
2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

Improving P2P Streaming In Community-Lab
Through Local Strategies
Luca Baldesi*, Leonardo Maccari*, Renato Lo Cigno*

*Department of Information Engineering and Computer Science, University of Trento, Italy
{luca.baldesi, leonardo.maccari, renato.locigno} @disi.unitn.it

Abstract-Distributing live streaming in Wireless Community
Networks (WCNs) is a service with a high added value; however,
cloud-based streaming, as commonly used in the Internet, does
not fit well the architecture of WCNs, which often have restricted
access to the Internet. Modern WCNs, instead, can have a good
internal connectivity with high bandwidth. A P2P approach is
thus well matched for streaming in WCNs. This paper presents
experimental results obtained with PeerStreamer running on top
of Community-Lab, a test-bed realized by the CONFINE EU
Project for the experimentation of novel protocols in community
networks. The experiments highlight relevant differences between
a WCN and the Internet, and we propose strategies that can be
implemented on all the peers or even only locally on the source
to improve the streaming quality. These strategies are based on
simple heuristics and can be activated dynamically when the
streaming quality degrades below a given threshold.

I. INTRODUCTION AND BACKGROUND

Wireless Community Networks (WCNs) are a lively instru
ment to foster a bottom-up approach to broadband networking
with a clear slant toward innovative and socially sustainable
communication models. Since they are growing, the demand
for advanced community services is also increasing. Streaming
of live events within the WCN without the need of Internet
connection is one of these services. Regional or city events
can be broadcasted to the users, and a single proxy on the
periphery can serve Internet-based events to the entire WCN
using a minimal amount of external resources.

Streaming in WCNs must be efficient and properly mapped
to the WCN structure and characteristics. Key factors for
successful live streaming are low delays and efficient resource
use. WCNs, however, rarely have large data-centers with
the computing and networking resources needed to stream
contents to hundreds of users at the same time (acceptable
video quality can be obtained with 300 kbitls, and standard TV
quality may require as much as 2-3 Mbitls). On the other hand,
they are evolving toward a very good availability of bandwidth
(tens to hundreds of Mbitls) evenly distributed within the
WCN.

A P2P approach seems thus a perfect match for this chal
lenge, mapping very well to both the technical features of
WCNs and their societal goals. However, ensuring a timely de
livery with a P2P approach, minimizing the needed resources
and adapting to the network characteristic is still a major

This work was partiaUy funded by the European Unions 7-th Programme for
research, technological development and demonstration under grant agreement
No. 288535 "CONFINE " - Open Call I project "OSPS "

978-1-4799-5041-6/14/$31.00 ©2014 IEEE 33

challenge. "Standard" P2P-TV services like PPLive, UUSee,
PPStream or SopCastl are not open source, and thus they do
not allow the needed level of customization, nor are they really
a good match for the WCN networking model.

This paper tackles the problem of adapting and customizing
a P2P streaming application in WCNs by experimenting in the
Community-Lab facility provided by the CONFINE project.
The selected P2P platform is PeerStreamer, that we have
developed during NAPA-WINE2, and we are maintaining as
an open source project. Since WCNs infrastructure differs a
lot from the Internet in general, the results we obtained in [1],
can only be used as guidelines and are not direcly applicable
to WCNs for which the characteristics must be studied.

The contribution of this paper is twofold. On the one
hand, we extend and complete the analysis of Community
Lab functionality that we have partially presented in [2]; on
the other hand, we present the first set of scientific experiments
exploring the possibility of distributing live video streams on
a WCN exploiting its intrinsic networking properties.

II. P2P STREAMING WITH PEER STREAMER

In a peer-to-peer distribution, the source "seeds" the overlay
with one or more copies of the content to be distributed, and
peers contribute by exchanging the content among themselves.
We use a mesh-based overlay (without a structured topology)
and a single live video stream. The content is generated by
the source "on the fly", as in live recording, by periodically
emitting video and audio frames, which are separately aggre
gated into chunks for the peer-to-peer dissemination. We stress
on the live characteristics of the streaming, that is crucial for
applications like video conferencing, so the delivery of the
frames must be time-bounded. Video and audio frames are
independently generated and they are distributed in different
"chunks", but on the same overlay.

