
Mesh network firewalling with Bloom Filters
Leonardo Maccari, Romano Fantacci

Department of Electronics and Telecommunications
University of Florence - Telecommunication Network Lab

tel. : +390554796467 Florence, Italy
Email: {maccari,fantacci}@lart.det.unifi.it

P. Neira, R.M. Gasca
Departament of Languages and Computer Systems

University of Sevilla - QUIVIR LabI2S
tel. +34954559814 Sevilla, Spain
Email: {pneira,gasca}@lsi.us.es

Abstract— The nodes of a multi-hop wireless mesh network
often share a single physical media for terminal traffic and
for the backhaul network, so that the available resources are
extremely scarce. Under these conditions it is important to avoid
that unwanted traffic may traverse the network subtracting
resources to authorized terminals. Packet filtering in wireless
mesh networks is an extremely challenging task, since the number
of possible connections is quadratic with respect to the number
of the terminals of the network; for each connection a rule is
needed and the time needed for filtering grows linearly with
the number of rules. Moreover nodes can be in possession of
end users and the administrator might want to keep the explicit
ruleset as much secret as possible while giving the nodes enough
data to behave as a firewall. In this article we present a solution
for distributed firewalling in multi-hop mesh networks based on
the use of Bloom Filters, a powerful but compact data structure
allowing probabilistic membership queries.

I. INTRODUCTION

A multi-hop wireless mesh network is a network composed
of peer terminals that communicate using a locally shared
physical media and some ad-hoc routing protocols. The nov-
elty of mesh networks is that the communication standard used
and the routing protocols are highly dynamical so that the
network are self-organizing; no administrative action should be
required to add or remove a terminal from the network (see
[1] for a survey of available technologies). Such a dynamic
instrument perfectly suites the requirements of critical scenar-
ios like emergency interventions in hostile environments, but
also permits the creation of pervasive networks of services
that may enlarge without the need of expensive infrastructures.
In any of these scenarios the security of the communications
and the availability of the service is essential, and wireless
mesh networks have peculiar problems compared to wired
or wireless infrastructured networks due to the technology
involved and to the different management scheme.

In general, wireless networks have no clear geographical
border, so that any attacker in the coverage area can receive
packets and try to inject packets into the networks. This second
behaviour should be discouraged by the use of layer II cryp-
tography and access control techniques, but the complexity of
the mesh scenario has so far discouraged the use of security

This work is partially supported by National project Wireless 8O2.16 Multi-
antenna mEsh Networks (WOMEN) under grant number 2005093248, Spanish
Ministerio de Educacin y Ciencia through a coordinated research project (grant
DPI2006-15476-C02-00) and Feder (ERDF) and by the 2006 PRIN project
PROFILES (PeeR-to-peer beyOnd FILE Sharing)

measures such as IEEE 802.11i standard; in wireless mesh
the most performant solution still seems to be the highly
vulnerable WEP standard (see [2]). This might give to the
attacker the practical possibility of injecting packets into the
network.

Under a management point of view mesh networks may
include nodes that are not under the control of a single
administrator, such as roaming users. In general, the manager
of the network should consider the nodes untrusted, meaning
that from an internal node could be produced attacks to
the rest of the network. This might be a willing behaviour
or, for example, a consequence of an infection of a virus.
Nevertheless all the terminals should behave both as end client
and as IP routers to create the multi-hop mesh. Since the use
of highly dynamic MAC and routing protocols produces a
constant signaling traffic reducing the available resources, the
generation of unwanted traffic (i.e. denial of service attacks,
or SPAM) may hardly hit the performance of the network.

In infrastructured networks unauthorized traffic is normally
filtered with the use of a firewall: a firewall is a node that drops
or forwards packets based on filtering rules, normally placed
on the gateway of the network. In wireless mesh network the
main interest is to reduce packets passing through the network,
so that filtering rules should be present on every node of the
mesh. This introduces two critical problems as we will explain
in more detail in the following sections:

• The number of rules grows quadratically with the number
of the terminals of the network and the complexity of
filtering grows linearly with the number of rules.

• Each node of the mesh should be aware of the filtering
policies of the network, while the administrator may want
to keep this information as much reserved as possible.

In this paper we present a possible approach to solve this
problem using Bloom filters. As we will see in following
sections, Bloom filters are a compact way to represent a
set of elements, the main interesting feature is that a query
cannot produce false negatives, that is of great help applied to
firewalling. To the authors’ knowledge this paper is the first
addressing the problem of firewalling in mesh networks.

