
Web Platform Threats: Automated Detection of Web Security Issues With WPT

Pedro Bernardo∗†, Lorenzo Veronese∗†, Valentino Dalla Valle‡,
Stefano Calzavara‡, Marco Squarcina†, Pedro Adão§, Matteo Maffei†

† TU Wien
‡ Università Ca’ Foscari Venezia

§ Instituto Superior Técnico, Universidade de Lisboa, and Instituto de Telecomunicações

Abstract
Client-side security mechanisms implemented by Web
browsers, such as cookie security attributes and the Mixed
Content policy, are of paramount importance to protect Web
applications. Unfortunately, the design and implementation
of such mechanisms are complicated and error-prone, poten-
tially exposing Web applications to security vulnerabilities.
In this paper, we present a practical framework to formally
and automatically detect security flaws in client-side security
mechanisms. In particular, we leverage Web Platform Tests
(WPT), a popular cross-browser test suite, to automatically
collect browser execution traces and match them against Web
invariants, i.e., intended security properties of Web mecha-
nisms expressed in first-order logic. We demonstrate the ef-
fectiveness of our approach by validating 9 invariants against
the WPT test suite, discovering violations with clear security
implications in 104 tests for Firefox, Chromium and Safari.
We disclosed the root causes of these violations to browser
vendors and standard bodies, which resulted in 8 individual
reports and one CVE on Safari.

1 Introduction

Writing secure Web applications is notoriously hard, due to
the heterogeneity, complexity and open-ended nature of the
Web. To mitigate the challenges of secure Web application
development, browsers integrate a growing list of client-side
security mechanisms to assist Web developers. Examples of
such mechanisms include cookie security attributes (HttpOnly,
Secure and SameSite), security headers like Origin and Sec-
Fetch-Data, mechanisms to secure mixed content (e.g., to
avoid that HTTPS-served webpages fetch content in clear over
HTTP), and sophisticated client-side protection mechanisms
like Content Security Policy (CSP).

The design of such mechanisms is very delicate, as wit-
nessed by the long list of design shortfalls (e.g., unexpected in-
teractions with other browser components) or implementation

∗Shared first authorship

flaws, which led to breaking well-established Web security
invariants [18, 37]. Formal methods proved to be an essential
tool to rigorously analyze client-side security mechanisms, al-
lowing for the identification of bugs and formulation of formal
security proofs in such a complex environment. All state-of-
the-art techniques, however, be they manual [24], machine-
checked [21], or automated [18,37], apply to browser models,
which suffer from two fundamental drawbacks. First, client-
side security mechanisms evolve over time and new ones are
being proposed on a regular basis, which makes browser mod-
els extremely hard to maintain. Second, even if specifications
are correct, security-critical bugs often affect the implementa-
tions [27,33,34,40]. Correctly integrating client-side security
mechanisms within browsers is challenging and error-prone
for various reasons. Browsers are incredibly complicated soft-
ware artifacts: for instance, the Chromium codebase contains
roughly 35 million lines of code, i.e., it is larger than the Linux
kernel. Furthermore, browser vendors are required to translate
natural language specifications, e.g., from the World Wide
Web Consortium (W3C), into new code to be pushed into an
already complicated codebase. Even worse, client-side secu-
rity mechanisms often cannot be specified in isolation: most of
them interact with core browser components like Fetch, which
defines requests, responses, and the process which eventually
binds them. This means that the implementation of client-
side security mechanisms often requires changes to existing
browser components which were not developed with such an
integration in mind.

We thus tackle the following research question: can we
design a practical framework to formally and automatically
detect security flaws in the implementation of client-side se-
curity mechanisms?

In this paper, we answer in the affirmative, putting forward
a novel, formally-grounded and lightweight technique. In par-
ticular, we leverage existing community efforts in the develop-
ment of Web Platform Tests (WPT) [16], a cross-browser test
suite designed to give browser vendors confidence that they
are shipping software which is compliant with specifications
and compatible with other implementations. WPT includes

more than 50K tests covering a wide range of browser compo-
nents, including Web security mechanisms, thus representing
the largest benchmark of the intended browser behavior to
date. Our approach consists in abstracting the test executions
into sets of traces (i.e., sequences of relevant browser events),
which are then matched against Web security invariants (i.e.,
intended security properties expressed in first-order logic).
This way, we automatically identify traces breaking important
security properties and thus pinpoint browser behaviors re-
quiring immediate attention by browser vendors, due to their
clear security implications. Furthermore, WPT is continuously
updated as Web standards and new features are introduced
to the Web platform, which makes our verification pipeline
automatically applicable to the latest browser versions.
Contributions. More concretely, we contribute as follows:

• We formalize 9 Web invariants regarding core compo-
nents of the Web platform such as Cookies and Mixed
Content, encoding them in first-order logic to allow for
efficient verification of browser execution traces using
an automated theorem prover (Sec. 3).

• We present an automated pipeline designed to identify
security-critical inconsistencies in browser implementa-
tions. Our approach leverages the WPT test suite to ac-
quire browser execution traces, which are then matched
against Web security invariants in order to identify any
traces that violate Web security properties (Sec. 4).

• We demonstrate the effectiveness of our approach by
validating our 9 invariants against the WPT test suite,
discovering violations with clear security implications
in 104 tests (Sec. 5). In particular, we discuss 10 attacks
against Chromium, Firefox, and Safari concerning cook-
ies and Mixed Content policy violations (Sec. 5.2). We
responsibly disclosed all the new findings to affected
browser vendors and standard bodies, which resulted in
8 individual reports and one CVE on Safari.

We publish all the artifacts developed during this research,
including the definition of the Web invariants in SMT-LIB
format, and our trace verification pipeline [20].

2 Background

We assume familiarity with the basic functionality of the Web
platform, e.g., the HTTP protocol, HTML and JavaScript.
Web Security Primer. The traditional threat model of Web
applications considers both Web attackers and network attack-
ers [22]. A Web attacker is the owner of a malicious host,
which is used to mount attacks against other Web applica-
tions. Traditional examples of Web attacks include Cross Site
Scripting (XSS) and Cross Site Request Forgery (CSRF). A
network attacker extends the capabilities of a Web attacker
with full control of the network traffic, i.e., everything which

is unencrypted can be read and modified by a network attacker.
Encryption can be enforced through the use of HTTPS, which
provides a secure transport protocol for the Web. Browsers
rely on the notion of secure context to identify pages satisfy-
ing minimal confidentiality and integrity requirements [38].

The baseline defense mechanism of Web browsers is the
Same Origin Policy (SOP), which is intended to enforce the
intuitive invariant that content owned by a Web application
should not be read or written by other Web applications. The
notion of origin defines the security perimeter of SOP: an
origin is a triple including a scheme (HTTP, HTTPS...), a host
(e.g., www.foo.com) and a port (defaulting to 80 for HTTP
and 443 for HTTPS). This way, a Web page at https://evil.com
cannot access content served by https://foo.com. Since the
fine-grained isolation of SOP is too restrictive for specific set-
tings, another common Web security concept is the notion of
site, i.e., one domain part plus the effective top-level domain as
defined in the Public Suffix List [30] – also called registrable
domain or eTLD+1. For example, foo.com and foo.github.io
(as github.io is in the PSL) are sites, and a.foo.com and
b.foo.com are two subdomains of the same site foo.com. Al-
though https://a.foo.com and https://b.foo.com are two differ-
ent origins, their same-site position might relax some security
checks enforced by browsers (see below). The W3C Secure
Contexts specification [38] also defines the notion of poten-
tially trustworthy origins as those that the browser can trust
sending data securely. In particular, in addition to origins
whose protocol is https or wss, the localhost IP address and
all subdomains of localhost are considered potentially trust-
worthy even for unencrypted connections.

