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Abstract—Topology generators are a key asset for researchers
in computer science and telecommunications that often need
to test network protocols or distributed systems in simulated
environments that resemble real scenarios. Despite that, in the
research area of distributed wireless networks still many works
use very simplistic models that do not have the characteristics of
the currently existing large-scale wireless mesh networks. The
only topology generator that tries to produce synthetic graphs
that look like real networks is NPART [1].

In this work we test the characteristics of NPART against an-
other, completely different approach: TrueNets [2]. TrueNets
uses accurate data representing land surface of a real world
location to create topologies of networks that could actually
exist. The downside of TrueNets is twofold: it can be used
only when data-sets are available and generating topologies is
computationally intensive. We show that using aggregate data
from TrueNets we are able to improve NPART. We call the new
generator NPART+ and we show that compared to topologies
generated with TrueNets, NPART+ (or its variants) improves
NPART in several metrics, but still it can not match the accuracy
of TrueNets.

I. INTRODUCTION

The physical topology of a network strongly influences the
performance of protocols and applications that run on it. In
the field of telecommunications and networking it is essential
to use the right topology to benchmark the performance of
proposed protocols and applications but unfortunately, most
of the times real topologies are not available. Even when they
are, their number is limited and not sufficient to assess the
performance of a new protocol in different but still realistic
settings. For this reason in each specific area of research,
topology generators with different properties have been cre-
ated. In the area of wireless multi-hop networks, despite their
importance, research on topology generators lags behind. Two
models have been proposed, one by Cerdá-Alabert [3] and
another (NPART, Node Placement Algorithm for Realistic
Topologies) by Milic and Malek [1], both derived from the
observation of existing networks. While the first one models
networks with a mix of wireless and wired connections, the
second one generates topologies with characteristics that have
been measured on real-world wireless mesh networks made
of hundreds of nodes.

NPART has two input parameters: a degree distribution
to be matched and a target number of leaf nodes in the
topology. These two parameters were derived by the analysis
of two existing networks, and generated topologies try to
reproduce them as closely as possible. This is one of the
limitations of NPART, which is hard to generalize since we
don’t have degree distributions from many real networks, so
the overall size of the network is limited to the ones we

know. The second limitation is that NPART is essentially a
random point placement process in a free space area that
places links in order to match a degree distribution. While
the input parameters influence the macroscopic features of the
resulting graph, the local features may well be very different
compared to real networks. Finally, NPART is based on the
analysis of urban networks, that have characteristics that may
strongly differ from networks in rural or suburban areas.

A recent work proposes a completely different approach
[2]. TrueNets is a network emulator that takes advantage
of morphological data provided by public administrations -
such as elevation profiles obtained with LIDAR (Light De-
tection and Ranging) measurement campaigns - and building
shapes obtained by OpenStreetMap. TrueNets is able to
evaluate the presence of line-of-sight between two buildings
in a city map and the networks generated with TrueNets
are extremely realistic both in their macroscopic and local
properties. The obvious drawback is that to be generated
they require precise information on a specific world location
and that generating topologies is a computationally intensive
process.

The goal of this paper is to understand how we can
improve NPART with data coming from TrueNets to make
NPART more scalable and generic. Ideally, we would like
to have pre-computed empirical distributions coming from
TrueNets that represent generic categories of inhabited
places (urban, rural, intermediate and suburban) and that can
be used to tailor the behaviour of NPART. As a first step
in this direction, we take data coming from 4 real areas, we
generate networks with TrueNets and we extract the data
needed to synthetically generate topologies using NPART. We
call this hybrid approach NPART+. Then, we compare the
topologies generated by TrueNets, NPART and NPART+
and we measure their similarity on the basis of different
graph metrics. Our results show that NPART+ produces
topologies with macroscopic features that are closer to the
realistic ones compared to the original NPART. NPART+
(with two variants we describe later on) is a valuable, generic
instrument to research on wireless multi-hop networks. Yet,
at the local level there are still significant differences between
the topologies generated by TrueNets and NPART+, which
makes TrueNets approach still unique.

Finally we note that even if our work focues on wireless
mesh network, the concepts at the base of a multi-hop mesh
network are present also in other emerging fields. As an
example, wireless backhauling for 5G wireless networks cou-
pled with software defined networking and network function



virtualization is a topic that is raising interest [4], and the
same concept using Free Space Optical communications is
emerging [5]. In both these examples, realistic topologies
to study the system performance are essential, and thus,
we believe our results are of generic interest beyond mesh
networks.

