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Abstract

High frequency communications (mmWave and TeraHz) in urban areas require
a higher density of base stations compared to pre-5G mobile networks, but
open the way to a quantum leap in increased throughput and reduced latency.
However, we currently have no indication of how much we need to densify the
deployment, and on the trade-off between the density of base stations and the
performance improvement. This paper studies the problem of base stations
placement to guarantee coverage to vehicles and pedestrians in urban areas
when using high frequency communications. Our novel methodology takes ad-
vantage of vehicular traffic simulations and precise urban maps to generate a
realistic demand model for vehicles and pedestrians in urban areas. We use
a bounded error heuristic to find the maximal coverage that can be achieved
with a given density of base stations, primarily using line-of-sight communica-
tions. We implemented the heuristic using Cuda libraries on Nvidia GPUs and
evaluated the coverage in an urban area in the city of Luxembourg, for which
vehicular traffic patterns are available. We focus on coverage and capacity anal-
ysis for the mmWave frequency, but the results are easily extended to TeraHz
communications.

Our results are the first to show that a reasonably low density (15 base
stations per km2) is sufficient to provide coverage for vehicles in urban envi-
ronments. However, optimizing on vehicles or on pedestrians are competing
objectives: the operator needs to choose which one to target based on its busi-
ness model when designing the network infrastructure. Our algorithms, code
and open data can be used to perform this task and reproduce our results in
different settings.
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1. Introduction

In order to meet the increasing demand for mobile connectivity, the next-
generation access networks will rely on the use of very high frequencies (mmWave
and TeraHerz) and on the densification of the existing access network, by in-
creasing up to 10 times the number of deployed base stations [? ]. These new
communication technologies are much more susceptible to obstruction and they
need Line-of-Sight to function reliably. For these reasons, the placement strat-
egy of the base stations is crucial, and as already shown in previous works,
an optimal choice of such locations can lead to substantial savings for network
operators [? ].

One of the future applications enabled by next-generation access networks is
the use of Cooperative Autonomous Vehicles. To be really effective, cooperative
driving will not only require vehicles to exchange basic data such as position,
speed, heading, etc., but raw sensor data as well. This will permit vehicles to
implement Cooperative Perception [? ], i.e., to be able to construct a view of
the surrounding environment that goes beyond the field of view of their sensors.
Sharing raw sensor data rather than pre-processed data enables vehicles to take
decisions on their own or to come up with a consensus on how to classify certain
objects, which can lead to safer and more efficient driving (see the boar and the
hare example [? ]).

While this vision is technologically stimulating, we still miss a reliable es-
timation of the effort needed to deploy a new, denser infrastructure that will
provide mostly Line-of-Sight coverage to mobile terminals in urban areas. Man-
ufacturers suggest that 5G will require more than 100 base stations - or next
Generation NodeBs using the 5G terminology - per km2, up from the roughly
10 per km2 in LTE [? ], and even more in 6G. Some works consider densities
even higher than a hundred next Generation NodeB/km2 [? ].

Without algorithms, data, and code to tackle this problem, the research
community can not design protocols and applications with credible results. This
paper contributes to provide this missing link. We use a data-driven approach to
find an optimal placement for next Generation NodeBs by taking into account
a demand model built for vehicles (based on street traffic patterns) and for
pedestrians (isolating sidewalks and pedestrian areas on detailed maps). Given
a demand model, we devise a new heuristic that exploits it to find the optimal
location of the next Generation NodeBs. We take advantage of open geographi-
cal data, specifically OpenStreetMap vectorial maps and Digital Surface Model
to evaluate different next Generation NodeB placements on real-world data.
While the analyses have been conducted only in the city of Luxembourg, the
availability of open-data together with the source code we release will enable
anyone else to reproduce the analyses in different areas. 1

We advance the state of the art with the following findings:

• A “reasonably low ” density (15 next Generation NodeBs/km2) can be used

1https://github.com/UniVe-NeDS-Lab/TrueBS/tree/vehicular_mod
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to provide 95% coverage to vehicles, while pedestrian areas require a higher
density (35 next Generation NodeBs/km2);

• Non Line-of-Sight links can be useful to fill the gap but the performance
penalty is extremely high;

• Providing connectivity to vehicles and pedestrians are two competing ob-
jectives, as a small part of the walkable area is on the streets. If the op-
erator needs to guarantee service continuity also to pedestrians, it needs
to adopt a dedicated covering strategy.

This work extends and improves the initial results obtained in a previous
conference paper [? ] in which we introduced the methodology and measured
the availability of Line-of-Sight from next Generation NodeBs to ground points.
This work uses the same approach but focuses on the estimation of the link
capacity. We use realistic path loss models suggested by ETSI to provide much
more insightful results compared to our previous ones.