Cookies. Cookies are a client-side storage mechanism based
on the name-value paradigm and can be set through JavaScript
or using the Set-Cookie header of HTTP responses. In their
default configuration, cookies are accessible by JavaScript
using the document.cookie property and are attached by the
client to all the requests sent to the host which set them, using
the Cookie header. The scope of cookies can be extended to
other subdomains by using the Domain attribute; this allows
cookie sharing across sibling domains, e.g., a.foo.com can
set cookies with the Domain attribute set to foo.com, which
makes them available to b.foo.com. Since cookies may store
sensitive data, e.g., session identifiers that must be protected to
prevent session hijacking, clients offer a plethora of defensive
options deployed in terms of cookie attributes and prefixes.

Cookies marked with the Secure attribute are only attached
to requests sent over secure channels, e.g., over HTTPS, which
is important to ensure their confidentiality against network
attackers. The HttpOnly attribute makes cookies inaccessi-
ble to JavaScript, which is useful to prevent cookie theft in
the presence of injection vulnerabilities like XSS. Finally,
the SameSite attribute can be used to restrict the attachment
of cookies to same-site requests, thus mitigating CSRF. If
SameSite is set to Strict, no cross-site request will ever at-
tach the cookie; if SameSite is set to Lax, top-level navigation

requests with a safe method (e.g., GET) can attach the cookie
even though they are fired from a cross-site position.

Since cookies have weak integrity guarantees in their de-
fault configuration, Web developers can qualify their names
with special prefixes to improve protection. The __Secure-

prefix requires the cookie to be set over secure channels with
the Secure attribute activated. The __Host- prefix extends the
protection of the __Secure- prefix by also forcing the deac-
tivation of the Domain attribute, thus scoping the cookie to a
specific host rather than to its site.

Mixed Content. When a document is loaded via a secure
channel, all its subresources, i.e., frames, scripts, etc, must
also be received securely to not compromise the integrity of
the page. If any of such resources is loaded via a non-secure
channel, i.e., HTTP, a network attacker can tamper with the
content of the reply, opening the possibility for, e.g., executing
malicious JavaScript code within a secure context.

The W3C Mixed Content specification [39] regulates the
fetching of subresources within documents loaded via a se-
cure channel, defining as mixed content any insecurely-loaded
subresource. Mixed content is categorized based on the corre-
sponding security risks. Mixed content is upgradeable when
the risk of allowing its usage is outweighed by the risk of
breaking significant portions of the Web. Image, audio, and
video content are all classified as upgradeable because the us-
age of such resource types is sufficiently high, while their load-
ing is generally considered as low-risk. Upgradeable mixed
content goes through protocol autoupgrading: the URL is
rewritten to use the HTTPS protocol and an attempt is made
to fetch the subresource securely. If the resource is not avail-
able via the new URL, it will not be loaded in the page.

Any mixed content that is not upgradeable is classified as
blockable. Examples of blockable content are scripts, frames,
XHR, and fetch requests. The risk of loading such content is
much higher: for example, allowing insecurely-loaded scripts
within a secure context would allow a network attacker to read
or modify data accessed therein. Blockable mixed content is
filtered and the subresource is not loaded in the document.

3 Web Invariants

A Web invariant is an intended security property of a Web
security mechanism that should never be violated by Web
browsers, i.e., any counter-example might reveal a security-
relevant bug. In this paper, we define 9 Web invariants con-
cerning two core components of the Web Platform: cookies
and Mixed Content. The selection and definition of these in-
variants is based on the following methodology. First, we
focus on Web components with clear security implications
and relatively compact specifications. For each selected mech-
anism, we abstract the expected security properties by thor-
oughly analyzing the specification. We then review the exist-
ing literature to identify invariants already defined in prior

research. In cases where specifications prove to be ambigu-
ous, we encode as a Web invariant the community security
expectations that emerge from previous research or from our
discussion with the specification maintainers. For each of
these cases, we provide a bibliographic reference or a link to
the GitHub discussion. Finally, we express the invariants as
first-order logic formulas. Table 1 presents an intuitive natu-
ral language description of the invariants we encode in this
work. In particular, we define 6 new Web invariants (I.4–I.9)
and propose an encoding of 3 invariants from the literature
(I.1–I.3). In this section, we focus on the 6 new Web invari-
ants we propose, presenting their expected security property
and encoding. We first define a model to represent browser
execution traces and show how security properties can be
encoded in this model. We then proceed with the discussion
of the invariants. Due to space constraints, the encoding of
the remaining invariants is dicussed in Appendix A.

3.1 Traces and Events
We define Web invariants in terms of browser execution traces.
A trace is represented as a list of browser events, each map-
ping to a concrete browser action. Events are encoded as
shown in Fig. 1 and capture JavaScript API calls (js), network
requests and responses (net), and hooks into the browser in-
ternals, e.g., cookie-jar-set triggers when a cookie is stored
in the cookie jar. JavaScript events store a reference to the
browsing context, i.e., the Window or Worker, in which the
API call was executed. For each browsing context, we store
a unique identifier, its location URL, and a flag indicating
whether it is a secure context [38] or not.

Invariants are encoded as first-order logic formulas, which
should be true for all possible traces.1 As an example, consider
our encoding of the Confidentiality of HttpOnly Cookies (I.2)
defined in [37].

HTTP-ONLY-INVARIANT(tr) :=
t1 > t0 ∧
cookie-jar-set(name, value, {http-only, secure, domain, path})@trt0 ∧
js-get-cookie(ctx, cookies)@trt1 ∧
name++"="++ value ∈ split-cookie(cookies)∧
cookie-match(path, domain, secure, ctx-location(ctx))→

http-only = false

The invariant is defined as an implication, requiring the http-
only flag to be equal to false if a set of hypotheses is satisfied.
We use the e@tr t predicate to check if event e is present in
trace tr at timestamp t ∈ N. Intuitively, this invariant says
that if a script successfully uses the document.cookie getter
(js-get-cookie at time t1) to obtain the cookies string, and if
cookies, after splitting on the cookie separator ";", contains
the string composed of the concatenation of name, the literal
string "=", and value, then the http-only flag present when
the cookie was set (cookie-jar-set at time t0 < t1) needs to

1For readability, all variables are implicitly ∀-quantified when no quan-
tification is specified.

