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ABSTRACT
Despite the considerable attention that the ICN paradigm
received so far, its deployment has been hindered by the scale
of upgrades required to the existing infrastructure. Soft-
ware programmable networking frameworks would consti-
tute a remarkable opportunity for ICN as they enable fast
deployment of novel technologies on commodity hardware.
However, a software ICN router implementation for com-
modity platforms guaranteeing adequate packet processing
performance is not available yet. This paper introduces Au-
gustus, a software architecture for ICN routers, and detail
two implementations, stand-alone and modular, released as
open-source code. We deployed both implementations on a
state-of-the-art hardware platform and analyzed their per-
formance under different configurations. Our analysis shows
that with both implementations it is possible to achieve a
throughput of approximately 10 Mpps, saturating 10 Gbit/s
links with packet as small as 100 bytes. However, to achieve
such performance, routers must be carefully configured to
fully exploit the capabilities of the hardware platforms they
run on.
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1. INTRODUCTION
Information-centric networking (ICN) is a novel network-

ing paradigm putting content at the core of the communica-
tion model. The location-based (or host-based) communica-
tion model of the current Internet infrastructure is replaced
by a content-based one in which unique routable names are
used to identify and locate content items. Several ICN ap-
proaches have been proposed, including NetInf [4], Data-
Oriented Network Architecture (DONA) [11] and NDN [6]
to cite a few. Despite the benefits such architectures pro-
vide, their deployment is held back by the significant changes
required to existing network equipment.

Network Function Virtualization (NFV), on the other
hand, enables fast deployment of novel services at a small
cost on commodity hardware. NFV represents an oppor-
tunity to ease the introduction of ICN on the existing
infrastructure, but it requires designing high-performance
ICN software systems running on commodity hardware plat-
forms.

In this work, we focus on the Content-Centric Network-
ing (CCN) approach, initially proposed in [6], for which two
distinct protocol definitions are available, Content Centric
Networking (CCN), http://ccnx.org and Named Data Net-
working (NDN), http://named-data.net. Open source soft-
ware prototypes are available and have been widely used
for research on fundamental NDN protocols and algorithms,
but such prototypes are not intended for production envi-
ronments as they do not provide adequate performance.

Only few research efforts investigated the design and im-
plementation of high-performance ICN software systems [13,
18, 19, 20]. These studies rely either on proprietary software
and/or hardware, or focus on high-speed caching only. This
paper presents the design and performance evaluation of Au-
gustus, a high-performance, opens-source ICN router, that
uses the fast packet processing libraries DPDK (IntelR© Data
Plane Development1) to leverage the potential of commer-
cial general purpose hardware.

Augustus follows the basic design and forwarding prin-
ciples of the CCN protocol, which we implemented in two
different flavors: a standalone monolithic design based on
DPDK to manage packet I/O, and a modular design pro-
totype based on the Click framework. A monolithic design
gives full control of the platform, and allows pushing the
architecture to its throughput limit; a modular approach

1http://dpdk.org



simplifies the extensibility, composition, reuse, and replace-
ment of the router’s features. The modular implementa-
tion builds upon the well-established Clock software router
framework with its several variants, from optimized versions
like FastClick [2] to the integration with different drivers and
virtualization through projects like ClickOS [15], and to the
hardware offloading [9, 21].

Summarizing the main contributions of the paper:

• We present the design of a high speed CCN router
running on commodity hardware;

• We explore both monolithic and modular software
router designs highlighting advantages and disadvan-
tages of the two proposals;

• We release the developed code as two sepa-
rate open-source projects: the stand-alone ver-
sion of Augustus https://github.com/nokia/Augustus
and the FastClick version https://ans.disi.unitn.it/
software-projects;

• We conduct a performance evaluation for comparing
monolithic and modular designs;

• We provide general guidelines for software CCN router
design, and insights on the most delicate steps of their
implementation.