2. State of the Art

While the placement of base stations is a widely investigated matter [? ],
the Line-of-Sight requirements introduced by the newer communication tech-
nologies have reignited the attention on the subject, with several works taking
advantage of similar techniques [? ? ? ? ? ]. However, to the best of our
knowledge, no other study is focused on investigating different placement strate-
gies to optimize mobile coverage for vehicles using realistic traffic data, and for
pedestrians using detailed city maps. This is because vehicular networks are a
very specific application for which research on field is extremely expensive and
the available simulation tools fall short in the analysis of a three-dimensional
scenario, that is fundamental to evaluate Line-of-Sight in next-generation access
networks. The most popular open source simulator used to simulate vehicular
networks is Veins, powered by the Omnet++ discrete event simulator [? ]. Veins
uses a flat 2D map, so it does allow to perform Line-of-Sight estimation but it is
mostly useful for vehicle-to-vehicle communications, assuming that vehicles in
communication range are at roughly the same elevation. For some other appli-
cations however, the lack of a 3D approach has been recognized as a limitation
[? ]. There have been some attempts to improve Veins to introduce the third
dimension but this is limited to the use of loss models that are more accurate
in considering the ground elevation (like the n-ray ground model) and not nec-
essarily the shape of buildings [? ]. Only very recently Veins has been extended
to introduce simple prisms as three dimensional building shapes [? ] with a
limited computational penalty. In comparison, our approach is GPU-based and
can exploit data of arbitrary accuracy. Finally, the CARLA simulator is a recent
instrument that heavily relies on 3D models [? ], however the goal of CARLA
is not to model realistic networks of vehicles, but to improve their intelligence
with the reconstruction of 3D objects. The most similar research, from Jaquet
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et al. [? ] is focused on enhancing vehicular networks by taking advantage of
unmanned aerial vehicles.

3. Problem Formulation and Solution

We consider a 3D shape of an urban area and a set Λ of points in the
ground that can be potentially covered with a Line-of-Sight connection from a
next Generation NodeB. Each point corresponds to an (x, y, z) triplet, in which
the (x, y) coordinates are quantized using one point per squared meter. Points
are selected to be outside any building shape and only in public areas (streets,
roundabouts, street parking, sidewalks) and not in private areas. Each point in
Λ is uniquely identified by the (x, y) couple, as we set the z value to a height
of 1.5m, as such, with a little abuse of notation we may use (x, y) ∈ Λ when it
simplifies the description.

The problem we tackle can be summarized in three steps described in the
next two sections:

1. For each point in Λ define a weight, the higher the weight the higher the
probability the point will be covered. The matrix that associates (x, y) to
a generic weight is called τ ;

2. Identify the set P of points in space in which a next Generation NodeB
could potentially be placed. Each position pi ∈ P is defined by an (x, y, z)
triplet, we consider only points on the facades of buildings;

3. Find an algorithm that chooses the minimal number of next Generation
NodeBs so that the coverage is maximized according to some metric.

Step one is a novel contribution of this paper. In a previous work [? ],
all points in the city had the same importance, whereas here we weight loca-
tions considering traffic demand and pedestrian areas, choosing next Generation
NodeB locations depending on that. The solution to the second step comes from
a previous publication in which we introduced the problem of coverage as a vari-
ation of the classical maximum subset coverage problem [? ], while the third
step modifies the solution proposed therein to take into account the weights
introduced in step one. In the remainder of this section, we will formalize point
3 (the next Generation NodeB placement problem) and provide an algorithmic
solution for a generic weights matrix τ . Then, in ?? we detail the different
strategies to obtain 2 realistic weights matrices for vehicles and for pedestrians.

For convenience, we list all the mathematical symbols in ??, some of which
are also represented graphically in ??. In what follows we use the |·| operator on
sets and matrices. On sets it counts the number of elements, while on matrices
it refers to the 1-norm.

Limitations. It is important to note that all our results are to be interpreted as
a base-line on which to produce fine-grained further results. In this sense, we
recognize that our conclusions are not directly applicable to other cities, because
at the time of writing the Luxembourg scenario is the only one for which we
own all the necessary data, however the paper methodology is fully repeatable.
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Figure 1: Graphical depiction of the weighted placement problem: The matrix of weight
(τ ) associated with each point is represented by the numbers in the background; the set of
Buildings (B) is represented by the rectangles in brick red; the set of candidate locations (P)
is represented by the small black points on the edge of the buildings; the locations selected
by the algorithm are represented by the larger dots colored in green, their viewsheds σi are
represented by the grey shadows projected on the streets.

Future works will extend our approach using data coming from other cities
and more complex ways of estimating the performance of the links, such as
estimating the blockage due to obstacles that are not buildings or using more
elaborate ray-tracers that take into account also reflections and diffraction.

