performance loss due to a failure. L̃ combines the effect of
the optimization of both tH(i) and tA(i) and is the empirical
equivalent of the theoretical loss we computed on synthetic
graphs.

Fig. 2 reports a sample run emulating the failure of a node
in the Ninux network. The curves shows the number of broken
paths due both to the detection phase (broken routes) and to the
propagation phase (paths with loops). L̃ is the area subtended
by the envelope of the broken and looped paths.

We repeat each scenario with standard OLSR and with
PopR optimization, obtaining two values of L̃: L̃olsr and
L̃pop respectively. The absolute performance loss reduction is
L̃A = L̃olsr−L̃pop, and the normalized one is L̃R = 1− L̃pop

L̃olsr
.

For each graph G we perform Nf emulations, in each one
a different node fails. Clearly, it is interesting to study the
effect of the failure of nodes with high centrality, since their
failure produces a large reconfiguration and a high stress for
the routing protocol (conversely, if a leaf node fails, only
the traffic that was directed to that node will be affected,
and the application generating that traffic will probably detect
the failure way before the routing protocol does, so route
convergence to leaf nodes is not really interesting). Nf is
the number of nodes for which bk > 2

n−2 , so their failure
also interests traffic that is not directed or generated by them.
If a node failure partitions the network, we compute the
convergence only on the largest component of the network
that remains connected.

Once all the emulations have been run we need another
metric that gives a measure of the average impact of PopR on
the topology, we thus define the global loss reduction:

L̃g = 1−
∑Nf

i=1 L̃pop(i)∑Nf

i=1 L̃olsr(i)

where i is the index of the failed node. L̃g is the average
routes’ failure reduction due to the failure of any node in
the network that potentially carries traffic generated by other
nodes.

Summing up, we compute four metrics that, albeit increas-
ing the complexity of the analysis, are needed to have an
exhaustive evaluation of the theoretical and empirical perfor-
mances of PopR:
LR
H , LR

LSA: relative theoretical loss reduction computed on a
network graph, due to PopR applied to H and LSA
messages respectively in the abstract model of a link-
state protocol;

L̃A: absolute empirical loss reduction computed emulating the
failure of a generic node ni;

L̃R: relative empirical loss reduction computed emulating the
failure of a generic node ni;

L̃g: overall relative empirical loss reduction evaluated on all
meaningful nodes’ failures.

VIII. RESULTS

Fig. 3 reports the relative loss reduction LR
H and LR

LSA on
the two types of synthetic topologies increasing the number
of nodes. The performance of PopR increases as networks
become larger, and results for LR

LSA are those yielding the most
advantage, with routes’ disruptions that are reduced by 25%
in case of MM networks. Recall that PopR does not increase
the overall number (and size) of control messages, so this gain
is, in some sense, “for free”. The difference between BA and
MM networks can be explained by the absence/presence of
leaf nodes. A BA graph has no leaf nodes by construction,
while MM graphs do have leaf nodes. Since leaf nodes have

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

50 100 150 200 250 300 350 400 450 500

L
o
s
s
 r

e
d
u
c
ti

o
n

Network size

LR
H(BA) LR

LSA(BA) LR
H(MM) LR

LSA(MM)

Figure 3. The relative theoretical loss reduction values due to PopR computed
on Milic-Malek and Barabási-Albert graphs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

FFWien FFGraz ninux

L
o
s
s
 r

e
d
u
c
ti

o
n

LR
H

LR
LSA

Figure 4. Relative loss reduction computed on the network topology of three
in-production mesh networks made of 227, 143 and 126 nodes.

the minimal betweenness, B is less skewed if there are no leaf
nodes and there is less room for optimization. As a clarifying
example, consider a ring network, each node has the same
centrality value and PopR will produce tH(i) = tH. Real
networks do have leaf nodes, so we expect that PopR in real
networks will behave as well as in MM networks. For the
same reason, the loss reduction LR

H is practically negligible
with BA networks while it oscillates between 5% and 10% in
MM networks.