2. RELATED WORK
A considerable amount of research focused on the design

and performance evaluation of the fundamental mechanisms
of the CCN protocol. Such body of literature is out of the
scope of this paper, so we limit our review to the feasibil-
ity and high-speed performance of CCN. Most of the pub-
lished works focus on optimizing single components of the
forwarding procedure, such as the Forwarding Information
Base (FIB), Pending Interest Table (PIT) or the Content
Store (CS).

Among the design proposals for the FIB and the related
longest-prefix queries, [20] proposes to augment a hash table
by storing the longest prefix associated to each sub-prefix,
so that worst-case lookup time only depends on the FIB it-
self and not on the number of components of the interest’s
name. The authors of [18] propose and implemented a so-
called Prefix Bloom Filter, a data structure that relies on
multiple Bloom filters to estimate the length of the prefix
before performing an exact match on a standard hash table.
Several software hashing techniques are compared in [16];
the same paper proposes a hardware-assisted hash table de-
sign for CCNx forwarding on variable length names.

One of the first results on PIT scalability is represented by
[22]. Authors explore candidate PIT designs, evaluate them
numerically, and implement a DHT-based PIT (the most
promising scheme according to their study) on a network
processor. The authors of [23] propose to use per-interface
Bloom filters in order to reduce the memory footprint of
the PIT and central Bloom filter for limiting the false posi-
tives. In [3], the authors estimate the size and the number
of accesses of the PIT by using an approximate translation
of IP traffic. Moreover, they also propose a Name Com-
ponent Encoding solution to limit PIT size and accelerate
lookup operations. Finally, in [24] the authors propose to

store fixed-length fingerprints instead of name strings relax-
ing some of the original CCN architecture principles (i.e.,
interest aggregation) in core routers.

The first line-speed CS was proposed in [1] with the es-
timation of the amount of resources necessary for a router.
The authors of [13] present a high-speed hierarchical CS de-
sign implemented in user space leveraging DPDK, and ex-
plore its performance trade-offs.

In contrast with those studies, which investigate only spe-
cific components, this paper focuses on a complete high-
performance CCN software router. Few studies exist on this
topic and the mainstream reference implementations (CCNx
and NDN Forwarding Deamon) have so far focused on func-
tionality and flexibility rather than performance. The feasi-
bility of CCN forwarding at line speed based on the available
hardware and software technologies is explored in [17]. Au-
thors of [20] discuss the implementation of a closed-source
high-performance CCN forwarder capable of reaching 8 mil-
lion packets per second (Mpps) on a 12-cores, Linux-powered
Integrated Service Module (ISM) installed in a Cisco router.
Authors of Caesar [18] propose a (closed-source) forwarder
running on an NPU-based enterprise router architecture
yielding up to 13 Mpps.

To the best of our knowledge, the present paper is the
first to propose an open-source software implementation of
a CCN router for programmable networks providing high-
speed packet forwarding on commodity hardware.

3. SYSTEM ARCHITECTURE
This section describes the architecture and implementa-

tion of the Augustus content router. Its design leverages the
experience gained with Caesar [18], a content router for Net-
work Processors, but is conceived to run on standard, off-
the-shelf, general purpose hardware without requiring any
additional component.

3.1 Design
The Augustus content router is a multi-threaded user

space application running on a general-purpose x86 server
equipped with commodity NICs. This design decision allows
for greater flexibility and cost-effectiveness, as commodity
servers can provide great processing power at a consider-
ably lower cost compared to specialized hardware designed
for packet processing, like network processors. Accordingly,
they are more suitable for experimenting with named-based
forwarding, without requiring investment on dedicated hard-
ware.

