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Abstract

Wireless Community Networks (WCNs) are bottom-up broadband networks empow-
ering people with their on-line communication means. Too often, however, services
tailored for their characteristics are missing, with the consequence that they have worse
performance than what they could. We present here an adaptation of an Open Source
P2P live streaming platform that works efficiently, and with good application-level
quality, over WCNs. WCNs links are usually symmetric, or at least asymmetry is not by
design as it is in ADSL, and a WCN topology is local and normally flat (contrary to the
the global Internet), so that the P2P overlay used for video distribution can be adapted
to the underlaying network characteristics. We exploit this observation to derive over-
lay building strategies that make use of cross-layer information to reduce the impact
of the P2P streaming on the WCN while maintaining good application performance.
We experiment with a real application in real WCN nodes, both in the Community-Lab
provided by the CONFINE EU Project and within an emulation framework based on
Mininet, where we can build larger topologies and interact more efficiently with the
mesh underlay, which is unfortunately not accessible in Community-Lab. The results
show that, with the overlay building strategies proposed, the P2P streaming applica-
tions can reduce the load on the WCN to about one half, also equalizing the load on
links. At the same time the delivery rate and delay of video chunks are practically
unaffected.
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1. Introduction

Wireless Community Networks (WCNs) are infrastructures built by the people for
the people [1], with a bottom-up approach bringing broadband services to communi-
ties, rural and urban as well. They have became an important reality in the landscape of
telecommunication and ICT services, and in some cases involve hundreds or thousands
of nodes and people1. They spread over large regions and some effort is currently spent
in planning a sort of interconnecting federation [2]. The continuous growth of these
networks and the services experimented on them represent a major swerve from the
dominating paradigm of consolidation and centralization of the Internet. The increas-
ing traffic generated by their users requires careful studies on the resources involved and
the performance achievable by applications, with a special focus on services that have
been ostracized in the commercial Internet. Among these, P2P applications, divested
from their illegal aura, suite very well the WCN philosophy (delivering user-generated
contents to other users) and also its internal, distributed structure, and can constitute
killer-applications. Indeed, a P2P distributed architecture realised through a mesh over-
lay can exploit the WCN link characteristics like the almost symmetric bandwidth and
a high throughput. On the contrary, applications based on the client-server approach
cannot scale without a large amount of centralized resources because they do not take
advantage from the underlaying network structure.

One of the P2P applications that raises most interest in a WCN is live streaming,
which can have a relevant impact on the community. Live broadcasting of community
user ideas and events fosters the opinion exchange within the community and can be a
means for information propagation in a way much more tied to the citizens with respect
to what traditional media do.

Even if the P2P architecture is distributed, the application must manage network
resources accurately to avoid starvation and to properly balance the load in the under-
lying physical network. Our early works [3] and [4] report the feasibility of P2P live
streaming in WCNs, but also highlight possible limitations affecting these kind of net-
works, and describe possible tuning needed to maximize the distributed content quality,
while limiting the network load.

This paper extends the work in [4], proposing and evaluating strategies for the man-
agement of the overlay topology and the content distribution in P2P live streaming.
The key contributions of this paper can be summarized in the following bullets.

• The proposed strategies are aware and respectful of the network resources in a
WCN, and autonomously adapt to them to achieve optimal performance with
minimal resource use and maximal fairness.

• Several tests are performed on Community-Lab [2]. Community-Lab is a WCN
testbed made up of real community network nodes, it allows the execution of
experiments on different European WCNs testing the behaviour of real-world

1Notable examples in Europe only include: the Guifi.net community in Spain http://guifi.net/;
AWMN Community,the Athens wireless metropolitan network http://awmn.net/content.php; the
Ninux networks in Italy http://ninux.org; the Funkfeuer free networks in Austria http://funkfeuer.
at/index.php?id=42&L=1.
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applications. Measures and consequent conclusions taken on Community-Lab
are particularly relevant as proof of concept of the feasibility in real WCNs, and
give high confidence on the final reception quality of the content distribution.

• Additional tests have been run on Mininet [5]. Mininet is a network emulator we
adapted to emulate actual WCNs. Our adaptation relays on the statistical data we
collected from the Ninux WCN. This emulator allows the analysis of complex
techniques like cross-layer optimization that are not feasible in Community-Lab.

The rest of the paper is structured as follows: Sect. 2 reviews the relevant literature
and explains the goal of this paper; Sect. 3 describes P2P architecture and strategies
and PeerStreamer, the platform we use for our tests; Sect. 4 is devoted to describe the
strategies we propose to create an optimal overlay; Sect. 5 summarizes what are, at the
application level, the strategies adopted to schedule video chunks transmissions; Sect. 6
presents the tools and infrastructures we use for testing our strategies; Sect. 7 reports
the results we obtained from the tests and, finally, conclusions are given in Sect. 8.

2. State of the Art and Contribution of the Paper

Cross-layer optimization has been shown to be a key factor for real-time content
distribution in wireless mesh networks [6] [7]. However, the approaches described
in [6] [7] rely on advanced MAC/PHY protocols (such as IEEE 802.11ae) and the
resulting algorithms have currently not been implemented. The multicast distribution
on Wireless Mesh Networks is addressed in [8] and [9] but the suggested solutions rely
on proposed advanced features for the data-link layer. [10] presents a collaborative
algorithm for video streaming and cross-layer optimization, but it requires that all the
WMN, including the user number and the load, is under full control. Video streaming
in WMN is also addressed in [11] which reports a study on video streaming quality
using different interference-aware metrics.

Only 4.5% of the papers analysed in [12] validates their findings with experiments,
but reproducing the proposed techniques and the experimental scenario is almost im-
possible. In previous works [3][4] we tested PeerStreamer on WCNs and we high-
lighted the need of a network aware strategy to create an efficient overlay that can cope
with packet losses in WCNs. The repeatability of the tests performed is granted by the
open source nature of PeerStreamer and the real world testbed Community-Lab.

