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ABSTRACT

This paper proposes a new method of data authentication and encryption for distributed networks supporting mobile soft-
ware agents. Software agents are a valuable instrument in wireless distributed monitoring networks, because they can be
used to concentrate monitoring efforts in certain areas where an event is taking place. In this way, events can be tracked in
a dynamic and efficient way. Mobile agents have to send messages to each other in order to coordinate their actions, and
those messages need to be secured by crypto credentials. However, when agents are moved over wireless networks, how
can credentials be protected from sniffing by an attacker, besides layer II encryption? Moreover, if a rogue agent is injected
in the network, is it possible to limit the damages it can produce? The proposed approach bridges mediated RSA with the
trusted platform modules, in order to provide an efficient and secure communication between agents. The communication
is secured using indeed Identity based cryptography, while maintaing the compatibility with standard RSA and eliminat-
ing the mediator introduced by mediated RSA. We will show that this approach is convenient in terms of traffic overhead,
perfectly applicable to existing trusted platform modules specifications and able to limit damages that both external and
internal attackers can produce to the network. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A wireless pervasive network is a collection of technolo-
gies that enables the user to seamlessly communicate with
devices embedded in the environment and offers enhanced
possibilities of interaction.

In this model, the network consists of a mesh of
heterogeneous devices. The devices perform machine-
to-machine communications and interact with the users’
terminals to create a distributed ambient intelligence.

In order of growing complexity, some of the com-
ponents of the network can be sensors to monitor the
environment, actuators to react to environmental changes,
smart furnitures, surveillance, and security systems.

The user interacts with the network explicitly, in order
to receive alarms and control the devices, or implicitly,
as the devices he/she wears may change the behavior of

smart objects in the environment. Moreover, the network
could allow external users or entities to communicate with
the devices, for example, the security personnel or other
similar networks, in order to enforce the so-called Internet
of Things paradigm. For a very comprehensive survey on
pervasive networking and its challenges, refer to [1].

A programming model that, in our opinion, should be
used in this context is represented by software agents [2]
and, specifically, by mobile agents [3,4]. Mobile agents are
programs that roam from one platform to another and inter-
act with a software middleware present in the nodes; they
perform their assigned tasks and report the results. Because
the hardware platforms used are generally resource lim-
ited and the tasks to be performed are dynamic in time and
space, the creation and distribution of dedicated software
can make the network more flexible. As a consequence,
mobile agents in distributed networks are an active field of
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research. In ad-hoc networks, they are studied to support
service discovery [5], routing [6], and intrusion detection
[7]; while in wireless sensor networks (WSN), they prove
to be useful because they allow to achieve a better moni-
toring of events [8]. Recently, software implementations of
mobile agents have been made [9] and have been tested on
real devices to show their potential [10].

One of the main challenges in these networks is to make
sure that only the allowed entities can gather data from the
network and run specific tasks on the various networked
entities. Security aspects of mobile-agents are very chal-
lenging as in such an exposed network; the code can be
stolen and analyzed, the credentials it carries can be re-
used, rogue agents can be injected in the network through
the gateway or a compromised host, and so on. Therefore,
whenever a control center or a device receives data from
an agent, it must be able to verify that it comes from a
well-behaving agent and from a specific node. The source
agent and the source node of the data are two key factors to
be verified.

In order to enhance the security of the network, we pro-
pose to combine standard trusted platform module (TPM)
chips, present in many commercial devices, and identity-
based cryptography (IBC) concepts. The former will pro-
vide robustness, while the latter allows to use public-key
cryptography without the burden of a public-key infras-
tructure (PKI).

Using these components, we design a novel approach
that provides assurance on the integrity of the agent as well
of the hosting node, with a much lower impact on net-
work performance in comparison with standard encryption
techniques.

2. SCENARIO AND STATE OF
THE ART

We are considering a network of devices interconnected
by a wireless mesh network. The devices are sensors or
actuators, and they carry either sensing devices or actuators
in order to perform their specific tasks. In such a scenario,
the wireless links are inherently insecure, and the devices
could be stolen or modified (i.e., fall in attacker’s hands).
Their own duties could be modified, possibly affecting the
behavior of the whole network.

Typically, in such networks, the device behavior is
pre-determined at deployment phase by flashing their
firmware. Such an approach is not flexible, as a repro-
gramming (possibly over-the-air) is needed to modify
the device software. Furthermore, an attacker can use
reverse-engineering to acquire the knowledge of the whole
network.

In order to solve the previously mentioned issues, the
mobile agent paradigm can be used. Mobile agents allow
a node to quickly change its behavior while limiting the
capability of inspection of node programmed functions by
an attacher. Therefore, we consider a system where the
devices are either sleeping, when they have little or no

functionalities in their firmware, or active, when they have
one or more active mobile agents running. As soon as a
mobile agent is no more needed in a particular device, it
should roam to a new device or delete itself.

The selected scenario can be easily mapped into dif-
ferent real-world situations—for example, outdoor events
monitoring, home automation, tactical battlefield, and so
on. In an outdoor event, for example in a stadium, num-
ber of sensors or actuators might be deployed in the area,
each of them being networked through a mesh wireless net-
work. The mobile agents will be spawned in the network
in order to perform a ‘background’ monitoring, with spe-
cialized agents spawned only on-demand (for example, if
there is a particular event to monitor more accurately).