3.1. next Generation NodeB Placement
We briefly recall what was proposed in Gemmi et al. [? ] that is at the

base of this work. Let B = {bi} be the set of buildings extracted from the
OpenStreetMap dataset. Let also ϕ(bi) be a function that extracts a set of
coordinates that compose the perimeter of the building bi, with points spaced
on average one meter away from each other, placed 1m below the height of
the roof. The elevation of the roof is derived using open data repositories that
provide a surface model (a Digital Surface Model file). We can then define the
set of candidate locations P as:

P =
⋃
bi∈B

ϕ(bi) (1)

Once the set of candidate locations is determined, we need to evaluate the cov-
erage from each of them. In order to do so, we take advantage of a viewshed
algorithm implemented using the CUDA library on NVidia GPUs [? ]. This
algorithm, applied on a highly precise Digital Surface Model computes the pres-
ence of Line-of-Sight from the candidate location pi to each point in Λ given a
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Table 1: List of symbols

Symbol Meaning

Λ Set of ground points potentially to be covered
τ Matrix of weights associated to points in Λ
P Set of all candidate locations for next Generation NodeBs
B = {bi} Set of buildings extracted from the OpenStreetMap

dataset
ϕ(bi) Set of coordinates that compose the perimeter of the

building bi
σi = Υ(Λ, pi) Υ is a function returning a binary matrix σi indicating

if there is Line-of-Sight between a point pi and a set of
points Λ

Ω Set of all viewsheds corresponding to all possible next
Generation NodeB positions

Ω⋆ Quasi-optimal set of viewshed computed by the optimiza-
tion algorithm

π,γ Weight matrices for the pedestrian and vehicular strate-
gies, respectively

Λπ,Λγ Set of ground points to be covered by the pedestrian and
vehicular strategies, respectively. Named as walkable and
drivable areas in the text

λ Desired next Generation NodeB density, in next Gener-
ation NodeBs per squared kilometer

S Size of the area considered in the analysis [km2]
k = λS Maximum number of next Generation NodeBs to deploy
|Γ|, Γ being a set Set size operator, counts the number of elements in the

set
|τ |, τ ∈ Rm,n 1-norm operator over a matrix (sum of absolute values),

i.e.,
∑m

i=1

∑n
j=1 |τ i,j |

maximum distance (dmax = 300m) from pi. We consider this value of distance
as it has been used as an upper bound in other works [? ]. Let σi = Υ(Λ, pi) be
a 2-dimensional binary matrix that associates each point in Λ to a non-zero value
if there is Line-of-Sight from the point pi to the point of coordinate (x, y, z) ∈ Λ.
Υ corresponds to the application of the viewshed algorithm from the point pi
over the set of points Λ. We call σi the viewshed matrix from point pi. If we
apply Υ to all the points in P we obtain a collection of matrices that represent
all the possible viewsheds from all the potential positions of next Generation
NodeBs, as in ??:

Ω =
⋃

pi∈P
Υ(Λ, pi) (2)

We then obtain a collection of matrices Ω = {σ1,σ2, . . . ,σm} in which
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σi
x,y = 1 means that a terminal in position (x, y) has Line-of-Sight with a

next Generation NodeB placed in the point pi. Remember that we extend the
classic definition of Line-of-Sight with the additional constraint of being within a
maximum distance dmax and that to each point of coordinate (x, y) we attribute
an elevation z given by the Digital Surface Model file, plus 1.5m.

3.2. Quasi-optimal next Generation NodeB placement
Given a parameter k indicating the maximum number of next Generation

NodeBs an operator is willing to deploy, we want to find a subset Ω⋆ ⊆ Ω whose
size is lower than k that maximizes the coverage

∣∣∨
σi∈Ω⋆ σi

∣∣, where
∨

is the
OR operator between binary matrices. In order to take into account the traffic
patterns, consider a generic non-negative weight matrix τ with the same shape
of σi. We can formulate the maximization objective as

max
Ω⋆

∣∣∣∣∣τ ⊙
( ∨

σi∈Ω⋆

σi

)∣∣∣∣∣ with |Ω⋆| ≤ k, (3)

where ⊙ is the Hadamard product (the element-by-element multiplication be-
tween two matrices). This will lead to a choice of the optimal k viewsheds in Ω⋆

to cover the roads with the highest traffic. The problem is a so-called weighted
maximum coverage problem.

Note that if we call 1 the matrix made of all one elements, and we set τ =
1 then the problem converges to the classical unweighted maximum coverage
problem, in which we try to cover the largest portion of the points in Λ treating
all of them equally.

3.3. Heuristic solution
Since the above-described coverage problem is NP-Hard in our past work we

relied on a polynomial greedy heuristic with bounded error to efficiently find a
quasi-optimal solution [? ].