The distributed nature of the dissemination and the coop
erative assumption of the P2P paradigm adapts well to the
network infrastructure of a WCN. The WCN principles of
network neutrality and resource sharing naturally also match
perfectly with P2P philosophy and strategies.

PeerStreamer is a P2P live streaming platform capable of
disseminating real time content among thousands of nodes, and
structured around the concept of both content- and network
awareness [3]. It provides the application developer with

I http://www.pplive.com, http://www.uusee.com, http://www.ppstream.com,
http://www.sopcast.com

2 http://napa-wine.eu, http://www.peerstreamer.org

2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

a set of open source, efficient core libraries [4], as well
as more advanced routines and algorithms for the efficient
scheduling of chunks [5]-[7], and topology management [1].
PeerStreamer guarantees that, even dealing with overlays of
thousand of nodes, the content delivery delay remains in the
order of seconds and it is almost immune to churn, thanks
to the extremely dynamic topology management. It is easily
customizable in different ways, but previous results suggest
to avoid constant chunk size configurations [8]. In the rest
of the section we will explain three concepts at the base of
PeerStreamer: the way the overlay is built, the policy for
chunk dissemination and the selection of peers and chunks
for scheduling content distribution.

A. Overlay of Peers

Suppose to install and launch PeerStreamer on several nodes
for a time period of length T. Let S(t) be the set of all peers
(PeerStreamer instances) at time t E [0, T]. S = {peer P :
:3 t E [0, T] such that P E S(t)}, is the set of all peers and Pi
the i-th peer of S (we use the subscript i only to distinguish
one peer from the other, the way peers are ordered is not
relevant).

PeerStreamer maintains the overlay topology, and continu
ously adapts it during the evolution of the stream, with a two
steps approach. First, a peer sampler module uses a modified
version of Newscast [9], [10] (a gossiping algorithm) to take
random samples of the peers in S(t). As a result, each peer
knows at least a subset of S(t) at every t. Next, a topology
management module filters the sequence of these samples to
select a subset of size NN that form the neighborhood of the
peer. Thus, PeerStreamer topology is described by a directed
graph and the topology management controls the outgoing
links forcing an NN-regular topology (a topology with con
stant degree NN) for the outgoing links. The incoming links
are also selected to try matching the outgoing ones and favor
sYlmnetric relationships, so that also the incoming topology is
roughly NN. To guarantee good connectivity of the overlay
NN > 10g2(IISII); depending on the underlying network
characteristics, a much larger NN can help the dissemination
process, and in general if IISII is small, then NN should be
relatively larger.

Let Ni (t) be the set of all peers in the neighbourhood of
Pi at time t.

Definition The peers overlay built by the topology manager
during the experiment is a directed graph:

where S is the set of nodes and

is the set of links.

Since Ni(t) is constantly changing, also RN(t) is constantly
changing.

34

B. Chunk Dissemination

In live streaming the source is a special peer Ps E S
that provides the media content and must always be part of
RN(t). In PeerStreamer, Ps concatenates one or more frames
(audio and video separately) into chunks and injects them in
the overlay RN(t). Chunks are numbered; C is the set of all
chunks generated by Ps and Ch is the h-th chunk. For each
chunk Ch there is a delivery deadline dlh related to the playout
time, after which Ch is no more useful and it's "lost" for the
application.

After its generation, a chunk Ch is injected in RN(t):
Ps selects a peer Pi E Ns(t) and pushes Ch to it. Ch
can be injected in m multiple copies to different peers in
Ns (t) in order to speed up the dissemination process. Chunk
reception is always acked (by all peers) for reliability and
to avoid duplications. At regular time intervals To, every Pi
"offers" a window of size nw of its most recent chunks to one
Pj E Ni (t). Pj "selects" a set of size sc of them so that every
Ch percolates in RN(t) using an offer/select protocol.