Regardless of the specific scenario, mobile agents will
have to communicate between each other, in order to
increase their event awareness and with external data cen-
ters. Moreover, they will need to validate the device they
are roaming to, in order to avoid potentially compromised
devices.

This kind of network carries many sensitive informa-
tion and, consequently, can be a valuable target for attacks
aimed to modify the behavior of the nodes or to access
the data that are carried. Unlike traditional wired net-
works or home wireless networks, this kind of network has
a much larger and undefined perimeter. An attacker can
access it through the gateways exploiting insecurities on
the remote connections or directly attacking the wireless
devices. Once a device has been successfully attacked, the
mobile code, which will be run on that host, will be com-
promised as well. If the code of a mobile agent is analyzed,
the credentials it carries can be re-used by the attacker.
In this way, the attacker could inhibit the triggering of
reactions, inject rogue agents and, thus, finally bypass the
security measures.

For this reason, the authentication of the source agent
and the source node of the messages are two critical fac-
tors. Whenever the control center or any other device
receives data from an agent, it must be able to verify, on
one hand, that the information comes from a well-behaving
agent and, on the other, that it comes exactly from the
declared source node.

The solution we propose in this paper has the goal of
securing the communication between all the entities of the
network (devices, agents, and control center) by authen-
ticating their messages and assuring that data come from
non-modified agents. We take into consideration a very
challenging scenario in which the lifetime of the agents is
short. Therefore, new agents with fresh keys are often cre-
ated and, for this reason, key caching is not considered. Our
effort is focused on reducing the amount of traffic needed
to move the keys, while preserving the security level.

The proposed design is intended to resist to two levels
of attacks. Firstly, if a malicious agent is introduced in
the network, it must be impossible for it to send valid
information to other agents and to receive messages
from them. Secondly, if an attacker gains administration
rights on a node, even if he could be able to access the
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information elaborated by the agents on that node, he
would not be able to re-use this information in other hosts
that he does not control. This will slow the penetration
speed of a successful attack.

Summarizing, in this paper, we propose a method that
will

(1) Perform agent and host authentication, with host
cryptography operations performed by the local
node using the TPM devices.

(2) Use IBC in order to avoid the overhead due to
distribution and usage of RSA certificates.

(3) Use the TPM to distribute the mediator introduced
by the mediated-RSA scheme (see next subsec-
tion).

We designed our solution to be compliant with another
requirement; it must be compatible with existing state of
the art software and hardware, namely RSA primitives and
standard trusted computing hardware.

In the following part of the section, we will outline those
technologies and why they are not suitable for our goal.

2.1. Certificate-based security

Using two distinct RSA keys is a straight solution to certify
both the mobile agent that is the generator of a message and
the node where the agent is running. In this case, each net-
work node and each agent must be equipped with a valid
certificate; each message is first signed with the agent pri-
vate key then encapsulated in another message signed with
the node private key. This strategy has a negative impact on
network performance, because it introduces four encryp-
tion/decryption operations and largely increases the size of
the message due to the initial exchange of certificates.

Using RSA with only one encryption could be a simpler
strategy. This approach provides the authentication of only
the source agent or the source node, and it is the one with
the least impact on network performance. We will use this
approach as a benchmark for the simulations of Section 5
to show that our solution gives a comparable impact on
network resources while assuring a higher security level.

These approaches have two main drawbacks: on one
side, valid certificates must be exchanged whenever a mes-
sage is sent for the first time, thus increasing the delay; on
the other, whenever the attacker gains possession of a host
node or of the agent’s mobile code, he can access the secret
part of the public/private key couple.

Our solution approaches these issues relying on IBC,
with no need of any key or certificate exchange, and using
the TPM to seal private keys.

2.2. Identity-based cryptography and
mediated RSA

The problem of the exchange of public keys between hosts
has been approached in the last decade with identity-based
algorithms. IBC has been introduced in [11] and analyzed

in [12] and [13]. It substitutes the public key of a user with
the expansion of a unique ID directly related to the user.
For example, when sending a ciphered email with IBC, the
sender will use the destination email address as one of the
inputs to a one-way function and use the result as a pub-
lic key. This approach eliminates the need for certificates
and for the protocols necessary to exchange them, such as
transport layer security (TLS). The adoption of IBC has
several side-effects widely analyzed in literature. The main
one is the fact that the user can not create its own keys. A
dealer will have to generate the public and private keys for
all the users. Another limitation of IBC is that the crypto-
graphic primitives used are incompatible with widely used
RSA algorithm. Mediated RSA (mRSA) is an attempt to
adapt the IBC architecture to standard RSA cryptographic
primitives.

2.2.1. Mediated RSA.

An mRSA is presented in [14], using well known RSA
primitives, in order to achieve IBC (refer to Table I for the
definitions of function’s names and variables used in this
paper).

The mediated RSA concept is based on splitting the
keys between the user and a trusted SEcurity Mediator
(SEM). This basic approach has several drawbacks. For
example, it introduces a single point-of-failure in the sys-
tem and high delays in wireless mesh networks because of
the fact that the mediator must be involved in all message
exchanges. There are several works (Section 3) that tried
to alleviate this issue. In our approach, the SEM duties are
split up into local functions performed by the TPM, thus,
eliminating both issues mentioned previously.

In mRSA, the public key ei of user Ui is generated as a
hash function h applied to the user ID, ei = h(Ui). Given
the global parameter n (the size of the RSA modulus), the
private key di is generated inverting ei (similarly to stan-
dard RSA) subject to eidi = 1 mod �(n) where �() is the
Euler’s totient function. Note that a user Ui owns a key that

Table I. Reference table for the parameters and functions.