To achieve high packet processing performance (without
using specialized hardware), we design our system to take
advantage of the specific capabilities offered by x86 architec-
tures through a number of optimization techniques. First,
with appropriate multiple core design we exploit the massive
parallelism offered by modern hardware: multiple hardware
queues of NICs, multiple CPU cores, multiple DRAM mem-
ory channels and multiple NUMA sockets. Second, we im-
plement frequently executed operations using the advanced
capabilities offered by the x86 instruction set. As an ex-
ample, we accelerate the execution of 32-bit CRC hashing
by using instructions provided by the Intel Streaming SIMD
Extensions (SSE). Third, we carefully place data in memory
in order to maximize the probability that CPU cores access
data located in the local NUMA node, hence reducing the
latency caused by remote memory access.
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Figure 1: Forwarding principle of Augustus; the red
and blue lines correspond to the worst case perfor-
mance evaluation paths for interest and data packets
respectively.

3.1.1 Data structures and packet processing
The CCN data plane comprises three main data struc-

tures: FIB (Forwarding Information Base), PIT (Pending
Interest table), and CS (Content Store). In Augustus data
structures and lookup algorithms are similar to those used in
Caesar, (open address hash tables to perform exact match
on PIT and CS and name-based longest prefix match on
FIB). Content items are retrieved using two packet types:
Interest packets, which are sent by a client requesting a re-
source with a given name, and Data packets, which carry
the resource itself.

Augustus implements the packet format defined in [5] that
uses component’s offset (i.e., hierarchy is defined by offsets),
avoiding Type Length Value fields for name components that
would force the router to parse the entire name. Moreover,
the implemented protocol requires that both interest and
data packets hold the full name of the content, similarly to
the CCNx 1.0 protocol. This design decision forces each data
packet to be explicitly requested by a corresponding interest
packet and allows exact match on PIT and CS, avoiding a
more computationally expensive longest prefix match and
attribute-based filtering that will significantly increase in-
terest and data forwarding overhead.

The packet processing logic is shown in figure 1. When an
interest packet is received, its name is first looked up (exact
match) in the CS. In case of a match, the router serves the
requested data from its cache, otherwise its name is looked
up in the PIT. If a match is found, the interface from which

the Interest was received is added to the existing PIT entry.
Otherwise, the router searches for the longest prefix match in
the FIB for the next-hop information about where the con-
tent can be found. The interest is then temporarily stored
in the PIT and forwarded. Since the FIB lookup mechanism
is not the main focus of the present work, we implement a
direct hash-based search without further optimization.

When a data packet is received, its name is first looked
up in the PIT: in case of a match, the data is stored in the
CS, forwarded to all neighbors that had requested it, and
the associated PIT entry is dropped.

Since DRAM has a higher access latency than more ex-
pensive memories used on high-end hardware routers, like
TCAM and SRAM, we implement all data structures with
the objective of minimizing the number of memory accesses,
and to better exploit the transparent cache layers. This is
achieved by carefully aligning data structures to CPU cache
lines, compacting as much as possible all information that
is needed at once.

The management of processing cores is aided by the
DPDK abstraction library, which supports multi-threading,
but requires to pin at initialization time each thread to a
specific CPU core to prevent context switches and better
exploit cache locality.

3.1.2 Concurrent memory access
To process packets at high speed, it is necessary to min-

imize the contention caused by concurrent access to shared
data structures with high write frequency, specifically PIT
and CS. To achieve this objective, we shard PIT and CS
across all threads. As a result, each thread has exclusive ac-
cess to a portion of such data structures, and can therefore
execute read/write operation without synchronizing with
other threads. Differently, read-only data structures, like
the FIB, are concurrently accessed by multiple threads but
they are nevertheless replicated on each NUMA socket, so
that each core can access a copy from its local socket.

To enable correct sharding operation, it is necessary that
Interest and Data packets for a specific chunk are always
processed by the same thread, otherwise this would lead to
PIT and CS misses and pollution. This can be achieved
using two alternative methods. The first method consists in
using the Receive Side Scaling (RSS) functionality offered
by modern NICs. RSS allows to allocate received packets to
specific hardware queues based on the hash of specific fields.
By hashing packets based on the content name and assigning
each hardware queue to a specific thread, all Interest and
Data packets referring to a specific content chunk will be
always processed by the same thread.

