
Avoiding Eclipse attacks on Kad/Kademlia: an
identity based approach

Leonardo Maccari∗, Matteo Rosi∗, Romano Fantacci∗, Luigi Chisci ‡ Luca Maria Aiello†, Marco Milanesio†
∗Department of Electronics and Telecommunications - University of Florence

Email: {maccari, rosi, fantacci}@lart.det.unifi.it
∗Dipartimento di Sistemi e Informatica - University of Florence

Email: chisci@dsi.unifi.it
† Department of Computer Science - University of Turin

C.so Svizzera 185, 10149 Torino, Italy
Email: aiello.luca maria@educ.di.unito.it, milane@di.unito.it

Abstract—Kademlia is a Distributed hash table widely used
in P2P networks that has been applied to commercial and
non commercial distribution of files. In this paper the authors
review some security issues connected with Kademlia and propose
a novel technique to leverage its security using an external
certification service.

I. INTRODUCTION

Peer to peer (p2p) networks are distributed networks formed
by software applications that create an overlay on the Internet.
Many models of p2p networks have been proposed in theory,
some of them have been implemented but only a few are used
by a large community. The main advantage over a centralized
network is the distribution of the load necessary to store and to
distribute data but their complexity, compared to a centralized
network is much greater.

Existing networks are mainly targeted at file-sharing be-
tween users; each user decides which resources to share and
publishes in the network an index associated with the file
together with its IP address. While this model makes the
network robust and eliminates single points of failure, it makes
it impossible to control the behaviour of the users. For this
reason p2p networks have been the target of the complaints
of the media industry, claiming that copyrighted contents are
exchanged without appropriate licenses.

Nevertheless, p2p networks have gained great attention
because they are a possible solution to the problem of dis-
tributing data without the effort needed for a centralized server.
Examples of commercial networks based on the p2p model
already exist for file-sharing [1], voice over IP [2] and video
streaming [3].

In recent years, P2P systems took advantage of the adop-
tion of Distributed Hash Tables (DHT), a set of distributed
algorithms that, partitioning the ownership of a set of keys
among participating nodes, provide scalability and robustness
to the applications built on them. This paper concentrates
on the robustness of Kademlia DHT. Kademlia [4] has been
implemented in many software suites such as Emule/Kad,

This work is partially supported by the Italian MIUR project PRIN 2006
PROFILES (Peer to peeR beyOnd FILE Sharing)

Overnet and Azureus, currently used by millions of users
everyday. This makes a Kademlia-based network an interesting
subject for an attacker, that could be interested into spying user
actions, substituting resources with fake ones, or subverting the
protocol in order to produce a denial of service attack against
a third party. In this paper the security of Kademlia will be
analyzed and a possible solution will be proposed.

The rest of the paper is made up of two parts. In the
first, the security of Kad (and consequently Kademlia) will be
analyzed through computer simulation with special attention
to eclipse attacks; in the second a possible solution will be
proposed. The proposed solution is based on the adoption of a
certification service and of an authentication protocol between
nodes. This will allow to introduce credentials in order to make
the ownership of the contents and messages inserted in the
DHT non-repudiable.

II. OVERVIEW OF KAD/KADEMLIA

Distributed Hash Tables have grown in popularity and
reached a lot of different application domains, enriching the
applications built on them with scalability, robustness, consis-
tency and efficiency features. A DHT is a hash table which
contains pairs of the type (key,value) that can be distributed
over an arbitrary amount of users. In this is used in p2p
networks to distribute the associations between a key that
identifies a certain resource and its value, namely the IP
address of the node that contains it.

In Kademlia, each node of the network has an identifier
(ID) consisting of a 160 bit vector generated using the SHA-1
hash function on a random value. The nodes of the network
can then be represented as leaves of a binary tree with 160
levels. Clearly, the number of nodes is much lower then 2160,
so it turns out that the majority of the leaves correspond to free
IDs. For this reason, each node can be identified by the initial
portion of its ID that is distinct from any other ID present in
the network.

A distance between two IDs is defined as the XOR between
them. The distance intuitively represents the number of levels
that separate two leaves when navigating from one node to
another. The order of magnitude (base 2) of the distance

expresses the number of levels that must be navigated up in
the tree to go from one node to another. In this way each node
can maintain a set of buckets, i.e., ordered lists of nodes it has
been in contact with in the past. Each bucket contains IDs that
have the same distance (in order of magnitude) compared to
the ID of the node itself.