Symbol Meaning

Ai Agent i (or ID of agent i)
Hk Host k (or ID of host k)
h(), g() hash functions
d,e,n,p,q RSA parameters
du,dsem mRSA private keys
m, m|0 plaintext message, padded message
c ciphertext message
ei,k , di,k public, private key of Ai on Hk

OS2IP() string to integer conversion
P(), P–1() padding functions
e

tpm
k , d

tpm
k a valid public and private key for the

TPM of host k
h(Pi) a hash performed on the executable

code of process i (i.e., agent i)

ID, identity; TPM, trusted platform module.
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refers to the same n of any other user Uj, and that user Ui
can generate the public key of Uj just by the knowledge of
the user ID of Uj.

Nevertheless, the security of the RSA algorithm resides
also in the fact that each public/private key must be based
on a distinct n value. It can be easily shown that, given
the knowledge of a couple di, ei and n, the prime num-
bers p and q that generated n can be recovered (the proof
is reported in Appendix A.1). Given this, the knowledge
of di, ei allows any user to invert any key dk or ek that
has been generated using the same modulo n. This prob-
lem is solved by mRSA by splitting di in two parts, di =
du

i + dsem
i (mod�(n)). The first half is given to the user,

while the second is kept by a mediator. A cipher-text c
derived from the encryption of message m with public key
ei will be decrypted both by the user and the mediator.
They will generate two values cu = cdu

i and csem = cdsem
i .

The multiplication of these two values yields the original
message because cucsem = cdu

i cdsem
i = cdu

i +dsem
i = cd

i =

medi = m(mod n).
Thus, in the mRSA algorithm, the user only knows half

of the private key di, and can not derive p, q. The draw-
back of this approach is represented by the mediator, as it
becomes the bottleneck for the protocol. Each time a pri-
vate key must be used for signing or for decrypting, the
mediator must participate in the data exchange.

This has a heavy impact in the considered distributed
scenario, because the communication overhead would lead
to battery depletion and shorter lifetime of the whole net-
work. Moreover, because large delays would be introduced
by multi-hop transmissions, the end-to-end delay would be
severely affected.

2.3. Trusted platform module

In order to describe the details of the proposed solution,
we need to introduce another building block, the TPM. The
TPM architecture was defined by the Trusted Computing
Group and published as a standard in [15] (see [16] for an
overview and [17] for details on its internals). TPM chips
are often used in commercial devices (estimated in mid-
2010 to 250 000 000 installed units, [18]) and are the basis
of complex professional security systems.

The TPM chip is useful for our purposes because of the
following:

(1) It has the ability to store encrypted data that can
not be accessed by the user without using the appli-
cation programming interfaces (APIs) provided by
the chip.

(2) It can perform cryptographic functions such as
RSA encryption and signature, Secure Hash Algo-
rithm (SHA) hashes and Advanced Encryption
Standard (AES) encryption.

(3) It includes a unique RSA public and private key
not readable by the user but usable with the APIs
(the key is called endorsement key (EK)). From this

key, when the chip is initialized by the user, a new
RSA key pair is generated, the storage root key.

(4) It can generate new RSA keys organized as a hier-
archical tree, where each father key is used to
securely store the child key. The storage root key is
used to securely store the root of the tree.

(5) A user can import a key as a blob encrypted with
one of the valid TPM public keys. The user might
be asked an optional password to import and use
the key.

(6) Because the internal memory of the chip is limited,
an external memory can be sealed using crypto
keys that works as a secure storage for the chip
data.

(7) Other TPM-aware devices or software can commu-
nicate with the TPM. The BIOS of the computer
can perform an integrity hash of the operative sys-
tem kernel and verify it using the TPM before
booting. The same can be performed by the operat-
ing system to run another software and, in turn, by
any program spawning new child processes. With
a certain level of complexity, this creates a chain of
trust ensuring that all the software running on the
host has not been tampered by an attacker.

In Figure 1, a simplified graphical representation of a TPM
is reported. For our purposes, the most interesting fea-
ture of the chip is that a user can store crypto-blobs into
the TPM. Crypto-blobs contain RSA public/private keys
encrypted with one of the valid keys previously stored in
the TPM. Being ciphered, a crypto-blob can be carried
even over an insecure channel. Once the key is stored in
the TPM, the user can access the TPM with the appropri-

Figure 1. Simplified trusted platform module structure and key
management.
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ate APIs. APIs do not reveal the private part of the key;
however, they give the possibility of using it to sign and
decrypt data.

The knowledge of the top-level EK allows the recovery
of all the key-tree stored on the chip. This is a prerogative
of the manager of the device, that is the one who ini-
tially enables the chip and sets a master password. For this,
operation physical access to the device is necessary. The
manager can also remotely perform operations on the TPM
securely, because the standard provides secure communi-
cation protocols. In our scenario, the chips are enabled
off-line before network deployment.

In this paper, we do not take into consideration the case
of a manager that discloses the master password or the
EK key.

2.3.1. Trusted platform module performance.

To verify its real applicability, TPmRSA (described in
the following) has been implemented using the Trousers
open source library and a software TPM chip emulator
largely used in most of the compatibility tests in literature.
The implementation of TPmRSA has confirmed the appli-
cability of the mRSA algorithm to the TPM primitives.