Building efficient overlays is a well studied topic, and efficient distributed algo-
rithms to build unstructured peer overlays already exist [13] [14]. These algorithms
focus on placing the peers with more network resources close to the source to enhance
the content distribution performance. They behave well on the Internet, where net-
work resources are not equally distributed. However, they do not take into account the
network load and the fairness. Other works like [15] and [16], build efficient overlays
based on network coordinates. Again, these methods are tailored for the Internet, hence
they do not take into account network load and link fairness.

As already mentioned the application we use is based on PeerStreamer, an open
source P2P live streaming platform briefly described in Sect. 3. The architecture of
PeerStreamer is described in [17], while its capability to adapt to different network
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scenarios is studied in [18]. Additional details and related literature can be found on
the home page of PeerStreamer2.

2.1. Goals of This Paper

Compared with the discussed literature, this paper takes a different global perspec-
tive, which is enabled by two facts. First of all we exploit the PeerStreamer platform
that enables the customization, including cross-layer optimization, of P2P streaming
and its adaptation to specific environments. Second, we exploit the knowledge of mesh
networking and routing protocols to introduce simple, but smart solutions that enhance
the streaming performance and use fairly the network resources.

The goals and contributions of this paper are thus unfurling in two directions. First
of all we demonstrate the feasibility of a traditional “killer application” as live video
streaming in a fully distributed fashion without any support from content distribution
systems or large centralized facilities. Our effort lays the bases for the future develop-
ment of live event streaming and video conference applications without the need of a
cloud-based infrastructure. In doing this we also show that WCNs, far from being only
“geek games”, can support advanced and reliable services like video streaming. The
availability of symmetric, medium to high bandwidth links3 can compensate for the
lack of a structured backbone, provided that the services, as we did for video stream-
ing, are conceived and customized for this architecture. Second, we show that P2P live
video streaming can be adapted to be respectful of network resources (reducing the
number of times a video chunk is transmitted in the WCN) even in complex environ-
ments. This is a key concern for people that operate a WCN.

3. PeerStreamer: Assumptions and Notation

In this section we introduce and discuss the notation used, the key hypotheses for
the theoretic analysis, and some general assumptions on P2P live streaming. We will
also review the basic principles of PeerStreamer.

We call the WCN network the underlay to distinguish it from the overlay network
built by PeerStreamer. The underlay is supposed to be connected and we assume each
node knows the next hop and the distance (the hop count or the weighted hop count
depending on the routing protocol) to any other node. This is true for any proactive
routing protocol. We model the underlay as a graph

Gu = (R, Lu)

where R is the set of routers present in the WCN and Lu is the set of wireless links that
connect them. The underlay is represented by blue (dark grey) nodes in Fig. 1a.

2http://peerstreamer.org
3Symmetry of links can be verified on the web sites of community networks, that often export the charac-

teristics of their topology; moreover, the symmetry of the transmission equation with respect to the receiver
and transmitter characteristics indicate that asymmetric links sometimes reported in 802.11 networks are due
to pathological situations as the presence of a strong noise source close to one of the antennas.
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Figure 1: WCNs with P2P overlay: wireless routers (in blue), P2P overlays (in cyan), video source (in grey).
Red arrows represent the video distribution.

Some nodes of the underlay run an instance of PeerStreamer and are called peers.
Each peer Pi at time t chooses a subset of the other peers as a set of neighbors that
we call Ni(t). Every Pi exchange video frames only with peers in Ni(t), thus the union
of all the Ni(t) and the related links defines the network topology of the application,
also represented as a graph and called the overlay (represented in cyan (light gray) in
Fig. 1a). Let us introduce some definitions for the overlay graph: let S (t) be the set of
all peers at time t ∈ [0,T ]. S = {peer P : ∃ t ∈ [0,T ] such that P ∈ S (t)} is the set of all
peers and Pi the i-th peer of S . The subscript i is used only to distinguish peers from
one another, the order of the peers is not relevant.

Definition 1. The overlay built by PeerStreamer is a time-varying directed graph:

Go(t) = (S , Lo(t))

where S is the set of peers and

Lo(t) = {(Pi, P j) : P j ∈ Ni(t)}

is the set of edges that connect a peer to its neighbors.

In large networks made of thousands of users, peers constantly enter and exit the net-
work and the overlay needs to be reorganized to follow these modifications. In this
paper instead we consider a small amount of peers so that we can drop the dependency
on t and assume S (t) = S . This does not mean our approach is not dynamic, if S (t)
changes, the choice of Ni(t) changes and Go(t) varies; however, we’re dropping the time
variability to make the cross-layer design problem tractable, leaving the investigation
on peers’ churn for future works.

PeerStreamer can be installed directly on the wireless routers provided they have
a Unix-like operating system, since its memory fingerprint and CPU occupation is
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minimal [19]4. PeerStreamer was developed with a function separation between the
routing algorithm and streaming engine on one side, and content I/O on the other, the
two connected via a standard network socket so that the video playback can be done in a
different host than the one where PeerStreamer is running: users can run PeerStreamer
on their wireless router and watch the videos on their laptop.

The cross-layer overlay design requires that the peers can map other peers on the
routers where they are running. Indeed, this simply means that PeerStreamer has access
to the system routing table, which is a reasonable assumption as the most popular
routing protocols used in WCNs offer an interface that other programs can use to access
the full dataset of information that the routing protocol owns. Since in PeerStreamer
the peers are identified using their IP address and UDP port, it is easy to match a peer
with the corresponding router.

The main difference between the overlay and the underlay is that the underlay is
determined by the network topology, on which PeerStreamer does not have control,
while the overlay is generated by PeerStreamer. The two layers are not independent:
an edge in the overlay corresponds to a sequence of hops in the underlay so it is useful to
express this relationship explicitly: spi j is the sequence {lu1...l

u
n} of links in Lu that form

the shortest path of length n between the routers where peers Pi and P j are installed.