When entering the, a node will have just empty buckets
apart from one point of attachment to the network. During
its lifetime it will enter in contact with other nodes and will
slowly populate its buckets.

Kademlia supports various Remote Procedure Calls (RPC)
implemented as UDP frames with an appropriate opcode. Two
specific RPC that will be considered in this work are the
FIND NODE() and the FIND VALUE(), they both take as
a parameter a target ID. When using the first one, the receiver
will answer with a set of IDs closest to the target taken from its
buckets (including also the corresponding IP address and UDP
ports). When using the second one, the receiver will answer,
if it owns it, with the resource associated with the target.

Routing (i.e., the procedure of resolving an ID of a node into
its IP address) is realized by sending iterative FIND NODE()
requests. When looking for a certain ID, a node will send three
FIND NODE() to the closest nodes it knows, then for each
response it will send three more requests to the three closest
new nodes and so on.

It is easy to see that if each node has at least one active
node in each of its buckets and each node knows all its closest
neighbours (which are quite realistic assumptions), for any hop
the distance is reduced by a half, so that the routing algorithm
will converge in log2(distance) steps to the ID closer to the
target. The search process ends when the target is reached, or
when issuing new requests does not return any node closer
than the known ones.

The resources (i.e., files) are distributed over the same space
and routing is used also to inject a resource into the network. If
node A wants to share a file x, it calculates IDx = SHA-1(x)
and performs multiple actions: first of all a routing request is
issued for IDx, and will end to the alive node closest to IDx

denoted by B. B will receive a specific RPC, STORE(IDx,
IPA). Then B, the closest node to IDx, is responsible for this
piece of the index.

When a user wants to search for the file x in the network,
she must know IDx and she will issue a FIND NODE(IDx).
The RPC will end in node B. Then the user will issue a
FIND VALUE(IDx) to node B and node B will answer with
the IP address of node A. The user then can open a TCP
connection to node A and start downloading the file.

A. The Kad implementation

The most successful implementation of the Kademlia DHT
is the Kad network, that has been used in the eMule p2p
software. As observed in [5], Kad is populated by a number
of users between 3 and 5 millions spread around the world
and contains almost 80 millions shared resources. The Kad
network exhibits some differences with respect to the original
Kademlia DHT; in particular, it introduces the concept of a

tolerance zone. Whenever a node A wants to share a resource
x, it issues a routing request (actually multiple routing requests
in parallel) to find the node responsible for IDx. During the
iterative request, node A collects IDs of other nodes and
performs the STORE() operation on the first 10 nodes it
encounters that have at least the 8 most significant bits in
common with IDx. An 8-bit zone is called the tolerance zone
for IDx. As a consequence, the search operation is different. If
node B wants to retrieve resource x, it issues an iterative search
for IDx; whenever it receives the IP of a node that falls into
the tolerance zone, it issues a FIND VALUE(IDx) for IDx to
that node; in response, a list of possible resources is returned
(for example, a list of IP addresses that contain the resource).
The iterative search for IDx and the FIND VALUE(IDx) for
IDx keep going in parallel until:
• a timeout is fired,
• the routing to IDx expires because no new nodes are

found,
• a maximum number of resources are returned by the

FIND VALUE() primitives. This value depends on the
kind of resource being searched.

Kad contains many distinct kinds of resources, among which
there are keywords and files. Keywords are used to reconstruct
the ID of a file: when a user wants to share a file x, he
calculates the hash of the file IDx, as well as the hash of
each of the words that compose the file-name, and stores the
association (IDword, (IDx, ”complete title”)) in the network.
When a user wants to search for a file, it issues separate
searches for the hashes of all the words that are in the file-
name. From the intersection of the responses the user will
select the most appropriate one depending on the title and start
a look-up for IDx, which will return a list of IP addresses that
contain that file. Then, the node can directly contact the given
IP addresses to download the file.