The time needed for encryption or signature using a
TPM device depends on the device chosen. In [19], bench-
marks on various TPM chips show that RSA signature
with 2048-bit keys takes a time between 300 and 500 ms,
while for 1024-bit keys it takes between 100 and 206 ms.
Specifically, the AT97SC3203 chip shows a performance
of less than 100 ms computation time for a 1024 bits
RSA signature (in line with what reported by its data
sheet). It is interesting to note that the same chip is the
one that has been mounted on a sensor board by the
authors of Shih et al. [20], showing computation time and
energy consumption compatible with sensor requirements.
This performance is generally outperformed by encryp-
tion operated on the main processor of a standard PC.
Nevertheless, nodes that form our target scenario (wire-
less routers, mobile terminals, sensors. . . ) are not equipped
with standard desktop hardware, and their performance is
comparable to performance of a TPM chip. It is also worth
noticing that on the target scenario, the security require-
ments can generally be relaxed in comparison to other
more common applications. To break a 768-bit RSA key,
the authors of Kleinjung et al. [21] spent two and a half
years on hundreds of machines�. Because the time to break
such a key can be longer than the lifetime of the network
itself, using short RSA keys may be an affordable risk.

� The authors of [21] report that “We spent half a year on
80 processors [. . . ] This was about 3% of the main task, the
sieving, which was performed on many hundreds of machines
and took almost two years. On a single core 2.2 GHz AMD
Opteron processor with 2 GB RAM, sieving would have taken
about fifteen hundred years.”

3. RELATED WORKS

The security of mobile agents is an active field of research
as analyzed in [22]. In some cases, it has been coupled with
trusted computing, as in [23]. Trusted computing has been
proposed also to leverage the security of wireless mobile ad
hoc networks [24–26]. Recently, it has been proposed for
WSN mixing trusted and untrusted hosts [27]. It has even
been ported to WSN hardware showing sustainable perfor-
mances [20]. IBC has been proposed for wireless mesh net-
works [28]. However, only two works, to our knowledge,
try to mix trusted computing and IBC. In [29], the authors
present a scheme that implements an ID-based encryption
scheme coupled with the use of TPM chips. The scheme
is aimed to implement the secure extraction of IBC keys
by a user using the trusted infrastructure given by TPM
chips. The authors do not use standard TCG hardware,
because the standard hardware does not expose the needed
primitives to correctly implement IBC. Our solution relies
on the IBC concept and correctly runs on standard hard-
ware using just plain RSA functions. We also over-
come the difficulties that lead the authors of Gaun et al.
[29] to use a custom hardware-accelerated encryption and
storage platform. In [30] is described a platform for imple-
menting a distributed security-mediated PKI using a peer-
to-peer system. The work includes the use of a trusted
computing platform in order to secure the communica-
tions between couples of islands and form a distributed
PKI. The authors implemented a trusted chain of software
outside the TPM chip to overcome the limitations of the
hardware. Moreover, their specific application has different
constraints. As a consequence, it focuses on different secu-
rity aspects (such as distribution of the PKI and replication
and migration of SEM capabilities) that do not apply to
our work.

None of these works is focused on distributed wireless
networks. On the contrary, our paper presents and evaluates
a framework that is usable in such a context.

At the blackhats conference, in 2010, it has been shown
that with a 200K$ microscope, it is possible to extract
data from an Infineon TPM chip�. Such an attack requires
the physical extraction of the TPM chip and its analysis
with a special hardware. We do not take into considera-
tion this possibility for two reasons: firstly, because the
attacker must physically steal and extract a network node
and, secondly, because the total cost of the attack may be
higher than the whole cost of the network we describe in
our scenario.

4. TRUSTED PLATFORM
MODULE-BASED MEDIATED RSA

The core of our proposal consists in using IBC concept as
in mRSA, in order to avoid the exchange of certificates.

� http://www.flylogic.net/blog/
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We also substitute the centralized mRSA mediator with a
distributed mediator represented by TPM devices. In this
way, the mRSA approach is preserved, and the problem
of the centralized mediator is avoided. Each agent will
carry only half of the secret needed to authenticate a mes-
sage and will use the TPM in its host device to access the
other half.

We will show that a plain application of mRSA to TPM
devices is impossible. Because our goal is to be compli-
ant with current TPM specifications, we will propose two
modifications that will achieve the same goal.

In the first solution, named TPmRSA, we maintain the
mRSA idea, but we use classical encryption functions that
do not need key splitting. In the second solution, named
TP*RSA, we effectively use mRSA algorithm adapting it
to the TPM context.

4.1. Mediated RSA on trusted platform
module devices

As a first step, we designed the implementation of mRSA
on TPM compliant devices as follows:

(1) At network setup, for each agent Ai and host Hk, a
set of key couples (ei,k, di,k) is created:

� ei,k = h(Ai, Hk) is generated using IBC;
� di,k is generated inverting ei,k by using the

secret parameter �(n).

The n parameter must be public and fixed. Con-
sequently, to each agent, Ai will correspond a set
of public keys ei,k, each one to be used on host k.
For every host Hk, di,k is split with mRSA and dis-
tributed for its first half da

i,k to Ai and for its second

half dtpm
i,k to the corresponding TPM in Hk.