Name Invariant Description References

C
oo

ki
es

I.1 Integrity of Secure cookies Cookies with the Secure attribute can only be set over secure channels. [37]
I.2 Confidentiality of HttpOnly cookies Scripts can only access cookies without the HttpOnly attribute. [37]
I.3 Integrity of __Host- cookies A __Host- cookie set for domain d can only be set by d or by scripts included in pages on d. [37]
I.4 Integrity of SameSite cookies A SameSite=Lax/Strict cookie can only be set for domain d through HTTP responses

to requests initiated by domains which are same-site with d or by top-level navigations.
[23, §4.1.2.7]

I.5 Isolation of SameSite cookies If a SameSite=Lax/Strict cookie should not be attached to a request to load a page
p, then it is not attached to that request, it is not accessible by scripts in p nor attached to
requests initiated by p.

[13]

I.6 Cookie serialization collision resistance A cookie with name n and value v is serialized to the string "n=v" when attached to requests
or accessed via document.cookie.

[35]

I.7 Confidentiality of Secure cookies Secure cookies are only attached to requests (resp. accessible by scripts) to potentially
trustworthy URLs.

[11]

M
ix

ed
C

on
te

nt

I.8 Blockable mixed content filtering Every request performed by the browser is either a toplevel request, its URL is potentially
trustworthy, or the request context does not prohibit mixed content.

[39, §4.4]

I.9 Upgradeable mixed content filtering For every non-toplevel request performed by the browser where the URL is not potentially
trustworthy, the request context does not prohibit mixed content and the request type is not
upgradeable.

[39, §4.1]

Table 1: Web Invariants

Trace := List Event execution trace
Ctx := ⟨id, location, secure-context⟩ browsing context
Event := browser event

js-set-cookie(Ctx, arg, ret) document.cookie setter
js-get-cookie(Ctx, ret) document.cookie getter
cookie-jar-set(name, value, cookiejar hook on

attributes, deleted) set/delete cookie
net-request(id, url, method, type, network request

origin, doc-url,
frame-ancestors,
headers, body)

net-response(id, url, headers, body) network response
js-fetch(Ctx,url) window.fetch API call

Figure 1: Syntax of traces: event types.

be set to false. We use the split-cookie function to split a
cookie header on the separator character ;, returning a list,
and the cookie-match predicate to consider the case in which
the cookie set at time t0 is readable by the browsing context
ctx where document.cookie is accessed. In particular, given a
URL and the path, domain and security attributes of a cookie,
cookie-match is true when the domain matching and path
matching algorithms defined in the specification [23] return
true and when, if the Secure attribute is set, the URL uses a
secure protocol. That is, when cookie-match is true for a URL
and a cookie, we should expect that cookie to appear in the
request headers and document.cookie for that URL.

Invariants are expressed in quantified first-order logic using
the theories of uninterpreted functions, integer arithmetic, al-
gebraic datatypes, and strings. In particular, events are defined
as a datatype, the @tr predicate is implemented as a recursive
function, and auxiliary predicates can be defined as macros or
functions. This combination of theories gives us flexibility in
the definition of Web invariants, e.g., allowing us to encode
properties about parsing and serialization, while allowing for
automated verification using the Z3 theorem prover.

3.1.1 Integrity of SameSite Cookies

The cookie specification explicitly forbids setting Same-
Site cookies (either Lax or Strict) in response to non-top-
level cross-site requests [23, §4.1.2.7]. For instance, as-
sume that https://good.com embeds a page at https://evil.com
as an iframe. If the iframe includes subresources from
https://good.com, the browser should discard SameSite cook-
ies set in responses to those requests. This behavior defines
additional integrity guarantees to SameSite cookies and cor-
responds to the following invariant.

Invariant (I.4). A cookie whose SameSite attribute has
value Strict or Lax can only be set for domain d through
HTTP responses to requests initiated by domains which are
same-site with d or by top-level navigations.

We encode this invariant as follows:
SAMESITE-COOKIES-INTEGRITY(tr) :=

t1 < t2 < t3 ∧
net-request(id, url, _, type, origin-url, _, _, _, _, _)@trt1 ∧
net-response(id, url, {set-cookie-headers}, _)@trt2 ∧
set-cookie ∈ set-cookie-headers∧
name++"="++ value ∈ split-cookie(set-cookie)∧
"SameSite="++SS ∈ split-cookie(set-cookie)∧
(SS = "Lax"∧ same-site = SS-Lax∨

SS = "Strict"∧ same-site = SS-Strict)∧
cookie-jar-set(name, value, {same-site, path, domain})@trt3 ∧
cookie-match(path, domain, _, url)∧
url-site(url, site)→

(type = main_frame∨url-site(origin-url, site))

For every net-response event that successfully sets a cookie,
i.e., that is followed by a cookie-jar-set whose parameters
match the value of the response Set-Cookie header; if the
SameSite attribute is set to Lax or Strict, then either the re-
quest type is main_frame, i.e., it is a top-level request, or the
initiator of the request is same-site w.r.t the target url of the
request, i.e., origin-url, the url of the request initiator, is in

the same site of url. Here, the url-site predicate is true when
its second argument is the site of the url in the first argument.

3.1.2 Isolation of SameSite Cookies

SameSite cookies, especially when set with the Strict at-
tribute, are widely considered a robust defense against cross-
site attacks such as CSRF [23] and, more recently, XS-
Leaks [3, 32, 36]. The protection is effective as long as these
cookies are not attached to requests initiated by an attacker
operating from a cross-site page. For instance, the specifica-
tion mandates browsers to not include SameSite cookies in
requests to load cross-site iframes, nor make them available
to JavaScript APIs in that context [23, §5.2.1].

We verified instead that cross-site top-level navigations can
cause same-site navigations to be executed, thus attaching
SameSite cookies to requests initially started by the attacker.
This is the case of a pop-up window opened by a cross-site
page, which executes a same-site JavaScript-based redirec-
tion via, e.g., window.location. Browsers consider the first
request as cross-site but the second as same-site, thus attach-
ing SameSite cookies to the second request, as captured by
the specification [23, §8.8.5]. Similarly, subresources loaded
in a top-level cross-site context are considered same-site and
are loaded with SameSite cookies attached.

By carefully examining public discussions between
browser vendors [1, 10, 12], we found that the current be-
havior is the result of a bottom-up threat modeling process,
with security implications that extend beyond what is declared
in the specification: “same-site navigations and submissions
can certainly be executed in conjunction with other attack vec-
tors such as cross-site scripting”. Indeed, SameSite Strict

cookies can be bypassed using JavaScript-based same-site
redirectors (i.e., no XSS required) [31], and loading authenti-
cated subresources can introduce observable user-dependent
state in the opened page, thus enabling XS-Leaks attacks,
as we discuss in Sec. 5.2. We are currently engaging with
browser vendors and specification maintainers to harmonize
the specification and the implementations, and to clarify the
security properties that should be expected from SameSite
cookies based on the principle that high-sensitive resources
(e.g., cookies and authenticated resources) should not flow
into low-sensitive contexts (e.g., pages loaded from cross-site
requests) [13].

Invariant (I.5). If a cookie set for domain d with the SameSite
attribute set to "Lax" or "Strict" should not be attached to a
request that loads a page p, then the cookie is not attached to
that request, it is not accessible to scripts running in p and it
is not attached to network requests initiated by p.

