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Abstract—A Community Network (CN) is a bottom-up net-
work infrastructure that interconnects communities of people
and represents a promising and successful networking model.
The more people join a CN, the higher is the demand for a wider
range of community services and the need for scalable network
protocols. CN designers and passionates hence require adequate
frameworks to develop and test different technical solutions,
that must reproduce realistic environments and allow a rapid
prototyping and deployment. We propose a full-comprehensive
framework that can be used to develop new protocols and
applications both in a flexible and portable manner. NePA TesT
(Network Protocols and Applications Testing Toolchain) is based
on the Mininet emulator enriched with: a library capable of
creating random synthetic topologies with the most up to date
realistic topology generators, a data set with topologies extracted
from real world CNs, and powerful extensions to dynamically
run and control the emulated scenarios. This paper will analyse
and document each component and show how NePA TesT can
be used in two realistic application scenarios.

I. INTRODUCTION

In the past few years the performance of long-range wireless
devices has increased dramatically, and their price has lowered.
Today, the market offers for less than 100e outdoor devices
that can be used for long range links with a real throughput of
hundreds of Mbps. As a consequence those CNs that emerged
at the beginning of the 2000s, today, grew up to thousands
of nodes. Freifunk in Germany, Wlan-Slovenia, FunkFeuer in
Austria, Ninux in Italy, AWMN in Greece and most notably
Guifi.net1 in Spain are examples of mesh networks, mostly
realized with wireless links but in some cases with a mixed
wireless/fiber technology, that range from a few hundreds of
nodes to tens of thousands. CNs grow as they take advantage
of the so-called network effect: the largest the network, the
largest is its growing pace. In fact, the chances for a new
person to join a network depends on the availability of active
nodes in his own neighborhood, so the larger and denser is
the network, the easier is to attract new participants.

Mesh networks that scale to hundreds of nodes must be
made of wireless links with directional antennas to minimize
cross-link interference. This approach alleviates the challenges
related to the physical and data link layer and produces
topologies similar to the ones we observe on wired networks.
Still, compared to wired networks, the wireless media is
dynamic, its capacity is limited, and thus there is a need for
specific network protocols that can face scalability, availability

1http://freifunk.net/, https://wlan-si.net, http://funkfeuer.at/, http://ninux.org,
http://www.awmn.net, https://guifi.net

and performance challenges. Moreover, the increasing number
of users accelerates the demand for a wider range of internal
community services, from the classical ones (mailing lists,
chat, file sharing) to the more modern and demanding ones
(cloud systems, video chat, distributed filesystems). As it
happens for the protocols, also the services need specific
tuning to scale and exploit the distributed nature or CNs.
Therefore, to support the growth of CNs, researchers, design-
ers and passionates (from now on simply “developers”) require
adequate frameworks to develop and test different technical
solutions from network layer up.

While this challenge in the academia is approached with
a widespread use of network simulators, this solution does
not fit this use case, for two main reasons. The first is that
physical and link-layer features can not be modified in COTS
hardware, so there is no real reason to simulate them with
their whole complexity, the second is that developers want to
apply their results to real networks and source code developed
for network simulators can not run on real hardware.

This paper describes NePA TesT, a developer framework
based on the Mininet emulator created to fill this gap and
let developers test protocols and applications for CNs. The
Mininet emulator makes it easy to test programs in an
emulated environment that will natively run on real Linux
platforms, and NePA TesT adds a set of indispensable tools to
make the emulation environment as close as possible to reality.

NePA TesT includes a topology parser that allows the
easy definition of different network topologies, it implements
several state-of-the-art topology generators, from the classical
ones to the ones specifically designed for CNs, it allows a fine-
tuned configuration of the emulation parameters and an easy
monitoring of the host machine resources. Moreover, it in-
cludes a database of topologies and other network parameters
(such as loss and delay) derived from real networks, which
can be extended via the support to the NetJSON format, a
description format that is being defined by the communities
to exchange information about their networks. NePA TesT
thus represents an indispensable toolchain to develop and test
software that will be ready to be deployed on real CNs and
mesh networks.

NePA TesT is open-source software and it is freely acces-
sible on-line2.