The rest of the paper is organized as follows: section
II introduces the basic concepts of firewalling, section III
explains the theory behind Bloom filters, section IV explains
in detail the proposed solution and section V reports the results

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1546

Fig. 1. Typical LAN scenario

Fig. 2. Iptables filter structure, ovals contain source or destination and blocks
contain chains

of practical experiments in real testbed. Section VI concludes
the work and proposes further developments.

II. INTRODUCTION TO FIREWALLS

A firewall is a router that selectively forwards packets based
on the filtering rules that have been installed, as an example
to review the features of a generic firewall we will describe
the Netfilter/Iptables. This appliance is included with the
GNU/Linux kernel, being it a client, a server or a transparent
firewall and source code is available under a free license, these
were the main reasons why we chose this platform for the
implementation of our prototype.

As represented in fig. 1 a firewall is normally placed as a
bastion host in the gateway of a LAN, its role is to control
and limit the traffic coming inside the network and the traffic
generated from the network to the Internet.

In fig. 2 it is described the flow of a packet that is
traversing the Linux kernel, each of the blocks (named chains)
represented in the figure are points in which the packet can
be filtered based on the rules contained in the chain. Each
chain has a different set of rules and may be executing more
complex actions then simply dropping the packets, such as
changing its contents (mangling) or marking it with internal
flags to be used in successive chains.

When the firewall receives a packet coming from the
Internet, it first crosses the Pre-routing chain, then, based on
the routing decision goes into the Input chain; if the packet
is not directed to the local host but to some other host the
packet is sent to the Forward chain. On a bastion host firewall
as depicted in fig.1 most of the packets pass through the
Forward chain, since only a few packets will be directed to the

firewall itself. After passing into the Forward chain, packets
cross the Post-routing chain, together with any packet that has
been locally generated and are directed to the Internet. It is
important to note that packets that are going to the outside
network take a partially different path in the kernel if have
been locally generated (crossing the Output chain) or have
been forwarded.

Every chain contains various filtering rules, every rule
contains a pattern to be matched against the current packet and
an action to be performed (normally: Accept/Deny), basically
a rule can be imagined as follows:
if tcp destination port = 80 and source
IP = 150.217.10.8, accept the packet
Referring to the firewall in fig. 1, such a rule if placed in the
Forward chain will accept any packet matching the pattern
coming or going to the LAN, while if put in the Input will
allow any packet matching the pattern directed to the firewall
IP address. Rules are normally expressed in positive logic,
that is, the default behavior is set to drop and each rule allows
packets matching a pattern. If a packet matches anyone of the
rules it is allowed, otherwise it is dropped. Positive logic has
the advantage of being indifferent to the order of the rules,
that makes management easier. Also, generally speaking, if
the default policy is set to Accept, then it is easier to commit
errors in the configuration and let unwanted traffic pass the
firewall.

Iptables is a stateful firewall [3], that means that packet
filtering is done not only parsing the contents of the packets
but also taking into account the flow of data the packet belongs
to. As an example a stateful firewall may allow a TCP packet
with ACK and SYN flags activated only if there has been a
TCP packet with SYN flag allowed before.

Two problems that firewalls have to face in modern net-
works and that are even more important in mesh networks are
the following ones:

• Scalability problems: if each packet must be matched
against a list of rules, the time required for filtering grows
linearly with the number of rules. If a firewall contains
thousands of rules performances drop significantly. Mem-
ory consumption is also a concern, therefore the data
structure used to represent the filtering policy must do
an efficient use of the resources available.

• Complexity of the topology: modern networks are com-
posed of different subnets, each one composed of ma-
chines that offer or use complex services; describing
such a scenario with filtering rules can be extremely
challenging.

In [4], a model for a distributed firewall is proposed. In that
scenario only the second issue is approached using policies
represented with a high-level language that are then translated
into single rules. The policies are distributed to the terminals
and applied locally, creating a distributed firewall.