Here we modify the greedy heuristic as described in detail in ?? to take
into account the weight matrix. The heuristic proceeds as follows: we start by
defining a coverage matrix C of the same size of τ , initialized with zeros (??).
Each iteration of the loop in ?? will choose the position of one next Generation
NodeB. For each candidate location pi and the corresponding viewshed σi we
derive the so-far uncovered elements C̄ as the negation of the coverage matrix
(??). The idea is, at each step, to progressively add the next Generation NodeB
that provides the largest additional coverage with respect to the already covered
area. We define C⋆ that represents the so-far uncovered elements that would
be covered by the candidate location, with their weight given by τ (??). Note
that bool() is a function that makes an integer matrix a boolean one, ¬ is the
boolean NOT operand. We then provide a score for pi as the norm-1 of the
coverage matrix (in ??).

Then, the element with the maximal ranking that is not already in Ω⋆ (σj /∈
Ω⋆) is chosen and the corresponding values of the viewshed matrix are added to
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Algorithm 1 Greedy algorithm for the weighted maximum coverage problem.

Input: Ω (Set of viewsheds), k (number of next Generation NodeBs),
τ (weighted traffic matrix)

Output: Ω⋆ (Set of the viewsheds from optimal locations)
1: procedure Γ (Ω, k, τ )
2: C = 0
3: Ω⋆ = {}
4: for i← 1 to k do
5: h⋆ = −∞
6: for σj ∈ Ω do
7: C̄ = ¬bool(C)
8: C⋆ = C̄ ⊙ σj ⊙ τ
9: hj = |C⋆|

10: if hj > h⋆ and σj /∈ Ω⋆ then
11: σi⋆ = σj

12: h⋆ = hj

13: C = C + σi⋆

14: Ω⋆ = Ω⋆ ∪ {σi⋆}
15: return Ω⋆

C (??). Note that this makes C a non-boolean matrix. Finally, the viewshed
with the maximal ranking σ⋆ is added to the set of optimal viewsheds (??). The
loop is repeated till the number of desired locations is reached. The operation
at line ?? has complexity |Λ|, and is repeated at most k × |P| times, so the
overall complexity is O(k|P||Λ|).

This algorithm is referred to as Γ (Ω, k, τ ) and in the next section we use it
with two weights matrices π or γ, producing two sets of quasi-optimal viewsheds
optimized for pedestrians or vehicles respectively.

4. A Demand Model for Vehicles and Pedestrians

Obtaining realistic traffic data, for both pedestrians and vehicles, is always
a challenging task, as data collected by cities is rarely released to the public.
One possibility, which is the one we consider in this work, is to generate traffic
data using microscopic traffic simulators and realistic scenarios. We use the
urban traffic simulator SUMO [? ] to generate realistic mobility traces of the
city of Luxembourg. In particular, we make use of the Luxembourg SUMO
Traffic scenario [? ], a publicly available scenario generated from traffic data
provided by the Luxembourg government which includes both public and private
transportation over a period of 24 h. Unfortunately, since the model does not
include pedestrian mobility, we had to resort to a different approach to model
it. In the next sections, we detail both models.

The reason for choosing Luxembourg lies in the fact that, in addition to the
demand model, our solution requires buildings height data, which is available
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Figure 2: Area of the city of Luxembourg over which traces are collected.

for this city. We obtain such information from 3D lidar data available from the
Luxemburg open-data platform 2, enabling us to associate a precise height to
every building extracted from the OpenStreetMap map. We considered includ-
ing other cities in our analysis, but finding both the demand model and the
lidar data is unfortunately very unlikely. As an example, we find lidar data
for the city of Turin, but the SUMO scenario [? ] produces traffic deadlocks
with consequent “teleportations”3, which would make the traces unrealistic. On
the contrary, there exists a very realistic SUMO scenario of the Principality of
Monaco [? ], but no 3D lidar data.

4.1. Vehicular Model
To obtain traffic traces, we run the scenario over the full 24 h for a total of

286 215 vehicles moving on the streets. The simulation sampling time is set to
1 s and, at the same frequency, we log the positions of the vehicles in the area of
the city shown in ??, corresponding to an area S of roughly 4 km2. We collect
traces using GPS (latitude/longitude) coordinates and then convert them to a
.gpx file for later processing. We map each point in a trace to a cell in the
discretized space given by Λ. We obtain a matrix γ with the same shape as
τ , where γx,y = n means that n vehicles have passed in cell (x, y) during the
whole simulation4.

?? shows the empirical pdf of the values of the cells with non zero value,
binned with bins of size 0.125 passages/minute, rescaled to the number of pas-

2The lidar data is available at: https://data.public.lu/fr/datasets/
lidar-2019-modele-numerique-de-terrain-mnt/

3Teleportation is used in SUMO to resolve deadlocks or collisions. If a vehicle is involved
in a collision or it is stopped for a time longer than a threshold, SUMO moves it to the next
edge in its path.