We encode the invariant as:

SAMESITE-COOKIES-CONFIDENTIALITY(tr) :=
t1 < t2 < t3∧
cookie-jar-set(name, value, {secure, same-site, path, domain, host-only})@trt1∧
(same-site = SS-Lax∨ same-site = SS-Strict)∧
net-request(_, url, method, type, origin, _, _, redirs, {cookies}, _)@trt2∧
cookie-match(path, domain, secure, host-only, url)∧
¬cookie-match-samesite(same-site, type, origin, method, redirs, url)∧
(

(js-get-cookie(ctx, cookies′)@trt3 ∧url = ctx-location(ctx))∨
(net-request(_, url′, method′, type′, origin′, doc-url′, _, redirs′, {cookies′}, _)@trt3∧

doc-url′ = some(url)∧
cookie-should-be-sent(

path, domain, secure, same-site, host-only, type′, origin′, url′, method′, redirs′))
)→

(name++ "="++ value ̸∈ split-cookie(cookies)∧
name++ "="++ value ̸∈ split-cookie(cookies′))

Assume that there is a SameSite cookie set for a specific do-
main, that is, the trace contains a cookie-jar-set event at time
t1, and that the browser then loads a page at time t2 for which
this cookie would have been sent if it was not SameSite (i.e.,
for which cookie-match is true but cookie-match-samesite
is not). If there is a subsequent event at time t3, be it a js-
get-cookie where the browsing context location matches the
URL of the request at t2, or a net-request to which the cookie
should be attached (i.e., for which the cookie-should-be-sent
predicate is true), then the value of the cookie header (or the
return value of document.cookie) cookies′ should not contain
the cookie set at t1, and that cookie was not attached to the
request at t2.

3.1.3 Cookie Serialization Collision Resistance

In 2020, nameless cookies were introduced in the cookie
RFC [9] to standardize the legacy behavior adopted by major
browsers. According to the standard, cookies with an empty
name and a non-empty value must be serialized in the Cookie

request header using only their value, without the = separa-
tor. To exemplify, a nameless cookie with value foo is serial-
ized by compliant browsers as Cookie: foo. This serialization
strategy is known to introduce collisions, which can be lever-
aged to perform cookie tossing attacks [35]. For example, a
cookie set via Set-Cookie: =foo=bar, with empty name and
value foo=bar, is attached to outgoing requests as Cookie:

foo=bar resulting indistinguishable to a server from a cookie
with name foo and value bar [23, §5.5, item 3].

Browsers can prevent cookie collisions by removing sup-
port for nameless cookies altogether, as in the case of Sa-
fari [35], or simply by including the = separator in the se-
rialized cookie irrespectively of the content of the name or
the value fields. Building on the previous example, the name-
less cookie with value foo=bar would be serialized as Cookie:
=foo=bar, allowing servers to distinguish it from a standard
named cookie. This is captured by the following invariant.

Invariant (I.6). A cookie with name n and value v set for
domain d is serialized to the string "n=v" when attached to
requests or accessed via document.cookie.

The invariant is encoded as:

COOKIE-SERIALIZATION-INVARIANT(tr) :=
t2 > t1∧
cookie-jar-set(name, value, {secure, same-site, path, domain})@trt1∧
(

(net-request(_, url, method, type, origin-url, _, _, redirs, {cookies}, _)@trt2∧
cookie-should-be-sent(
path, domain, secure, same-site, type, origin-url, url, method, redirs))∨

(js-get-cookie(ctx, cookies)@trt2 ∧url = ctx-location(ctx)∧
cookie-match(path, domain, secure, url))

)∧
is-effective-cookie(t2, tr, name, value, domain, path, "")→

name++ "="++ value ∈ split-cookie(cookies)

For every request (or access to the document.cookie property)
at time t2, where a cookie stored previously in the cookie jar
at time t1 should be sent (resp. retrieved), the cookie header
(or the return value of document.cookie) should contain the
string name++ "="++ value after splitting on the separator
";". This invariant uses the three predicates cookie-should-be-
sent, which is true if a cookie should be attached to a request,
cookie-match, which is true if a cookie should be readable
in a specific browsing context URL, and is-effective-cookie,
which makes sure that the cookie-jar-set at t1 we consider is
the event that set the cookie in the cookie jar. Specifically, the
predicate makes sure that there was no cookie-jar-set between
t1 and t2 that overwrote the cookie stored in the cookie jar.

3.1.4 Confidentiality of Secure Cookies

The Cookies RFC delegates the decision of which protocols
are denoted as secure to the specific user agent, requiring
it to attach the cookies with the Secure attributes to URLs
using such protocols [23]. Noticing this ambiguity in the
RFC, we investigated how different browsers implement this
behavior and discovered an inconsistency: Chromium and
Firefox (behind a configuration flag) deem the localhost

host, its subdomains, and its IP representation (127.0.0.1)
as secure regardless of the protocol, and thus attach Secure

cookies to local requests, whereas Safari does not. Similar
inconsistencies apply to cookie prefixes, where only Firefox
attaches prefixed cookies to localhost.

We contacted the HTTP Working Group [11], notifying
them about the potential differences in handling of Secure

cookies, suggesting to disambiguate the requirements on
browsers by using the potentially-trustworthy origin definition
for determining secure URLs, instead of a browser-dependent
definition of secure protocol. Our proposal is currently being
discussed in the Working Group. Initial feedback suggests
that the specification editors are considering modifying the
phrasing to include potentially trustworthy origins.

This change in the specification would align it to the de-
facto standard behavior of the majority of the top browsers,
which we formalize as follows:

Invariant (I.7). Cookies with the Secure attribute are only
attached to requests sent to potentially trustworthy origins
and are only readable by scripts running in browsing contexts
whose origin is potentially trustworthy.

The invariant is encoded as:

SECURE-COOKIES-CONFIDENTIALITY(tr) :=
t1 > t0∧
cookie-jar-set(name, value, {secure = true, same-site, path, domain))@trt0∧
(

(net-request(id, url, method, type, origin-url, _, _, _, {cookies}, _)@trt1∧
cookie-should-be-sent(
path, domain, false, same-site, type, origin-url, url, method, redirs))∨

(js-get-cookie(ctx, cookies)@trt1 ∧url = ctx-location(ctx))
)∧
cookie-match(path, domain, false, url)∧
name++ "="++ value ∈ split-cookie(cookies)∧
is-effective-cookie(t1, tr, name, value, domain, path, "")→

is-origin-potentially-trustworthy(url)

Assume that there is a cookie in the cookie jar with the
Secure attribute set, i.e., the trace contains a cookie-jar-set
event at t0. If there is a network request (or an access to
the document.cookie property) at t1 where the cookie should
be sent (resp. retrieved) and it is actually part of the attached
cookies (resp. present in the return value of document.cookie),
i.e., name++ "="++ value ∈ split-cookie(cookies), then the
origin of the URL of the request (or the browsing context
where document.cookie is called) is potentially trustworthy.

3.1.5 Blockable Mixed Content

For each request, the browser determines whether it should be
blocked by applying the steps defined in the Should fetching
request be blocked as mixed content algorithm [39, §4.4].
In particular, a request is allowed when either its URL is
potentially trustworthy, the context in which the request is
performed does not restrict mixed content requests (e.g., a
page loaded via HTTP making a fetch request), or when the
request is top-level. We can define the following invariant.

Invariant (I.8). For every network request performed by the
browser, either: (i) the context does not prohibit mixed content
requests; or (ii) the request URL is potentially trustworthy;
or (iii) the request is top-level.