Definition 2. We call the cross-layer graph incidence of the path Pi → P j the array
Ai j of size ||Lu|| made of elements:

Ai j
k =

1 luk ∈ spi j

0 luk < spi j

Ai j is a convenient way of representing how the overlay influences the underlay. For
instance the l1-norm |Ai j|1 is the number of links in the underlay that are traversed by
spi j. Moreover Ai j vectors that refer to distinct paths are summable as they have the
same number of elements by construction. This will be useful to define impact metrics.

4. Building an Optimal Overlay

The overlay is built in a distributed way, each Pi choses Ni(t) independently. Build-
ing the overlay is one of the major task in a P2P application [14]. PeerStreamer topol-
ogy management is based on the newscast+ [20] protocol that uses low-throughput
signalling messages that are exchanged by the peers to share their local knowledge of
S . Without entering into details, it is sufficient to say that newscast+ periodically pro-
vides each peer with a partial list of all the peers forming the overlay. The choice of the
gossipping algorithm is not critical with an overlay made of just a few tens of nodes:
in just a few message exchanges each peer knows the entire S .

At regular intervals, Pi selects NN peers from the latest received list of peers to
populate its neighborhood Ni(t). NN is a key parameter to analyse the network dynam-
ics and is investigated in Sect. 7. In PeerStreamer the overlay graph is forced to be an

4Technical information on the efficiency, the portability and in general the technical features of Peer-
Streamer can be found at the home page http://peerstreamer.org.
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undirected NN-regular to favour peer data exchange. This is realised through a simple
protocol: if peer Pi adds P j to its neighbourhood Ni(t), it sends an advertisement mes-
sage to P j, which will add Pi in its neighbourhood N j(t). Conversely, if Pi removes P j

from Ni(t), it notifies P j that will removes Pi from N j(t). To guarantee a good connec-
tivity of a random NN-regular graph it is generally required that NN > log2(||S ||).

Algorithm 1: Neighborhood refresh algorithm with newscast+ for peer Pi

Data: Ni(t): set of peers in the neighbourhood at time t; S t: newscast+ snapshot of peer
at time t; NN : target size of the neighborhood

1 Ni(t + 1)← 70% of peers in Ni(t) randomly choosen
2 if ||Ni(t + 1)|| < NN then
3 move (NN − |Ni(t + 1)|) random peers from S t to Ni(t + 1)
4 end

Algorithm 1 describes a simple procedure to build a random NN-regular overlay
assuming the simple messaging depicted above is used. A random overlay construction
is generally robust to peer churning, and it guarantees good connectivity properties,
but is not network-aware: it is a reasonable compromise as long as information on the
underlay is difficult to get, as in the Internet. In a WCN instead, it is possible to collect
a good knowledge of the underlay, and exploit this information to build an overlay that
reduces the use of the network resources. To clarify the relationship between underlay
and overlay, consider Fig. 1b, which represents a portion made of three wireless routers
of a larger underlay, each one with a running PeerStreamer instance: Pi, P j and Pz.
Two possible overlays are depicted, Go

1 (that does not mirror the underlay) and Go
2. The

distribution of chunks follows the overlay, in the case of Go
1: Pi → P j → Pz, so that

chunks are sent once on l1 and twice on l2. In the case of Go
2 instead the chunks follow

the path Pi → Pz → P j and both l1 and l2 are used only once for the transmission of
the data. Go

2 thus uses the resources of the underlay more efficiently.
This example shows that different choices of Go produce a different impact on the

resources of Gu. To quantify this impact in general topologies we need to introduce
two metrics: the network impact Io and the fairness of the links occupation Fo.

Definition 3. The network impact of an overlay Go on an underlay Gu is defined using
the cross-layer incidence, and it is the sum of all the occurrences of an underlay link
being used to build the overlay:

Io =

||S ||∑
i=1

∑
P j∈Ni

|Ai j|1

Io counts how many times links in the underlay are used by peers in their interactions.
If each peer receives roughly the same amount of traffic from each of its neighbors

(which is a realistic assumption), Io will be proportional to the total number of packets
exchanged in Gu for the entire video streaming. Io can be used to compare the impact
that different overlays built from the same set of peers S have on the underlay, it is an
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a-posteriori measure of the efficiency of a given Go. If we look back at Fig. 1b we can
easily compute that the overlay Go

1 has Io = 3 while Go
2 has Io = 2.

The network impact does not consider how evenly the load is distributed on the
links of the underlay, just the total amount of traffic. We use the Jain’s fairness index
[21] to evaluate and compare how evenly the underlay is exploited. Given a normalized
vector X = {x1...xn} the Jain fairness is:

J(X) =
(
∑n

i=1 xi)2

n
∑n

i=1 x2
i

The maximum value is 1, obtained when all the xi are equal, and the minimum is 1
n

when all the values except one are zero. We want to apply the fairness metric to mea-
sure how even is the distribution of the load on the links of the underlay given a certain
overlay. Indeed, computing the fairness index on the full underlay can be misleading,
since not all the underlay is used by the P2P application, just think at what happens
when the underlay is the entire Internet! To make the fairness index comparable and
meaningful regardless of the size of S and of the underlay, we introduce the notion of
useful underlay G̃u.

Definition 4. Given an underlay network Gu and a set of peers S the useful underlay
G̃u is the subgraph of Gu that includes all and only the links and nodes interested by a
full mesh overlay among all the peers of S :

G̃u = (R̃, L̃u); L̃u =
⋃

Pi,P j∈S

spi, j; R̃ = Gu \Ω

where Ω is the set of all nodes in Gu that are not connected by any link in L̃u.

We can now use G̃u to compute the fairness indexes:

Definition 5. Given a set of peers S , the fairness of an overlay Go relative to the
underlay G̃u is:

Fo = J(AGo )

where

AGo =

||S ||∑
i=1

∑
P j∈Ni

Ai j

is the vector obtained summing all the cross-layer graph incidence vectors Ai j com-
puted in G̃u.