4In our previous work [? ] due to memory limitations of our GPU we had to re-scale the
frequency values in τ to be within the allowed range of one byte: [0, 255]. In this work we
resort to a GPU with a larger memory, enabling us to work with 16 bit integers and get rid of
such re-scaling.
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Figure 3: Empirical p.d.f. of the vehicles passages per minute per cell.

sages per minute for readability. It can be seen that the majority of the cells
have less than one passage per minute, with the 95th percentile roughly at 0.55.
The distribution is pretty skewed, with about 5 orders of magnitude between
the largest and the lowest frequency.

We call Λγ the set of points (x, y, z) ∈ Λ in which γx,y ̸= 0, and we refer to
it as the drivable area.

4.2. Pedestrian Model
Due to the lack of a pedestrian mobility model in the LuST scenario, we had

to manually define certain public areas where the pedestrians would transit. We
decided to focus on sidewalks and public open-air areas such as parks, gardens,
squares, etc.

To model the sidewalks we started from the lines characterizing the Open-
StreetMap roads, which were used to center two symmetrical 2-meter wide side-
walks with a distance from the center of the road depending on the type of road.
To model the public open-air areas, on the other hand, we relied on the pub-
lic land use database from OpenStreetMap, where we selected the public areas
with one of the following types: cemetery, forest, grass, heath, meadow,
orchard, park, recreation_ground. Again, we mapped those points to a
cell in the discretized space given by Λ and obtained a matrix π with the same
shape as τ , where πx,y = 1 when the element corresponds to one of those areas
and 0 otherwise. ?? shows both sidewalks and public areas in green, the roads
dedicated to vehicles in yellow, and buildings in gray. We call Λπ the set of
points (x, y, z) in which πx,y ̸= 0, and we refer to it as the walkable area.

Note that in a realistic deployment our algorithm allows to be manually
tailored by an operator, according to local needs and strategies. This could be
achieved by manually modifying the demand model: the operator could increase
(or decrease) the weights to improve the coverage of a certain area that is more
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Figure 4: Detailed view of a portion of the area considered in the analysis. Yellow highlights
roads, green indicates public areas for pedestrians (sidewalks and parks), grey indicates build-
ings, and white indicates private areas. The zoomed portion shows the vehicular traces with
a grayscale representing the number of passages per point (darker means higher).

Parameter Value

Area size 3.98 km2

Carrier frequency 28GHz
Bandwidth (B) 400MHz
Thermal Noise (T=300K) −87.8 dBm
Noise Figure (Nt) 5 dB
3GPP Channel Model ETSI TR 38.901 Urban Micro
Reception gain 3 dBi
MIMO layers (µ) 2
Transmission power 30 dBm
Transmission gain 10 dBi
Maximum distance for Line-of-Sight links 300m

Table 2: Simulation Parameters

(ol less) important, based on its business or operating needs. Once the weights
are manually modified, the optimization algorithm does not need modifications.

5. Experimental Setup and Metrics

We consider two different settings, one in which we optimize the coverage
for the vehicular traffic (τ = γ), and another one in which we optimize for the
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areas where pedestrians might be located (τ = π). We apply ?? to compute
the optimal locations for the next Generation NodeBs, increasing their number
k. We consider a density λ of next Generation NodeBs per squared km going
from 5 to 45 at steps of 5, and we set k = λS. Remember that S indicates the
size of the area we consider.

We obtain two solutions for the coverage:

Ω⋆
λ,γ = Γ (Ω, λS,γ) (4)

Ω⋆
λ,π = Γ (Ω, λS,π) (5)

that we aggregate with the OR operator to obtain a full coverage matrix:

Φλ,γ =
∨

σj∈Ω⋆
λ,γ

σj ; Φλ,π =
∨

σj∈Ω⋆
λ,π

σj (6)

In brief, the elements in Φ indicate whether a point (x, y) is covered by at least
one next Generation NodeB.

5.1. Coverage Metrics
We use four metrics to compare the results in terms of coverage (again, ⊙ is

the Hadamard product and | · | the norm-1). The first two refer to the drivable
area and are:

Dcovve(λ) =
|γ ⊙ Φλ,γ |
|γ|

; Dcovpe(λ) =
|γ ⊙ Φλ,π|
|γ|

(7)

The metrics in ?? tell how good the coverage of drivable areas is when we
optimize for vehicles (Dcovve) or when we optimize for pedestrians (Dcovpe).
Dcovpe, in practical terms, tells us what happens if we try to optimize the
coverage for pedestrians but we measure the results only on the points where
the vehicles pass (with their multiplicity). Of course, we expect Dcovve(λ) to
be larger than Dcovpe(λ), yet we are interested in the difference.