II. TOPOLOGY GENERATORS

In this section we summarize the main features of NPART
and TrueNets, the two topology generators for wireless
mesh networks that are at the basis or our proposal.

A. NPART: Node Placement Algorithm for Realistic Topolo-
gies

NPART was developed to provide a flexible tool for
the generation of mesh network topologies [1]. The main
characteristics of NPART are the following ones:
• Realism: The generator takes in input parameters mea-

sured on real networks and creates networks topologies
with properties similar to the original ones.

• Randomness: The generator is capable to create new,
random networks while preserving the properties of
realism.

NPART is a point placement process, i.e., an algorithm that
randomly places points in a 2 dimension space and connects
them to generate a network topology. This kind of algorithms
has been extensively used to simulate mesh networks, ad
hoc networks and sensor networks. The random function that
places nodes in the space and the function that places links
between nodes determines the properties of the graph. In the
most simple case, nodes are placed at random in a square and
links connect any couple of nodes whose distance is lower
than a certain threshold.

NPART is based on the observation of the growth of real
networks in which a new node is more likely to join the
network if it’s in an area that is already populated by other
nodes. This is implemented by representing the network on
a 2 dimension space that extends with the number of nodes,
so the density of nodes per area unit does not necessarily
increases with the number of nodes. Once a new candidate
node is generated it needs a point of attachment, a node that
is already part of the network to create a link with. The point
of attachment is not simply any node in the communication
range but is chosen in order to maximize a fitness metric. This
metric is made in such a way that the degree distribution of
the network approaches an user provided empirical degree
distribution. In the original work the degree distribution is
taken from the observation of two existing networks made of
hundreds of nodes.

Even though this is probably the most accurate approach
to generate urban mesh networks, it has three main issues.
The first one is that the parameters to generate the topologies
must be generic enough to avoid over-fitting the original
network, however there are not enough networks to have a
set of realistic degree sequence to choose from. The second
one, which is also analyzed in the original paper, deals with
correlated shadowing. Without shadowing, the feasibility of
links does not depend on their length, i.e., as long as a link
is feasible the distribution of link length is uniform. When

shadowing enters into the model instead, a longer link has
less probability of being realized, because the probability
of having an obstacle between the endpoints increases with
their distance. Furthermore correlated shadowing introduces
a correlation between the feasibility of links based on the
position of nodes. If node j has line of sight with node
i, then the probability of node k of having line of sight
with node i can be parameterized on the distance from
j. Modeling correlated shadowing is essential for cellular
networks that have a high density of terminals per squared
meter [6], but it is intrinsically limited by the availability of
measures in real world scenarios.

The lack of correlated shadowing emerges while analyzing
the number of bridges and articulation points in the generated
graphs. The authors of NPART observe that the generated
graphs show a number of leaf nodes that is larger than what
they measure on real networks and heuristically address this
issue by introducing an optional pruning of the 20% of the
leaves. With this approach the articulation point density is
more accurate at the expenses of the degree distribution, and
again, a new parameter derived from the observed networks
is introduced.

The third main issue with NPART is the fact that modeling
networks using only data coming from existing networks in-
trinsically limits the model to what was previously observed.
The data on available mesh networks are generally coming
from observation of networks in urban areas [7], [8], [9],
[10], [11], and we expect these data to change dramatically
if measured on suburban or rural areas.

B. TrueNets

TrueNets is a topology generator that models the growth
of a wireless mesh networks in a given, real environment
[2]. By taking advantage of very precise (down to one
point per squared meter) morphological models derived from
LIDAR measurement campaigns it is able to predict with high
precision whether between two given points in space there’s
Line of Sight (LoS). Considering that most mesh networks
use ISM bands (around 5GHz or 2.6GHz that need LoS to
communicate) TrueNets naturally overcomes the correlated
shadowing problem and creates realistic topologies. Indeed,
TrueNets does not generate synthetic network topologies,
it generates topologies of networks that could actually exist.
TrueNets is made of three main components:
1) A PostGIS database
2) libterrain
3) A network growth strategy

The PostGIS database contains the LIDAR measurements
of the interested areas represented as raster maps with a
precision of one point per squared meter, and the vectorial
data of all the buildings in the area.
These data are used by libterrain to emulate the feasibility of
a wireless link between two given buildings. In the case the
link is feasible libterrain also gives a rough estimation of the
signal loss due to obstacles or refraction using a single knife
edge approximation [12]. Figure 1 shows a projection in the
z-plane of a wireless link with an estimation of LoS and of
the Fresnel zone.