The encoding of the invariant is:

BLOCKABLE-MIXED-CONTENT-FILTERED(tr) :=
net-request(_, url, _, type, origin, doc-url, ancestors, _, _, _)@trt1 →
(¬does-settings-prohibits-mixed-security-contexts(

origin, doc-url, ancestors)∨
is-url-potentially-trustworthy(url)∨
(type = main_frame∧nil = ancestors))

The invariant uses the predicates is-url-potentially-
trustworthy, which is true if the request URL is potentially
trustworthy according to the respective algorithm of the
secure context specification, and does-settings-prohibits-
mixed-security-contexts, that is the implementation of the
respective algorithm defined by the Mixed Content specifi-
cation [39, §4.3] and is true if the request initiator origin is
potentially trustworthy, or if any ancestor of the navigation
initiator has a potentially trustworthy origin. The invariant
also uses the expression type = main_frame∧nil = ancestors
to check if a request is a top-level navigation.

3.1.6 Upgradeable Mixed Content

For upgradeable mixed content requests, e.g., loading images
over insecure channels, the browser should rewrite the URL
of the request by changing its scheme from HTTP to HTTPS.
The mixed content specification defines the conditions for ap-
plying this rewriting in the Upgrade mixed content request to
a potentially trustworthy URL algorithm [39, §4.1]. This algo-
rithm applies to every request by the Fetch specification, thus
every successful request made by the browser for upgradeable
mixed content should have been upgraded. That is, every non-
top-level request whose URL is not potentially trustworthy
should not be upgradeable or should be permitted by Mixed
Content. This corresponds to the following invariant:

Invariant (I.9). For every non-toplevel network request per-
formed by the browser whose URL is not potentially trustwor-
thy, the request context does not prohibit mixed content or the
request type is not upgradeable.

The invariant is encoded as:
UPGRADEABLE-MIXED-CONTENT-FILTERED(tr) :=

net-request(_, url, _, type, origin, doc-url, ancestors, _, _, _)@trt1∧
¬is-url-potentially-trustworthy(url)∧
type ̸= main_frame →

(¬does-settings-prohibits-mixed-security-contexts(
origin, doc-url, ancestors)∨

¬is-mixed-content-upgradeable(type))

where the presence of a request in the trace whose URL
is not potentially trustworthy and whose type is different
from main_frame (as upgradeable mixed content does not
restrict toplevel requests) implies that both is-mixed-content-
upgradeable, which checks if the request type is upgrade-
able (by implementing its definition in [39, §3.1]), and does-
setting-prohibits-mixed-security-contexts are false.

4 Trace Verification Pipeline

In this section, we will first motivate with an example the
importance of abstracting WPT tests into execution traces in
order to automate the discovery of Web invariant violations,
and then describe our verification pipeline in detail.

4.1 Motivating Example
We present a simple example to motivate why looking at
failed WPT tests does not already enable reasoning about
security. The WPT test /mixed-content/gen/top.meta/
unset/img-tag.https.html is a set of test cases that check
the mixed content behavior of browsers when fetching img

tags. In particular, the test expects image requests to always
be performed within an HTTPS browsing context (i.e., a win-
dow with a HTTPS URL as location). This is expected, as
upgradeable mixed content requests should be allowed when
the browser is able to rewrite the request URL to use the
HTTPS scheme, i.e., performing the auto-upgrade. This test

is successful on the stable versions of Firefox and Safari, but
fails on Chromium, as some of the requests fail.

The execution trace of the test contains multiple net-
request events, each corresponding to the requests performed
by the browser during execution. Specifically, for each em-
bedding of an img tag, the event includes the image URL, the
request type (image), and additional fields characterizing the
request, e.g., the origin of the request initiator and the URL of
the document where the new image will be loaded. The I.8 in-
variant mandates that for every net-request event, at least one
of three conditions must hold for it to be compliant with the
Mixed Content specification. Since the request is not top-level,
i.e., its type is image, and it originates from a page loaded
via HTTPS, i.e., does-setting-prohibit-mixed-content is true,
then its URL must be potentially trustworthy, i.e., its scheme
must be HTTPS. In the traces produced during the execution
of Firefox and Safari, the net-request event corresponding to
the embedding of the image has an insecure URL, i.e., the
image is fetched via HTTP, violating the requirement of I.8. In
Chrome, on the other hand, the request is auto-upgraded and
the corresponding net-request has a potentially trustworthy
URL, thus I.8 is not violated.

Since the WPT test only checks for the images to be
loaded, without explicitly testing their protocol, Firefox and
Safari, which do not currently implement protocol auto-
upgrading [2, 15] and perform the mixed content requests
without blocking them, pass the test. Chromium, on the other
hand, performs the auto-upgrading as mandated by the Mixed
Content specification. However, since the image is served on
a non-standard HTTP port (8000), the browser upgrades the
protocol without changing the port causing a connection error.

This example highlights that the WPT test results alone may
not always capture potential security concerns since failed
tests do not necessarily break Web invariants, and, conversely,
successful tests might break Web invariants. Tests can not
only be unsuccessful because browsers implement new secu-
rity features, as in the example above, but they can also fail if
the execution relies on unimplemented APIs. This further em-
phasizes that observing a discrepancy across the WPT results
of different browsers (i.e., simple WPT-based differential test-
ing) is not a direct indication of security issues. By verifying
browser traces obtained during the execution of WPT tests,
irrespectively of test results, our approach provides a deeper
insight into each test. In particular, violating an invariant is
a clear indicator of potential security issues in the exercised
browser behavior, pinpointing the specific Web components
requiring immediate attention.

4.2 Methodology

Our methodology for detecting security-relevant issues in
browser implementations leverages the WPT test suite and
consists of two main stages, as shown in Fig. 2. First, the
execution traces produced by executing the WPT tests on

/mixed-content/gen/top.meta/unset/img-tag.https.html
/mixed-content/gen/top.meta/unset/img-tag.https.html

WPT
Tests

Execution
Traces

2

SMT
Solver

n
Invariants

UNSAT

SAT

Figure 2: Trace Verification Pipeline.