We use two more metrics to evaluate the complementary set-up:

Wcovpe(λ) =
|π ⊙ Φλ,π|
|π|

; Wcovve(λ) =
|π ⊙ Φλ,γ |
|π|

(8)

Both metrics express how good the coverage of walkable areas is, in the first
case when we optimize for pedestrians (Wcovpe) while, in the second, when we
optimize for vehicles (Wcovve).

5.2. Channel Capacity Model
Besides the evaluation on pure coverage, we also evaluate the quality of the

coverage in terms of capacity, using the Shannon channel capacity formula. To
obtain the received signal strength we consider a transmission power of 30 dBm
at a frequency of 28GHz. We also assume the next Generation NodeB to have an
isotropic antenna with transmission gain equal to 10dB. In practice, this would
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Figure 5: Shannon channel capacity as a function of the distance between two points d and
the Line-of-Sight/Non Line-of-Sight conditions.

be made possible by having between one and three sectorial antennas covering
the unobstructed area around the next Generation NodeB . To compute the
pathloss between a next Generation NodeB located at pi and a point (x, y, z)
in the city, we employ the Urban Micro model defined in ETSI TR 38.901 [?
]. The model provides the path loss for both Line-of-Sight and Non Line-of-
Sight conditions, and we can easily distinguish between the two cases thanks
to the pre-computed viewsheds. In addition, we consider a next Generation
NodeB to be in Line-of-Sight with a point only if the distance between them
is smaller than 300m. We set the noise floor for a bandwidth B = 400MHz
to be Nt = −87.8 dBm and we compute the Signal to Noise Ratio and the
corresponding Shannon channel capacity CSH(d) for µ = 2 MIMO layers:

CSH(d) = µB log2

(
1 +

S(d)

Nt

)
(9)

In ??, S(d) refers to the received signal power at distance d, as per the Line-of-
Sight/Non Line-of-Sightpath loss model. ?? details all the parameters.

?? shows a graph of the capacity as a function of the distance and Line-of-
Sight/Non Line-of-Sight. We report this known curve for three reasons. The
first is that it quantifies the difference between the maximum bit-rate in the
two cases. The second is that it highlights that a terminal continuously switch-
ing between Line-of-Sight and Non Line-of-Sight would experience a constant
change in network performance that would make it very hard to support any
application, so a partial Line-of-Sight coverage may be worse than a fully Non
Line-of-Sight coverage. The third is that if the Non Line-of-Sight curve is shifted
right, it can intersect the Line-of-Sight one. This translates into the fact that in
certain points it may be convenient to choose a next Generation NodeB that is
in Non Line-of-Sight but is physically closer to the closest one in Line-of-Sight.
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This is more likely if the Non Line-of-Sight link is very short, and impossible if
it is longer than roughly 50m. It is interesting to evaluate if and how often this
event happens.

5.3. Capacity Metrics
Consider a point (x, y, z) ∈ Λγ in the drivable area, the set Ω⋆

λ,γ of the quasi-
optimal viewsheds at density λ optimized for the vehicles, and the corresponding
positions of next Generation NodeBs. We call LCx,y,γ(λ) the highest capacity
we can achieve from any next Generation NodeB to (x, y, z) using only Line-
of-Sight links5. If LCx,y,γ(λ) = 0 then there is no Line-of-Sight link between
(x, y, z) to any next Generation NodeB. We call NCx,y,γ(λ) the highest capacity
when using only Non Line-of-Sight links, which is always larger than zero (there
are always Non Line-of-Sight links to any (x, y, z)). The same metrics are also
defined for walkable areas using the π pedix. We collect all the capacities in
four sets, divided by Line-of-Sight/Non Line-of-Sight:

DcapLλ = {LCx,y,γ(λ) ∀ (x, y, z) ∈ Λγ | LCx,y,γ(λ) > NCx,y,γ(λ)} (10)

DcapNλ = {NCx,y,γ(λ) ∀ (x, y, z) ∈ Λγ | NCx,y,γ(λ) > LCx,y,γ(λ)} (11)

WcapLλ = {LCx,y,π(λ) ∀ (x, y, z) ∈ Λπ | LCx,y,π(λ) > NCx,y,π(λ)} (12)

WcapNλ = {NCx,y,π(λ) ∀ (x, y, z) ∈ Λπ | NCx,y,π(λ) > LCx,y,π(λ)} (13)

There are two important things to note in these definitions. The first is that
we estimate the capacity on the drivable (walkable) area only when we optimize
on vehicles (pedestrians), so we do not consider the cross-metrics like in ??
and capacity metrics don’t have the ve/pe subscript like coverage metrics. The
second is that we consider Non Line-of-Sight links only when a Line-of-Sight
link is not available or it offers a lower capacity than a Non Line-of-Sight link.
This last observation leads to the definition of a further metric: the fraction of
points for which there exist some Line-of-Sight links, but a Non Line-of-Sight
link provides a higher capacity.