Fig. 1. Graphic representation of the elevation profile with LOS and Fresnel
area.

Fig. 2. A network topology generated in the area of Florence, Italy.

Once a LoS estimation is available together with a map
of a certain area, it is possible to feed this information to a
network growth strategy in order to emulate the growth of a
mesh network in a given environment. Figure 2 represents
a topology generated using data coming from the city of
Florence, Italy.

The topologies generated by TrueNets are fully realistic,
realizable in the real world, but the drawback of TrueNets
is two face First, the generation process is resource greedy.
In fact, depending on the area of interest, the database con-
taining the LIDAR measurements can take up to hundreds of
gigabytes. Moreover, due to the heavy process of checking the
LoS between two buildings, the generation of each topology
can take hours (currently 50 minutes to generate a 500
nodes topology using 64 cores). Second, even if TrueNets
generated topologies do not fit a single network, they fit a
specific area, and can be not generated for areas for which
data is not available.

III. NPART+

The first goal of this work was to generalize NPART to an
arbitrary network size removing the dependency on the degree
distribution observed in the original paper and replacing it
with synthetic degree distributions. In the literature there are
observations that suggest that degree distributions of mesh
networks may fit a power law distribution with α = 1.55

[13]. We heuristically truncate it to a maximum value, as
real world networks can not have arbitrarily high degree and
we obtain a scalable generator. We refer to this approach as
NPART in the rest of the paper. When we apply the suggested
pruning of 20% of the leaf nodes instead, we refer to the
approach as NPART-LP (NPART with Leaf Pruning). These
two strategies represent the base line of our comparisons.

To create NPART+ we need to derive empirical degree
distributions using TrueNets, in order to feed them to
NPART. In this work we set a target network size of 500
nodes, but the same process can be repeated for any arbitrary
network size.

A. Generating Topologies with TrueNets

We use TrueNets to create topologies using data from
the region of Tuscany (Italy), in which we selected 4 areas
that can be classified as urban, suburban, intermediate and
rural and we use a growth strategy that we briefly review in
the rest of this section (see the original work for details on
the data and the process [2]).

The strategy starts by picking one of the different buildings
we have chosen before-hand for each specific area, which will
be called seed. The seed is chosen manually in order to avoid
pathological cases of buildings with zero visibility. Then, in a
given radius around the seed a random building is chosen and
its LoS to the seed is verified, if it’s not connectable another
one is chosen until a connectable one is found. Every time a
new building is added to the network the radius is recomputed
around the area occupied by the network and new buildings
become eligible to be connected to the network. When in the
network there is more than one node, the LoS of the new
buildings is tested against all the nodes in the network, and
the one that offers the best path loss is chosen. In order to
have realistic conditions, an upper bound of 4 devices per
building has been set. This aims to model the fact that most
wireless mesh nodes are operated on private building’s roofs
that cannot house large trails to host more than 4 devices.
Note that each device is the faithful description of existing
devices with their antenna aperture, and that each device
can be used to create more than one link. Finally, when the
network reaches the size of 500 nodes its growth stops and
the obtained topology is saved on disk. Using this setup, 55
different topologies have been generated for 4 areas, resulting
in a total of 220 topologies.

From these topologies we derive empirical distribution
for degree and edge-to-node ratios as follows. Let E be an
element in the set of areas:

E ∈ {URBAN, SUBURBAN, INTERMEDIATE,RURAL}

For each area in E we create a set of undirected graphs GE ,
we call the union of all sets G. Let dG be the empirical degree
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distribution of the graph G. In practice d is a vector of size
equal to the maximum degree of the graph and d(i) is the
number of nodes with degree i. Then we can define d̂E as the
vector mean of these empirical distribution among an area

d̂E =
1

|GE |
∑

G∈GE

dG

We use d̂E as input to the NPART algorithm, and we
call this new approach NPART+. Figures 3 and 4 show
some initial comparison of the graphs generated with the
three mentioned approach in the four areas. We note that
the NPART+ matches quite precisely the ratio of leaves to
edges, which is a natural consequence of using the degree
distribution from TrueNets, but still fails to capture the
measured edges to vertex ratio.

