
	
	

DISI	 -‐	 Via	 Sommarive	 5	 -‐	 38123	 Povo	 -‐	 Trento	 (Italy)	
http://www.disi.unitn.it	

PARTYHUB - A PEERSTREAMER
CONFERENCE APPLICATION

Luca Baldesi, Leonardo Maccari, Renato Lo
Cigno

November 2013

Technical Report # DISI-13-037

PartyHub
A PeerStreamer Conference Application

Technical Report DISI-13-037

Luca Baldesi∗, Leonardo Maccari∗, Renato Lo Cigno∗
∗Dept. of Information Engineering and Computer Science, University of Trento, Italy

luca.baldesi@unitn.it, locigno@disi.unitn.it, maccari@disi.unitn.it

Abstract—Video conferencing is still a lively research field,
and for both personal and business applications it is reasonable
to expect that the interest in conferencing services will grow
in the future. However, available tools lack of scalability and
flexibility features and the more widespread ones have proven
to be a possible threat for our privacy. This technical report
focuses on the design and development of PartyHub, an open
source peer-to-peer conferencing platform, entirely customizable,
distributed and privacy aware. This goal can be achieved porting
a peer-to-peer live streaming platform, PeerStreamer [1] to the
video conferencing context. In this report we document the test
performed in order to verify the suitability of this idea and the
future steps and challenges needed to develop PartyHub.

I. INTRODUCTION

Video conferencing is getting more and more popular as tool
lying between the telephone call and the face-to-face meeting.
Because of its potential it can be used both in the work and in
the home environments. Since it mainly represents ”the closest
thing to being here”, it can be used for almost every aspect of
our daily communication.

Since a few years, some platforms are capable to perform
video conferencing. The most known, among the others are
Google Hangout and Skype. Those platforms offer a confer-
encing service with some restrictions, in fact both services
allow up to ten contemporary users in a session. Furthermore
Skype application requires a premium account (about 3.50e
per month) to enable video conferencing among more than
two users.

Furthermore the way these services operate is not clear since
there is no access to source code and the centralization of the
users’ data could bring to unwanted operator behaviors, like
users activity tracing.

In contrast with these centralized applications other technolo-
gies can be exploited to offer the same service. In particular
the peer-to-peer technology can be used to obtain a more
scalable and decentralized system that would overcome the
limits imposed by proprietary platforms and the presence of a
big-brother.

Our proposal is focused on developing and deploying a
complete peer-to-peer video conferencing application based on
the PeerStreamer platform1 called PartyHub. This technical
report presents the results obtained testing the PeerStreamer
libraries in a video conferencing context.

1http://peerstreamer.org

The rest of the paper is organized as follows. An overview
on the main drawbacks of traditional video conference tools is
given in Section II, while Section III presents the target service
architecture and the platform used for the test.

Results are reported in Section IV. Finally, Section VI
concludes the document.

II. CONFERENCE TOOLS

The most popular video conferencing tools like Google
Hangout and Skype are closed source, which means that is
very difficult to study their behaviour. Only few scientific
articles [2] (most of them outdated) try to analyse them using
indirect measurements.

The closed source nature combined with the related patents
totally preclude any possible improvement by the users.
Furthermore that leads to an unpredictable manipulation of
users’ data which could, in general, be traced and stored for
commercial (and profiling) purposes, as it has been shown in
the recent PRISM scandal [3].

Other tools such as [4] are based on the Multicast Bone
[5] and require particular hardware and software in order to
operate across the Internet.

Tools like BigBlueButton2 and OpenMeetings3 are open
source web based conferencing tools but they are strongly
centralized. Consequently they are resource consuming in terms
of bandwidth and storage space and they cannot scale to a
large number of users without costly resources.

III. A NEW PARADIGM

The use of peer-to-peer technologies for video conferencing
application has not been well addressed so far in the literature.
The scalability of this approach can overcome the problems
related to the lack of resources generally limiting the number
of parallel users. Given that the video data delivery respects
some real-time constraints (discussed in the Section III-A) the
overlay composed by the peers permits to share their contents
following the cheaper paths among them. Furthermore, it does
not require a centralized server which means that anybody
could set up his own peer overlay without the need of particular
hardware or bandwidth resources. As a consequence there is
also an intrinsic privacy advancement compared to centralized
approaches.

2http://bigbluebutton.org/
3https://code.google.com/p/openmeetings/

2

Figure 1. PeerStreamer architecture.

Obviously, the choice of open source implies that the
platform will be easily extensible and that the community
of users can customize it to fit its needs.