(2) dtpm
i,k is moved to the corresponding host in the net-

work, while every agent will be equipped with the
da

i,k for each host it is allowed to move.
(3) Any agent Aj on host Hl, when sending a message

to Ai on host Hk, will derive the corresponding pub-
lic key as h(Ai, Hk) and send the ciphered message
to Hk where Ai resides.

(4) Ai on host Hk will decrypt the message with dtpm
i,k

using the TPM API and in parallel with da
i,k that it

owns. Similarly, the message can be also authen-
ticated using the two halves of the private key da

j,l

and dtpm
j,l .

(5) Optionally, the dtpm
i,k could be reduced to a dtpm

k
removing the dependence over the agent. This
would simplify the key management on the hosts
but would downgrade the host-based authenti-
cation to a simple network-based authentication
shared for any host.

Such a solution has many advantages over classical
RSA or mRSA. Firstly, it does not rely on certificates, so
that any agent is able to communicate with any other agent
on any other host using its public key that can be easily
derived by the IDs. Secondly, it does not rely on a central-
ized mediator, thus it does not introduce bottlenecks. It is
important to notice that with mRSA, the mediator could
be contacted twice during the communication, for signing
the message before it is sent and for decryption when it
is received.

If the dtpm
i,k is agent-dependent, it is necessary to dis-

tribute this key to Hk whenever a new agent is generated.
This can be performed by the agent itself carrying keys
in crypto-blobs, as explained in Section 4.2, or with keys
pre-distribution, as explained in Section 4.3.

The security features of the crypto functions correspond
to the underlying mRSA scheme. Specifically, no single
agent is in possession of a complete (ei,k, di,k) couple, thus,
can not factor n. Consequently, �(n) remains secret and the
generation of key-couples is possible only for the network
manager.

The main obstacle to this approach is that the TPM does
not export to software libraries, a function that performs
plain RSA mathematical functions, forcing the agent to
apply standard procedures for encryption and decryption,
i.e., public-key cryptography standards (PKCS). PKCS is
a suite of standards used to design a formal protocol from
the mathematical primitives used in public key encryption.
One of the features introduced in PKCS is the use of opti-
mal asymmetric encryption padding (OAEP), a padding
and randomization function.

Given a plain-text m, a random number r and two
hash functions h() and g(), OAEP introduces the following
procedure�:

(1) Add to m a zero sequence padding to reach the length
necessary for integer exponentiation.

(2) Expand r to the length of padded m using g, combine
it with padded m.

(3) Reduce the result of the combination using h and
recombine it with r. More formally

� m! m|0
� X = g(r)˚ (m|0)
� Y = h(X)˚ r

(4) encrypt and transmit X,Y

For decryption, do

(1) decrypt X,Y
(2) recover r = Y ˚ h(X)
(3) recover m|0 = X ˚ g(r)
(4) remove padding: m|0! m

� For the sake of clarity we omit some details of OAEP irrelevant
to our context
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This procedure ensures that encrypting twice the same
content will produce a different cipher-text in order to
avoid reply attacks.

Using the TPM, all the steps of the decryption are
implemented in a single function in the TPM API that
returns the decrypted block. This last step makes it impos-
sible to use mRSA on TPM devices. Note that the padding
is added by the sender to m, encrypted with ei,k key and
transmitted to Hk where Ai resides. When the decryption
is performed by the TPM device, the dtpm

i,k key is used, but
the decryption will not produce the cleartext. Instead it will
produce a partially decrypted message to be combined with
the other partial decryption performed by the agent.

Consequently, the decryption operated by steps 2 and 3
will lead to a non-padded decrypted message, so that step
4 in the decryption fails and the API returns an error state.
It is not possible to mangle X,Y at the receiver, before the
decryption, to produce a valid padded message, because
the decryption is performed with dtpm

i,k , which is a quan-
tity stored only in the TPM. The possibility of blindly
modifying a cipher text in order to selectively alter the cor-
responding cleartext would be contrary to the security of
the RSA scheme itself. Similarly, it is impossible, starting
from m, to craft a cipher text that, once partially decrypted
with dtpm

i,k , is OAEP compliant.
Concluding, this solution may be applicable to other

hardware crypto devices giving a more fine-grained con-
trol on the mathematics involved in RSA. However, it is
not directly portable to the TPM. Our two alternative solu-
tions are described in the rest of this section, we named
them TPmRSA and TP*RSA.

TPmRSA does not use key-splitting. The agents can
not use the crypto-blobs they are equipped with and they
must rely on the mediator. Therefore, it can be classified
as an extension of the concepts introduced by the origi-
nal mRSA. TP*RSA, on the contrary, uses key-splitting
in a similar way to the original mRSA. For the sake of
simplicity, in this paper, we will use the term mediated in
both cases .

4.2. TPmRSA

TPmRSA combines IBC and the basic ideas of mRSA in
a perfectly compatible way with TPM current hardware.
Briefly, this approach consists in using IBC to generate
keys for (Ai, Hk) that agent i carries in a ciphered blob.
Each blob can be decrypted only in the TPM of Hk. In
detail, the procedure works as follows:

(1) Each host Hk in the network is equipped with one
public and private key etpm

k /dtpm
k . Both keys are

stored in the TPM. This procedure is performed
only once at network set-up.

(2) For each agent Ai and host Hk, a set of key couples
(ei,k, di,k) is generated, ei,k = h(Ai, Hk) is generated
using IBC and di,k is generated inverting ei,k using
the secret parameter �(n). The n parameter must be
public and fixed.