The paper is organized as follows: Sec. II briefly introduces
the state of the art on network emulation, Sec. II-A gives a

2https://ans.disi.unitn.it/redmine/wcn emulator.git
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functional overview of the three key components of NePA
TesT, Sec. III documents the interfaces that developers can
use to write and run emulations, Sec. IV shows the application
of NePA TesT to two real world scenarios, and finally Sec. V
draws the conclusions and outlines future works.

II. RELATED WORKS

To test and develop network protocols and applications,
three approaches are typically used. The first one is to use
real testbeds, whether in their own lab or accessible on remote
interfaces, like Emulab [1], Planetlab [2] and Community-
lab [3]. While these systems offer a good flexibility, their
complexity is high, the access and their scale is limited, and,
often they are far from being close to a production network.
A second approach, in order to manage an entire network
on a single machine, is to use network simulation. Network
simulators like ns-3 [4], OMNeT++ [5] or Opnet [6] are
widely used in the academia and implement all the network
layers via software, approximating the communication channel
with mathematical models. However, this approach has the big
limitation that the source code used for the tests can not be re-
used as-is in real networks, so that the majority of the proposed
techniques remain on their published papers and are hard to
reproduce in real world scenarios. A third approach is given by
network emulators that allow the testing of deployable code,
since they set-up a virtual infrastructure that runs the same
operating system of the target environment. NEmu [7] and
Naxim [8] take advantage of QEMU [9], a machine virtualizer,
to emulate an entire network. However this kind of emulation
is much more resource hungry than network simulation and
requires powerful hardware to run small-scale emulations.
Note that ns-3 supports the interaction with Linux containers
(OS-level machine virtualization) however, its configuration is
not straightforward and the container overhead in terms of disk
usage is not negligible. At the core of NePA TesT stays the
Mininet emulation platform which exploits kernel namespaces,
the base component of Linux containers. Kernel namespaces
can be used to exclusively assign a set of resources of a specific
kind (i.e., network resources) to a certain process. Thus, they
can be used to emulate processes running on different hosts
without the overhead introduced by the execution of several
Linux containers.

A. Mininet

Mininet [10] is a lightweight system for easy setup of
an emulated network to test deployable code. The Mininet
emulated nodes have separated network environments but
share the same filesystem, memory and cpu resources, that is
far less resource-hungry compared to full host virtualization.
This technique enables the networks to scale up to hundreds
of emulated hosts on a single laptop. Mininet does not provide
an intuitive interface to ease the typical developing and testing
workflow, instead it delegates everything to the source code
realized by developer himself. Mininet has been created for
experimenting with Software Defined Networks (SDN) and
there are several works in this direction [11], [12], [13].
We instead developed NePA TesT as a full toolchain which

Topology
Generator

Configuration
File Test Code

Mininet
Wrapper

Mininet Logging
Module

launch host process

Fig. 1: NePA TesT architecure, the user interface is depicted
in green.

includes all the components needed to realize a realistic
emulation of a network. For this purpose we had to patch
Mininet3 in order to support some key features, such as the
possibility to assign different delay and loss settings to every
network link.

NePA TesT enhances the Mininet framework with three new
components that allow the realization of complex emulated
networks. The three components are a topology generator and
parser, a Mininet wrapper that allows the flexible configuration
of each emulation scenario and a logging module that helps
to monitor the performance of the operating system on which
the emulation is run. Fig. 1 depicts the architecture.

B. Topology generator and parser

The performance of network protocols and applications
is strongly influenced by the underlying network topology,
and in particular by the size, the density, and the degree
sequence of the corresponding graph. For this reason, when
doing network emulations the choice of a topology that is
a close approximation of the network in which the software
will run is a key factor. Furthermore one single topology is
not sufficient to have statistically sound results, since multiple
runs of each test should be performed on similar topologies.
Finally, to widen the applicability of the results the parameters
that define the topology need to be modifiable (for instance,
increasing the number of network hosts). The generation of
multiple random but realistic topologies is, in itself, a non-
trivial task. NePA TesT comes with a companion library that
allows the generation of synthetic networks with three well-
known graph generators and two generators derived from data
measured on real wireless community networks. The first
three generators are wrapper functions around the Barabasi-
Albert, Erdős and Watts-Strogatz graph generators present
in the NetworkX Python library. These generators produce
graphs with well known properties, so they are very useful
to test protocols and applications in a controlled environment.
NetworkX generators do not have a compatible interface so,
for example, the Erdős graph generator takes as input the
number of desired nodes and a per-edge probability, while