To improve this metric we call r̂E the scalar mean of the
edge-to-vertex ratio computed on all the graphs in a certain
area

r̂E =
1

|GE |
∑

G∈GE

|EG|
|VG|

We modified NPART to accept the additional parameter
r̂E as follows. At the end of the generation of the network
the process iteratively removes non-bridge edges from the

network (i.e., edges that do not partition the network), until
the target ratio between vertexes and edges is reached. We
name the version of NPART using d̂E and r̂E NPART+EP
(NPART+ with Edge Pruning).

IV. EVALUATION METRICS

In order to evaluate the differences between the generated
graphs we generated 550 topologies for each area, for each
approach (NPART, NPART-LP, NPART+ and NPART+EP).
We use the graphs generated with TrueNets as the ground
truth and we compare the results obtained with the other
approaches to assess their similarity. For this purpose we
introduce several graph metrics, which we divide in two
groups. In the first group we include metrics that address
general features of graphs, in the second group we include
metrics that have a direct impact on the network performance.
All the metrics we review are adaptations of known graph
evaluation metrics to our specific context. In the rest of the
paper we refer to a graph G with vertices in VG and edges
in EG. For the sake of readability we use the | · | operator to
express a set size but also, with a small abuse of notation, the
number of nodes when applied to a graph, so that |VG| = |G|.

A. Analytical Metrics

a) Vertex to leaves ratio: Let LG ⊆ VG be the set of
vertexes with degree 1, then:

K̂ =
1

|GE |
∑

G∈GE

|VG|
|LG|

b) Edge to vertex ratio: Edge to vertex ratio, or graph
density, is simply the ratio between the number of edges and
vertices in G

Ê =
1

|GE |
∑

G∈GE

|EG|
|VG|

c) Vertex to articulation-point ratio: An articulation
point is a node that, if removed, partitions the network in
two disconnected component. Let APG ⊆ VG be the set of
articulation points, then:

Ŵ =
1

|GE |
∑

G∈GE

|VG|
|APG|

d) Size of the Largest Bi-Connected Component (BCC):
A bi-connected component of a graph G is a sub graph that
does not contain articulation points. If G is bi-connected the
network is robust to the failure of one edge. In general, the
size of the largest BCC of a graph is a rough measure of
connectivity of a graph. Assuming bcc(G) returns the list of
the sizes of all BCCs in a graph G then:

L̂ =
1

|GE |
∑

G∈GE

|max(bcc(G))|

e) Average clustering coefficent: The clustering coef-
ficient is a metric of local density of G. Let eij be the
undirected edge that connects the vertex vi with the vertex
vj and Nvi the set of neighbors of vi

Nvi = {vj : 〈eji〉 ∈ E}



Let the local clustering coefficient for an undirected graph G
and a vertex vi be the number of closed triangles incident
on a vertex vi over the number of all the possible closed
triangles

C(G, vi) =
2 · |{ejk : vj ∈ Nvi , vk ∈ Nvi , ejk ∈ E}|

|Nvi |(|Nvi
| − 1)

Then the Average clustering coefficient C is defined as

C(G) =
1

|VG|
∑
v∈VG

C(G, v)

and the average over all the graph of an area E is:

Ĉ =
1

|GE |
∑

G∈GE

C(G)

B. Impact Metrics

a) Robustness to Random Failures: One way of esti-
mating the robustness of a graph is to remove a random set
of vertices and observe if the remaining part of the graph
is still connected. Ideally, a robust graph is a graph for
which we can remove some vertices, and the rest of the
vertices can still communicate one with the other. In practice
if some of the removed vertices are articulation points, then
removing them makes the graph disconnected. The largest is
the fraction of vertices we remove, the higher is the chance of
removing some articulation points. Note however that not all
articulation points are equal: removing an articulation point
that divides the network in two disconnected sub graphs of
equal size has an impact that is much higher than removing
a cut point that isolates only one node. Thus, the number of
cut-points is not sufficient to estimate robustness and we need
to introduce a better metric.
Let

v
− V : G′ be the operator which yields the graph G′

by removing from G the vertexes from set V , LC(G) be
the largest connected component of G and Kr be a random
ordering (with seed r) of the graph vertexes VG. We split Kr

in 100 disjoint subsets of size δ = |Vg|
100 and we call Sj,r the

jesim subset.
Let Ci,r be the union of such subsets up to index i, with

Ci,r ⊂ Ci+1,r defined as:

Ci,r =

i⋃
j=0

Sj,r

and let G′i,r be the graph obtained from G by removing the
set of vertex contained in the set Ci,r

G′i,r = G
v
− Ci,r.