C. Peer and Chunk Selection

We refer to peer and chunk selection as the procedure used
by Pi to choose Pj E Ni(t), offer it a set of chunks and let
Pj selects the sc of them he needs more.

Many works have been published studying strategies to dis
seminate chunks in a P2P overlay in the Internet [6], [7], [11],
[12]; some of them were never proven better than a random
random strategies in realistic conditions (i.e., select one peer
and one chunk at random). PeerStreamer has been designed
to work on the Internet and we consider the "benchmark"
scheduler one that selects for the offer Pj E Ni (t) uniformly
at random, while Pj selects the most recent chunk that it does
still not possess. This is called a "random - latest-useful" (R
LV) chunk selection and with some assumptions it can be
considered optimal for live streaming [5].

However, WCNs are not the Internet and some special
adaptation might be needed, i.e., R-LV continues to be a
benchmark, but adaptation procedures, e.g., based on the
Round Trip Time (RTT) measures, might not work, as RTT
in a WCNs is not stable and dominated by propagation, but
can be highly variable and random, as we experienced in past
experiments [2]. Moreover in WCNs, IISII can be expected to
be relatively small (tens to hundreds of users, not thousands
or millions), and this can also affect the adaptation strategies,
making "wide Internet" approaches suboptimal.

The experiments presented in this paper regards the behavior
of the distribution as a function of five different parameters:

• NN: the target dimension of the outgoing neighborhood;
• m: the number of copies of each chunk injected by Ps

into the overlay;
• sc: the number of chunks that a peer is allowed to select

from each offer it receives (specified in the offer);
• fa: the number of audio frames that are assembled into

2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

a single audio chunk3.
• Ps seeding strategy: Au or Aw. When the source Ps

generates a new chunk it must decide to which peer
Pi E Ns(t) it will be sent. The choice can be random
with a uniform distribution (Au), or it can follow a
weighted distribution that takes into account the local
communication quality between Ps and Pi with the goal
of making a more reliable chunk injection in the overlay
RN(t) (Aw).
Let Wi(t) be the weight associated by Ps to Pi E Ns(t) at
time t. When a previously unknown peer Pi enters Ns(t)
its weight w(i) is set to 1. Ps selects Pi E Ns(t) at time
t with probability

Wi(t)
pW) = --=--'--'----,-,-L Wj(t)

(1)

j:PjENs(t)

If V t > 0, Wi(t) = 1 then Pi E Ns(t) will be selected
with uniform probability, according to Au. To implement
Aw we choose as weight for each peer the rate of chunks
correctly acknowledged, computed by Ps (Eq. 2), as a
passive a posteriori measurement of links quality. For
each Pi E Ns(t), Ps computes Wi(t) as a moving average
of the successful chunk delivery rate.
Once Pi has been selected by Ps for chunk injection, Ps
sends the chunk and updates its weight:

W (t)
_ { a + wi(t)(l - a)

t
-

wi(t)(l - a)
if ack received by Ps
if a timeout expires

(2)
Currently we have set a = 0.01 and a timeout of lO ms.
The benefits of this strategies are the flexibility, since
it does not depend on any other component except
the chunk dissemination module, the relevancy of the
weights, since they are evaluated on the chunk loss
itself and the absence of further data transmission on the
overlay.

III. EXPERIMENTAL SETUP

In order to have a reasonably controlled environment, and
the possibility to run experiments through a standard and
centralized interface, we run the experiments on the facilities
provided by the CONFINE EU project: the Community-Lab.

A. Community-Lab

Community-Lab [13] is a testbed linking together nodes
from different WCNs, intended for the investigation of WCN
issues and solutions in realistic scenarios. Currently the CON
FINE project involves different conununities spread across
Europe: Guifi.net, AWMN, FunkFeuer and Ninux.org, placed
respectively in Spain, Greece, Austria and Italy.