Whenever a node shares a file x with IDx and a certain
file-name, it is responsible for periodic republication of the
IDs of the file and of the title-words, each republication being
performed on 10 nodes in the corresponding tolerance zone.
This means that if a file is shared by many users, its ID
is republished frequently, and a higher number of nodes in
the corresponding tolerance zone stores the IP of the owners.
When a node receives a store message, it will start a timeout,
and after a fixed amount of time, the resource is erased if
no update is received. The expiry time and the republication
time depend on the kind of resource, varying from 5 hours for
keywords to 24 hours for files. Lastly, Kad network uses an
hash space of 128 bits instead of 160.

Each node periodically sends PING packets to the nodes in
its buckets and purges the ones that do not respond, so that
nodes with longer lifetime are the last to be removed. Since a
new contact is added only to a non-full bucket, it is not trivial
to perform bucket poisoning, i.e. send unsolicited pings to a
certain node in order to be present in its bucket.

For the sake of brevity, many details of the Kademlia
protocol and Kad implementation have been omitted; the
interested reader is referred to [4], [6]. From now on, for clarity

purposes, with the notation IDx we will refer to the node that
is identified by the IDx, and the context will be clear enough
to understand the difference between nodes and IDs. When
referring to the Kad network, the superscript f will be used
for IDs that refer to files (i.e IDf

x) and k for IDs that refer to
keywords (i.e. IDk

x)

III. SIMULATIONS ON THE ECLIPSE ATTACK

To fully understand the security issues that affect the
Kademlia DHT, a simulation-based analysis has been per-
formed focusing on the evaluation of the eclipse attacks. The
simulations are realized with the Omnet++ simulator on a
single-layer Kad network. By means of simulations can be
better evaluated the efectiveness and the consequences if such
an attack, to design adequate countermeasures. Two kinds of
attacks will be analyzed, i.e. the pure eclipse attack and a
variation with randomly chosen nodes. It will be shown that
the impact of the attack depends mainly on three factors: the
number of attacking nodes, the possibility of the attacker to
choose IDs arbitrarily and the possibility to start the attack
before the resource is published.

A. The Eclipse Attack

The eclipse attack [7] is a form of routing poisoning which
aims to separate a set of victim nodes from the rest of the
overlay network. A not limited set of attacker nodes reaches
its purpose by fooling correct nodes into adopting malicious
nodes as their peers, with the goal of entirely dominating
their neighbor set. If carried out successfully, the eclipse
attack allows an attacker to mediate most overlay traffic and
effectively eclipse correct nodes from each other’s view.

Briefly, the eclipse attack is performed by an attacker that
tries to intercept all the requests directed to a specific resource
and redirect them to a fake resource. It has already been shown
that this attack is possible in Kad if the attacker controls a set
of IDs close to the target ID (i.e. IDe) before the publication
of IDe, see [8].

The eclipse attack can be also intended as an attack against
the storage; when it’s targeted to overshadow content stored
on DHT, making them inaccessible to lookup requests, it takes
the name of node insertion attack. It is carried into effect by
initiating a substantial number of nodes marked with identifiers
numerically close to the IDe, so that all lookup requests for
k are routed to these nodes. Once received a lookup request
they can answer with a fake content or they can send no reply
message at all, effectively hiding the content to the DHT. Node
insertion attack cannot be fought with anonymous auditing.

It should be noted that the various manifestations of eclipse
attack can effectively take place only if the attacker nodes
may select their node id “ad-hoc”, so they can populate the
target nodes’ route table entries or the keyspace depending on
whichever is the key associated to the node or to the content
they aim to eclipse.

B. Simulation Results

Simulations have been performed observing the behaviour
of a single tolerance zone containing 4,000 nodes, correspond-
ing to a network composed of approximately 1,000,000 nodes.
To lower computational load, not all the network was equally
popoulated. Lifetime of the nodes and other system parameters
were chosen consistently with the measurements done in [5],
[6] and following works by the same authors. The deviation of
measured data between two simulations with distinct random
seeds is extremely low (below 2%) so in the figures are
reported the profiles given by an average one. After a set-up
phase, the attacks start at second 10,000.

The simulations confirmed what observed in [8], that if
the attacker is able to choose the IDs arbitrarily and place
those IDs in the network before IDe is published, the attack
reports almost 100% of success. This means that almost all
the requests for IDe are captured by the attacker; to achieve
this, the attacker needs to control just 8 IDs. In Kad, users
choose their own IDs. If IDe is an ID of a keyword, then it
is predictable and can be eclipsed prior to its publication.