Still Fo computed for different sets S or on different Gu are hardly comparable,
as the distribution of the peers on routers and the topological constraints of the Gu

can influence the achievable fairness. It would be useful to be able to use a fairness
index normalized to the intrinsic properties of S and Gu. To this purpose we define
the intrinsic fairness of the underlay Fu of S as the fairness index computed when the
overlay is a full mesh.
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Definition 6. The intrinsic fairness of S given Gu is:

Fu = J(AG f )

where AG f is the vector obtained summing the cross-layer graph incidence vectors Ai j

relative to all the couples of peers (Pi, P j) on G̃u.

Finally we can define a normalized or relative fairness ϕ that can be used to compare
without biases the fairness of overlays obtained with different peer sets S on different
networks Gu:

ϕ =
Fo

Fu

Fig. 2 visually clarifies the notation we introduced so far. Fig. 2a represents a sam-
ple underlay graph, a set of peers and a potential choice for the overlay. Fig. 2b rep-
resents the G̃u generated using the links that belong to spi j from every Pi to every
P j ∈ Ni(t). Fig. 2c represents G̃u, the graph that is generated using the links that belong
to spi j from every Pi to every P j, used to compute the intrinsic fairness. Note that with
such a regular topology there can be multiple choices of G̃u and we choose one that
minimises the number of nodes in G̃u to increase the clarity of the example.

Table 1 reports the computation of all the Ai j for the overlay considered in Fig. 2b.
Summing all the vectors and removing the zero elements we obtain AGo and we can
finally compute Io = 27 and Fu = 0.88. To compute ϕ one would use the graph in
Fig. 2c, complete Table 1 with the Ai j between the couple of peers that are not direct
neighbors in Go, sum them all and remove the 0-values to compute AG f , then compute
the intrinsic fairness Fu as in definition 6 and finally ϕ.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17

18 19 20 21

22 23 24

(a) Underlay Gu and overlay Go

1 2

6 7 8

10 11 12

13 14 16

1

5

9 10

13 14

16 17

19

22

(b) Portion of Gu used by Go

1 2

5 6 7 8

9 10 11 12

13 14 15 16

1

4 5

8 9 10

11 12 13 14

15 16 17

18 19 20 21

22 23 24

(c) The corresponding G̃u

Figure 2: An example of Gu (dashed lines and empty circles) and overlay Go (solid lines and circles) with
NN = 3 (a); the portion of Gu interested by Go (b); and the useful underlay G̃u corresponding to Go (c).

4.1. Network-aware Overlay Formation
One goal of this paper is to guide the choice of Ni(t) so that the resulting overlay

uses the underlay resources efficiently and fairly. The first component to achieve this
is to define a suitable metric to change the peer selection to a ranking-based criterion.
Algorithm 2 reports a suitable procedure to be used instead of the one in Algorithm 1.
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Ai j l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 l21 l22 l23 l24

A1,2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1,7 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1,8 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2,7 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2,8 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A7,13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
A8,12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
A8,16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
A10,13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
A10,12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
A10,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
AGo 3 4 4 2 1 2 3 2 2 2 2

Table 1: The computation of AGo for G̃u of Fig. 2b.

Algorithm 2: Optimized neighborhood refresh algorithm for peer Pi

Data: Ni(t): set of peers in the neighbourhood at time t; S t: newscast+ snapshot of peer
at time t; NN : target size of the neighborhood

1 S ← Ni(t) ∪ S t

2 O = OrderPeers(S ,metric) /* ascend-order S according to “metric” */

3 Ni(t + 1)← first NN elements of O

We propose two different metrics for the OrderPeers(S ,metric) function in Algo-
rithm 2. The first one is the weighted Hop Count Metric (Hc):

Hc(Pi, P j) = |W ◦ Ai j|2

where W is the vector of the weights that the routing protocol assigns to each link, ◦
is the Hadamard product, i.e., the component-wise multiplication of all the elements in
matrices with the same dimension, and |·|2 is the l2 or Euclidean norm of the vector. For
simplicity we use a simple hop-count metric, so that W = ~1, but results can be easily
extended to more complex metrics. Hc is extremely simple to compute, and normally
all the information needed for the computation of Hc are already present in the routing
table of the router where Pi resides. The Hc metric helps avoiding situations like the
one of overlay Go

1 in Fig. 1b in which Pi does not realize that Pz is on the path to reach
P j, so that any packet sent to P j will reach also Pz. If Pi chooses the neighbors based
on the proximity, Pi will first choose neighbors that do not have any other node on the
path to reach them, which does not completely prevent, but surely lowers, the chances
of creating inefficient overlays like G0

1 of Fig. 1b.
We can conjecture that among all the possible choices for the Go, Hc will generate

one that most resembles the underlay. However, Hc will prefer peers that are partic-
ularly central in the underlay topology (i.e., that have a low average distance from all
the other peers), which may introduce an unfair distribution of the choice and an un-
fair use of the underlay resources. In some cases it may be more efficient to choose a
neighbor that is farther than another, but in an area of the underlay that is less used by
PeerStreamer.
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The second metric we propose is the Equalized Hop Count metric (EHc ), which
targets this issue while still trying to discourage communication between distant peers.
EHc is computed by Pi as:

EHc (Pi, P j) = |W ◦ (Ai j + B)|2

where B is an array defined as:

B =

||S ||∑
i=1

||S ||∑
j=i+1

Ai j

Note that the second summation starts from i + 1 in order not to count each path twice,
one for each direction, and that in the transitory phase in which a peer still does not
know the whole S , it can approximate B with the information on the peers it is aware
of. EHc needs more information to be computed than Hc as Pi needs to know all the
shortest paths between any couple of known peers to compute B. This is possible, for
instance, using the OLSR protocol in which the full network topology is known to each
router, but it is time consuming; however, B can be cached and needs to be computed
only when the network topology changes.