This approach is very simple and allows good process-
ing performance as it does not require any synchronization
among threads. However it requires NICs to support hash-
ing arbitrary variable-length fields (i.e., the content name),
which may not be supported by lower-end NICs, which nor-
mally support only RSS based on the 5-tuples (source IP,
destination IP, transport layer protocol, source port, desti-
nation port). This limitation can be addressed, for example,
reserving a number of cores to operate as dispatchers, that
read packets from NICs, compute the hash on the name and
pass it to the responsible processing thread via lockless ring
queues. However, this solution reduces the number of cores
that can be used to perform packet forwarding. The solu-
tion we adopt is to encapsulate ICN packets into a UDP



datagram and using a different destination port depending
on the hash of the content or assigning to each router given
IP addresses and use a different address depending on the
content hash. This is a common technique adopted also in
[12].

3.2 Implementation
Augustus is implemented following two different strate-

gies providing different trade-offs between performance and
convenience of increased flexibility:

• A standalone monolithic implementation, written in
C and based directly on the DPDK packet processing
API for fast packet-based I/O in user space and for its
optimized low-level utilities. This approach provides
direct control over all the operations involved in the
data plane, so as to be able to strip them down to the
bare minimum.

• A modular implementation, which runs in the Click
modular router framework [10]. This approach causes
higher overhead, but it allows a CCN forwarder to
be deployed as a component of a more comprehen-
sive router. Although this approach trades inefficiency
with increased flexibility, it can still make use the
DPDK library for efficiency, and it relies on the open-
source project FastClick [2], a performance-oriented
version of Click.

Augustus’s monolithic implementation is directly derived
from Caesar, and we refer the readers to the original paper
[18] for details. In the following we introduce the modular
architecture of Click and a more detailed description of the
modular implementation.

3.2.1 Click Modular Router
A Click router is defined by a configuration file that de-

scribes the router in terms of a directed graph connecting
basic packet processing modules, called elements. Each el-
ement provides a simple packet processing function (e.g.,
packet classification, queuing), and each edge in the config-
uration graph connects two elements’ ports. Ports can be
of two different types: push or pull. In push connections
(two push ports connected in the graph) packets are trans-
ferred downstream from source to destination element. In
contrast, in pull connections (two pull ports connected in
the graph), packets are pulled from the destination element
upstream and transferred when available. Figure 2 shows
an example of Click element’s interface with four push ports
(one input and three outputs): CheckICNHeader works as a
filter to check the validity of an ICN packet. It takes packets
from its single input port and has three output ports: valid
Interest packets are pushed out on port 0, Data packets on
output port 1 while any invalid/non-CCN packet is pushed
out on port 2 or dropped.

In Click, a packet object consists of a playload, the actual
packet (including headers), and annotations, metadata used
to carry information downstream.

3.2.2 Modular Content Router
For the modular Augustus prototype built in Click, our fo-

cus is to design a set of small, discrete, scalable, and reusable
elements/modules that connected together perform packet

CheckICNHeader(yes)

Configuration String

Element class

Input 
port

Output
ports

0

1

2

0

Figure 2: A sample click element

processing, thus exploring the full advantages of a modu-
lar architecture: flexibility, extensibility, composition, and
reuse.

However, Click’s reliance on packet flow as an organiza-
tional principle means that use of a set of smallest elements
for designing a system is not always appropriate. In fact,
large elements are required when control or data flow does
not follow the flow of packets. Moreover, in some cases the
control flow required to process a protocol is too complex to
be split into smallest elements.