A. Mesh networks firewalling

In a mesh scenario, each node of the network may act as a
client or as a server and, most of all, will forward traffic that

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1547

is not directed to its address to the neighbor machines. While
the Input and Output chains depend on the kind of services
the node uses we focus on the Forward, that determines which
type of services are vehiculated in the network. The problem
we want to address is how to perform packet filtering of IP
addresses and TCP ports in each terminal, with a scalable
solution that takes into consideration the problems introduced
by the peculiar nature of mesh networks. We defined two main
issues:

• If a positive logic is used, the number of rules adopted
grows quadratically with the number of the nodes of
the network. If we limit filtering to TCP ports and IP
addresses, for each couple of machines into the network
there must be at least two rules that explicitly allows bi-
directional communications. If the network is composed
of N machines, each one should contain (N−1)(N−2)∗s
rules where s is the number of allowed tcp ports.

• As said, a mesh could be composed of terminals that
do not belong to a single administrator: there might
be roaming users or leased terminals to temporary end
users. Under these circumstances the administrator of
the network (we refer to the administrator as the entity
administering the link with the external Internet) may
want to hide as much as possible the policy used.

Example application are various, from traffic shaping (the
administrator may want not to allow certain kind of traffic,
i.e. peer to peer) or as reaction to attacks: imagine that a
node in the network start performing a flood attack, or sending
SPAM mail. The network might be able to detect the attack
and reconfigure the firewall in order to isolate the attacker and
limit the impact over the network.

Lastly we note that in a mesh network the firewall can not
perform stateful filtering, since there is no guarantee that all
the packet that constitute a data flow may use the same path
to their destination.

III. BLOOM FILTERS

A bloom filter is a space-efficient data structure for rep-
resenting a set in order to support probabilistic membership
queries. The probability of committing an error in a query
might be limited choosing an appropriate size of the data
structure compared to the size of the set of elements to be
represented. The most important feature they present is that
they only present false positives, that is, a query of the type
is element A part of the set B will never produce a negative
answer if a ∈ B, but may produce a positive answer if a /∈ B.
Bloom filters were introduced by Burton H. Bloom in [5], for
an overview of their theory and their application in networking
field see [6]. In the rest of this section we will recall the basic
concepts.

A bloom filter is an array of bits of size n, to build the filter,
each element of the set is hashed with a number K of distinct
hash functions and the result of each hash is used as an index
to set the corresponding bit in the filter. Referring to image 3
the filter is of size n and each hash function returns a value of
size ln(n), the corresponding subset of bits is turn to 1 in the

Hash_1() Hash_K()Hash_2()

0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 n-1

Set Element

Fig. 3. Bloom filter generation

filter. Each time a new element is inserted in the filter, a new
subset of bits is set to 1, with a certain probability of having
two distinct elements generate two overlapping subsets. Once
populated the filter with all the elements, to check the presence
of an element in the set the same procedure is applied, it is
hashed with the K hash functions and if all the bits of the
subset were set to 1 the element belongs to the set. Since
the subsets may be overlapping there is a certain possibility
of false positives, but no false negatives are admitted. The
probability of having a false positive if the original set is
composed of m elements is given by the following equation:

f = (1 − eKm/n)K (1)

f is minimized if K = ln(2) ∗ n/m which gives:

f = (0.5)k = (0.6185)n/m (2)

If we set f < 0.1% we have:{
n/m = �log0.6185(0.0001)� = 20
k = �log1/2(0.618520)� = 13

(3)

13 different hash functions and a filter size given by 20 bit per
element of the set are needed. Given a set of 6500 elements,
the size of the filter will be of approximately 16 kilobyte, and
each hash function should produce a number big enough to
be used as index for the filter that is log2(16KB) = 14 bit.
Instead of using 13 hash functions, different slices of the result
of a unique pseudo random number generator applied to the
element can be used. There is no need for cryptographically
strong hash functions, the only required property is distribution
over the range {0...n − 1}.

IV. MESH FIREWALLING WITH BLOOM FILTERS

Figure 4 represents a mesh network scenario, in which
different terminals are all equipped with routing capabilities
and consequently, of firewall. In the scenario we consider
the nodes under control of the network manager are one (or
more) gateway to the Internet and some fixed machine offering
standard services (WEB, DB . . .) under control of the network
manager. The rest of the terminals behave as clients, contacting
servers placed both outside or inside the network or even as
servers, offering services to hosts both outside or inside the
network. Our solution is based on the use of Bloom filters

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1548

Fig. 4. Mesh network

to implement packet filtering based on source and destination
TCP ports and IP addresses, so the administrator has control
over the services transported by the network. It is optimized
for a class C size network, but the same approach can be
extended to wider networks or protocols other than TCP.