W diff (λ) =
|{(x, y, z) | NCx,y,γ(λ) > LCx,y,γ(λ) > 0}|

|Λγ |
(14)

Ddiff (λ) =
|{(x, y, z) | NCx,y,π(λ) > LCx,y,π(λ) > 0}|

|Λπ|
(15)

We analyze the sets of capacity metrics in the following section in terms
of averages, cumulative distribution functions, and coefficient of variation to
provide a link quality estimation of the coverage strategies.

5As previously said, we don’t use z as an index in the subscript since (x, y) uniquely
addresses one point.
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Figure 6: Coverage (fraction of points reached by at least one Line-of-Sight link) for different
optimization strategies. On the left, we measure the coverage for walkable areas (Wcovpe(λ)
and Wcovve(λ)) while on the right we measure the coverage for drivable areas (Dcovve(λ)
and Dcovpe(λ)).

6. Results

6.1. Analysis of the coverage
We start the analysis by looking at coverage metrics as observed by different

areas in the city (walkable and drivable areas) for the two optimization strate-
gies. ?? shows the coverage as perceived on walkable areas when optimizing
for pedestrians (Wcovpe) and for vehicles (Wcovve) as a function of the density
of next Generation NodeBs. Conversely, ?? shows the coverage as perceived
on drivable areas when optimizing for pedestrians (Dcovpe) and for vehicles
(Dcovve).

?? shows two very relevant conclusions. The first is that Dcovve reaches 90%
coverage with λ = 10, 95% coverage with λ = 15 and 99.9% coverage with λ =
25 while Dcovpe needs 150% and 100% more next Generation NodeB to cover
90% and 95% of the vehicles, respectively, and can not reach 99.9% even with
λ = 45. Considering that vehicles’ coverage for autonomous driving requires
high reliability, we see that there is a relevant difference when we specifically
optimize for vehicles, rather than for pedestrians. The second conclusion is more
generic: so far we did not have any concrete indication of how much we need
to increase the density of next Generation NodeBs to achieve vehicles coverage,
and this result tells us that in urban areas, a reasonably low density can still be
sufficient for a reliable service.

?? instead tells a different message. There is a remarkable difference in the
coverage of walkable areas when optimizing for vehicles or not. In particular,
Wcovve (the vehicles’ optimization) allows us to cover only slightly more than
80% of the ground. This result is worse than in our previous work [? ] where
we show that we could not cover more than 95% of the ground because here we
included larger public areas such as parks and squares in the analysis. On the
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Figure 7: Fraction of points for which a Non Line-of-Sight next Generation NodeB has been
chosen even though a Line-of-Sight next Generation NodeB was available, for drivable areas
(Ddiff (λ)) and walkable areas (W diff (λ)).

other side, while optimizing for pedestrians and measuring on walkable areas,
Wcovpe reaches 90% with λ = 25 and 95% with λ = 35.

The takeaway for the operator that needs to start deploying next Generation
NodeBs for Line-of-Sight communications is that the goals of covering vehicles
or pedestrians are competing ones. Optimizing for vehicles would reduce signif-
icantly the required density of next Generation NodeBs but would not allow to
reliably cover pedestrian areas.

6.2. Analysis of the capacity
While coverage gives us a qualitative measure of the impact of different op-

timization strategies, it does not provide us with quantitative insights. In this
section, we analyze the capacity resulting from different optimization strategies,
but before that, we introduce ??, which shows the fraction of Non Line-of-Sight
links chosen even if a Line-of-Sight link was available (W diff (λ) and Ddiff (λ)).
Regardless of the density, less than 1% of the links will obtain better connec-
tivity from a Non Line-of-Sight link than from a Line-of-Sight link. This means
that in realistic coverage conditions, the best link is almost always the Line-
of-Sight one and that Non Line-of-Sight links are of prevalent importance only
when the Line-of-Sight coverage is low, that is, in the leftmost part of the curves
in ??. The fact that the curves in ?? grow with λ is due to the average reduc-
tion of the distance to any next Generation NodeB with the growth of λ. As we
already noticed this makes it more likely that the two curves in ?? intersect, as
the average link length stays in the lower range.

6.2.1. Estimating the Average Capacity
For each density value λ, we compute the average capacity for Line-of-Sight

and Non Line-of-Sight links, as well as the overall average. ?? shows the average
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Figure 8: Average Capacity for different areas and Line-of-Sight conditions. On the left, we
measure the average capacity for walkable areas, divided Line-of-Sight links (WcapLλ ), Non
Line-of-Sight links (WcapNλ ) , and both of them (WcapLλ∪WcapNλ )). On the right, we measure
the same metrics for drivable areas.

capacity measured over the walkable areas when optimizing the locations of next
Generation NodeBs for pedestrians. The absolute values are to be considered as
an upper bound (as in conditions of interference, the capacity can be far from the
Shannon limit) however the comparison is interesting, with a minimum average
of 5.5Gbit/s achieved at the lowest next Generation NodeB density for Line-of-
Sight links, versus less than 500Mbit/s for Non Line-of-Sight links. Especially
at low next Generation NodeB densities, this has a large impact on the overall
(Line-of-Sight and Non Line-of-Sight) average capacity: As the fraction of Line-
of-Sight links for λ = 5 is 55% (??), the overall average is as low as 4Gbit/s.