In this context, consideration of the data structures and
packet processing operations of Augustus leads to the design
of the CCN forwarding in three core elements: i) ICN CS,
ii) ICN PIT, and iii) ICN FIB, corresponding to the three
packet processing data structures. These elements carry
their own data structures, some of them reused across differ-
ent modules, and all logic related to accessing CS, PIT and
FIB as discussed in Sect. 3.1.1. The composition of the data-
structure and packet processing operations in three main
modules provides a strong control in operation and flexibil-
ity in modification without affecting the rest of the system in
contrast to the tightly-coupled monolithic implementation.
To simplify the configuration of the routing process, a few
other smaller elements are implemented:

• Elements InputDeMux and OutputMux are introduced
to simplify the input and output flow. Particularly,
the forwarding procedure is based on the notion of in-
terfaces with point-to-point links, and throughout the
procedure queries on all three data structures may re-
sult in a packet being emitted for transmission from all
the three core elements. These modules help managing
input and output links;

• Element CheckICNHeader is introduced as an initial
filter to validate the formatting of CCN packets to
avoid the overhead of processing non-CCN packets.

Figure 3 shows the packet processing flows between the
elements of the modular Augustus prototype. The mod-
ules are carefully designed to avoid additional packet copies
in the forwarding of the packet. For instance, after a data
packet hits the PIT, it is sent over two ports: port 1 for stor-
ing the packet in the CS and port 2 to forward the packet,
without additional packet copies.

Packet processing starts with the InputDeMux element.
This module works as a demultiplexer taking an arbitrary
number of inputs and emitting all packets on its single out-
put. Packet annotations are used by this module to store
important information about the packet (the input interface
from where the packet was received, the hash value of the
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name, etc.) to avoid that other core elements recalculate
them.

After the initial verification of the CCN packet validity,
the CheckICNHeader element forwards the packet to the
main core elements (ICN CS, ICN PIT, and ICN FIB) ac-
cording to the forwarding logic shown in figure 1. The Out-
putMux element is responsible for forwarding processed In-
terest and Data packets to the output interfaces. This ele-
ment takes care of reading the packet annotation, retrieving
the information about the output interfaces and sending the
packet to its corresponding output port (or ports).

4. PERFORMANCE EVALUATION
The main focus of our evaluation is to show that our im-

plementation can operate at wire speed and that it scales
well with respect to FIB size. For this reason we do not
need a detailed traffic model, instead, we generate small
packets with random content so that the transmission speed
of the links is not a bottleneck, and lookup functions are
fully stressed as all interests are new and do not hit local
caches.

Intuitively, one may argue that increasing the number of
threads would make it possible to exploit better the avail-
ability of multiple cores and hence increase performance.
We show that in realistic operational conditions this is not
always the case, as modern architectures share data caches
that represent the key bottleneck for forwarding functions in

CPUs 2 × Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz

Memory 4 × 16 GB @ 1866 MHz
NICs 1 × Intel 82599ES (two 10GbE ports)

1 × Intel I350 (two 1GbE ports)

Table 1: Hardware configuration for the two test
servers.

Augustus router

Traffic generator and sink

Interest generator Echo server
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Figure 4: Traffic flow for the router evaluation ex-
periments.

CCN software-based implementations. In principle this is a
known issue, we quantify its impact and we provide impor-
tant insights on the number of threads that is convenient to
use to maximize throughput.

We test both Augustus implementations. The FastClick
implementation trades the modularity of its approach with
an increased internal complexity and some loss of perfor-
mance. Our evaluation quantify the loss, and gives an initial
understanding of the reasons behind it.

4.1 Experimental setup
The testbed is composed of two identical general-purpose

servers, each equipped with two 10 Gbit/s Ethernet network
interfaces. The details of the hardware architecture are re-
ported in table 1. One server runs the software router, and
the other runs a custom traffic generator and a data sink as
depicted in figure 4.

Before any performance evaluation of the router took
place, the traffic generator and data sink were tested with
a physical loop between its interfaces. The machine is able
to generate and measure a throughput up to 10 Gbit/s with
data packets containing 87 bytes of Ethernet payload, thus
it is never a bottleneck. As forwarding limits are measured
in packets per second, we present results obtained with data
packets that are just as large as the minimum interest pack-
ets (58 bytes of Ethernet payload, including the IP header,
smaller data-packets would not make sense). It is important
to remark that with any “reasonable” mix of interest and
data payload size the router architecture we present very
easily support 10 Gbit/s links with off-the-shelf hardware.