3https://ans.disi.unitn.it/redmine/mininet.git
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the Barabasi-Albert generator takes as input the number of
nodes and the number of outgoing edges per each node. This
means that it is hard to generate graphs with the same density
(ratio between edges and nodes), or, in some cases even with
a predictable number of edges. We uniformed the interfaces
so that the researcher can test the software on synthetic graphs
with different properties but with similar densities.

Two more generators are included in NePA TesT using
algorithms from Milic and Malek [14] and Cerdà-Alabern [15].
The first algorithm is designed from the observation of several
German CNs, and it is based on the geographical placement
of nodes with some constraints that produce topologies with
similar features to the observed ones. The second one derives
from the statistical analysis of large portions of the Guifi
community networks.

NePA TesT also comes with a set of network topolo-
gies extracted from the observation of three real wireless
community networks. The three networks are the FunkFeuer
networks from the cities of Wien and Graz in Austria, and
the Ninux network from the city of Rome. These networks
have been monitored for a week and the extracted data was
analysed and summarised [16]. Together with the simulator
a subset of the available topologies (ranging from 126 to
227 nodes) is included to test the protocols and applications
on real topologies. As a last option, NePA TesT supports
topologies expressed in the NetJSON format. NetJSON is “a
data interchange format based on JavaScript Object Notation
(JSON) designed to describe the building blocks of the layer
2 and layer 3 of networks”4. The NetJSON specifications is
currently under development, but its main features are already
defined, so that an initial support is included in NePA TesT.
Already several routing protocols for mesh networks support
the automated generation of the network topology (at least the
portion they are aware of) in NetJSON natively or through the
netDiff conversion library (part of the NetJSON reference
implementation). It is the case of the widely used OLSRd
and Batman-adv routing daemons, implementations of the
OLSR [17] and B.A.T.M.A.N. [18] standards respectively. As
a reference we mention the effort done by the Freifunk German
community, which is building an index of all the (tens) of
networks in Germany in a machine-readable form5. From the
repository of networks, the URL of the topologies exported by
some of the communities is available, and it can be translated
into NetJSON format with the netDiff utility. With time,
this will be a source of tens of different network topologies
of various size that developers can use to test their protocols
and applications.

With all the described options, NePA TesT gives to the
developers a powerful platform to design their protocols and
test their performance on both synthetic topologies and real
topologies, including the topology of a specific target network
imported via NetJSON.

4See the NetJSON project, www.netjson.org
5https://github.com/freifunk/directory.api.freifunk.net/blob/master/
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Fig. 2: The whole sample set of the measured delays in the
qMp Sants-UPC network (log-log scale).

C. Mininet wrapper

Mininet is a powerful network emulator that exploits the
namespace isolation of the Linux kernel to have several
independent processes running simultaneously with separated
resources, but it is not specifically tailored to emulate CNs.
NePA TesT provides an extension to the Mininet class space
that allows the developers to plug-in their code in a modular
way, without caring of the underlying details of the system.
Developers need to extend a specific class and to include their
code in a few methods that get called by the emulator.

NePA TesT enriches Mininet with a configuration system
based on the use of .ini files, that the user can organize in a
hierarchical way, in order to reproduce the typical network em-
ulation and simulation workflow, which includes repeating the
emulation with different parameters, different topologies and
different random seeds. Each test inherits some configuration
parameters from a common parent class needed to configure
the underlying network. Among the important configuration
parameters, we mention the file expressing the topology, and,
for each edge of the network, the maximum bit rate, loss, and
delay, the last two values being expressed as a fixed parameter
or as a histogram from which to randomly extract each single
sample. The real topologies shipped with NePA TesT include
in their links the ETX value (a metric widely used in mesh
networks that estimates the probability of correctly delivering
a packet on a link). From the available data-sets and literature
[15] we have also included a default distribution for the delay
value, obtained from tests on real networks. The delay has
been measured on the qMp Sants-UPC community network,
a portion of the Guifi network made of about 60 nodes and
configured with directional antennas and 802.11n radios. For
several weeks on every link in the network the RTT has been
measured with the ping shell command. We were able to
access such data and we approximated the delay as half of the
RTT (which, considering that 802.11 needs to acknowledge
data packets, it is a reasonable approximation at least for
small unicast packets even on links that have asymmetric
performance).