Community-Lab provides an easy interface for driving
experiments over WCNs, allowing researchers to allocate

3The video is H.264 encoded; the encoder generates video frames of
variable dimension and audio frames of fixed size (207 bytes), which are
output separately and without a strict timing relation. A fixed ratio of I video
frame per chunk maintains a very low chunkization delay, but we can explore
how much gain can be achieved by assembling together fa audio frames thus
reducing the offerlselect traffic overhead

35

portions of resources of the network, take control of virtual
machines placed inside a WCN and have a global view of the
currently available resources.

Community-Lab is made up of special nodes called Re
search Devices, which are directly connected to WCN nodes,
so they actually communicate one another through the WCN.
Each research device can instantiate multiple virtual machines
called slivers, each of which belongs to a group called a
slice. Researchers can create a slice and the related slivers by
selecting the desired research devices and then launch experi
ments on them with a single conunand. Those functionalities
are achieved through a testbed server which is accessible by
researchers through a management VPN.

B. Experiments Management

Since the Conununity-Lab testbed server provides a stan
dard ReST interface to manage slices, we realized a bash
framework for driving the experiments. The code is released
as open source on the web4. Once a researcher has registered
on the Community-Lab web interface, created a slice, launched
the slivers and added his personal computer to the management
VPN, it can use this framework to drive experiments, as we
have documented in [2]. Thus, our results are perfectly repro
ducible for any researchers with access to the Community-Lab.

C. Experiments issues and workaround

As noted in [2], slivers are not always time synchronized
and due to the virtualization it's not possible for the researchers
to manipulate the system clock. Our experiments are influ
enced by timing and we are especially interested in evaluating
the chunks' delay. During the test runs we log the data together
with the system timestamps in order to draw conclusions over
timing and network evolution. To trace the time difference
among timestamps of different machines in the same instant,
we periodically perform an NTP query from each peer of
the overlay and the source (taken as time reference) and log
the result. During data preprocessing we perform a timestamp
rescaling of peers data by interpolating the time difference
obtained with the NTP queries from each peer with respect to
the source.

Sometimes, experimenting in the Guifi.net island, we expe
rienced some vary bad communication conditions. In order to
trace those unlikely scenarios, which could compromise the
meaningfulness of the experiments, we periodically generate
from each peer to every other peer in the overlay some Internet
Control Message Protocol (lCMP) traffic. When the ICMP
logs show that there are peers experiencing an ICMP data loss
greater than 30%, we assume that the system is not working
correctly and results are not meaningful; we immediately stop
the experiment and discard it entirely. Note that we cannot
control the actual load of Research Devices, since multiple
experiments may be run independently by several researchers.
A high loss of ICMP packets can be a symptom that the
machine hosting the Research Device is simply overloaded
and does not respond in time, rather than a wireless link

4http://halo.disi.unitn.itlbaldesilPublicGits/confine_tescscripts.git/

2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

of the WCN is experiencing a sudden cnsls. We consider
30% loss rate for small packets as pathological and not a
behavior expected in standard 802.11 links5. Our scripts for
data preprocessing are freely available on the web6. �

D. Experiments Performed

To gain as much insight into the problem as we can, we per
formed our tests in two islands of Community-Lab: Guifi.net
and AWMN. Since Community-Lab is still an ongoing project,
the number of slivers in the other islands is still too small to
be representative for our experiments, and also it is not yet
possible to interconnect different Community-Lab islands.

Every experiment is composed of several runs (normally
between 10 and 30), each of which lasts ten minutes; we
analyse the central five minutes of the runs in order to avoid
data related to transient behaviors. The data of the experiments
is averaged over all the successful runs.

The video we distribute is a re-encoding at 24 fps (video
frames) and average bit rate of 300 kbitls (including both audio
and video) of Big Buck Bunn/. To is set to guarantee that on
average the offer rate is slightly larger than the frame rate,
so the distribution is sustainable and the signalling overhead
is minimal: a much smaller To easily guarantees a better
distribution but at the price of many refused offers, increasing
the overhead.