Imagine that a firewall rule is represented by 4 values (two
IP addresses and TCP ports), so that each rule explicitly
allows communications between two IP addresses over certain
services, in positive logic. The rule-set is composed of all the
allowed combinations, once decided which connections are
allowed, it will be composed of a number n of vectors of
the form R = {SourceIP ,DestIP , Sourceport,Destport}. A
Bloom filter is populated using an appropriate dimension and
number of hash functions and distributed to each host of the
network. Whenever a host receives a packet it has to forward,
in the forward chain of figure 2 it will create vector R with
the fields of the packets and evaluate it against the Bloom
filter in its possession. If R belongs to the set of allowed
packets it will forward the packet otherwise it will drop it.
Since Bloom filters present only false positives and the firewall
rules are expressed in positive logic, the main risk is that a
packet that should not be forwarded will be accepted. The
likelihood of this event depends on the size of the chosen filter,
and could be reduced if different filters are used for different
hosts, as explained later. Instead in presence of false negatives,
the network would unpredictably discard packets making the
system unmanageable.

Such a system presents the following advantages:

• The cost of evaluation for each packet is at most the cost
due to the computation of K hashes. When performing a
query, each hash is computed separately, and after each
computation the corresponding bit is checked in the filter.
All the K functions must be computed only if the query
result is positive, otherwise the packet can be dropped
after the first failure.

• Only the filters are distributed to the nodes, not the
explicit rules. Depending on the dimension of the rule-set
a brute force attack may be possible, but this is actually
unavoidable with any distributed filtering technique.

Traffic SrcIP Srcport DstIP Dstport

EXT→ EC EXT low EC hi
EXT→ ES EXT hi ES low
EC→ EXT EC hi EXT low
ES→ EXT ES low EXT hi

IC→ IS IC hi IS low
IS→ IC IS low IC low

TABLE I

ACCEPTED TRAFFIC STREAMS: EXT IS USED FOR IP ADDRESSES NOT

BELONGING TO THE LOCAL LAN

The main disadvantage of this simple approach is repre-
sented by the size of the filter. Considering only internal
traffic of a class C network with 254 hosts, and the total
number of ports, the maximum number of rules is given
by all the possible combinations of IP addresses and ports:
(2542) ∗ (655352) � 2.8E14. Using optimal K, and 20
bit per element the size of the filter is approximately 600
terabyte, that makes the filter unusable. It should be noted
that even with such an enormous filter the computational
cost would be limited to the cost of the hash, but the filter
would be impossible to store or transmit. To keep the size of
the filter smaller we need to split the problem into smaller
ones, clustering the packets in different streams and applying
different filters to each stream. To find a viable solution we
fixed the maximum false positive rate to 0.1% (we will show
how this is enough for an effective filtering) and a maximum
size of the filters to less then 30 kilobytes. Note that the whole
filter should be transmitted only at network entrance, whenever
a new rule is added to the filter (that may be a consequence
of entrance of a new host) the information needed to update
the filter are K numbers of size log2(n) bit.

To separate traffic flows we decided to divide the hosts into
classes with specific capabilities:

• Internal Server (IS): The host behaves as a server for
clients belonging to the network.

• Internal Client (IC): The host behaves as a client for
servers belonging to the network.

• External Server (ES): The host behaves as a server for
clients outside the network.

• External Client (EC): The host behaves as a client for
servers outside the network.

The accepted traffic flows are detailed in table I , classified
by IP and TCP port (low and hi represent TCP port below and
over 1024). This is just one of the possible way of clustering
packets into streams, we believe this classification should be
expressive enough to represent the most common situations.

Note that a packet can be classified without knowing the
IP addresses belonging to each class but basing the decision
only on TCP ports and the subnet mask of the network, used
to distinguish between internal and external hosts.

In the Pre-routing chain of Iptables, we introduced six rules
in order to mark packets belonging to the different streams,
once arrived in the Forward chain each stream is filtered with
a different Bloom filter. The great advantage is that each filter

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1549

Streams Chain SrcIP Srcport DstIP Dstport

1a) EXT→ EC
P EXT hi
F low EC

2a) EXT→ ES
P EXT hi
F ES low

1b) EC→ EXT
P hi EXT
F EC low

2b) ES→ EXT
P EXT hi
F ES low

3a) IC→ IS
P hi low
F IC IS

3b) IS→ IC
P low low
F IS IC

TABLE II

ACCEPTED TRAFFIC STREAMS: P IS USED FOR RULES IN THE Pre-routing

CHAIN AND F FOR RULES IN THE Forward. THE APPLICATION OF EACH

COUPLE OF RULE GENERATES THE STREAMS OF TABLE I

will be applied only to a subset of the 4 fields, therefore the
sum of the sizes of each filter will be much less than the size
of a single filter.