the three major Web browsers (Chromium, Firefox, Safari)
are collected into a database. Second, the obtained traces are
post-processed, translated to SMT-LIB, and checked against
the Web invariants we define in Sec. 3 using an SMT solver.
When the solver cannot prove the validity of the invariant on
a test trace (SAT, i.e., a counterexample exists), a violation is
found on the specific browser. Our analysis pipeline is based
on the Kubernetes container orchestration platform, allowing
us to execute multiple instrumented browsers and the SMT
solving in parallel. We detail in the following the main steps
of the pipeline and our criteria for selecting the relevant tests.
Test Selection. The tests part of the WPT project can be clas-
sified into four main categories: (i) rendering tests, which test
the graphical output of the browser (by, e.g., comparing it to
screenshots) to verify that pages are displayed as expected;
(ii) testharness.js tests, which test JavaScript interfaces
available in browsing contexts, allowing to automatically
check assertions about their behavior; (iii) wdspec test, which
test parts of the WebDriver protocol and are written in the
Python programming language; (iv) manual tests that require
human interaction to determine their result. In this work, we
focus on testharness.js tests, since our Web invariants cover
JavaScript and browser internals behavior, ignoring most UI
aspects. In particular, we consider all testharness.js tests
of the April 2023 version of the WPT test suite. We detail our
test selection in Table 6 (Appendix B), where we report the
version (commit hash) of the test suite, the considered WPT
subfolders, and the respective number of tests for each folder.
Trace Collection. We run each WPT test in its own isolated
ephemeral container named runner. Each runner container in-
cludes a specific version of the tested browser, all its run-time
dependencies, our patched version of the WPT tooling, and
the browser instrumentation composed of a browser extension
and a proxy (Sec. 4.3). For Safari, the runner container exe-
cutes a MacOS virtual machine containing the instrumented
browser. We build a runner container for Chromium (ver-
sion 118.0.5961.0), Firefox (version 116.0.3) and Safari (ver-
sion 16.4). Once the runner container terminates the execution
of a WPT test, it stores the execution trace in JSON format
in a centralized database. Note that we ignore test assertions,
storing the captured trace regardless of the test results.
Verification. Upon completion of the runner container, the
generated JSON file is post-processed and translated to SMT-

LIB format. In particular, the events that were captured by
our browser instrumentation are converted to execution traces
following the format described in Sec. 3.1. It may be the
case that multiple events recorded by the browser instrumen-
tation happened simultaneously, i.e., the JSON stores multiple
events with the same timestamp. This may occur when, for
instance, a page containing multiple subresources is rendered:
the browser may try to load all resources in parallel, thus
resulting in multiple events of type network-request to be
recorded at the same time. In such cases, the SMT-LIB trans-
lator generates multiple traces, each corresponding to a single
permutation of the simultaneous events, allowing us to con-
sider all possible orderings of the concurrent events. Note that,
in practice, the number of concurrent events in WPT traces
rarely exceeds four events, thus having a negligible impact on
the pipeline performance.

Once execution traces are translated to SMT-LIB format,
we use an SMT solver to query, for each trace, the validity
of each Web invariant. That is, we check satisfiability of the
negation of the invariant applied to each trace. This satisfiabil-
ity checking may have three possible outcomes: (UNSAT) the
invariant is valid, i.e., it is true for the current trace; (SAT) the
invariant is not valid, i.e., the current trace is a counterexam-
ple for the invariant; (UNKNOWN) the solver was not able to
prove nor disprove the invariant, hence in such cases we can-
not draw any conclusion and we do not report any violation.
Whenever the solver returns SAT, we obtain a model, i.e., an
instantiation of the variables mapping them to the concrete
values from the trace that make the invariant false. Being
based on the standard SMT-LIB format, our pipeline supports
all standard-compliant solvers that implement decision proce-
dures for quantified string constraints, integer arithmetic and
algebraic data types. Specifically, we currently support both
the Z3 theorem prover and CVC5.

Violating an invariant may have several security implica-
tions, and for this reason, we manually inspect the execution
trace of every SAT result and design a minimal proof of con-
cept (PoC) attack to showcase the vulnerability in the affected
browsers. We discuss the discovered attacks in Sec. 5.2.

4.3 Browser Instrumentation

Browser instrumentation and trace collection are essential
components of our pipeline. Our main goal is to develop
a browser instrumentation solution that provides a balance
between observability and cross-browser support, while mini-
mizing the implementation effort. Our instrumentation must
be easily integrated into existing testing pipelines such as the
Web Platform Tests and work across different browsers. We
refer the reader to Appendix C for an analysis of the design
space of browser instrumentation techniques.

4.3.1 Implementation

Based on our design space analysis, we implemented a
browser instrumentation solution which combines a browser
extension with an external proxy that improves on the limita-
tions of the extension API with respect to its ability to inspect
network traffic. Our solution provides the necessary hooks to
monitor internal browser state, JavaScript API calls, and have
a complete picture of the network activity when collecting
browser execution traces.

Internal Browser State Monitoring. With extensions, we
gain access to the internal browser state not available to reg-
ular scripts or external monitoring tools. This state includes
the CookieJar, and network activity such as requests and re-
sponses. This internal state is accessible to extensions via
background scripts, which have no access to the DOM but
can make full use of the extension APIs. Network events are
monitored by registering callback functions that run whenever
a request is about to be sent, and when a request is deemed
completed, i.e., it has a response or it was dropped. These
callbacks provide access to the request and response headers,
and additional information added by the browser, like the tab
and frame IDs of the request initiator. The CookieJar can also
be monitored via onChange callbacks, whose execution can be
delayed depending on the state of the JavaScript event loop.
Due to these inherent delay inconsistencies, we opted for
polling the state of the CookieJar instead of registering call-
back functions, which gives us higher precision timestamps
for CookieJar events.

JavaScript API Call Monitoring. In addition to monitor-
ing network events and internal browser state, we focus on
JavaScript API calls as another category of relevant events
for our analysis. We proxy the relevant JavaScript functions,
logged as events used in the invariants, to record function
calls in a centralized structure located in the extension’s back-
ground script. This proxying is done through Proxy objects
and method overriding, enabling us to collect all the relevant
data associated with each API call, such as its arguments and
the respective browsing context. Our instrumentation logs
calls to the setter and getter of document.cookie, but more
JavaScript methods could be supported in the future using
similar techniques. We adopt a dynamic approach for our
instrumentation using content scripts, which are extension
scripts that run in the context of webpages. Each webpage
is injected with a content script that installs the proxy func-
tions according to the extension configuration. This dynamic
instrumentation is more versatile and scalable compared to
code rewriting methods and allows us to efficiently track and
analyze JavaScript API calls as they occur in real-time.

External Proxy. We incorporate an external proxy into our
framework to overcome two main issues: (i) the restrictions
imposed by browsers over network content deemed sensi-
tive and, hence, inaccessible to background scripts but visible
through a network proxy (e.g., request and response bodies);

(ii) the inconsistent delay between network events and the ex-
ecution of their corresponding callback event handlers. When
a network request leaves the browser, the callback correspond-
ing to its event handler is queued in the extension’s JavaScript
event loop and eventually executed. If the proxy intercepts
the request before the callback is executed, the proxy event’s
timestamp is more accurate and is used as the request event
timestamp in the trace.

4.3.2 Limitations

While our browser instrumentation technique based on exten-
sions and proxies offers a powerful means to monitor internal
browser state, JavaScript API calls, and network events, en-
abling comprehensive browser security analysis with cross-
browser compatibility and minimal code modification or
rewriting, it is essential to acknowledge the inherent limi-
tations of this approach. These limitations include:

Browser Discrepancies. In our instrumentation, we strive to
use only browser extension APIs that are compatible across
browsers. However, browser behavior varies across imple-
mentations, which can introduce limitations to our approach.
These inconsistencies are detected by manual inspection
of our results, and whenever possible, we implement spe-
cific workarounds. But, some issues require changes to the
browsers’ source code and bug fixes. For example, a bug in
Firefox’s URL matching prevents the content scripts from
being injected into opaque origins, such as data URL iframes.
This limitation hinders our ability to monitor JavaScript API
calls in these frames, negatively impacting the comprehensive-
ness of our analysis, and it cannot be circumvented without
changes to Firefox’s source code. For our current usage, this
translates to missing events executed in iframes with opaque
origins, which can lead to false negatives. Another example
is Safari’s resource isolation for WebDriver-controlled in-
stances, which isolates resources such as the cookie jar. This
isolation prevents our extension from effectively monitoring
specific resources such as the CookieJar within Safari in-
stances controlled by WebDriver, which translates to missing
CookieJar-related events for Safari execution traces, leading
to false negatives.