The experiments explore the influence of the five different
adaptation strategies discussed in Sect. II-C. NN is varied
from 5 (a value dangerously small) to 20 which, with the
number of nodes we can deploy, means nearly a full mesh.
Since IISII is small we explore m E {1,3} only; as m
increase, the dissemination speeds up but it requires more
and more resources at the node hosting Ps; as m -+ lSI,
the distribution process degenerates to a "multiple unicast"
scenario as in cloud-based streaming. Ps can emit chunks
either uniformly toward any peer (Au) or following Eq.2 (Aw).
Finally, the number of chunks that can be selected for each
offer is increased, Be E {I, 3, 5}, and the number of audio
frames per chunk is also increased, fa E {I, 5}.

IV. EXPERIMENTAL RESULTS

The measurement campaign we present consist of about
one month of experiments, with roughly 100 hours of actual
video distribution and several Gbytes of logged data analysed
to select the most meaningful results. Experiments presented
refer to the Guifi.net and AWMN COImnunity-Lab islands. The
number of available slivers is 10-12 in AWMN and 24-28 in
Guifi.net, and we try to guarantee that for each experiment
type the number of sliver is constant across different runs.

A. Underlying Network Performance

As mentioned in Sect. III-C, during tests we continuously
monitor the state of the network through ICMP traffic. The

5Recall that 802.11 implements MAC-layer explicit frame acknowledge
ment, so that an ICMP packet is really lost only when seven consecutive
copies of it are lost on the channel.

6http://halo.disi.unitn.itlbaldesilPublicGits/peerstreameclogs_analyzer.gitl
7http://www.bigbuckbunny.org/

'"
.3

J!) 11 1.0
u '" a.
0..
3 0.5

O. OL-"""*"---;;,;-""*---;-;;---,<o:*-....",-�--,-;!;,--�---,;,--...J '" o en '" '"
Slivers

Fig. 1. Upper plot: ICMP loss on the Guifi.net island. Bottom plot: ICMP
loss on the AWMN island.

frequency and the ICMP packet size are kept small in order
not to interfere with the running experiment. During our
experimentation on Guifi.net we collected the ICMP loss
logs reported in Fig. 1 (upper plot). This test lasted seven
hours and its results have been confirmed by several further
experiments. The name of the slivers are unique identifiers in
the Community-Lab. It's worth noting that slivers availability
is not always granted, so different experiments can have a
different number of slivers.

In the Guifi island three groups of slivers are clearly
identifiable; there is a major group of well connected slivers
whose packets arrive almost always, another group of slivers
experience bad communications losing more than 10% and the
remaining three slivers are badly connected and suffer high
loss of packets (around 40%).

During a similar seven hour experimentation on AWMN
we collected the ICMP data reported in Fig. 1 (bottom plot).
This network has a very little packet loss which is bounded
by 1.2%.

B. Neighbourhood Size

First of all we analyze if NN plays a major role in
performance. The test in Guifi.net has 24 slivers, while the
one in AWMN 11. The results are shown in Fig. 2 and Fig. 3.
Since the overlay over A WMN is composed of 11 peers only,
the performance for NN=10 and NN=20 is almost identical,
as the overlay is always a full mesh.

These results indicate that for these small overlays NN
has a much higher impact than what was measured in [1].

36

2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

III E

Fig. 2. Average chunk delay in the two WeNs, varying NN and m = 1.

Fig. 3. Average chunk receiving ratio in the two WeNs, varying NN m = 1.

A proper explanation requires further experiments with larger
overlays in a WeN. In particular both Fig. 2 and Fig. 3 show
that in Guifi.net NN=5 is definitely too small and performance
is unacceptable, even if NN > log2(IISII). NN=1O seems
instead good for both networks and, if not otherwise stated
the other experiments are run with this neighborhood size.