For the throughput experiments, the servers were con-
nected as shown in figure 4, with interest packets forwarded
in one direction through the router and data packets in the
opposite one. The traffic generator sends interest packets
attempting to overload the router and replies to incoming



interests with random data packets matching the interests’
content name. It also acts as a data sink, counting and
then discarding incoming data packets. Throughput mea-
surements are expressed in packets per second (pps) and re-
fer to the number of data packets received at the traffic sink.
Given the present setup, the results imply that the router
was able to handle also an equivalent rate of interest pack-
ets, effectively sustaining a bi-directional throughput that is
twice as large as what we report.

4.2 Parallelism level and threads placement
In order to explore the maximum performance achiev-

able with the described setup, we ran both router imple-
mentations with an increasing number of parallel threads.
As the workload can be split among virtually independent
threads, one would expect performance to scale with the
number of threads enabled on our 16-core (32 with hyper-
threading) architecture. A key element to consider, how-
ever, is that the number of available processing cores alone
is only one of the parameters that influence the performance
boost. In the servers we used for testing (like in any mod-
ern general-purpose processor) threads can be distributed
on the physical processing cores with different approaches
that result in substantially different performance outcomes.
Figure 5 describes the layout of the CPU cores that equip
our servers. Two independent NUMA sockets are present in
our machines, each one with a dedicated layer-3 (L3) cache.
Each socket has 8 independent cores, with a dedicated L2
cache. Each core supports the execution of two threads with
hyperthreading, each one with a dedicated L1 cache. We ex-
pect that placing independent threads on cores that do not
share cache maximizes their performance, as forwarding is
a memory intensive task2. In general, we expect that over-
all performance will be maximized with a configuration that
allows exploiting the maximum possible processing power
while minimizing cache interference. However, stating what
this configuration is, especially with the more complex (from
a computational point of view, not from the development
one) FastClick modular implementation is difficult, as the
performance experiments will highlight.

Data throughput results are presented in figure 6 for both
the stand-alone and the modular implementations, with in-
creasing number of threads and three different configura-
tions. The first configuration, “Hyperthreading,” refers to
the case in which threads can run on the same cores. The
second configuration, “Single Socket,” refers to the case in
which threads run on different cores in the same socket, while
the last configuration, “Dual Socket,” refers to the case in
which threads run on different cores in different sockets. It
is worth noting that when the number of threads exceeds
the number of cores, (i.e., 16 in our machines) threads will
run on both sockets and share some cores.

The starting point is the very first column, obtained
running only one forwarder thread, which shows that the
achievable throughput with one single thread is roughly one
fourth of the maximum we can achieve, confirming that
CPU processing power strongly influences the performance
at 10 Gbit/s wire-speed. The following group of columns
shows that there is a huge performance gap between two

2Note that, as required by DPDK, each forwarding thread is
pinned to a physical core at initialization time, thus avoiding
thread migration (which can be especially harmful in data-
intensive applications).
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Figure 5: Cores placement and cache hierarchy on
the test servers.

threads running with hyperthreading or on independent
cores. Threads on independent cores yield approximately
double the performance of a single core, while the improve-
ment with hyperthreading is negligible. This suggests that
L2 cache plays a critical role in the router’s performance.
In the third group of columns the throughput approaches
what results to be the maximum forwarding capacity (about
10 Mpps) of our servers. The placement uses distinct sock-
ets, and the importance of L3 cache becomes more visible.
Four threads on independent sockets reach the maximum
throughput, while on the same socket there is a performance
decrease of approximately 10%. With six threads on both
cores we achieve the maximum throughput, while hyper-
threaded threads achieve a performance of about 25% less
than the maximum. With eight or ten threads the perfor-
mance approaches the maximum in all configurations.

Interestingly enough, further increasing the number of
threads leads to a small performance degradation due to the
increased concurrency of threads on all the caches. In the
case of thirty-two threads, the throughput decreases even
further, simply because the router is also competing for re-
sources with the operating system.