A. PeerStreamer

PeerStreamer is an open source platform for live peer-to-
peer video streaming. It has been developed as part of the
European Napa-Wine project and it is capable of exploiting
the peer-to-peer mesh overlay in order to address the delivery
of media contents optimizing the receiving delay. PeerStreamer
is composed of different customizable parts. It takes great
advantage from the GRAPES [6] toolkit library, which has
also been developed as part of Napa-Wine, and implements
the required modules that a live peer-to-peer application needs.

Each of the GRAPES component is greatly customizable,
even with respect to the algorithms involved in the peer-to-peer
overlay management.

Much of the interest around PeerStreamer depends on its
capacity of scaling over thousands of peers keeping a very low
latency in the stream packets delivery. Using the simulation
platform PlanetLab [7], some experiments have been performed
and the results shows that the delivery delay of each packets
grows only logarithmically with the number of peers. In practice
even with more than two thousands peers the transmission
only requires a few seconds to reach the farthest peer. In the
television broadcasting context, this can be easily defined as
live.

This important feature is achieved through the epidemic data
diffusion scheme implemented in PeerStreamer. Following this
scheme, the data source will inject in the overlay only few
copies of each packet. The receiving peers will take care to
redistribute those packets to other peers until every peer have
received its own copy of the packets [8].

The desirable features of a live streaming application are:
• spread the contents from one peer (source) to the others;
• transmit the packets at a (almost) stable rate;
• receive as much packets as possible in order.

Other peer-to-peer applications are designed to maximize the
expected throughput and are not suitable for live streaming due
to the time constraints of the overall transmission on the overlay.
PeerStreamer instead is designed to minimize the receiving
delay.

PeerStreamer and GRAPES include algorithms capable of
addressing the time constraints and the management problems
related to a stable, best-effort, peer-to-peer live application. The
HRC algorithm [8] has been specifically designed to obtain
the maximum aggregated throughput for a node belonging to
a peer-to-peer overlay without increasing the delivery delay. In
practice it realizes a congestion control driven by calculating
the delay the packets spend in the transmission queue. In
this way throughput is maximized while packets collisions are
minimized. Even the topology managing has been optimized to
reduce the delivery time of the video packets. In [9] it is shown
that the algorithm is capable of exploiting the peers with the
highest available bandwidth, keeping them as close as possible
(in the overlay hops meaning) to the source. This makes it
possible to reach a broad content diffusion with stringent time
constraints.

Other PeerStreamer features are also available:
• the ALTO support;
• fast and efficient code;
• media awareness;
• active and passive monitoring;
• smart scheduling of peers and video chunks.
Media awareness can be exploited in order to deliver

meaningful video packets. In fact, not all the frames of a
video stream carry enough information needed to display a
complete video image. Keeping that in mind PeerStreamer
forges packets with at least one anchor frame, granting that
the loss of a packet will not affect the correct interpretation of
the subsequent ones.

The process of forging these smart packets, called chunks
is performed by the chunkizer. This and the other components
of PeerStreamer are depicted in Figure 1.

PeerStreamer can be logically split in three main components;
the streamer which is the responsible for setting up the peers
overlay and spread the contents across the network, the source
tools which injects the media contents in the overlay, and
the player application which simply takes care of taking the
video parts from a streamer and display them to the user. The
resulting PeerStreamer logical overlay is depicted in Figure 2.

IV. PROOF OF CONCEPT

In order to verify the suitability of the PeerStreamer platform
for video conferencing a simple test has been set up. In
the tested scenario, three PeerStreamer overlays have been
overlapped, so that three peers were acting both as source and
as content consumer at the same time (Figure 3).

The scenario addressed in this test relates to three users willing
to communicate through video conferencing. The three users

3

Streamer

Player
Application

Source tools

Streamer

Streamer

Player
Application

Streamer

Player
Application

Streamer

Peer

Peer
Peer

Source

Peer

Figure 2. PeerStreamer network architecture. The peer-to-peer overlay is
composed of the streamers; the source tools inject the video packets in the
overlay and the player applications perform the playout. Not all the peers need
to implement the player or the source.

StreamerSource tools

Conf participant

Player
Application

Streamer

Player
Application Streamer

Streamer

Source tools

Conf participant

Player
Application

Streamer

Player
Application

Streamer

Player
Application

Streamer

Player
Application Streamer

Streamer

Source tools

Conf participant

Player
Application

Streamer

Player
Application

Streamer

Player
Application

Streamer

Figure 3. PeerStreamer based three-way conference. Each of the participants
offers and consumes the video contents.

set up their own PeerStreamer source and join the overlay of
the others.

In order to realize this test a simple architecture has been
set up. All the users information was hard coded as well as
the required commands to launch the PeerStreamer instances.