Fig. 3 shows that the improvement given by PopR depends
on the network topology and that a topology with leaves has
more room for improvement. Fig. 4 reports LR

H and LR
LSA for

the three real topologies we consider, and it confirms that in
a real topology that has a balanced ratio between leaf nodes
and core nodes, LR

LSA is around 25% and LR
H ranges from 5%

to 10%, aligned with the results obtained using MM graphs.

A. Tests on real topologies

Emulation of the three real topologies compute L̃A, reported
in Fig. 5 for each node failure on the Ninux topology. Due to
lack of space we report only aggregate values for the other two
networks in Table II. The results show that for the majority of
the nodes there is a substantial absolute improvement in L̃A.
The global loss reduction value L̃g reaches 0.28, which means
that assuming a uniform traffic matrix, the use of PopR will
decrease the total packet loss proportionally. We believe this

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45

L
o
s
s
 r

e
d
u
c
ti

o
n

Failed node index

Figure 5. Absolute empirical loss reduction computed on the Ninux network,
with average value reported as the dotted line

Ninux (top ten nodes ranked by centrality)

L̃R 0.50 0.36 0.43 0.43 0.25 0.38 0.25 0.41 0.38 0.32

tH(i) 1.42 1.33 1.48 1.36 1.06 0.89 1.83 2.17 1.96 2.20

tA(i) 1.81 1.81 2.01 2.18 2.20 2.28 2.32 2.47 2.49 2.50
L̃g : 0.28 Max tH(i): 4.51s Max tA(i): 8.1s

FFGraz (top ten nodes ranked by centrality)

L̃R 0.31 0.60 0.40 0.30 0.49 0.31 0.48 0.26 0.36 0.16

tH(i) 1.34 1.40 1.49 1.68 1.38 1.53 1.09 1.53 0.74 1.87

tA(i) 1.38 1.44 1.66 1.72 1.77 1.86 1.87 1.97 2.03 2.08
L̃g : 0.27 Max tH(i): 4.6s Max tA(i): 7.23s

FFWien (top ten nodes ranked by centrality)

L̃R 0.44 0.29 0.40 0.69 0.34 0.30 0.24 0.20 0.37 0.26

tH(i) 1.25 1.36 1.43 1.04 1.65 1.35 1.51 1.60 1.22 1.61

tA(i) 1.15 1.47 1.50 1.59 1.63 1.76 1.88 1.99 1.99 2.0
L̃g : 0.20 Max tH(i): 4.24s Max tA(i): 7.45s

Table II
SUMMARY OF RESULTS FOR THE THREE REAL TOPOLOGIES CONSIDERED

is an extremely relevant result since it is obtained without
increasing the protocol overhead.

For all the three topologies, Table II reports the relative loss
reduction L̃R computed on the ten nodes with the highest
centrality and shows that on those nodes, which are the most
critical ones for the whole network, we can achieve nearly
70% loss reduction. L̃R is not monotonically increasing with
centrality. This is due to two factors, the first is that in some
cases the failure of a very central node partitions the network,
some nodes remain isolated and we have to reduce the overall
number of considered routes. The second is that strictly
imposing the equivalence in the total amount of H messages
in equation 7 penalises the nodes that have many neighbors,
because equation 12 depends linearly from

√
di. Oftentimes

central nodes also have many neighbors and their tH(i) is
limited by this factor. The values of tA(i) grows monotonically
with the centrality while the value of tH(i) doesn’t. A possible
modification could be to relax condition equation 7 replacing
the term di with the average node degree. This would modify
the overall number of control messages, but would not penalise
nodes with high centrality, possibly producing even better
results. Table II also reports the maximum value for tH(i) and
tA(i) to show that the optimization problem is well conditioned
so that the timers do not diverge to unusable values.

IX. CONCLUSIONS

Fine tuning the generation of signaling messages is of the
utmost importance for the performance of routing protocols,
link-state protocols in particular. One of the key performance
indexes is the capability of fast recovery after a node (or link)
failure. Yet, after decades of link-state protocol use, experience
with, and research on them, there is not an automatic, let alone
optimal, procedure to tune the generation timers of signaling
messages.