C. Chunks Transactions

Next we present the effects of chunk transaction dynamics,

Fig. 4. Average chunk receiving ratio in the two WeNs, varying Be and fa
and fixed NN = 10, m = 1.

III E

350r�----�----�----�----�--�--�

sc=5 sc=5
�=l �=5 �=l �=5

Fig. 5. Average chunk delay in the two WeNs, varying Be and fa and fixed
NN = 10, m = 1.

Fig. 4 shows that delivery rate improves with se for guifi.net,
while in AWMN it is almost insensitive to se, but for a degrade
we cannot explain for the combination se = 5, fa = 1. which
indeed increases the chances that a peer can retrieve all the
chunks he needs in due time. The impact of se on delay (Fig. 5)
is instead negligible.

varying se and fa in the offer/select protocol. The results are D. Chunks Injection Multiplicity

shown in Fig. 4 and Fig. 5. The names under the bars describe As explained in Sect. II-B the source can inject multiple
the relative configuration. copies of each chunk in the overlay, helping a fast dissem-

As can easily be observed in Fig.4, a larger fa improves ination. This method requires that Ps has more networking
the receiving ratio. This is due to the consequent reduction resources, but it can greatly help the distribution process, spe
of the total number of chunks per second, which requires a cially in cases when the connectivity toward certain peers can
lower number of messages to be exchanged. Lowering the have hard-to-predict outage periods. Our experiment involved
exchanged data overhead and the related reduction of message 27 slivers in Guifi.net and 10 in AWMN; NN=1O, se=3, and
loss probability improve the overall data dissemination. As fa=5. The results are illustrated in Fig. 6 and Fig. 7, reporting
expected and illustrated in Fig. 5, a larger fa increases the the average chunk delay and the average number of hops (in
delivery delay, but the effect is tolerable and remains within the overlay) per chunk respectively. The fraction of received
the limits of a live service. This effect is a clear consequence chunks were almost constant and close to one, so they are not
of the buffering of multiple audio frames, which should be reported for the sake of brevity.
delivered at different times, in a chunk sent when the last Fig. 7 shows that increasing m from 1 to 3 the number
frame is ready. of average hops needed to disseminate the chunks from the

The impact of se on chunk losses is a bit more complex. source to the peers decreases. The result is expected, and it
37

2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

III E

Fig. 6. Average chunk delay in the two WeNs, varying m; NN=lO, sc=3,
and fa=5.

Fig. 7. Average number of chunk hops in the two WeNs, varying m; NN=lO,
sc=3, and fa=5.

is a consequence of the fact that three peers have the newly
created chunk at the same time, which roughly corresponds to
have an overlay of size one-third for what the overlay graph
diameter is concerned. As shown in Fig. 6, also the delay
decreases remarkably in relation to the smaller number of
dissemination steps required. We remark that these gains will
not only remain, but they will be more evident in networks
with hundreds of peers, where the dissemination process can
be less uniform simply for stochastic reasons.

E. Push Strategy

Injecting multiple copies of the chunks at the source is effec
tive, but requires more resources at Ps . The different injecting
strategy devised in Sect. II-C can instead improve performance
without requiring additional resources. The rationale is trying
to select the peers that have the best connectivity to Ps , so
that the probability that a chunk is lost at its first transmission
(thus lost for ever and for everyone!) is minimized; if it lost in
subsequent hops, some copies of it remains in the overlay for
the dissemination. This reasoning can also be applied injecting
multiple copies and replicating the strategy at every node, but
we leave this analysis for future work.

The tests related to this solution involve 24 slivers in
Guifi.net and 11 in AWMN; as in the previous results sc=3,

38

VI E

Fig. 8. Average chunk delay in the two WeNs, using the Au and Aw
strategies, NN = 5, m = 1.

Fig. 9. Average chunk receiving ratio in the two WeNs, using the Au and
Aw strategies, NN = 5, m = 1.

and fa=5. We set NN=5 to enhance the performance differ
ence, which however remains also for larger NN s.