(3) Each di,k key is encrypted in a blob using etpm
k ,

each Ai is equipped with the blobs corresponding to
the hosts it is allowed to roam to. When Ai moves
to Hk, it will carry the corresponding di,k and store
it into the TPM. Once stored in the TPM, the access
to the key is conditioned by the possession of a
password. The password is set to h(Pi), where Pi
is the executable code for agent Ai. The password
is stored inside the blob itself and the blobs are
contained in the data code of Ai.

(4) Whenever a second agent Aj will need to commu-
nicate with Ai residing on Hk, it will compute the
ID-based public key ei,k = h(Ai, Hk) and use it to
cipher the messages directed to Ai on host Hk.

(5) Agent Ai will be able to decrypt the message with
di,k stored in the TPM using the password set to
h(Pi).

Any message sent by an agent can only be decrypted by
the intended receiver on the specified host and by nobody
else. If Ai roams to another host Hl, it will load the cor-
responding key without needing to contact the network
manager. With trivial modifications, the messages can be
authenticated too.

To reduce the size of the keys carried by the agent, keys
can be left on the corresponding host after the first visit.
They will be purged by the host after a fixed maximum
lifetime of the agents.

The usage of h(Pi) to unlock di,k binds the agent to
the key. The blobs can be generated only by the network
manager that is in possession of �(n) and can create valid
public/private keys. When the blob is generated, also, h(Pi)
is stored inside the blob, so that the blob contains a finger-
print of the original code of Ai. When Ai wants to use di,k,
the middleware that manages the mobile agents can per-
form a hash on the executable code of Ai and verify that
the h(Pi) unlocks the key in the TPM for Ai. In this way,
the agent and the crypto blob are bound to each other, and
it is not possible for an attacker to steal a valid crypto blob
and use it on a malicious agent.

As in the previous case, certificates are not needed
because IBC is used. Consequently, the communications
are set-up without the initial overhead needed, for instance,
for the TLS protocol.

4.3. TP*RSA

In [31], another variation of the classical RSA algorithm is
proposed, multiplicative RSA or *RSA. In *RSA, a private
key d is split in two halves using multiplication instead of
sum so that d = dadtpm and consequently edadtpm = 1 mod
�(n). *RSA can be used instead of mRSA to produce a
mediated RSA compatible with TPM devices, which we
called TP*RSA. The detailed procedure is as follows:

(1) Each host Hk in the network is equipped with one
public and private key etpm

k /dtpm
k . Both keys are
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stored in the TPM. This procedure is performed
only once at network set-up. Each Hk is equipped
also with a new key couple etpm/dtpm that is the
same for each host.

(2) This step is the same as TPmRSA
(3) di,k is divided by dtpm

k and da
i,k is generated (thus

di,k = da
i,kdtpm

k ). da
i,k key is encrypted in a blob using

etpm. Each Ai is equipped with the blobs corre-
sponding to the hosts it is allowed to roam to. When
Ai moves to Hk it will carry the corresponding da

i,k
and store it into the TPM. Again, a password set to
h(Pi) is used to access the key. In this case, though,
Ai will be authorized not only to use but also to
recover da

i,k in clear.
(4) This step is the same as in TPmRSA.
(5) Agent Ai will receive the message m, decrypt

it in software with da
i,k, thus obtaining a partial

decryption Oc to be decrypted again inside the TPM
with dtpm

k .

In our opinion, there are two important aspects that
should be taken in consideration. The first one is that
the problem given by OAEP identified in Section 4.2 is
avoided. In fact, the decryption performed by the TPM
device comes after the first decryption performed by the
agent. The first partial decryption is performed in software
so OAEP checks can be avoided. As a result, the TPM
device decrypts Oc, and the output is a valid padded data.
The second issue is that the encryption with a common key
etpm is necessary to avoid that, whoever is able to sniff the
wireless traffic, can steal a valid da

i,k. It is a measure needed
not to hide da

i,k from Ai, but to hide it from potential pas-
sive attackers. Ai indeed needs to know da

i,k, because the
first decryption must be performed out of the TPM. The
important point is that Ai, once leaving Hk, must not carry
an unencrypted key on the wireless media.

4.4. Security analysis

To analyze the security features of TPmRSA and TP*RSA,
four kinds of attackers are introduced:

(1) An external passive attacker, that is, a human
attacker sniffing the traffic on the wireless channel;

(2) An external active attacker, that is, an agent that is
able to enter the network and roam between hosts
but is not equipped with any valid credentials;

(3) An internal attacker agent, that is, an agent
equipped with valid keys, modified in order to
change its original behavior;

(4) An internal human attacker that is able to take full
control of the operative system of a host, that is, to
gain root access on host k.

The first attacker will not be able to intercept any valid
traffic because it has been encrypted with public keys. All
the communications are sent to a specific host and agent

ID, so the attacker has no valid key to decrypt messages.
A valid ID and the corresponding keys (both in TPmRSA
and TP*RSA) are needed to authenticate any message to
be sent to another agent. Also in this case, the attacker is
not able to interact with the network. For the same rea-
son, an external attacker is not able to forge valid messages
to be injected in the network. Because we do not target
any specific application, it is out of the scope of this paper
to detail the transport protocol used to convey the infor-
mation. With well known techniques (counters, nonces,
etc.), it is possible to avoid reply attacks from the external
attackers.