This work has formalized the problem of minimal dis-
ruption after a node failure as an optimization problem in
the space of signaling messages (HELLO and Link-State
Advertisement) generation timers, subject to the con-
straint that the total overhead in terms of messages per second
remains constant for each category of signaling messages. The
solution of the problem, with some modeling assumptions
that allows the use of the Lagrange multipliers technique,
turns out to be computationally very efficient, so that it can
be implemented on-line even on low-power devices and for
networks of hundreds of nodes.

The theoretical analysis on topologies with power-law char-
acteristics shows that the network disruption, measured in
number of broken or looped routes multiplied by the time they
are mis-functioning, can be reduced by 30% and more aver-
aged of all possible nodes’ failure, while it can be as high as
70% for the most critical nodes. Furthermore, measures on the
topology of real wireless mesh networks obtained extending
the OLSR protocol to include the proposed technique show an
equivalent improvement, validating the approach.

The technique can also be extended to distance-vector
protocols, such as BABEL, BATMAN or BMX6 that are
largely used in wireless mesh networks. These protocols use
H messages for link detection, but they do not distribute
information on the whole topology, so centrality metrics can
be only approximated.

REFERENCES

[1] F. Clad, P. Merindol, J.-J. Pansiot, P. Francois, and O. Bonaventure,
“Graceful Convergence in Link-State IP Networks: A Lightweight
Algorithm Ensuring Minimal Operational Impact,” IEEE/ACM Trans.
on Networking, vol. 22, no. 1, pp. 300–312, Feb. 2014.

[2] C. Gomez, D. Garcia, and J. Paradells, “Improving performance of a real
ad-hoc network by tuning OLSR parameters,” in 10th IEEE Symposium
on Computers and Communications, (ISCC), 2005.

[3] Y. Huang, S. N. Bhatti, and D. Parker, “Tuning olsr,” in IEEE 17th
International Symposium on Personal, Indoor and Mobile Radio Com-
munications, (PIMRC), 2006.

[4] J. Toutouh, J. Garcia-Nieto, and E. Alba, “Intelligent OLSR routing pro-
tocol optimization for VANETs,” IEEE Trans. on Vehicular Technology,
vol. 61, no. 4, pp. 1884–1894, May 2012.

[5] A. Belghith and M. Abid, “Autonomic self tunable proactive routing in
mobile ad hoc networks,” in IEEE Int. Conf. on Wireless and Mobile
Computing, Networking and Communications, (WIMOB), 2009.

[6] L. Guardalben, L. J. G. Villalba, F. Buiati, J. B. M. Sobral, and
E. Camponogara, “Self-configuration and self-optimization process in
heterogeneous wireless networks,” Sensors, vol. 11, no. 1, pp. 425–454,
Dec. 2010.

[7] D. F. H. Sadok, T. G. Rodrigues, R. D. M. Amorim, and J. Kelner,
“On the performance of heterogeneous MANETs,” Wireless Networks,
vol. 21, no. 1, pp. 139–160, Jan. 2015.

[8] J. Yu, N. Wang, G. Wang, and D. Yu, “Connected dominating sets
in wireless ad hoc and sensor networks a comprehensive survey,”
Computer Communications, vol. 36, no. 2, pp. 121–134, Jan. 2013.

[9] O. Liang, Y. A. Sekercioglu, and N. Mani, “A survey of multipoint
relay based broadcast schemes in wireless ad hoc networks.” IEEE
Communications Surveys and Tutorials, vol. 8, no. 1-4, pp. 30–46, 2006.

[10] L. Maccari and R. Lo Cigno, “How to reduce and stabilize MPR sets in
OLSR networks,” in IEEE Int. Conf. on Wireless and Mobile Computing,
Networking and Communications (WIMOB), 2012.

[11] J. H. Ahn and T.-J. Lee, “Multipoint relay selection for robust broadcast
in ad hoc networks,” Ad Hoc Networks, vol. 17, pp. 82–97, Jun. 2014.