Figs. 2 and 3 report the samples of the distribution included
into NePA TesT and the frequency of each delay value. The
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Fig. 3: The frequency of the delay samples, binned with 5000
intervals on the x axis (log-log scale).

majority of the delays falls below one ms with a few samples
larger than 10ms. These values are compiled in order to be
used by the netem Linux command, once compiled, the data
file needs to be saved in a system library where netem can
find it, and then it can be used by Mininet. The data file express
the delay distribution as a function of two parameters, mean
and sigma that represent the location and scale parameters
of the distribution. NePA TesT includes the data file for the
distribution in Fig. 3 and accepts mean and sigma values that
can be used by the developer to stretch and shift the given
distribution, as shown in Sec. III-C.

D. The logging Module

The logging module is a simple but effective way to keep
under control the host on which the emulation is performed.
One of the huge differences between an emulator and a
simulator is that the first one runs in real time, and thus, if
the emulation is not properly dimensioned, the host system
becomes a bottleneck and influences the results. This happens
for instance when the CPU or memory of the system can not
cope with the number of the emulated applications, and some
applications starve for the lack of resources. While a network
simulator solves this problem with an internal clock that can
be slowed down as much as necessary, in emulation there is
only one system clock and CPU overload influences the results
of the emulation.

The logging module can be enabled easily from the develop-
ers in order to keep track of some key performance indicators,
such as the CPU load and the memory and swap occupation,
so that each phase of the emulation can be monitored and
the developer can easily understand when the host machine is
potentially influencing the emulation results.

III. NEPA TEST INTERFACE

Each test in NePA TesT is defined by a triple formed
by a Python class, a network graph and a configuration
stanza in a configuration file. The configuration file name and
the stanza are passed as command line arguments, all the
other parameters are normally included in the configuration

inspect optional
variables in conf args setPrefix

select nodes with:
getAllHosts,

getHostSample

run a program inside
the node with bgCmd

wait for the
test duration

killAll and
exit or repeat

Fig. 4: Typical flow of the runTest function of a test class.

variables, including the network graph file, but can be also
overridden with command line arguments, as shown in List. 1
and detailed in Sec. III-D.

List. 1: Invocation of NePA TesT using the configuration
stanza OLSRTest defined in conf/olsr.ini.
python wcn_emulator -f conf/olsr.ini -t\

OLSRTest

A. Test code

For each experiment a developer wants to realize, he has
to add a Python class derived from the MininetTest class
which has the following basic methods:

• runTest: method invoked by NePA TesT to start the test;
• getAllHosts: get a list of hosts in the network;
• getHostSample: get a random sample of hosts of size n;
• bgCmd: make a host run a specific command, i.e. a

network protocol or an application;
• sendSig: send a signal to a specific host;
• killAll: terminate all running processes launched by the

hosts;
• setPrefix: set the default folder for storing experiment

data and logs;
• wait: sleep for a given period of time and optionally log

host machine resources.

The runTest function must be overloaded and is used to
pass the control from the main of NePA TesT to the specific
test code. Fig. 4 shows a typical sequence of calls in a custom
runTest function.

B. Network graph

The network graph definition can be given in two formats,
the first is the well known edge-file format, in which each
line represents an edge of the network, in the simple form
“Src Dst ETX” where the ETX value is to be interpreted
as the ETX metric used by several wireless routing protocols.
The second is the mentioned NetJSON format, which we do
not report for brevity.
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C. The Configuration File

A typical configuration file is an .ini file similar to the one
in List. 2, in which the configuration for the OLSRd daemon
(the open-source implementation of the Optimized Link State
Routing protocol) is sketched.