An internal attacker agent will not be able to interact
with the rest of the network, because the password needed
to unlock its own di,k key on host k is verified by the host
node using the hash of the executable code of the process.
The agent will not be able to store its private key on any
host or use any key already stored on any host. Therefore,
it will be isolated from other agents in the network.

An internal human attacker that can take full control of
a host is generally impossible to stop. In a typical network-
ing scenario, if one of the core servers is owned by the
attacker, the whole network is at risk. In our scenario, the
attacker can not extract the private keys from the TPM. He
will be able to analyze the code of any agent running on
that host and steal their ciphered blobs. The attacker may
also bypass the checks on the integrity of the running code
that is performed in software on the host. Nevertheless, the
attacker can not use the stolen credentials on other hosts
he does not control, so the penetration speed and potential
damage of its attack are reduced.

If the kernel of the operative system is TPM-verified,
the attacker will not be able to use the blobs even on
the compromised host, because he can not execute a non-
verified code.

As for the cryptographic properties, we are using stan-
dard RSA as implemented in TPM; therefore, we rely on
its security. As with mRSA, the n modulus is the same for
any public/private key couple, but there is no agent in pos-
session of a complete public and private key. This prevents
the agents from factorize the values p and q.

When we introduced TPmRSA, we introduced the pos-
sibility of using only a network-wide key dtpm

k instead of
a network-based and host-based keys. With TP*RSA, such
a solution would result into two important security weak-
nesses allowing an attacker to factor n. The first one can
be mitigated using a correct TPM configuration. However,
the second one can not be avoided. The resulting attack
requires at least two cooperating malicious users.

The use of a network-based key should be considered
unsafe in the following cases:

(1) When the users are able to collude and are in
possession of valid keys.

(2) When the attacker is able to collect more than one
valid secret key.

The proofs are reported in appendices A.2 and A.3.
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5. SIMULATION RESULTS

5.1. Simulation scenario

A network simulator, based on the Omnet++ platform with
the Inet module, has been made to compare TPmRSA with
the security equivalent approach consisting in the use of
two X509 certificates, one embedded in the process and
another one embedded in the node sending the information.
The solution with two RSA certificates has been chosen
for comparison, because it is perfectly compatible with
common hardware and software (contrary to pure IBC). It
also fits better in a distributed scenario than mRSA (that
requires an intermediary). It should be noticed, however,
that any of the alternative solutions offer a lower security
level than the one given by TPmRSA, because the agents
carry the private keys with themselves. Thus, those keys
can be stolen and intercepted on the wireless media, which
is impossible in the case of TPmRSA.

The network is a simple 6 � 6 grid network, with geo-
graphical routing. The physical and media access control
layers are modeled using IEEE 802.11 with free space
propagation. The bitrate has been lowered to 0.5 Mbps in
order to simulate a low-throughput network with mixed
hardware, mesh nodes, and sensor/actuators nodes. The
simulation environment represents a generic pervasive net-
work as described in the introduction.

In the simulations, 60 agents are generated, one every
40 s and are distributed randomly in the network. They
have a fixed lifetime (3600 s) and are allowed to roam on
a limited number of nodes. The number of nodes in which
they are allowed to roam is determined by a configuration
parameter “r” that ranges from 1 to 12. The nodes are cho-
sen randomly. An agent roams every 360 s. Each time, it
moves a payload corresponding to a fixed execution code
plus an overhead or, where or corresponds to one 1024
RSA key multiplied by r, in the case of TPmRSA, and to
zero when using certificates.

Each node generates random alarms. When a process is
present in a node and receives one of these events, it sends

a message to another process in the network and receives
an answer (message size is 128 B). Events are generated at
time intervals defined by the parameter “m” ranging from
10 s to 600 s.

When using certificates, the inter-process communica-
tion is made of a 4-way handshake, because the two ends
must exchange their certificates before they transmit any
data. We call om the overhead for each handshake that is
computed as the size of the four certificates. The size of
a X509 certificate is variable, depending on the kind of
attributes chosen. Using 1024 bit RSA keys and minimal
attributes, we stripped down the size of two X509 certifi-
cates (including the signatures by the network Certification
Authority (CA)) to a total overhead of 770 B. Note that
we did not use standard TLS, which would require a
TCP connection to be performed. Instead, we used a very
simple UDP exchange with equivalent overhead, which
is an underestimation of a real TLS exchange. When
using TPmRSA, just two 128 B packets are sent so om
equals zero.

Varying r and m, we compared the ratio Ro = Or/Om,
that is, the sum of or computed on every time an agent
roams, divided by the sum of om computed on every
inter-process communication. Moreover, we compared the
average set-up time of inter-process communication. Each
configuration is repeated 20 times with different random
seeds and ends after the expiration of all the lifetimes of
the agents.

5.2. Numerical results

In Figure 2, we report Ro for all the scenarios consid-
ered. For the large majority of the chosen cases, the graph
shows that there is an important gain using TPmRSA, with
a decrease in total overhead up to 67%. In the bottom
right corner, the gain in inter-process communication does
not compensate the overhead because of the crypto blobs.
This happens when the event generated by the nodes that
triggers inter-process communication is rarely generated

Figure 2. The Ro ratio measured varying r and m.
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(more than once every 5 min) and the agents keep roaming
in the network during their lifetime.