Looking at the performance of the modular implemen-
tation, we can observe a significant difference with respect
to its stand-alone counterpart. The first column, in which
a single thread is running, shows that the increased flexi-
bility offered by Click introduces some performance degra-
dation due to more complex or less efficient computations.
The following columns show that with a sufficient amount
of additional resources, the modular version also approaches
10 Mpps, very close to the results of the stand-alone one. In-
creasing the number of threads beyond 16 results in a steep
throughput drop due to the contention on caches introduced
by Click, which cannot be completely controlled in this ex-
periment as we instead do in the standalone implementation.
Performance degradation with the modular version of Au-
gustus can be attributed to Click’s modularity that imposes
additional overhead in module to module communication.
However this problem can be overcome using well known
techniques such as click-devirtualize tool and packet batch-
ing proposed by FastClick (not used in our evaluations).

Results obtained in the previous set of examples suggests
that L2/L3 cache misses represents the main reason for the
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Figure 6: Measured throughput for both versions
with varying threads number and placement.

observed throughput reduction with the increasing number
of threads. To verify our hypothesis we measured L3 cache
misses ratio reported in figure 7. The highest through-
put performance is obtained with configurations that main-
tain the competition on caches reasonably low, yet allowing
enough computational power. Interestingly, but not sur-
prisingly, the ability of strictly pinning routing threads to
a dedicated core greatly enhances performance, and allows
for optimized computational power allocations. The modu-
lar FastClick implementation instead leads to higher cache
competition mainly due to module to module communica-
tion overhead. In that case RAM access becomes the bot-
tleneck of the system, leading to loss of performance when
too many computational resources are assigned to routing
functions.

4.3 FIB size scaling
The size of the FIB is extremely important because it is

the interconnection between the control and data planes.
The FIB is populated with prefixes by the control plane
function that computes the routing table, and it is read by
the forwarding engine every time a new interest is not found
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Figure 7: Cache miss ratio for both versions with
varying threads number and placement.

in the CS or in the PIT. Since ICN control plane is not
available, and in any case there would not be an ICN net-
work allowing to measure actually observed prefixes, we fill
the FIB with constant minimum size (57 bytes), randomly
generated prefixes. The Interest generator produces inter-
ests at random in the same prefix space, as there cannot
be unmatched prefixes for a forwarding base. As we men-
tioned already, the worst-case analysis implies following the
red and blue paths in figure 1, so that CS and PIT are al-
ways analyzed without success and the FIB is accessed. The
PIT size is approximately defined by the product between
throughput and maximum “latency” (or RTT) admitted for
pending interests. We set this latency to 1 s, which is large
enough for an operational network: if an interest is not sat-
isfied within 1 s it is reasonable to discard it. Exploring CS
size influence is most interesting when coupled with a traffic
model, while in a worst case analysis it is never hit. Clearly
its size, which we set to 8154 entries, does influence the per-
formance, but it does not seem of much interest when no
hits are possible.

The FIB size instead refers to the actual size used to store
forwarding information. Hence its size is fundamental to un-
derstand the scaling properties of the proposed architecture
and implementations. We explored scaling the FIB hash ta-
ble up to almost 226 buckets (about 4 GB of DRAM, larger
values are not achievable with the hardware we use): given
the current design with buckets accommodating up to 7 en-
tries in the same cache line, this would support about 130
millions entries keeping the probability of any bucket ex-
ceeding the one cache-line threshold below 10−3. The FIB
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Figure 8: Routing performance and level-3 cache
miss ratio as a function of the FIB size.

query runs longest-prefix first in the hash table, so the whole
bucket space is always explored, preventing cache-related ad-
vantage due to either a small addressing space in the interest
flow or correlation in interest packets.