API Constraints. Currently our instrumentation is able to
monitor the necessary components and collect the events re-
quired to reason about our invariants, i.e., CookieJar, network,
and some JavaScript API call events. While some extensions
to our instrumentation are possible, they are constrained by
the availability of APIs in both JavaScript and the extension
environment, and by the Same Origin Policy which is applied
to the injected content scripts. For example, information such
as the effective Content Security Policy (CSP) of a frame
cannot be directly monitored as it is not accessible to scripts
running in pages, nor to browser extensions. To support the
analysis of the CSP mechanism with our approach, we must
develop inference and heuristic techniques, which we could

use alongside other artifacts of our instrumentation, such as
response headers, to infer the CSP enforced on a given frame.
Another constraint to our approach is monitoring the DOM.
Content scripts injected by the extension are still subject to
the Same Origin Policy. Therefore, a full picture of the DOM
may prove difficult to obtain without heuristics over other
events such as network activity and DOM mutation.

In summary, while our browser instrumentation technique
was proven effective in collecting security-relevant browser
execution traces, these limitations underline the importance
of developing better introspection and instrumentation mech-
anisms for browser testing. These mechanisms would benefit
not only our approach but also testing frameworks like WPT,
which currently uses incomplete workarounds to test features
like cookies and the Content Security Policy.

4.4 Discussion: Extensibility

The methodology we propose is meant to enable specification
maintainers and browser developers to check their security
expectations, expressed as Web invariants, against multiple
implementations. This way, security issues can be identified
early during development and across Web platform or browser
updates, e.g., for regression testing.

In this paper, we encode 9 invariants, as discussed in Sec. 3,
showing that the verification pipeline is not bound to a single
security mechanism and can be extended to support additional
Web features. Although we do not consider the required ex-
pertise to develop new invariants a limiting factor, given that
specification maintainers already possess this knowledge, the
expressiveness of the invariants may be limited by the in-
trospection capabilities of our instrumentation. Specifically,
every JavaScript API or property access that can be wrapped
with Proxy objects can easily be traced, encoded as an event
(as in Fig. 1), and used in the definition of new invariants. In-
stead, monitoring internal browser state which is not exposed
to pages or extensions, e.g, CSP, may prove to be difficult to
trace without relying on heuristics or a different instrumenta-
tion approach (e.g., browser code patching [26]).

Automated generation. The definition of new Web invari-
ants relies on the manual effort of understanding the security
requirements of a specification and encoding them into a log-
ical proposition. Automation could be beneficial for aiding
the process, allowing more properties to be covered. Previous
work on Web invariants identifies the importance of clearly
defining the security properties of the Web as a way to have
a sound scientific understanding of Web security [18]. Thus,
the generation of Web invariants presents the challenge of
retaining soundness while characterizing the relevant Web
mechanisms. We leave the development of a methodology to
automatically extend the set of invariants as future work.

Invariant
SAT UNK. SAT UNK. SAT UNK.

I.1 0 0 0 0 – –
I.2 0 0 0 0 – –
I.3 0 0 0 0 – –
I.4 0 0 1 0 – –
I.5 10 0 6 0 – –
I.6 15 0 9 0 – –
I.7 0 0 0 0 – –
I.8 0 448 24 643 21 692
I.9 0 355 18 509 0 628

Table 2: Trace verification results.

5 Evaluation Results

We evaluate our methodology by verifying, using our pipeline,
the 9 Web invariants we define in Sec. 3 against the execution
traces of the 24896 testharness tests from the April 2023
version of the WPT suite. Note that every browser is executed
24896 times, totaling 74688 traces. We use the Z3 theorem
prover as the SMT solver component since it proved to be
the best performing for our invariants. We set a timeout of
10 minutes for the execution of the browser for each test,
and 10 minutes for each Z3 query. When Z3 is not able to
return an answer within the timeout it returns UNKNOWN.
All our experiments have been conducted on a cluster with
132 VCPUs (AMD EPYC 2.0GHz) and 382GB of RAM.

5.1 Preliminary Results

Table 2 reports the outcome of our analysis of the three ma-
jor browsers on the WPT test suite, showing the number of
tests for which Z3 found violation of a Web invariant (SAT).
Additionally, we report the number of UNKNOWN results,
for which our pipeline could not generate a definitive answer.
Note that, given the limitations of Safari instrumentation (see
Sec. 4.3.2), invariants about cookies are expected to always
return UNSAT there (marked as – in Table 2), since the Safari
traces never contain the cookie-jar-set event, which is used in
the premises of our cookie invariants.

Five invariants have at least one violation. The results con-
firm our expectation that different implementations may ex-
hibit different behaviors with respect to the implemented se-
curity mechanisms. In particular, although there is overlap in
some of the SAT traces between different browsers, Table 2
highlights that some SAT results are browser-specific. We
discuss in Sec. 5.2 the security implications of violating each
invariant, where we group SAT results into concrete attacks
against specific browsers that we present as case studies.

For four invariants our pipeline does not report any viola-
tion, so they are valid on the entirety of the execution traces
produced by WPT. This may happen in the cases where the
invariants are well-known and expected to hold by the liter-
ature (I.1, I.2). Additionally, we may obtain no violation if

Trace Collection Verification Totalavg std total avg std total

 28s 6s 23h 29m 19s 1m 42s 23h 05m 1d 22h 35m
 40s 8s 1d 07h 18m 27s 2m 06s 1d 08h 34m 2d 15h 52m
 27s 8s 1d 06h 34m 32s 2m 28s 1d 14h 33m 2d 21h 07m

Table 3: Trace verification execution times.

the traces generated by the test suite do not cover the specific
preconditions for an attack to be performed. As an example,
I.3 does not hold in the current Web platform [37] because
of an attack that requires combining domain relaxation, i.e.,
assignment to the Document.domain property, with __Host-

cookies. This invariant may have no SAT results because the
WPT test suite never uses the two Web features together in
the same test. A similar consideration applies to I.7, as the
localhost URL is never used in cookie-related tests. We dis-
cuss these cases in Sec. 5.3, where we explore additional tests
beyond what is included in WPT.

Z3 returned UNKNOWN during the verification of the
Mixed Content invariants I.8 and I.9. These are caused by
the complex checks that are mandated by the Mixed Content
specification, in particular the recursive checking of the entire
ancestor chain for each network request, which may nega-
tively affect the solver speed and result in UNKNOWN if the
execution time exceeds the verification timeout.

Performance. The performance of our trace verification
pipeline is shown in Table 3. The total run-time for each of
the three major browsers is reported together with the time re-
quired for executing the browser (collecting execution traces)
and the Z3 verification time. Executing a single WPT test
on each of the browsers consistently requires less than one
minute, whereas the verification with the Z3 theorem prover
shows more variability, while still requiring less than a minute
on average. This confirms that verifying Web invariants on
the traces generated by WPT does not add substantial over-
head to the execution of the testing suite, but supplements the
result obtained from each WPT test with an assessment of the
security of the exercised browser functionality.