EHc introduces a key advantage over simple Hc: it adds a weight to the links that
are more likely to be chosen given the underlay topology. If a peer is very central in
the topology, the introduction of B will increase the weight of links around it and will
penalise it compared to peers that are more peripheral. We will see that this has a direct
effect on the fairness of the distribution of the load on the underlay.

The heuristics and metrics we have exposed here are rooted in the concepts of be-
tweennes and centrality in a graph, that we extensively studied with the OLSR protocol
in [22].

5. Video Distribution

In live streaming the source is a special peer Ps that provides the media content.
In PeerStreamer, Ps concatenates one or more frames (audio and video separately)
into chunks and injects them in the overlay. Chunks are numbered; C is the set of
all chunks generated by Ps and Ch is the h-th chunk. For each chunk Ch there is a
delivery deadline dlh related to the playout time, after which Ch is no more useful and
it’s “lost” for the application. After its generation at time t, a chunk Ch is pushed in
the overlay: Ps selects a peer Pi ∈ Ns(t) and pushes Ch to it. Ch can be injected in
m multiple copies to different peers in Ns(t) in order to speed up the dissemination
process. Chunks’ reception is always acked (by all peers) for reliability and to avoid
duplicate transmissions. Acks timeout is irrelevant for performance, but we use it to
estimate the reliability of the logical link; it is set to 10 s. At regular time intervals
τo, every Pi “offers” a window of size nw of its most recent chunks to one P j ∈ Ni(t).
P j “selects” a set of size sc of them so that every Ch percolates in the overlay using
an offer/select protocol. Actual transmissions of a chunk is initiated as soon as P j

selects it, or as soon as the ack of another chunk tells the application that the number
of parallel transmissions is below the target level. This is fundamental to control the
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overall average transmission rate, as UDP does not have rate or window control. No
chunk is received twice, so the distribution of each chunk forms a tree on top of the
overlay, as depicted in Fig. 1a.

The selection and building of the neighborhoods Ni(t) is in any case mediated by
the topology manager of PeerStreamer, which guarantees that Ni(t) and N j(t) are never
completely overlapped if i , j so that the probability of “storm requests” to a single
peer is negligible.

5.1. Peer and chunk selection

We refer to peer and chunk selection as the procedure used by Pi to choose P j ∈

Ni(t), offer it a set of chunks and let P j select the sc of them he needs more. Many works
have been published studying strategies to disseminate chunks in a P2P overlay on the
Internet [23, 24, 25, 26, 27]. PeerStreamer has been designed to work on the Internet
and we consider the “benchmark” scheduler one that selects uniformly at random in
Ni(t) the peer P j to send the offer to, while P j selects the most recent chunk that it
does still not possess. This is called a “random – latest-useful” (R-LU) chunk selection
and with some assumptions it can be considered optimal for live streaming [28]. R-LU
performs quite well on the Internet; however, WCNs are not the Internet, and even if
R-LU continues to be a benchmark, typical adaptation procedures based on the Round
Trip Time (RTT) measures might not work, as RTT in a WCNs is not stable and it is
not dominated by propagation, but can be highly variable [3]. Moreover in WCNs, the
total number of peers can be expected to be relatively small (tens to hundreds of users,
not thousands to millions), and this can also affect the adaptation strategies, making
“wide Internet” approaches suboptimal. The experiments presented in this paper deal
with the behavior of the distribution as a function of five different parameters:

• NN : the target dimension of the outgoing neighborhood;

• m: the number of copies of each chunk injected by Ps into the overlay;

• sc: the number of chunks that a peer is allowed to select from each offer it
receives (specified in the offer);

• fa: the number of audio frames that are assembled into a single audio chunk.
In our experiments the video is H.264 encoded, the encoder generates video
frames of variable dimension and audio frames of fixed size (207 bytes), which
are injected separately by the source. A low fa produces a higher number of
chunks, hence a higher impact on the network but a shorter delay in the data
reception.

• Ps seeding strategy: Au or Aw. When the source Ps generates a new chunk it
must decide to which peer Pi ∈ Ns(t) it will be sent. The choice can be random
with a uniform distribution (Au), or it can follow a weighted distribution that
takes into account the local communication quality between Ps and Pi with the
goal of making a more reliable chunk injection in the overlay (Aw). This is an
adaptation we introduce only in the source, and it is better explained in the rest
of this section.
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The strategy used to inject the first chunk in the overlay is particularly important.
As a clarifying example consider the case in which m = 1; if a chunk is lost at the first
hop, it is lost for all the peers. As we expect that the number of peers in a WCN is
small, the source can keep a statistic of their connectivity “quality” in order to avoid
peers with bad connectivity, for instance leaf nodes in the underlay with a very weak
link. Obviously Ps can not compensate the poor network performance of the underlay,
so we designed a simple strategy to prevent Ps to choose such nodes. Note however
that the strategy applies to the video source only, so peers with bad connectivity are not
excluded from the overlay.

Let wi(t) be the weight associated by Ps to Pi ∈ Ns(t) at time t. When a previously
unknown peer Pi enters Ns(t) its weight w(i) is set to 1. Ps selects Pi ∈ Ns(t) at time t
with probability:

ps
i (t) =

wi(t)∑
j:P j∈Ns(t)

w j(t)
(1)

With Au strategy wi(t) = 1 and Ps chooses Pi ∈ Ns(t) with uniform probability.
With Aw the weight of Pi equals the rate of chunks that have been so far correctly

acknowledged by Pi as a passive a posteriori measurement of link quality. For each
Pi ∈ Ns(t), Ps computes wi(t) as a moving average with an exponential decay of the
successful chunk delivery rate. If Pi has been selected by Ps for chunk injection at time
t1, Ps first sends the chunk, and then updates the previous weight measured at time t0:

wi(t1) =

{
α + wi(t0)(1 − α) if ack received by Ps

wi(t0)(1 − α) if a timeout expires (2)

Currently we have set α = 0.01 and a timeout of 10s.