In table II are reported which fields will be used for
clustering and which fields will be used for bloom filters, the
combination of the two phases leads to bloom filters applied
to at most two fields in vector R. Note that a bloom filter is
never used to filter external IP addresses or TCP ports over
1024, which are the larger but less relevant sets. Also note that
host of the network may belong to more than a single class,
and have multiple functionalities.

Each filter is repeated twice applied to different fields,
so that the six streams can be filtered with only 3 bloom
filters (filters 1a,1b and 2a,2b 3a,3b are equivalent and can
be referred to simply as filter 1,2,3 respectively). The size
of the bloom filters largely depends on the size of the single
classes over the total 254 hosts. In a realistic scenario, the total
number of services provided by the network will cover a little
part of the 1024 TCP port (we chose 10) so that to have a false
positive rates below 0.1%, given equation 3 the sum of sizes of
filters 1 and 2 will be 10∗ (EC +ES)∗20 bit. The third filter
is the larger one, its size will be 20∗IS∗IC. If all the hosts of
the network belong to all sets,that is the worst case, the total
size is 10 ∗ (254 ∗ 2) ∗ 20 + (254 ∗ 254) ∗ 20 � 180Kbytes,
which is a usable size but still far from our target. In table III
we propose some realistic scenarios with different distribution
of sizes for each class and we compare our solution with the
same filtering strategy using Iptables; it should be noted that:

• first column report the sum of columns (2-4) correspond-
ing to the size (number of hosts) of each class. A total
size larger than 254 is to be intended as a larger network
or as a network in which the host classes are overlapping.

• column 6 reports the sum of the size (bytes) of filters 1,2,
while column 7 reports the size of filter 3.

• column 8 and 9 report the number of iptables rules that
would be required to substitute bloom filters 1,2 and 3
respectively.

• while in the first lines classes are equal in size, in the last
two lines a more realistic scenario is reported, in which

Host
Number

IC IS EC ES filter size Iptables Rules

80 20 20 20 20 1000 1000 400 400
160 40 40 40 40 2000 4000 800 1600
240 60 60 60 60 3000 9000 1200 3600
320 80 80 80 80 4000 16000 1600 6400
400 100 100 100 100 5000 25000 2000 10000
320 140 20 140 20 4000 7000 1600 2800
320 120 40 120 40 4000 12000 1600 2800

TABLE III

BLOOM FILTER SIZE ESTEEM AND COMPARISON WITH IPTABLES

clients are more than servers.
• for all the combinations reported, total size of Bloom

filters is always below 30 kilobytes.
The filters could be distributed at network entrance, after

the operations of authentication to the network, together with
other accounting credentials and can be updated with broadcast
packets upon changes of topology. If a number F of distinct
filters is used, that is, each node at network entrance will
receive one over F filters (note that this produces higher traffic
only when refreshing nodes), then the probability of having a
packet filtered with the same filter along all its path is given
by (1/F)p where p is the length of the path. In an open
air scenario, in which each node of the network is placed in
a squared grid and may possess at most 4 neighbors, with
a two hop path at most 12 hosts are reachable. To reach
the remaining 242, at least a three hop path is necessary
involving 2 filtering nodes; we assume that two different filters
generate different false positives each one with probability
Pfalse. Being Pfalse=1/1000, and 242/254 the probability of
a two-hop path the chance of having a false positive along the
whole path is less then Pfalse ∗ (1/F)2 = 4E − 5 and drops
exponentially with p, which we consider acceptable.

V. TESTBED RESULTS

The implementation has been realized on a PIII 866 MHz
running version 2.6.16 of the GNU/Linux kernel and version
1.3.4 of the firewalling framework iptables [7]. Our implemen-
tation has been realized as a kernel module implementing the
necessary changes to use Bloom filters. Source code is avail-
able at http://people.netfilter.org/pablo/bloom-experiments/.

We chose Iptables because it is embedded in many com-
mercial devices (i.e. wireless routers and mobile phones) and
for the availability of the source code and free documentation.