Through simulations it is possible to estimate the impact of
eclipse attacks even in the case when IDe is a file hash. In
that case, it is not known before its publication and the attack
starts after it has been published. This means that there is a
race condition between the attacker spreading fake resources
and the other nodes spreading correct ones. In this scenario
with the same 8 attacking IDs the attack doesn’t have a high
impact if not supported by a bucket poisoning strategy. With
such a strategy, the attacker IDs send unsolicited pings to the
nodes in the tolerance zone of IDe so that such IDs will be
added to the buckets of correctly behaving nodes. This will
make it easier for the attacker to be contacted. In figure 1
the eclipse attack is started by 8 attacking nodes after the
publication of IDe together with bucket poisoning. It can be
noticed that as time passes the attack becomes more effective,
but even on a longer time span it doesn’t reach a total eclipse.
This is explained by the fact that for every obtained request,
the resource is republished by the receiver on ten nodes in
the tolerance zone, as it would happen for a downloaded file
in Kad. There is a concurrency between the republication of
correct resources and fake ones, that prevents the attack from
being completely successful.

A variation of the eclipse attack has been considered when
the attacker is not able to determine its own ID. In [9] and [10]
it is suggested that IDs could be chosen as a hash of network
parameters (IP address and UDP port). Our simulations show
that even in that case, if the attacker owns a large number
of IDs, the eclipse can still happen with high probability.
With a single IP address, a node can obtain 216 different IDs
uniformly spread. This yields about 250 IDs per tolerance
zone. In figure 2 it can be seen that even when the attack
start after the publication of IDe, with bucket poisoning, the
percentage of eclipsed requests is still high. Moreover in this
scenario there is no concentration over a single ID so that
attacker could eclipse any resource in the tolerance zone. This

A t t a c k s u c c e s s r a t i o

20000 40000 60000

0

0.2

0.4

0.6

0.8

Figure 1. The ratio between the number of search requests for IDe and the
number of search requests that are intercepted by an attacker node. Measures
are sampled every 500s and averaged over a sliding window of 10 samples.

1000 a t tackers

750 a t tackers

500 a t tackers

250 a t tackers

10000 20000 30000

0.5

0.6

0.7

Figure 2. The ratio between total number of lookups in the tolerance zone
and lookups intercepted by the attacker IDs

means that the attacker could perform a monitoring activity,
substitution of resources or DoS against any resource in the
tolerance zone with the success ratio shown in figure 2.

The last attack that has been evaluated through simulations,
is a DDoS attack against a third party. This last scenario can
be used to produce a different attack. As explained in [11] if
all the attacking IDs answer to FIND VALUE() RPCs with
the IP of a victim node (even outside of Kad), associated to
fake IDs, this node will be flooded by requests coming from
multiple sources. This will produce a Distributed Denial of
Service extremely hard to stop. From our simulations we were
able to estimate that with FIND VALUE() RPCs the attacker
receives an average of 4.5 frames for each frame sent by the
attacker. This means that the upload bandwidth resources of
the attacker are multiplied by 4.5.

From the simulations emerges that, qualitatively, Kad is
vulnerable to various attacks that are generated by two factors:

the possibility for the attacker to choose its own IDs and the
possibility to have multiple IDs. In the following part of the
paper it will be shown how the introduction of a certification
service can help Kademlia (and consequently Kad) to be more
resistant against the attacks that exploit these factors.

IV. PROPOSED COUNTERMEASURES

As underlined before, one of the starting point for the
eclipse attack to a DHT based system, is the possibility
for an attacker, to compute its own identifier, or at least,
to join the network with many randomly chosen identifiers.
In this section, we present a possible way to prevent the
attackers from choosing their own identifiers and from easily
instantiating a large number of nodes with the introduction of
a Certification Service that signs all the valid identifiers in the
network. Furthermore, we introduce a novel node interaction
protocol based on the exchange of signed tokens exchange that
protects the system from other well known attacks.