Let Pi,r(G) be the robustness metric defined as:

Pi,r(G) =
|LC(G′i,r)|
|G′i,r|

Pi,r(G) is a robustness metric that must be averaged using
a sufficient number of seeds. If we use 100 random seeds to
generate 100 different orderings, we can compute the average
Pi(G) on a set of 100 random seeds as:

Pi(G) =
1

100

99∑
r=0

Pi,r

As said, ideally, we would like Pi(G) to be always 1,
meaning that in all 100 attempts of removing the set of
Ci nodes from G, the remaining part of G is connected.
In general this does not happen, as Pi(G) will gradually
decrease before we remove all nodes from G (when i = 99, G
is empty and Pi(G) is arbitrarily set to 0). Yet, the decreasing
trend of Pi(G) is an estimation of the robustness of the
graph, and we can express it as the area subtended by the
line connecting the points Pi(G). The robustness of graph G
to the random failure of δ × i nodes can then be expressed
as Ri(G):

Ri(G) =

∫ i

j=0

Pj(G) =

i∑
j=0

Pj(G) + Pj−1(G)

2

where we applied the trapezoidal rule to the integral. R100(G)

is a metric to evaluate the robustness of G, and we can apply
it to all the graphs generated with a given approach, that is,
given a set of graphs G with G ∈ G then:

Ri =
1

|G|
∑
G∈G

Ri(G); Pi =
1

|G|
∑
G∈G

Pi(G)

To help the reader to visualize this metric we report in
Figure 7 an example plot of Pi(G) for one random graph G
generated with TrueNets (the red curve). As a comparison,
we generated a set G of 50 graphs using NPART, NPART+,
NPART+EP (the latter two use d extracted from G). We report
in the graph the curve Pi with an envelope that represents
the standard deviation around the average on all graphs in
G. The value of Ri for each version of the generator is the
area subtended by the related curve. We will comment these
results in the next section.

b) Robustness to Targeted Attacks: While R expresses
the robustness to (correlated) random failures, another inter-
esting robustness metric is the one that expresses robustness
to targeted attacks, in which an attacker is able to choose
the removed nodes with the goal of maximizing the potential
damage.

One convenient approach for the attacker is to target
nodes that maximize some centrality metric, for instance
betweenness centrality. Let BC(G) be the list of vertices in
G ordered by their centrality. Again we split BC(G) in 100
disjoint sets of size δ =

|Vg|
100 , we are interested only in the

first set, named S0(G).
We generate a list of graphs G′i with a recursive function

defined as:
G′0 = G

v
− S0(G)

G′i = G′i−1
v
− S0(G

′
i−1)

Similarly to the random case we can define PT
i (G) as the

robustness of G against targeted attacks, as:

PT
i (G) =

|LC(G′i)|
|G′i|

And again derive

RT
i (G) =

i∑
j=0

PT
j (G) + PT

j−1(G)

2
;
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RT
i =

1

|G|
∑
G∈G

RT
i (G); P

T
i =

1

|G|
∑
G∈G

PT
i (G)

Again fig. 10 reports an example of the PT
i (G) and PT

i

for a random graph G generated with TrueNets and a set
of random graphs generated using NPART versions.

c) Average shortest path: The average shortest path is
computed on G using Dijkstra’s algorithm, referred to as
d(v1, v2)

D̂ =
1

|GE |
∑

G∈GE

1

|VG|(|VG|-1)
∑

v1,v2∈Vg

v1 6=v2

d(v1, v2)

V. RESULTS

We divide the discussion of results in two sections, one
dealing with density measures and robustness, and another
dealing with clustering coefficient and path length.

A. Density and Robustness

Figure 5 reports the histogram of the size of the largest
bi connected component for all the approaches in all the
areas (with standard deviation). NPART/NPART-LP always
underestimate the size of the largest BCC, so there are
more nodes that could be detached by the network breaking
only one node. NPART+ tends to slightly overestimate this
metric while NPART+EP is the one that seems to best fit
TrueNets.

Figure 6 reports the density of articulation points, which
shows that TrueNets has a higher average number of
articulation points compared to the ones measured with all
variants of NPART. As an exception, the suburban area
behaves differently, with TrueNets having less articulation
points than the others (excluding NPART+). In this case we
must note that the suburban area has a much larger standard
deviation, due to the fact that the geographical area is large
and sparsely inhabited, so that relatively small graphs can
be quite different one from the other. Again we can observe
NPART+EP is the approach that most resembles TrueNets.