?? instead shows the average capacity measured over drivable areas only
when optimizing for vehicles. Again, there is a striking difference between Line-
of-Sight and Non Line-of-Sight links, however, since with the same density the
drivable areas reach a better coverage, the overall average is closer to the average
of Line-of-Sight links. This also applies to the right end of the curve, in which
a higher density reduces the average length of all links (including Non Line-of-
Sight) and thus the green curve gets closer to the orange one.

6.2.2. Capacity Distribution
As averages hide information about the distribution of the capacities, ????

show the empirical Cumulative Density Function of the Dcapve and Wcappe
sets. Each graph shows the distribution for λ = 5, the density to cover 95% of
the area (λ = 35 for pedestrians, λ = 15 for vehicles), and for λ = 45, for both
Line-of-Sight and Non Line-of-Sight links.

By looking at Line-of-Sight capacities, regardless of the optimization strategy
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and the density, for the smallest possible density, we can see that all distribu-
tions have a reasonable shape. Most importantly we can see that no capacity
is smaller than 3Gbit/s. This means that, regardless of the objective, deploy-
ing next Generation NodeBs focusing on Line-of-Sight will result in very good
performance.

With respect to Non Line-of-Sight, the quality of links is instead highly
dependent on density. At low densities, a vast majority of links experience ca-
pacities that are very close to zero. For the densities providing 95% coverage,
instead, the distribution depends on the optimization strategy. When optimiz-
ing for vehicles (??), roughly 20% of the links have close to zero capacity, and
75% have a capacity lower than 1Gbit/s. This means that, in high density
zones, vehicles will experience very good network conditions, but in less dense
areas communication might be at risk and some roads might be left completely
without coverage or with poor communication. For the pedestrian strategy,
there are fewer links with this problem, as 50% of them have an available ca-
pacity of at least 1.5Gbit/s, but this comes at the cost of more than doubling
the density of next Generation NodeBs. At high density, the vehicular strategy
results in very good performance, with just 20% of links experiencing a capacity
smaller than 3Gbit/s and 75% of them experiencing at least 4Gbit/s. On the
contrary, the empirical Cumulative Density Function for the pedestrian strategy
grows at a much slower rate, with almost 50% of the links having a capacity
smaller than 2Gbit/s.

Finally, ?? shows the coefficient of variation (i.e., the ratio between standard
deviation and the average) of the capacity for different values of λ. Regardless of
the optimization strategy, the coefficient of variation decreases with the density
of next Generation NodeBs. This indicates that, as we increase the density of
next Generation NodeBs the change in the experienced capacity between differ-
ent locations reduces, indicating a more even distribution of resources among
users, but also in the trajectory of one single user. Increasing the coverage not
only improves the average performance but makes it more stable.

7. Conclusions

The foreseen densification of next Generation NodeBs and the advancements
in vehicular communications are playing a pivotal role in the deployment of
next-generation access network access networks in ultradense urban areas. This
paper proposes a novel data-driven method to optimize the placement of next
Generation NodeBs and provide crucial insights to the network operators to
understand how the two coverages, for vehicular communication and pedestri-
ans, are intertwined. We show that at least for the vehicular case a reasonably
low density of next Generation NodeBs is sufficient to provide 95 % coverage in
urban areas, but that at the same time optimizing the coverage only towards
the roads with the most traffic will not provide sufficient coverage for pedes-
trians. Our data numerically confirm the intuition that if operators want to
have good and stable performance they must focus on the deployment of Line-
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of-Sight links, and we provide evidence on the expected Line-of-Sight coverage
for reasonable values of next Generation NodeB density.
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Figure 9: empirical Cumulative Density Function of the capacity for different areas, Line-of-
Sight conditions and next Generation NodeB densities. At the top, the metrics are displayed
for drivable areas, while at the bottom for walkable areas. The next Generation NodeB
densities displayed, corresponds to the minimum considered (λ = 5), the maximum (λ = 45)
and the density that guarantees a Line-of-Sight coverage of 95% of the areas (λ = 15 for
drivable areas and λ = 35 for walkable areas).
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Figure 10: Coefficient of variation (ratio between standard deviation and average) of the
capacity for drivable areas (DcapLλ ∪DcapNλ ) and walkable areas (WcapLλ ∪WcapNλ ).
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