6. Experimental set-up

We performed experiments using two different platforms, the Community-Lab of-
fered by the CONFINE project and a local emulation realised using the Mininet frame-
work. In this section we briefly review both the platforms. The terms node and router
are synonymous and identify a network node in the WCN, which is obviously also a
router; they are used interchangeably in the following. The term research device (or
RD) are instead the general “containers” of the Community-Lab, so the term is uses
only in Community-Lab experiments.

6.1. Community-Lab

In order to have a reasonably controlled environment, and the possibility to run
experiments through a standard and centralized interface, we run the experiments on
the facilities provided by the CONFINE EU project: the Community-Lab.

Community-Lab [2] is a testbed that interconnects nodes from different real WCNs,
intended to investigate problems and solutions for WCNs in realistic scenarios. Cur-
rently the CONFINE project involves different communities spread across Europe:
Guifi.net, AWMN, FunkFeuer and Ninux.org, placed respectively in Spain, Greece,
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Austria and Italy. All these networks can be considered “in production”, meaning that
thousands of users daily access their resources.

Community-Lab is made of special nodes called research devices, which are di-
rectly connected to WCN nodes, so they actually communicate through the WCN.
Each research device can instantiate multiple linux containers called slivers, each of
which belongs to a group called a slice. Researchers can create a slice and the related
slivers by selecting the desired research devices and then run their experiments on all
the slivers with a single command. More details on how Community-Lab can be used
to run experiments with real P2P applications can be found in [4].

6.1.1. Experiments Performed on Community-Lab
We use Community-Lab to fulfill two goals. The first one is to verify that P2P

live streaming is feasible in a real WCN. The second one is to find a set of configu-
ration parameters for PeerStreamer that results in high quality streaming, in terms of
number of frames delivered and playout delay. These parameters are used to perform
topology-based optimizations in Mininet. We performed our tests in two islands of
the Community-Lab: Guifi.net and AWMN. Since Community-Lab is still an ongoing
project, the number of slivers in the other islands is still too small to be representa-
tive for our experiments, and also at the time of the experiments it was not yet pos-
sible to interconnect different Community-Lab islands, thus the experiments run on
Community-Lab must be considered as a feasibility study and not as a performance
evaluation one.

Every experiment is composed of several runs (normally between 10 and 30 de-
pending on the stability of results) to ensure meaningful averages, each of which lasts
ten minutes; we analyse the central five minutes of the runs in order to avoid data
related to transient behaviors. The data of the experiments is averaged over all the
successful runs. This technique ensure that overall each presented performance figure
correspond to several hours (5 minutes times the number of runs) of streamed video,
while different runs with different seeds and initial conditions accounts for network
variability that would otherwise be very difficult to observe in a single long run. This
is a standard methodology in the evaluation of streaming applications [29, 30].

The video we distribute is a re-encoding at 24 fps (video frames) and average bit
rate of 300 kbit/s (including both audio and video) of Big Buck Bunny5. τo is set to
guarantee that on average the offer rate is slightly larger than the frame rate, so the
distribution is sustainable and the signalling overhead is minimal: a much smaller τo

easily guarantees a better distribution but at the price of many refused offers, increasing
the overhead.

The experiments explore the influence of the five parameters discussed in Sect. 5.1.
NN is varied from 5 (a value dangerously small) to 20 which, with the number of nodes
we can deploy, means nearly a full mesh. Since ||S || is small we explore m ∈ {1, 3} only;
as m increases, the dissemination speeds up but it requires more and more resources
at the source node Ps; as m → |S |, the distribution process degenerates to a “multiple
unicast” scenario as in cloud-based streaming. Ps can emit chunks either uniformly

5http://www.bigbuckbunny.org/
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toward any peer (Au) or following Eq. 2 (Aw). Finally, the number of chunks that can
be selected for each offer is increased, sc ∈ {1, 3, 5}, and the number of audio frames
per chunk is also increased, fa ∈ {1, 5}.

6.2. Mininet

Mininet is a lightweight emulator of complex networks with a customizable topol-
ogy. It is a python project realised under the BSD Open Source license that takes
advantage of the contextualization features of the Linux kernel. While Community-
Lab is a useful testbed to investigate real WCN scenarios, at its current state it provides
little information on the underlay graph. We believe that cross-layer optimization can
have a great role in the peer-to-peer and WCN context, thus we developed a frame-
work using Mininet as an emulator of real-life WCNs capable of granting the access to
information from the routing layer.

Mininet allows the specification of topologies, links’ capacities, delays, and loss
rates. We based our framework on real data from [31]. For this work we use the
topology extracted from the Italian Ninux WCN with 126 nodes. For each link we
can also access the ETX metric, that represents the average number of transmissions to
successfully deliver a packet over a link [32]. We use a threshold of 5 retransmission
(as suggested by the IEEE802.11 standard) so that we approximated the probability of
loosing a packet on link l as (1 − 1

ET Xl
)5.

We currently do not have data regarding the bandwidth and the delay of each Ninux
link, however, we use data from the analysis of a portion of the Guifi WCN [33].
For the available capacity we set a maximum of 10 Mbit/s for link. This value is an
underestimation for modern WCNs, but already largely exceeds the need of the live
streaming application we use.

Mininet, through netem, allows the specification of a statistical model for the links’
delays. Again, from the analysis of the data available from the authors of [33] we
extracted the empirical distribution of delays and used it as input for Mininet. The dis-
tribution is long tailed with an average of 1.49 ms and a standard deviation of 2.82 ms,
which is perfectly compatible with the use of 802.11n devices with sector antennas.

Finally we slightly modified Mininet in order to have a deeper control on IP address
assignments. Our patches and the whole system is publicly available6.

7. Experimental Results

We present results from several measurement campaigns, divided between the ex-
periments on the Community-Lab, with the number of peers limited by the research
device availability, and without the possibility of cross-layer optimization, and the ex-
periments on Mininet, where these limitations are not present.