These metrics have a direct impact on the graph robustness:
looking at Figure 7 we see that the robustness to random fail-
ures is lower for TrueNets than for other approaches. This
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single observation is generalized by the value of R100 in fig. 8
which confirms a lower robustness, due to the higher number
of articulation points. NPART+ is the approach that shows the
largest difference from TrueNets. Once more NPART+EP
is the approach that better resembles TrueNets.

The robustness against targeted attacks has a pretty differ-
ent trend, as figs. 9 and 10 show (note that we use R30 instead

35

40

45

50

55

60

65

Intermediate Rural Suburban Urban

R
1
0
0

TrueNets
NPART-LP

NPART

NPART+ EP
NPART+

Fig. 8. Robustness to Random Failures: R100.



6

8

10

12

14

16

18

Intermediate Rural Suburban Urban

R
T 3
0

TrueNets
NPART-LP

NPART

NPART+ EP
NPART+

Fig. 9. Robustness to Targeted Attacks: RT
30.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

P
T i

i

TrueNets
NPART+ EP

NPART+
NPART-LP

NPART

Fig. 10. Robustness to Targeted Attacks (average on all areas): PT
i .

of R100 as all curves quickly approach zero). In this case
in average TrueNets graphs seem to be more resistant to
failures. This is not surprising as such difference is an effect
known in the literature for other kinds of graphs [14]. In
general, robustness to random failures depends on the average
characteristics of the graph, robustness to targeted attack
depends on the presence of a few extremely important nodes
that if removed make the whole structure quickly collapse.
It is interesting to note how under this metric NPART+ has
closer performance to TrueNets compared to NPART+EP.

B. Clustering and Path Length

Figure 11 shows the average clustering coefficient gener-
ated by all the approaches and shows that in almost all areas
there is a relevant difference between graphs generated by
TrueNets and all the others. We believe this is related to
correlated shadowing, which makes short links more likely
than long links. Short links connect nodes “near by” and thus,
there is a higher probability of being connected to nodes that
are physically close. If the neighbors of node i are physically
close to i, they are most likely also physically close, and thus,
the probability of being neighbors is also high.

A prevalence of short links has an impact on the average
path length, which is always larger for TrueNets than for
any other approach, with NPART+EP that is the closest of
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the other options (see fig. 12). Note that NPART+EP has
the same average edges to vertex ratio by design, and it
is straightforward to note that graph density has a strong
impact on the average path length. Yet, even if in this
sense the macroscopic features of the graph are similar, the
local properties of TrueNets make the average path length
always at least one hop longer.

VI. CONCLUSIONS

Recent advances in wireless networks lead to a future
in which the wireless media will be used not only for the
connection to the user terminal, but also in the backhaul
network. 5G is one key example as it will create complex
network topologies to dynamically support network slicing
applications. The need for realistic topologies to test protocols
and applications is going to raise since many technologies
(like network function chaining and network embedding)
are based on heuristics that may have extremely different
performance on different topologies.

In this paper we merged two approaches for the generation
of synthetic graphs, one that can create extremely realistic
topologies but requires the availability of real world data,
another one that is very simple to implement but with
results that are hard to generalize. We analyzed the produced



graphs using several different metrics, and our results can
be summarized in three points. A first important one is that
realistic topologies from TrueNets show that graphs in
different geographical areas are actually very different. All
the metrics oscillate when passing from urban to rural areas
in a way that is hard to predict, and thus, we can conclude that
there is no one size fits all solution. Researchers need to test
their technologies on graphs that represent different areas or
they risk to over fit one area and disregard the characteristics
of others. The second point, which is consequential, is that
NPART+ variants have performances that can be close to
TrueNets in some aspects but no single version can fit
realistic topologies in all aspects. For instance, NPART+EP
seems to be the one that performs better in the majority of
the cases with the exception of the robustness to targeted
attacks, in which NPART+ is closer to TrueNets. The
original versions of NPART performs worse than NPART+
in all the cases. Researchers should test their technologies
using different generators depending on the specific properties
that they want to analyze. Finally, the problem of correlated
shadowing still persists and consistently generates differences
in the clustering coefficient of networks. While correlated
shadowing has been addressed to analyze interference at
the receiver in cellular networks, little has been done to
model backhaul wireless networks, we need more research
to generate models based on stochastic geometry that can fill
this gap.
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