List. 2: An example configuration file
[OLSRTest]
testModule = olsr
testClass = OLSRTest
times = 5
graphDefinition = data/test.edges
shortestPathComputation = false
link_mean_delay = <mean>ms
link_delay_sd = <sigma>ms
link_delay_distribution = mydist
link_delay_pfifo = True

[OLSRConvergence:OLSRTest]
duration = 35
HelloInterval = 1
TcInterval = 2
startLog = 1s
stopLog = 35s

The file is a text file divided in stanzas. In the OLSRTest
configuration stanza some generic parameters valid for all the
OLSR emulations are included, plus details of the emulated
network. In detail:

• testModule: the name of the python module where
the emulation code is contained;

• testClass: the class that must be loaded to perform
the test;

• times: the number of times the emulation has to be run
with different random seeds;

• graphDefinition: the network graph that has to be
used to run the scenario;

• shortetPathComputation: if set to true, compute
the shortest path between any couple of nodes and
populate the nodes routing tables. In the example it is
set to false, since OLSR performs this task;

• link_delay_distribution: the name of the file
that contains the parametric distribution of the link de-
lays;

• link_mean_delay: the mean of the delay distribution;
• link_delay_sd: the sigma of the delay distribution;
• link_delay_pfifo: the default behaviour of the out-

put queue. With true the packets are not reordered,
independently of the delay they are assigned, while with
false packets may be sent on the output interface in a
different order than they were pushed in the interface.

The interested reader can refer to the documentation of the
netem application for the precise meaning of the delay
parameters.

The OLSRConvergence stanza inherits from the general
OLSRTest configuration stanza and contains specific config-
uration parameters that are passed in a Python data structure
to the OLSRTest python class. The OLSRTest code uses

the parameters to configure the OLSR daemon and run the
emulation.

D. Command Line Parameters

The wcn_emulator binary accepts a few command line
parameters, among which the most relevant ones are:

• -f: the name of the configuration file to load;
• -t: the name of the configuration stanza to parse;
• -o: a comma separated string of configuration parameters

that are passed to the emulator and override the ones
in the configuration file (this option is useful to launch
the emulator in a batch script changing some relevant
emulation parameters);

• -g: the topology to use. A shortcut to override the
graphDefinition parameter;

• -s: a random seed to initialize the random number
generators. Needed to have repeatable results.

The topology generator is a separate library that can be used
to generate the wanted topologies. The most relevant command
line parameters are the following ones:

• -t: the kind of topology to generate, detailed below;
• -g: the number of graphs to generate;
• -n: the number of nodes (n);
• -e: the (average) number of edges per node. If not

specified it is set to ln(n)
2n which is the value that makes a

symmetric Erdős graph connected with high probability.
The kind of graph to be generated can be:
• CN: the community network generator algorithm from

Cerdà-Alabern;
• MM: the mesh network generator algorithm from Milic

and Malek;
• RE: a regular graph;
• WS: a Watts-Strogatz graph;
• PL: a Power-Law graph (with the Barabási-Albert algo-

rithm);
• ER: an Erdős graph.
All the original algorithms are tailored to accept the number

of nodes and number of edges as input parameter and are
preconfigured with sane defaults for the missing ones when
needed.

IV. PROTOCOLS AND APPLICATION TESTING

In this section we report the results we have with two differ-
ent testing scenarios, the first one explores the performance of
the OLSR routing protocol while the second one explores the
performance of PeerStreamer6, a peer-to-peer video streaming
platform. We use these examples to show how NePA TesT can
be beneficial for the design of protocols and applications and
to outline some of its specific features.