The steps performed by each single conference participants
are the following:

1) acquire the video content to inject in the user overlay;
2) launch the PeerStreamer source, combining the source

tools and a streamer instance;
3) launch a player application and a streamer instance in

order to display the content injected by its own source;
4) launch two other istances of the streamer and the player

application in order to join the other users overlays and
display their video contents.

The result of the execution of this test scenario is that the
three users can simultaneously access all video contents injected

Figure 4. PeerStreamer testing. On each of the users screens there is the
simultaneous playout of the videos.

in the peer overlays: the one they are actually injecting and
the ones obtained from the other peers.

A screenshot of the resulting interface is reported in Figure 4.
This test shows that setting up overlapped PeerStreamer

overlays in order to realize a three-way communication among
different users is already feasible. This solution is obviously
non optimal due to the additional redundant managing and
signalling overhead generated by different overlays among the
same peers. Nevertheless PeerStreamer has shown to easily
support the increased network activity and keeping the overall
cpu load at low levels on standard desktop machines.

V. OPEN ISSUES

Although PeerStreamer grants high flexibility, low-delay
content delivery, and it has proven to be suitable for basic
video conferencing, some work has to be done in order to port
its code to the fully-featured video conferencing tool PartyHub.

In fact, even if PeerStreamer grants low-delay content deliv-
ery with overlay of thousands of peers, a video conferencing
application requires even lower delivery delays, in the order
of hundreds of milliseconds.

A. Conference oriented overlay

Currently, a multi-source PeerStreamer communication in-
volves the use of overlapped peers overlays. As already reported
in Section IV this behaviour is neither efficient nor easily
manageable. In fact, part of the signalling communication is
replicated for each overlay and could be aggregated instead.
Moreover, specific data belonging to a source can currently be
exchanged only in its own overlay even if it could be more
convenient to enable cross overlay data exchange. One possible
strategy to address this specific problem may be to have one
signalling overlay with multiple data sub-overlays.

B. Specific Topology Management

In order to further reduce the PeerStreamer delivery delay,
topology algorithms and packets delivery policies need to
be further studied. For instance it is common to have peers
with different uplink bandwidth capacity. For this reason the

4

topology algorithm could be designed to fairly redistribute the
packet transmissions among the users; if a peer has poor uplink
capacity it should send only few packet copies directly to the
more bandwidth capable peers which could then redistribute
them exploiting their uplink capability. That should lead to a
fair redistribution of the overall uplink bandwidth resulting in
the same expected transmission delay per peer.

C. Quality Management

Another key problem related to the specific application
we are addressing regards the inactive users. Typically, in
a conferencing scenario, there is one active user, i.e. talking
to the others, while the other users are passive, i.e. hearing
the speech. In this context all the video contents transmitted
by the passive users is much less valuable compared to the
video contents of the active user. So it is worth to study and
implement a method to decrease the quality of video contents
belonging to the passive users injected in the overlay in order
to save bandwidth and computational load with the overall
result of a better quality of experience.

D. Web Interface

The currently available PeerStreamer interface was not
designed as a conferencing tool. A possible solution could
be the designing of a web-based interface which has been
proved to be generally more appealing for the users. Moreover
it could grant a higher degree of flexibility, both for the choice
of the video player plug-in used to play out a video stream and
for the possibility of reshaping the interface to embed as many
video plug-in as needed by the number of users participating
in the conference.

The choice of a web interface could be the first step in
designing the PartyHub architecture. A solution currently
under evaluation could be orienting the control communication
between the conferencing platform components over the
HTTP protocol. Representational State Transfer (ReST) is a
lightweight and efficient architectural style which could well
suite PartyHub needs. Furthermore, ReST paradigm grants an
high degree of interoperability with other web applications.

Following the test scenario it is possible to identify three
main components for the conferencing tool: the GUI, a
controller responsible of driving the streamer instances of
a conference participant and a third-party service capable of
providing the synchronization info among the users.

A ReST oriented architecture is then sketched in Figure 5.
The users participating to the same video conference are
identified by the concept of group. Each user keeps a daemon
running on his host (the streamers controller), responsible of
launching and managing the streamer instances, and uses the
web GUI to drive, through HTTP transactions, the streamers
controller, getting the access to a specific group overlay video
contents. The contents are then displayed through as many
playback objects as needed (by the number of the group users)
inside the web GUI.