[12] L. Maccari and R. Lo Cigno, “Betweenness estimation in OLSR-based
multi-hop networks for distributed filtering,” Jou. of Computer and
System Sciences, vol. 80, no. 3, pp. 670 – 685, 2014.

[13] L. Baldesi, L. Maccari, and R. Lo Cigno, “Improving P2P streaming in
Wireless Community Networks,” Computer Networks, vol. 93, Part 2,
pp. 389–403, Dec. 2015.

[14] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen, “Scalable
routing strategies for ad hoc wireless networks,” IEEE Jou. on Selected
Areas in Communications, vol. 17, no. 8, pp. 1369–1379, Aug. 1999.

[15] Y. Faheem and J. L. Rougier, “Loop avoidance for fish-eye OLSR in
sparse wireless mesh networks,” in IEEE Int. Conf. on Wireless On-
Demand Network Systems and Services (WONS), 2009.

[16] M. Goyal, M. Soperi, E. Baccelli, G. Choudhury, A. Shaikh, H. Hosseini,
and K. Trivedi, “Improving Convergence Speed and Scalability in OSPF:
A Survey,” IEEE Communications Surveys Tutorials, vol. 14, no. 2, pp.
443–463, 2012.

[17] P. Francois, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in OSPF networks,” in IEEE Int. Conf. on Computer
Communications (INFOCOM) (Best Paper Award), 2007, pp. 89–97.

[18] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[19] D. Katsaros, N. Dimokas, and L. Tassiulas, “Social network analysis
concepts in the design of wireless ad hoc network protocols,” IEEE
Network, vol. 24, no. 6, pp. 23 –29, Dec. 2010.

[20] S. Dolev, Y. Elovici, and R. Puzis, “Routing betweenness centrality,”
Jou. of the ACM, vol. 57, no. 4, pp. 25:1–25:27, May 2010.

[21] R. Puzis, M. Tubi, Y. Elovici, C. Glezer, and S. Dolev, “A Decision
Support System for Placement of Intrusion Detection and Prevention
Devices in Large-Scale Networks,” ACM Trans. on Modelling and
Computer Simulations, vol. 22, no. 1, pp. 5:1–5:26, Dec. 2011.

[22] L. Maccari and R. Lo Cigno, “Waterwall: a cooperative, distributed
firewall for wireless mesh networks,” EURASIP Jou. on Wireless Com-
munications and Networking, vol. 2013, no. 1, pp. 1–12, 2013.

[23] M. Kas, S. Appala, C. Wang, K. Carley, L. Carley, and O. Tonguz, “What
if wireless routers were social? approaching wireless mesh networks
from a social networks perspective,” IEEE Wireless Communications,
vol. 19, no. 6, pp. 36–43, 2012.

[24] A. Vzquez-Rodas and L. J. de la Cruz Llopis, “A centrality-based topol-
ogy control protocol for wireless mesh networks,” Ad Hoc Networks, vol.
24, Part B, pp. 34–54, Jan. 2015.

[25] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” Journal
of Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[26] U. Brandes and C. Pich, “Centrality estimation in large networks,”
International Journal of Bifurcation and Chaos, vol. 17, no. 07, pp.
2303–2318, Jul. 2007.

[27] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes, “Heuristics
for Speeding Up Betweenness Centrality Computation,” in ASE/IEEE
Int. Conf. on Social Computing, Int. Conf. on Privacy, Security, Risk
and Trust, 2012, pp. 302–311.

[28] T. H. Clausen, P. Jacquet, D.-Q. Nguyen, and E. Baccelli, “RFC 5449:
OSPF Multipoint Relay (MPR) Extension for Ad Hoc Networks.”
[Online]. Available: https://tools.ietf.org/html/rfc5449

[29] B. Milic and M. Malek, “NPART - Node Placement Algorithm for
Realistic Topologies in Wireless Multihop Network Simulation,” in Int.
Conf. on Simulation Tools and Techniques (SIMUTOOLS), 2009.

[30] L. Maccari and R. Lo Cigno, “A week in the life of three large wireless
community networks,” Ad Hoc Networks, vol. 24, Part B, pp. 175 – 190,
Dec. 2015.