The upper plot in figure 8 summarizes the results, com-
paring the performance of the single-threaded case and the
best-performing multi-threaded case in both implementa-
tions. The figure clearly shows that, for all the versions,
the overall performance is only marginally affected by the
increased FIB size. It also shows that the click version ap-
pears to be less sensitive to the increased size. Only the
standalone implementation with four threads (dual socket)
experienced a measurable throughput degradation, though
not very large and also with a trend difficult to explain.

The lower plot in figure 8 shows the L3 cache miss ra-
tio for the same test cases, and indeed explains them. All
curves remain constant until about 215 buckets (2 Mbytes)
and grow slightly to become again steady again at 219 buck-
ets (32 Mbytes). These two values are related to the size
of L2 and L3 caches, 2 and 20 Mbytes respectively. Cache
misses refer to every process running and not only to FIB
misses. The 4-threads curve does not show a different be-
havior compared to the others, making it difficult to explain
the throughput reduction observed in the upper plot. How-
ever, as already observed in [7, 8] the interaction between

processes and the cache management is very difficult to pre-
dict. One can conjecture that with more threads accessing
the FIB, then the cache management tries to keep it more
aggressively in L3 cache with eight and sixteen threads than
it does with 4. Clearly single thread cases are constrained
by other factors. One last observation relates to the large
impact of the FIB in cache misses: moving from one to six-
teen threads the overall L3 miss ratio grows by a factor of
four.

5. DISCUSSION AND CONCLUSION
The Content Centric Networking paradigm is expected to

provide a breakthrough in terms of user experience com-
pared to traditional IP networking. Open source free im-
plementations can also boost the emergence of novel net-
working paradigms as community networks [14]. This pa-
per contributes Augustus, a software architecture for a CCN
router working at wire-speed in a 10 Gbit/s network and
10 Mpps,and explores its performance providing insight and
guidance for further CCN software roueter development.

Specifically, Augustus:

• Handles more than 10 millions data packets per second
and supports a FIB with up to 226 entries, and it is able
to saturate the 10 Gbit/s link with Ethernet payloads
as small as 87 bytes;

• Runs both as a stand-alone system, achieving the best
performance, or as a set of elements in the Click mod-
ular router framework. In the latter case the perfor-
mance is only slightly penalized.

• Is open source and can be used in software based net-
works (e.g., leveraging NFV technologies) for fast and
incremental ICN deployment.

During the Augustus design and implementation we have
learned a set of useful “hints” for high-performance CCN
software router design and deployment:

• Manual configuration for best performance.
Augustus provides line rate packet processing, it re-
quires manual configuration to carefully tune its per-
formance. It would therefore be critical to decouple
its performance from the hardware configuration, for
instance, by adding automated detection of the archi-
tecture and consequent smart thread distribution.

• Abstraction hides critical low level properties.
Software programming for general-purpose hardware
involves additional abstraction layers with respect to
low level hardware programming, including an operat-
ing system and (in the case of Click) the router frame-
work itself. Every layer adds abstraction: on the one
hand this eases the development and extensibility, on
the other hand each layer makes it harder to track
and tune some low-level properties that are crucial for
achieving high-performance.

• Complex zero-copy in modular framework.
In the FastClick implementation it was crucial to guar-
antee that no packet data copies would be performed
throughout the elements. Click provides a very sim-
ple API for moving packets across elements that will
behave differently depending on whether data copy is



considered needed. In order to guarantee zero copy we
had to deeply investigate the API implementation and
adapt our code accordingly. Further, We discovered
room for optimization in the high-level copying pro-
cedure, which resulted in a patch contributed back to
FastClick.

A final remark on frame size is due at this very last
point. Packet routing and forwarding capability is indepen-
dent from the packet size, thus 10 Mpps routing capability
can sustain about 120 Gbit/s throughput with 1500 bytes
Ethernet frame, but much more with large jumbo frames,
which can be quite standard in a data-centric architecture,
where the data unit is the answer to an interest and not an
IP packet. Of course, with very large frames the amount
of data would start posing stricter requirements to the I/O
system and other bottlenecks may arise; still, the forward-
ing engine could use the same technology and performance
as the one we presented.
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