A. OLSR

OLSR is a link-state routing protocol widely used in
wireless mesh networks, it instructs nodes to periodically
send control messages (HELLO and TC packets in OLSR

6http://peerstreamer.org
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Fig. 5: The cost of 100 random routes in a 50 nodes Erdős
graph, with two sets of timers for the HELLO and TC
generation (1 s, 2 s for “fast”, 5 s and 10 s for “slow”)

terminology) that are used by the other nodes to reconstruct
the whole network topology as a weighted graph. Each link
has a quality parameter ranging from one (best quality) to
infinite (broken link) that depends on the rate of received and
lost HELLO messages from the neighbors. Each node uses the
Dijkstra algorithm to compute the shortest path and set the next
hop to any destination. We modified the open source OLSRd
routing daemon in order to periodically dump the routing table
of every node, once the emulation is over, we parse all the
dumped routing tables and we check when the routes stabilize.
A route stabilizes when its cost (the sum of the quality of all
the links that compose it) stops fluctuating. For simplicity in
this test we set to zero the loss in any link, so that all the links
will eventually reach a quality that equals 1 and all the route
cost will converge to some integer value. The convergence
speed is influenced by many factors, among which the timers
used for the generation of the control messages.

Fig. 5 reports the cost for a random set of 100 routes
computed on an Erdős graph with 50 nodes and 175 edges.
The figure reports results for two different runs (labeled with
“fast” and “slow” in the figure) in which the timer of the
HELLO and TC messages were set to 1 s and 2 s and 5 s and
10 s respectively. It is clear that there is a dependency from
the timers, not much in the time that it takes to stabilize all
the routes (in both cases the routes stabilize around 30 s) but
in the speed of convergence. In the fast case, at second 5 the
costs are already clearly grouped around the values they will
finally take. In the slow case, this become visible only after
second 20. A faster convergence is achieved at the cost of a
much higher overhead in terms of control messages, so this
example shows how NePA TesT can be used by developers
to get the needed insights to be able to fine-tune the OLSR
parameters for their specific needs.

We use the OLSR protocol to showcase another important
feature of NePA TesT, that is the capability of monitoring
the system resources, which is essential to ensure the realism
of the results. Fig. 6 reports the cost of 100 random routes
measured on the topology of a real network (the Ninux
network topology) on a 4-core 2.5GHz Intel processor with 8G
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Fig. 6: The cost of 100 random routes in the Ninux topology
with 112 nodes and 136 edges (“fast” configuration) and the
CPU load during the emulation

of RAM. The CPU load stays below 50% during the whole
emulation, with some fluctuations due to other applications
running on the host. The convergence time is similar to the
values reported in Fig. 5 (timers are configured as in the
“fast” case), and routes stabilize after about 30 seconds. Fig. 7
instead reports the same values for a 100 nodes, 400 edges
Erdős graph. The CPU is always running at 100% and the
routes never converge. In fact every change in the weight of
a link triggers the recomputation of Dijkstra’s algorithm for
all the OLSRd daemon instances, for every destination. Since
OLSRd is a single-process software, the time spent in the
shortest path computation will delay the generation of control
messages, which will be interpreted from neighbor nodes as a
packet loss. In practice, the lack of sufficient CPU resources
will produce the fictitious fluctuations of link quality values.
If link quality fluctuates, in turn continuous recomputations
of the routing tables are triggered, which produces an even
higher load on the CPU and ignites a cascading effect. Fig. 7
shows that even if initially the route cost seems to converge,
some routes never actually reach a steady state. Note that under
such circumstances the network may still deliver traffic, but its
behaviour diverges from a real network. It is also interesting
to note that since the complexity of the Dijkstra’s algorithm
depends both on the number of nodes and the number of
edges, the Ninux topology, even if it has a larger number of
nodes reaches a steady state, while the Erdős network, being
much denser never reaches a steady state. Summing up, it is
extremely hard to tell in advance which network may or may
not saturate the system, and NePA TesT helps the developer
to monitor the system parameters to filter out wrong measures
that can pollute the final results.

B. Live Video Streaming

Video streaming is a popular service and given the coop-
erative nature of the WCN it is likely that some users will
eventually broadcast a video streaming content, such as video
conferences or live events. We use NePA TesT to assess the
performance and tune the parameters of Peerstreamer [19], an
open-source live streaming platform capable of distributing
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Fig. 7: The cost of 100 random routes in an Erdős graph with
100 nodes and 400 edges (“fast” configuration) and the CPU
load during the emulation

a media content from a simple file or generated with a
USB camera. Peerstreamer has been designed to address the
challenges of live streaming on the Internet, since the structure
of a WCN is completely different we take advantage from the
wide range of tuning parameters available on Peerstreamer to
tailor its behavior accordingly. We have already conducted an
initial evaluation campaign of Peertreamer in the WCN context
using both the Community-lab testbed and our lightweight
emulation environment [20].