A separate centralized service, the group manager will store
all the information related to a specific group of users. In

ReST Streamer Controller

S
tr

e
a
m

e
r

in
st

a
n

ce

S
tr

e
a
m

e
r

in
st

a
n

ce

S
tr

e
a
m

e
r

in
st

a
n

ce

Web GUI page

ReST group manager

User Machine

Figure 5. Possible PartyHub architecture.

particular it is responsible to provide the required information to
access the users overlays. When needed, the streamers controller
can contact the group manager through HTTP transactions to
obtain these information and then launch and attach a streamer
to a specific user overlay.

Using a web interface would introduce also the possibility
to easily mesh-up and integrate other web-based services with
PartyHub. For instance it could be possible to add social
features like a messaging chat shared among the users or
introduce the possibility of showing commercial banners.

E. Security Aspects

All the data exchanged between PeerStreamer users is
currently not cyphered. For a public content broadcaster it
is not a problem but this feature is needed for personal
intercommunications. Different techniques can be applied in
order to provide security and privacy features. As a basic
measure, a centralized registration on the group manager could
be used to generate a shared key to encrypt the video conference
traffic. Alternatively, a system based on public/private keys and
a web of trust could be exploited, with an initial distributed
negotiation among the peers.

F. NAT and Firewall Traversal

Currently PeerStreamer requires that every source could be
reachable through a public IP address. That is reasonable in
the peer-to-peer TV broadcasting context where there are a
few major content providers with server infrastructure. Instead,
in the video conferencing context, all the users have to be
reachable by the others even with the presence of NAT or
other middle-boxes. PartyHub should include some components
responsible of passing through those network hosts with a set
of techniques that perform session traversal and hole-punching,
some of which are already present in PeerStreamer.

5

VI. CONCLUSION

Video conferencing has been a lively research field in the
past and today there is still room for innovation and for
suitable solutions to the real-time and scalability issues. Besides
current popular available solutions, our proposal focuses on
exploiting the peer-to-peer technology and the live streaming
tools developed during Napa-Wine project in order to provide a
novel video conferencing platform addressing the live streaming
problems. PartyHub, should be able to instantiate a multi
channel overlay in which all the conference participants can
inject their video contents and from which they can get
the video streams of the others. We performed tests with
PeerStreamer in order to verify the feasibility of this idea and
realized it is already possible, even if not optimized. PartyHub
should thus provide a service with a quality of experience
comparable to, or even better than the currently available
conferencing software. In addition PartyHub will offer the
scalability, load distribution and customizability given by the
open source approach.

REFERENCES

[1] R. Birke, E. Leonardi, M. Mellia, A. Bakay, T. Szemethy, C. Kiraly,
R. Lo Cigno, F. Mathieu, L. Muscariello, S. Niccolini, J. Seedorf, and
G. Tropea, “Architecture of a network-aware p2p-tv application: The napa-
wine approach,” IEEE Communications Magazine, vol. 49, pp. 154–163,
06/2011 2011.

[2] S. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” CoRR, vol. abs/cs/0412017, 2004.

[3] “Washington Post here’s everything we know about prism to
date,” http://www.washingtonpost.com/blogs/wonkblog/wp/2013/06/12/
heres-everything-we-know-about-prism-to-date/, date: 2013-06-13.

[4] S. McCanne and V. Jacobson, “vic: a flexible framework for packet video,”
in Proceedings of the third ACM international conference on Multimedia,
ser. MULTIMEDIA ’95. New York, NY, USA: ACM, 1995, pp. 511–522.
[Online]. Available: http://doi.acm.org/10.1145/217279.215315

[5] S. E. Deering, “Multicast routing in a datagram internetwork,” Ph.D.
dissertation, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE,
1991.

[6] L. Abeni, C. Kiraly, A. Russo, M. Biazzini, and R. Lo Cigno, “Design and
implementation of a generic library for p2p streaming,” in Proceedings
of the 2010 ACM workshop on Advanced video streaming techniques
for peer-to-peer networks and social networking, ser. AVSTP2P ’10,
ACM. New York, NY, USA: ACM, 2010, p. 43–48. [Online]. Available:
http://mycite.omikk.bme.hu/doc/90768.pdf

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12,
Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/956993.956995

[8] R. Birke, C. Kiraly, E. Leonardi, M. Mellia, M. Meo, and S. Traverso, “A
delay-based aggregate rate control for p2p streaming systems,” Computer
Communications, vol. 35, pp. 2237 – 2244, 11/2012 2012. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2012.07.005

[9] R. Lobb, A. P. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo,
“Adaptive overlay topology for mesh-based p2p-tv systems,” in ACM
NOSSDAV 2009, Virginia, June 2009, conference. [Online]. Available:
http://www.telematica.polito.it/mellia/papers/fp21-lobbPS1.pdf