6netem can be found at:
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

the modification and patches we implemented with the entire emulator are in the community network emu-
lator project available at: https://ans.disi.unitn.it/redmine/projects/
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Figure 3: Chunk level performance in the two WCNs as a function of NN m = 1.

7.1. Testing PeerStreamer on the Community-Lab
The measurement campaign we present consists of about one month of experi-

ments, with roughly 100 hours of actual video distribution, and several Gbytes of
logged data analysed to select the most meaningful results. Experiments presented
refer to the Guifi.net and AWMN Community-Lab islands. We also report an extract of
the experiments performed for [4], necessary to frame the problem and introduce the
cross-layer optimization, please refer to that paper for more details.

The number of available slivers is 10–12 in AWMN and 24–28 in Guifi.net, and we
try to guarantee that for each experiment type the number of slivers is consistent across
different runs, but slivers’ availability is not always granted, so different experiments
can have a slightly different number of slivers.

7.1.1. Role of the neighborhood size
Fig. 3 presents the chunk delivery rate and average chunk delay as a function of

NN , revealing that NN plays a major role. Since the overlay over AWMN is composed
of 11 peers only, the performance for NN = 10 and NN = 20 is almost identical, as the
overlay is always a full mesh. Fig. 3 shows that in Guifi.net NN = 5 is definitely too
small and performance is unacceptable, even if NN > log2(||S ||).

These results indicate that for these small overlays NN has a much higher impact
than what was measured in [18]. NN = 10 produces delivery of almost 100% of chunks
with a delay lower than 300 ms. If not otherwise stated the other experiments are run
with this neighborhood size.

7.2. Chunks Transactions
These experiments were done on Community-Lab too. Fig. 4 shows the effects of

chunk transaction dynamics, varying sc and fa in the offer/select protocol. A larger
fa improves the receiving ratio as a consequence of the reduction of the total number
of chunks per second, which requires a lower number of messages to be exchanged.
Lowering the exchanged packets lowers the loss probability and improves the overall
data dissemination. As expected a larger fa increases the delivery delay, but the effect
is tolerable and remains within the limits of a live service. fa is the number of audio
frames packed in a chunk, thus increasing fa increases the packetization delay of audio
frames, and the playout delay.
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Figure 4: Chunk level performance in the two WCNs, varying sc and fa with NN = 10, m = 1.
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Figure 5: Chunk level performance in the two WCNs, varying m; NN =10, sc =3, and fa =5.

The impact of sc on chunk losses is a bit more complex. Chunk delivery improves
with sc for guifi.net, while in AWMN it is almost insensitive to sc. A high fa should
increase the chances that a peer can retrieve all the chunks he needs in due time; how-
ever, the behavior as a function of the parameters is very complex and non-linear. For
instance the combination sc = 5, fa = 1 lead to a performance degradation, possibly
because the presence of many audio chunks together with the possibility of selecting
many chunks per offer makes the dwell time of some chunks in the offer-select chunk-
buffer too small, and they become unavailable for part of the overlay. A complete
sensitivity analysis on all the parameters space to find an optimal set is extremely time
consuming and out of the scope of this paper. The impact of sc on delay is instead
negligible.

7.2.1. Chunks Injection Multiplicity and Push Strategy
If Ps increases the number of injected copies the distribution process is improved,

at the cost of more networking resources for Ps. Fig. 5 reports the average chunk delay
and the average number of hops of delivered chunks. The fraction of received chunks
is practically one for all experiments. Increasing m from 1 to 3 the number of average
hops needed to disseminate the chunks from the source to the peers decreases. The
result is expected, and it is a consequence of the fact that three peers have the newly
created chunk at the same time, so the distribution tree has a smaller diameter. As a
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Figure 6: Chunk level performance in the two WCNs, NN = 5, sc = 3, and fa = 5.
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Figure 7: Go convergence time using Hc and EHc metrics.

consequence also the delay decreases remarkably in relation to the smaller number of
dissemination steps required.

Fig. 6 shows that for Guifi.net both delay and loss improve remarkably with the Aw
strategy. AWMN instead does not seem to be affected by the strategy. The reason for
this difference is that the underlay of AWMN performs in average much better than
Guifi so the Aw strategy does not offer relevant gains, as all the weights in Eq. (2) are
roughly one. Please refer to [4] for more details on the underlay performance.

It is interesting to notice from Fig. 6 that the average number of hops increases with
the Aw strategy. The reason is that chunks are injected less uniformly in the overlay,
so that, on average, they have to be redistributed more times to reach all the peers, but
this effect does not influence the delivery delay, as better transmission conditions imply
that the chunks diffuse quickly without the need of retransmissions.

7.3. Topology cross-layer optimization on Mininet

Given the results obtained in the previous experiments, when not diversely speci-
fied the experiments in this section will use the following set of parameters: NN = 5,
|S | = 30, fa = 5, sc = 5, with default strategy Aw. The tests with Mininet focused
on the metrics introduced in Sect. 4.1 using the real topology of the Ninux WCN. The
first element analysed is the convergence time of Go using the Hc and EHc metrics. The
experiment involved thirty runs with |S | = 30 and NN = 5 (we keep NN intentionally
small in order to highlight the improvement over the results shown in the Sect. 7.1.1).
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A dynamic random strategy for the neighborhood selection imply that the overlay never
stabilises; instead, Hc and EHc tend to create a more stable topology (albeit it can dy-
namically change when needed) with only minor fluctuations. Fig. 7 shows the average
time for convergence to a stable topology using Io as indicator of topology stabiliza-
tion. Fig. 7a shows that in our emulations it takes in average between 2 and 3 minutes
to reach a stable topology. Actually, Fig. 7b shows that after only 15-20 seconds the
algorithm converges to an overlay very close to the stable one, which is a perfectly
compatible with live streaming, considering that in real situations not all the peers are
switched on at the same time.
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Figure 8: Performance of the cross-layer optimization in the Ninux topology.