The performance results are shown in Fig. 8 and Fig. 9.
Since the AWMN networks characteristics are quite good, the
Aw strategy does not offer relevant gains, as all the weights
in (2) are roughly one. On the other hand, for Guifi.net both
Fig. 8 and Fig. 9 show a notable improvement with respect to
both delivery delay and receiving ratio.

It is interesting to notice, as Fig. 10 shows, that the average
number of hops from the source to each peer in the overlay,
increases with the Aw strategy. The reason is that chunks are
injected less uniformly in the overlay, so that, on average, they
have to be redistributed more times to reach all the peers,
but this effect does not influence the delivery delay, as better
transmission conditions imply that the chunks diffuse more
evenly without the need of retransmissions due to chunks
selected but never received correctly.

To gain more insight in this behavior, Fig. 11 reports the
distribution of the average chunk delivery delay in Guifi.net,
which has the same shape, and is almost not distinguishable
in both Au and Aw strategies. So, how can the average be
so different? The reason lies in the distribution tails, where
"outliers" chunks can be diffused in several seconds increasing
the average delay.

Summarising the results presented, it is not difficult to

2014 The 3rd International Workshop on Community Networks and Bottom-up-Broadband

Fig. 10. Average numbers of hops from source to each peer, using the
opportunistic and the random strategies, NN = 5, m = 1.

12,----�---:::::=;;;;o;;; _____ , 1.0
, , ,

.' \ 10· - 0.8
,
I A ,\ , 8 I" I � , :fl I I" , , 0.. .�

-
:
-

,'

-

� - - -,

-

-\

-

- 0.6 �
E I I J " :0
I1l 6 1', \ '

to
Vl " , " J:J
'0 �,� � _ _ ___ �

\
_

'
,_ 0.4 ['#. I', \' 4 " , \ \

\: \ \,

· - - - - - - - - -\:��-_� - - - - - - - - - - '1 �� 1
0.2

,�.

1�;�""''' · - 1500 20800 500
ms

Fig. I I . Chunks delay distribution (dashed lines) and cumulative density
function (continuous lines) during the tests on the Guifi island using the source
random selection strategy (black lines) or the opportunistic selection strategy
(blue lines). Data refers only to chunks arriving within two seconds.

identify a set of parameters and configurations of PeerStreamer
that allow satisfactory live video distribution in WCNs, even
when networking conditions are very tough as in the case
of the COlmnunity-Lab Guifi.net island. Moreover, we can
easily conceive automatic adaptation strategies, whereby, if
the resource allow it, Ps switches to the emission of more
copies per chunk m > 1 , if feedback from the peers (e.g.,
collected and aggregated using the same gossiping protocol
used to sample the overlay topology) indicates that the average
performance is degrading below a certain threshold.

V. DISCUSSION AND CONCLUSIONS

The experiments presented in this paper are the first sci
entific evidence that a live, P2P video streaming distribution
can be achieved in WCNs. We have adapted the PeerStreamer
platform to run on Community-Lab, and, after solving issues
related to the specific environment of Community-Lab, we
have explored part of the parameter space that can be used to
match a P2P, mesh-based live video streaming to the specific
characteristics of a WCN.

The first observation is the complexity of providing a
realistic and reproducible environment for WCNs experiments.
Community-Lab is an extremely useful tool and provides an

39

user-friendly environment; however, the number of slivers is
still very limited, and tools are still missing to check the
Research Device resources status during experiments, as well
as to access information related to the WCN underneath,
which means that applications like PeerStreamer which were
designed to be network-aware and to adapt to networking con
ditions, are limited in their behavior by the lack of appropriate
information.