In Kademlia, nodes’ identifiers are not certified and they can
be generated at will on the local node, so that it’s possible
to quickly instantiate a large number of Sybil [12] nodes
with arbitrary IDs in order to complete an eclipse attack.
There is no credential associated with contents maintained in
storage areas and no control is performed by replica nodes
over the information stored in the DHT thus allowing the index
poisoning [13] and derivative attacks like DDOS [11]. There
is no authentication protocol between nodes. Nevertheless, k-
buckets provide resistance to routing poisoning attacks; in
fact, one cannot flush nodes routing state by flooding the
system with new nodes. Kademlia nodes will only insert
the new nodes in the k-buckets when old nodes leave the
system. Unfortunately, it is very easy to inject into a route
table information relating to contacts whose identifier is very
close to the victim node ID, because of the bucket splitting
procedure.

Our framework [14] includes an identity based scheme and a
secure communication protocol that may provide an effective
defense against well known attacks. The proposed approach
is layered on Kademlia and its architecture is based on the
presence of a Certification Service (CS). The CS can be a
centralized or decentralized authority whose task is to generate
random node IDs and to certify the links between node IDs and
users’ identities by signing peculiar tokens. To accomplish this,
we suppose that a classic public key cryptography scheme is
used: in this section it is assumed that the CS is a centralized
authority owner of a public key known to every Kademlia
node, and holder of its private counterpart. Similarly, it is
assumed that each user should be in possession of a key pair.
In the following, a brief explanation of the protocol is given.
For more details, please refer to [14].

Before the bootstrap, a node needs to send a proper
NodeIdRequest to the Certification Service in order to re-
trieve its own certified identifier, querying the service with its
user’s identifier (e.g., an email address or an OpenID) and
public key. The CS returns a signed identifier, the AuthId,
containing the node ID, the user ID and the public key.

The CS makes the user identifier verification procedure
(whose steps depend on the nature of the identifier itself),
and then binds the user identity with his public key and with
a NodeId by producing the following token:

AuthIdA = Sign(NodeIdA||UserIdA||K+
A ||expA, K−

CS)

The NodeId is randomly chosen; expA is a timestamp that
establishes the expiration date of the signed NodeIdA. This
token is signed with the private key of the CS. The CS keeps
track of the association between UserId and AuthId, so
that all subsequent NodeIdReq received by the same users
receive in response the same AuthId passed earlier, unless
it is expired or close to expiration. This is a precaution to
prevent the CS from producing useless signatures. The CS
also returns a set of bootstrap nodes, for the new node to join
the system.

A node A can then successfully send a RPC (join primitive
included) to a node B and obtain a proper response only if
both A and B observe the following communication protocol:

I A → B : NodeIdA, N1
II B → A : NodeIdB , N2

III A → B : AuthIdA, AuthAB , RPC-REQ
IV B → A : AuthIdB , AuthBA, RPC-RES

We call this four way exchange a session between A and
B. RPC-REQ and RPC-RES fields are respectively the request
and response RPC defined in Kademlia; N1 and N2 are
randomly generated nonces, used against man-in-the-middle
attacks. Messages sent at steps I and II must be somehow
marked differently (e.g. different opcode), to distinguish the
request from the response. A generic AuthXY is a signed
token containing X’s node ID, a hash code of the RPC and
the nonce previously received from Y .
The above described interaction affects also the content storage
system of the single nodes. Each resource contained in a
STORE RPC is associated with some signed credentials,
binding the user identifier to the key for which the content
was inserted and to the hash code of the content, so that it it
possible to verify that the owner had inserted a certain content
with a certain key.

A. Discussion

In this section we discuss how this proposal strongly limits
the eclipse attack as well as many other possibly malicious
behaviors.

In Kademlia, the sender contact of every incoming message
is added to the route table if there is enough room in the
buckets. The contacts with a node ID close to the local
ID are always added to the route table due to the splitting
procedure. To effectively put off a routing attack, the attacker
must inject bad routing information in the target node by
sending him messages that report sender IDs near to the
victim’s ID. Combined usage of AuthId and Auth makes
the communication between nodes authenticated, so that the
attacker can inject only its own contact into the target route
table; since the IDs are randomly chosen by the CS, the
attacker cannot generate its ID “ad hoc”. Moreover, it is

unfeasible for an attacker to hide a content marked with a
given key k by way of a node insertion attack, because the
malicious node cannot register a substantial number of nodes
with IDs close to k; in fact, he cannot control ID generation
by his own.