Let’s now consider the application performance. Fig. 8a reports the average number
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of hops in the overlay with a growing number of peers. It shows that Hc and EHc tend
to increase the number of hops compared to the random strategy since they introduce a
bias towards closer neighbors. Such bias decreases the use of resources in the underlay
but can generate a Go with a larger diameter compared with random choice. Fig. 8b
shows that longer paths in the overlay do not actually produce a much higher delay
(10ms are negligible in video live streaming), since we privilege shorter paths in the
underlay (and thus with less probability of packet loss). This is confirmed observing
Fig. 8c which shows that the chunk delivery rate is between 96% and 99.5%.

Fig. 8d shows Io for Go obtained with Hc and EHc compared with random choice
increasing NN with |S | = 30. With any strategy Io increases with NN , since the number
of addends of the second summation of Def. 3 increases with NN . Both Hc and EHc

outperform the random strategy. This is even clearer in Fig. 8e that shows that the dif-
ference increases with the number of peers when NN = 5. Fig. 8f shows that the number
of frames transmitted with the random neighborhood choice increases nearly linearly
with the number of peers, which is coherent with the expectation that the length of spi j

remains roughly constant independently from the peers density. Using the cross-layer
approximation, instead, the number of frames transmitted in Gu increases following a
sub-linear curve, as the average length of spi j decreases thanks to the intelligent choice
of Go. We mentioned in Sect. 4 that we expect Io to be proportional to the total number
of frames transmitted in the Gu. We see from Fig. 8e and Fig. 8f that the curves are very
similar with a difference probably due to packet retransmissions, that the Io metric can
not take into account.

The analysis of the relative fairness ϕ in Fig. 9 highlights the different behavior of
Hc and EHc . As shown in Fig. 9a, with EHc ϕ computed with any neighborhood size
is always significantly higher than the ϕ computed with Hc. The difference between
the curves has a complex relationship with NN . For large NN the optimized algorithms
have less effect (the overlay degenerates to a full mesh and no optimization is possible),
for small NN the difference also decreases since the overlay graph becomes sparse and
there is less room for optimization. With intermediate values of NN , EHc successfully
exploits the underlay characteristics obtaining a greater fairness. At the cost of a min-
imal increase in the impact Io, as shown in Fig. 8e, EHc can gain up to 20% in fairness
compared to Hc.

Fig. 9b shows another interesting property of our metrics. In this case, 30 experi-
ments have been performed varying S and keeping NN = 5 with the three strategies.
We computed ϕ and ordered the results according to the value of Fu. The graph shows
that the more the underlay is unfair, the more the overlay is relatively fair. The lines
are the best linear fit of the data points and show the clear different behavior of the ran-
dom strategy compared to the cross-layer optimization. This means that our strategies,
whose goal is to distribute the load evenly in the underlay, work particularly well when
the underlay is skewed and not regular, or when the distribution of peers in Gu leads to
a G̃u with some nodes that are very central and thus potentially overloaded. This is a
key advantage of our cross-layer optimization in challenging network scenarios.

7.4. Higher bit rate video encoding
In the initial analysis we have experiments with 300 kbit/s streams, which is a low

quality streaming in either CIF or QCIF format. The idea was to have a low-impact
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Figure 10: Loss and delay with 30 peers in the Ninux topology streaming a file at 1 Mbit/s.
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application, meaning that adding one stream would be barely noticeable by the WCN,
but most of all to avoid congesting the Community-Lab, which is more resource con-
strained. Fig. 10 shows instead the results with Mininet for a 1 Mbit/s stream, which
can be considered, with today encoding techniques, standard TV quality, in the Ninux
topology with 30 peers in the overlay. The reported results are the chunk receiving ratio
and delay, together with the network impact Io and the neighborhood fairness. These
results show that a stream with standard quality is also sustainable and, in general, it
does not affect the operations of the WCN, as links capacity in Ninux is normally well
above 10 Mbit/s.

7.5. Lessons learned

The results we presented have shown that P2P live streaming is possible within
WCNs. The code we developed is available as research code through the PeerStreamer
web site, and custom applications can be implemented and optimized for any given
WCN following the guidelines and discussions in this paper. Self-adaptation and opti-
mization of the code, so that it can be “blindly” installed without networking skills is
beyond the scope of this paper, and is definitely subject of further research.

8. Conclusions

Live video distribution is one of the applications that WCNs supports with diffi-
culty, because the interconnection bandwidth toward the Internet to exploit cloud-based
systems is often scarce, and because normally there are no resource-rich data centers
inside the WCN, which is normally built bottom-up and with a flat architecture.

The use of P2P solutions matches well the characteristics of the WCNs, as they
do not require a single node or data center with a lot of resources that distributes to
everybody, but every node contributes to the distribution.

This paper presented the proof-of-concept that P2P live streaming is feasible in
WCNs adapting the well known PeerStreamer platform to run on WCNs, at least with
small to medium distribution overlays. To adapt PeerStreamer to WCNs we have de-
vised new heuristics and strategies that exploit WCNs characteristics. Using the CON-
FINE testbed Community-Lab, the experiments have shown that PeerStreamer can
work in a real WCN without overloading the WCN. This is guaranteed by Community-
Lab itself, that isolates the experiments in such a way that if they run it means that the
normal operation of the underlying WCN is not affected. As the delivery rate is close to
one with very low delay we can conclude that the received video quality remains equal
to the transmitted one. Using the Mininet emulation framework, it has been shown that
PeerStreamer can build its own distribution overlay optimizing its configuration on the
dynamic WCN characteristics. This feature is obtained with a cross-layer approach,
letting PeerStreamer access the routing tables of nodes in the WCN.

The results are encouraging and show that the video distribution can be efficient
and resource-aware, supporting the distribution of local events to the community on
the resources owned and deployed by the same community.
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