Peerstreamer is a peer-to-peer application operating on a
mesh overlay. Peers continuously send each other gossiping
messages in order to discover their neighbours and form a
connected overlay. On top of that, a special peer called source
injects periodically in the overlay small “chunks” of the video
stream. If the source has enough network resources, multiple
copies of the video can be injected in parallel, to have a
more robust delivery. Peers exchange with their neighbours
the received chunks in order to obtain a best-effort distribution
of the whole content. The number of copies of each chunk
injected by the source is a configurable parameter that depends
on the specific network conditions.

Peerstreamer has been developed for live content, as such,
the receiving ratio of the chunks and the receiving delay are
equally important. In our experiment we assume that chunks
received four seconds after their generation time are no more
useful and must be discarded.

To get a taste of the potential of NePA TesT, we test
Peerstreamer using a topology from the real world, namely
Ninux, composed of 112 nodes and 136 edges. Our tests last
for six minutes and we analyze the data in the last five minutes
in order to avoid transient behaviors. We stream the ”Big
Buck Bunny”7 short movie encoded at 300 kbit s−1. We use
the default link delay distribution8, and configure link loss
according to the corresponding ETX value. All the code we
use for our experimentation is freely available on-line9. We

7https://peach.blender.org/
8https://ans.disi.unitn.it/redmine/attachments/download/64/qmp delay m8.

0658 s55.7166.dist
9https://ans.disi.unitn.it/redmine/nepatest peerstreamer.git
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Fig. 8: Average loss ratio distributing a live content with Peer-
streamer and the Ninux topology using the default parameter
values.
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Fig. 9: Average loss ratio distributing a live content with Peer-
streamer on the Ninux topology after adjusting the parameters.

try Peerstreamer with different numbers of peers scattered
randomly in the topology, setting the neighbour number to
ten and we repeat each scenario for ten times.

Fig. 8 shows the performance of Peerstreamer using the
default (very restrictive) parameter values. Even with a small
number of peers Peerstreamer cannot be used as-is in the
Ninux topology for live streaming, in fact a loss of 55%
prevents any type of streaming service. However, we showed
in a previous work [20] that a suitable set of configuration
values leads to excellent performance of Peerstreamer in
WCNs. For the sake of brevity, here we only present the
dependency on one single parameter; Fig. 9 shows the loss rate
when sending one or three initial copies of each chunk, leaving
away all the combinations of the other parameters. The loss
ratio resulted after the optimization confirms that NePA TesT
is a valuable instrument to assess and tune the performance of
high-level applications in the context of WCNs.

V. CONCLUSIONS AND FUTURE WORKS

We presented NePA TesT, a set of instruments that can be
used to perform tests in realistic environments and emulate the
behaviour of large networks. NePA TesT wraps the Mininet
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emulator, complements some of its missing features, and
completes it with a set of tools that help the developer to
design and test protocols and applications that will then be
ready to be deployed on real networks.

We have shown that NePA TesT supports the emulation of
networks of considerable size on a standard PC, it can be used
to perform tests on different topologies with sane presets, and
allows the monitoring of the host machine, which is a key
feature to ensure the consistency of the results (a task that is
often neglected in simulation-based results). We have shown
also how NePA TesT can be used both at the network and
application layer.

The current limitation of NePA TesT is its impossibility of
emulating lower layers, e.g. physical and MAC layer, so that
the network behaves like a wired switched network. In the
future we plan to address this issue with the integration of
specific code for wireless link simulation. The ns-3 network
simulator in fact can be used to create Linux tap devices that
communicate with each other simulating a wireless channel,
while the mac80211_hwsim Linux module allows natively
the usage of the Linux wireless drivers on emulated devices.
The interaction of these pieces of software and their integration
with NePA TesT (including an easy configuration scheme to
represent link-layer properties of links) will be carried out in
the future.
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