On the other side, since every user can have multiple
identities (e.g. many email addresses). A user can bind
each of his identities to a different node by sending many
NodeIdRequest to the CS, and then she can run all those
nodes on the same machine. Hence the Sybil attack is not
completely wiped out with this scheme. Nevertheless, each
node corresponds to a different user account and the node ini-
tialization requires a verification procedure for that account. If
the user authentication procedure requires a human interaction,
it would be difficult for an attacker to create many different
nodes in an automated way, actually lowering the risk of Sybil
Attacks. For this reason, we strongly suggest to adopt OpenID
verification methods, that redirect the user agent to an identity
provider, and that return to the CS when the submitted identity
has been correctly authenticated.

If poisoning and sybil attacks are not possible, then the
eclipse attacks on the Kad network are not applicable. In fact,
they were strictly dependent on the possibility of the attacker
to choose arbitrary IDs or to impersonate multiple identities.

V. CONCLUSIONS

Kademlia is a DHT widely emplyed in P2P networks used
by millions of users. In this paper the security of Kademlia
has been studied testing the Kad implementation through
simulations. As expected, the security features of Kad present
various issues. The introduction of a certification service
into a Distributed Hash Table can be used for denying or
limiting all the attacks that can be made against a structured
peer-to-peer system such as Kademlia/Kad. The authenticated
identifiers are used to ensure that all the exchanged messages
are non repudiable and traceable. Identifiers will be certified
and randomly selected, thus preventing routing and storage
attacks. In this way, the previously discussed weaknesses are
strongly mitigated.

As a future work, the differences between the original
Kademlia and the Kad implementation should be taken into
account in order to investigate which are the new features
(added in Kad) that can be exploited for an attacker. Moreover,
some simulation results of the identity based approach are
needed wrt the state of the node and the load on the CS: as
told before, in the original approach the CS is centralized, but
various solutions to the distribution of services among group
of peers are under investigation.

REFERENCES

[1] The bittorrent file sharing network. [Online]. Available: http:
//www.bittorrent.com/

[2] The skype p2p voice over ip application. [Online]. Available:
http://www.skype.com/

[3] Joost, a p2p video streaming network. [Online]. Available: http:
//www.joost.com/

[4] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” In Proceedings of
IPTPS02, Cambridge, USA, 2002. [Online]. Available: citeseer.ist.psu.
edu/maymounkov02kademlia.html

[5] M. Steiner, E. Biersack, and T. Ennajjary, “Actively monitoring peers in
KAD,” Proceedings of the 6th International Workshop on Peer-to-Peer
Systems (IPTPS’07), 2007.

[6] R. Brunner, “A performance evaluation of the kad-protocol,” Master’s
thesis, Institut Eurecom, 2006.

[7] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach, “Eclipse
attacks on overlay networks: Threats and defenses,” INFOCOM 2006.
25th IEEE International Conference on Computer Communications.
Proceedings, pp. 1–12, April 2006.

[8] M. Steiner, T. En-Najjary, and E. Biersack, “Exploiting KAD: possible
uses and misuses,” Computer communications review, Volume 37 N. 5,
October 2007, 2007.

[9] D. Cerri, A. Ghioni, S. Paraboschi, and S. Tiraboschi, “Id mapping
attacks in p2p networks,” IEEE Global Communications Conference,
St. Luis, U.S.A., 2005.

[10] S. Balfe, A. Lakhani, K. Paterson et al., “Trusted Computing: Providing
Security for Peer-to-Peer Networks,” Proceedings of Fifth IEEE Inter-
national Conference on Peer-to-Peer Computing, (P2P’05), Kostanz,
Germany, pp. 117–124.

[11] X. Sun, R. Torres, and S. Rao, “Ddos attacks by subverting membership
management in p2p systems,” in NPSec 2007. 3rd IEEE Workshop on
Secure Network Protocols, 2007.

[12] J. Douceur, “The sybil attack,” 2002. [Online]. Available: citeseer.ist.
psu.edu/douceur02sybil.html

[13] J. Liang, N. Naoumov, and K. W. Ross, “The index poisoning attack in
p2p file sharing systems,” in INFOCOM, 2006.

[14] L. M. Aiello, M. Milanesio, G. Ruffo, and R. Schifanella, “Tempering
Kademlia with a Robust Identity Based System,” Eight International
Conference on Peer-to-Peer Computing (P2P 2008) - to appear, 2008.