Our testbed is composed of three hosts A, B and C
connected with a 100Mbit Ethernet link. C acts as gateway
between A and B and consequently filters forwarded traffic
based on the information contained in three Bloom filters
as we described in the previous section. On the other hand,
the hosts A and B generate TCP traffic by means of the
tool Netperf [8]. Host C has been loaded first with Iptables
rules and then with Bloom filters, in both cases they represent
the first five scenarios of table III. When using Iptables, the
generated traffic is matched by rules that are placed in the
middle of the list, so that the average case is evaluated.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1550

 0

 100000

 200000

 300000

 400000

 500000

 600000

 100 150 200 250 300 350 400

m
em

or
y

co
ns

um
pt

io
n

(in
 b

yt
es

)

number of hosts

ruleset memory consumption

iptables
bloom filter

Fig. 5. Memory consumption

Experimental results obtained have been expressed in terms
of memory consumption and network performance drop using
the settings detailed in the first five rows of the table III.

A. Memory consumption

One of the reasons why the existing filtering solutions does
not suite well for mesh networks is memory consumption.
Due to the fact that devices that belong to a certain mesh
network can be of different sorts, from embedded devices with
limited resources available to personal computers, the filtering
solution must be memory-efficient. Moreover, it must scale
well with regards to the number of hosts that compose the
network because new machines means new extra rules.

The size of one iptables rule that only uses the information
contained in the TCP/IP header and the associated action
(accept or drop) is 56 bytes, every extra rule requires such
amount of bytes. As said memory consumption order for
iptables is O(n) where n are the number of rules. On the other
hand, the amount of memory required to represent a limited
number of rules in a Bloom filter of a fixed size is O(1),
although we have to choose the appropriate size depending on
the number of hosts that the network will hold.

The results obtained show that Bloom filter approach needs
much less memory than iptables (Fig. 5) with better scalability
if the number of hosts that join the network increases.

B. Performance

The experimental results show that the cost of issuing 13
hash computations is negligible (Fig. 6), therefore, our solution
has no impact on the performance in terms of CPU load, and
consequently of throughput. Opposite to this we see how linear
complexity impacts hardly the performance of plain Iptables,
that drops to around 40% of throughput passing from a 160
to 240 host scenario and about 19% to the 310 host scenario.

VI. CONCLUSIONS

In this work we have introduced a novel architecture to
enable filtering policies in mesh networks based on bloom fil-
ters. The experimental results show that the solution proposed

 0

 20

 40

 60

 80

 100

 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 (

M
B

its
/s

)

number of hosts

performace drop

iptables
bloom filter

Fig. 6. Performance Drop

reduces memory consumption and scale better than existing
filtering solutions for a relatively large amount of machines.
As possible improvements we mention:

• The use of compressed spectral filters that permit to
remove objects from the set. With a little overhead at
start-up to transmit the filter our analysis is still valid.

• Packet caching, since packets from the same connection
will be treated in the same way, keeping a cache of the
last accepted packets can reduce time needed to compute
the hash functions.

The use of Bloom filters as lightweight packet classifiers can
be applied to other fields, our intention for future research is
to evaluate their role to achieve QoS in mesh networks and
generic packet filters in other kind of networks, such as overlay
peer-to-peer distributed networks.

REFERENCES

[1] W. W. Ian F. Akyildiz, Xudong Wang, “Wireless mesh networks: A
survey,” Elsevier Computer Networks The International Journal of Com-
puter and Telecommunications Networking Computer Networks and ISDN
Systems, vol. 47, 2005.

[2] W. A. Arbaugh, N. Shankar, and Y. C. J. Wan, “Your 802.11
wireless network has no clothes,” May 15 2001. [Online].
Available: http://citeseer.ist.psu.edu/472552.html;http://www.drizzle.com/
∼aboba/IEEE/wireless.pdf

[3] G. Van Rooij, “Real stateful tcp packet filtering in ip filter,” in 10th
USENIX Security Symposium, Washington, D.C, USA, aug 2001.

[4] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Transactions on Computer Systems, vol. 22,
no. 4, pp. 381–420, Nov. 2004.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[Online]. Available: citeseer.ist.psu.edu/bloom70spacetime.html

[6] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” 2002. [Online]. Available: citeseer.ist.psu.edu/
broder02network.html

[7] N. C. Team, “Iptables: The linux firewalling tool.” [Online]. Available:
http://www.netfilter.org/

[8] R. Jones, “Netperf: The network performance tool.” [Online]. Available:
http://www.netperf.org/

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1551