The ranges for r and m are set to show the limit of
convenience of the proposed technique. Nevertheless, we
believe that most of the real use-cases fall on the blue part
of the map shown in Figure 2. This is because, in the simu-
lated scenario, the traffic patterns are uniformly distributed
and the endpoints of the communication are random as
well. This is the worst case scenario. In realistic situations
(which we plan to implement as future work), we imagine
that a swarm of agents will concentrate in a limited zone
in order to monitor a certain event that is happening in that
area. In such a scenario, the nodes will eventually roam
with less frequency and communicate more frequently to
coordinate their action. We expect that, in this case, our
security scheme will be even more efficient.

In Figures 3 and 4, we report Ro varying either r or m.
It is also reported that the value of Ro = 1. These plots
confirm that most of the considered simulations are able to
work in the area below Ro = 1. They also show that the

variation of the performance is very smooth. This indicates
that the performance of the proposed algorithm shows a
stable trend, enabling a network manager to fine-tune the
parameters, depending on its specific application scenario.

While r is easy to predict (for instance, the number
of nodes equipped with a specific sensor), m is much
harder, because it represents the average time between two
sensing events. For this reason, Figure 4 shows a very
interesting behavior, even when m is large and the perfor-
mance degrades compared to TLS, this degradation tends
to increase with a sub-linear trend. As a consequence, if m
changes in time and pushes the network state to the red area
of Figure 2, the performances of TPmRSA do not sharply
degrade.

Independently of the size of the network and of the
traffic patterns, the inter-process communication with
TPmRSA needs only a fraction of the time (in average the
17%) needed using certificates. This is due to the increased
number and size of packets, and, consequently, increased
probability of retransmission of the packets along the path

Figure 3. Ro plotted against m.

Figure 4. Ro plotted against r.
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due to collisions at MAC layer. The reduction of the
inter-process communication overhead guarantees a faster
set-up and, thus, a faster reaction to alarms.

6. CONCLUSIONS

This paper presents a new method for data authentica-
tion and encryption suitable for wireless pervasive net-
works. The proposed methodology is based on TPM and
is aimed at improving the communication performances
and energy consumption by reducing the number of mes-
sages to be exchanged for a successful message decryption.
The envisaged method can be applied to WSN as well as
to other kinds of pervasive networks, without increasing
significantly the hardware’s cost. The simulation results
demonstrated that the proposed scheme outperforms RSA
certificate-based solutions in a wide range of scenarios.
As further enhancements, we plan to integrate the TPM
chipset in our WSN testbed in order to provide further
measurements on energy consumption and communication
delays.´

APPENDIX A: PROOF OF
THEOREMS
As an alternative to having a single private key per host,
we considered to use a single private key per network dtpm

in TP*RSA. This would simplify the management of the
crypto keys, although it introduces significant vulnerabili-
ties to the system: if the credentials of two agents are stolen
the network key can be recovered. In other scenarios, this
limitations may be bearable (for instance with human users
carrying keys into hardware tokens that can not reveal their
credentials). We report the proofs here as reference. The
first is well-known (see [32] for details), while the other
ones are novel.

A.1. Factorisation of n

Given an RSA set e, d, n, it is possible to factor n and
recover primes p, q.

Proof. Given d, e calculate k = de – 1, by construction
k is a multiple of �(n). Because �(n) = (p – 1)(q – 1) it
is even so exist r odd and t � 1 such that k = 2tr. For
any g 2 Z*

n , it is true that gk = 1 mod n so that gk/2 is a
square root of unity modulo n. By the Chinese Remainder
Theorem, 1 has four square roots modulo n = pq. Two of
these square roots are +1 and –1. The other two are +x and
–x where x satisfies x = 1 mod p and x = –1 mod q. If
g is chosen at random from Z*

n then with probability 1/2
(over the choice of g), one of the elements in the sequence
gk/2; gk/4 : : : gk/2t

mod n is a square root of unity. Given x,
n can be factored calculating gcd((x-1), n).

Once p, q are revealed, given any ei calculated using
the same modulus n, it can be inverted on �(n) to find the
corresponding di.

A.2. Single user attack

Given e, du, dtpm, and etpm (user and host indexes have
been omitted for clarity) such that:

edudtpm � 1 mod �(n) (A1)

etpmdtpm � 1 mod �(n) (A2)

the knowledge of e, du, etpm allows to factor n.

Proof. From Equation A1 comes that if a is the multi-
plicative inverse modulo n of dtpm, then edu = a mod
�(n) and etpm = a mod �(n). Then edu and etpm can be
expressed as edu = a + k1�(n) and etpm = a + k2�(n). Con-
sequently, edu – etpm = (k1 – k2)�(n) so that the quantity
edu –etpm is a multiple of �(n). Proof in A.1 can be applied
with k = (edu – etpm).

A.3. Collusion attack

A user does not need to know etpm for the protocol to
work. It is embedded in the TPM that can be instructed not
to reveal it. Nevertheless, even without the knowledge of
etpm, two colluding users may perform the same attack.

Given two sets of keys e1, d1,u and e2, d2,u and dtpm:

e1d1,udtpm � 1 mod �(n) (A3)

e2d2,udtpm � 1 mod �(n) (A4)

two colluding users sharing their private keys can factor n
even without the knowledge of etpm.

Proof. As for A.2, it is true that e1d1,u = 1–dtpm +k1�(n)
and e2d2,u = 1–dtpm+k2�(n). Again, e1d1,u–e2d2,u = (k1–
k2)�(n) so that e1d1,u – e2d2,u is a multiple of �(n).
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