The second and conclusive observation is the success of
the experimental campaign, which provides very useful, albeit
still initial, insight on the P2P video distribution performance
achievable in WCNs. We have successfully shown that if
the networking conditions are reasonably good, as in the
Community-Lab island in AWMN, then the streaming achieves
optimal quality without the need of any adaptation or tricks.
If instead the networking conditions are very harsh, as in the
Community-Lab island of Guifi.net, PeerStreamer need some
tuning to achieve an acceptable quality. The good news is
that in any case adaptations are not difficult, and can even
be implemented as on-line autonomous behavior modification
based on averaged feedback by peers. The feedback can be
distributed and averaged on-line in the overlay exploiting the
same gossiping protocol that is used for peers discovery.

REFERENCES

[1] S. Traverso, L. Abeni, R. Birke, C. Kiraly, E. Leonardi, R. Lo Cigno, and
M. Mellia, "Neighborhood Filtering Strategies for Overlay Construction
in P2P-TV Systems: Design and Experimental Comparison," IEEEIACM
Trans. on Networking, vol. 99, on-line, pp. 1-14, March 13, 2014.

[2] L. Baldesi, L. Maccari, and R. Lo Cigno, "Live P2P Streaming in
CommunityLab: Experience and Insights," in 13th IEEEIIFfP Annual
Mediterranean Ad Hoc Networking Workshop, Piran, SLO, June 2014.

[3] R. Birke, E. Leonardi, M. Mellia, A. Bakay, T. Szemethy, C. Kiraly,
R. Lo Cigno, F. Mathieu, L. Muscariello, S. Niccolini, J. Seedorf, and
G. Tropea, "Architecture of a Network-aware P2P-TV Application: the
NAPA-WINE Approach," IEEE Comm. Mag., vol. 49, no. 6,2011.

[4] L. Abeni, C. Kiraly, A. Russo, M. Biazzini, and R. Lo Cigno, "Design
and Implementation of a Generic Library for P2P Streaming," in
Workshop on Advanced Video Streaming Techniques for Peer-to-Peer
Networks and Social Networking, Florence, Italy, Oct. 2010.

[5] L. Abeni, C. Kiraly, and R. Lo Cigno, "On the Optimal Scheduling of
Streaming Applications in Unstructured Meshes," in In IFfP Networking,
Aachen, Germany, May 2009.

[6] S. Traverso, C. Kiraly, E. Leonardi, and M. Melli a, "A performance
comparison of hose rate controller approaches for P2P-TV applications,"
Computer Networks, vol. 69, pp. 101-120, 2014.

[7] A. Russo and R. Lo Cigno, "Delay-Aware Push/Pull Protocols for Live
Video Streaming in P2P Systems," in IEEE Int. Conf. on Communica
tions (ICC'JO), Cape Town, South Africa, May 2010.

[8] L. Abeni, C. Kiraly, and R. Lo Cigno, "Effects of P2P Streaming on
Video Quality," in IEEE Int. Conf. on Communications (ICC'lO), Cape
Town, South Africa, May 2010.

[9] N. TOlgyesi and M. Jelasity, "Adaptive peer sampling with newscast,"
in Proc. of Euro-Par'09. Springer-Verlag, 2009, pp. 523-534.

[l0] M. Barchetti and C. Kiraly, "Temporal correlation of Gossiping-based
peer sampling methods," in IEEE 13-th Int, Con! on Peer-to-Peer
Computing (P2P), Trento, Italy, Sept. 2013.

[ll] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and A. Twigg,
"Epidemic live streaming: optimal performance trade-offs. " in ACM
SIGMETR1CS, Annapolis, Maryland, USA, June 2008, pp. 325-336.

[l2] Y. Liu, "On the minimum delay peer-to-peer video streaming: how
realtime can it beT' in 15th ACM Int. Conf. on Multimedia, Augsburg,
Germany, Sept. 2007.

[13] A. Neumann, I. Vilata, X. Leon, P. E. Garcia, L. Navarro, and E. Lopez,
"Community-Lab: Architecture of a community networking testbed for
the future Internet," in IEEE 8th Int. Con! on Wireless and Mobile Com
puting, Networking and Communications (WiMob), Barcelona, Spain,
Oct. 2012.