5.2 Attacks on Major Browsers
Every SAT result obtained as the output of the Z3 theorem
prover corresponds to a violation of a Web invariant on the
execution trace of a specific browser, as captured by our instru-
mentation. These results require a manual analysis to identify
and aggregate similar issues, organizing them into concrete in-
consistencies. This effort is supported by the model obtained
from Z3, which provides the concrete values from the trace
that violate the invariant, highlighting problematic events in
the trace and allowing us to easily discern the cause of the
violation. A goal of our analysis of SAT results is to deter-
mine the root causes underlying these inconsistencies and to
quantify their security impact, and in particular, if they can

lead to concrete real-world attacks. This step is also critical in
identifying any false positives introduced by the observability
limitations of our browser instrumentation (Sec. 4.3.2). For
instance, the inability to correctly observe a specific browser
event may lead to the generation of a violating trace for an
otherwise compliant browser. For example, a missing cookie
deletion event may result in a violating trace if we expect that
cookie to be attached to a subsequent network request.

We now present all the attacks resulting from the analysis
of the SAT results, discussing them in the form of case stud-
ies. In particular, we aggregated all 104 invariant violations
into 10 confirmed attacks and 5 false positives as shown in
Table 4. Due to space constraints, we refer to Appendix D for
a discussion of each false positive and its causes.

 Framed Pages Mixed Content Bypass
Z3 reported SAT for Safari for the trace of the
mixed-content/nested-iframes.window.html test, where
the browser successfully performs a fetch request to an
insecure endpoint coming from a frame whose origin is
potentially trustworthy, violating the I.8 invariant. After some
investigation, we concluded that Safari incorrectly performs
mixed content checks, i.e., secure pages embedded in
insecure origins were not considered potentially trustworthy,
and therefore, mixed content was not blocked except for
requests to load scripts, stylesheets, or requests to insecure
WebSocket. For example, if https://bank.com contains an
authenticated mixed content request (i.e. via fetch), framing
it over http://attacker.com will cause the request to not be
filtered. This behavior might incorrectly expose non-Secure
cookies in clear over the network to passive network attackers.
Moreover, the integrity of the fetch request (and its response)
would not be ensured against network attackers, meaning that
attackers could tamper with its contents to, for example, alter
the control flow of JavaScript execution on the target page.

Disclosure. We disclosed the attack to the Safari developers.
The issue has been fixed in Safari 16.6.

 Sandbox Attribute Mixed Content Bypass
The test mixed-content/csp.https.window.html consists in
a webpage using the sandbox allow-scripts CSP directive.
The page is loaded via HTTPS so mixed content should be
prohibited, nevertheless, a fetch request targeting an HTTP
endpoint is not blocked in Safari, violating I.8. In the trace,
the CSP directive is effectively setting the origin of the page
to null. Since the null origin is not potentially trustworthy,
the requests are not filtered. This vulnerability can be com-
bined with the previous one to obtain a complete bypass of the
mixed content policy: the presence of the sandbox directive
makes the browser allow mixed content requests to scripts,
stylesheets, and insecure WebSockets, which are otherwise
blocked. As a consequence, if https://bank.com contains a
mixed content script, framing it with the sandbox attribute
over http://attacker.com will allow the request to the script
to be sent. A network attacker can tamper with its content

Invariant Total SAT SAT Traces Type Description (causes of SAT)

I.4 1 – 1 – SameSite cookie integrity violation

I.5 18⋆
1 2 – SameSite cookies attached to (favicon, subresource, fetch) requests (requests)

10 5 – SameSite cookies accessible via Document.cookie (non-HTTP)
1 – – SameSite cookies attached to location.reload() network requests (reload)
1 – – Incorrect event ordering

I.6 16

2 3 – Nameless cookies serialization collision
2 1 – Missing events from sandboxed iframes
5 2 – Missing delete cookie event
1 – – Incorrectly tagged requests: missing request initiatior origin

I.8 45

– – 1 Framed pages mixed content bypass
– – 1 Sandbox attribute mixed content bypass
– – 7 Mixed content beacon requests not blocked
– 11 – Mixed content Websocket requests not blocked
– 13 10 Mixed content autoupgrade not performed
– – 3 Incorrectly tagged requests: missing request type

I.9 18 – 18 – Mixed content autoupgrade not performed

Table 4: Aggregated SAT results. (: attack; : false positive; ⋆: the same trace may contain multiple attacks)

to obtain code execution on https://bank.com, in a context
where the origin is null. In this scenario SOP prevents certain
operations (e.g., cookies access) but other attacks, such as
user input tracking, and DOM modifications can still be per-
formed. For instance, an attacker embedding the login page
of bank.com can track user inputs by registering new listen-
ers through the injected script and exfiltrate user credentials
whenever a user is tricked into logging in.

Disclosure. We disclosed this attack to the Safari developers.
The issue has been fixed in Safari 16.6 and CVE-2023-38592
was assigned to this and the previous vulnerability.

 Mixed Content Beacon Requests Not Blocked
A beacon request is a non-blocking POST request sent us-
ing the navigator.sendBeacon API. Mixed content beacon
requests are blockable and therefore should be filtered. How-
ever, our pipeline SAT results show that Safari performs such
requests, violating I.8. When a mixed content beacon request
is not blocked, attached cookies and the data attached to the
request are leaked even to passive network attackers.

Disclosure. We reported the problem to the Safari developers
and we are waiting for confirmation.

 Nameless Cookies Serialization Collisions
Part of the SAT results reported for I.6 are caused by the se-
rialization of nameless cookies. Our invariant expects every
cookie with name n and value v to be serialized as n = v.
However, Chromium and Firefox serialize nameless cookies
where n = "" simply as v. Consequently, our pipeline will
report a violation whenever I.6 matches a trace where a name-
less cookie is serialized. The higher number of SAT results
related to nameless cookies in Firefox compared to Chromium
stems from an inconsistency between the browsers: whenever
Firefox encounters the JavaScript API call document.cookie

= "", a cookie with an empty name and value is set, unlike
Chromium, which does not set any cookie. The serialization
of nameless cookies enables attackers to shadow arbitrary
cookies. This capability includes shadowing Secure cookies
from insecure origins, relaxing an attacker’s requirements to
perform cookie tossing or eviction attacks on Secure cookies,
which would typically require a secure origin [35].

Disclosure. The issue was already reported to the IETF HTTP
Working Group by Squarcina et al. [35] during their study of
cookie integrity.

 SameSite Cookie Integrity Violation
Our pipeline returned SAT for Firefox in the trace of the
cookies/samesite/setcookie-navigation.https.html test,
where a cookie with the SameSite attribute set to Strict

is successfully set in the response to a cross-site network
request initiated from an iframe, violating the I.4 invari-
ant. In particular, an iframe loading https://attacker.com

within https://bank.com might navigate itself to some page
at https://bank.com, which sets SameSite cookies in the re-
sponse to the navigation request. Note that this applies to both
Strict and Lax SameSite cookies. A gadget attacker [18, 19]
can thus leverage this behavior to overwrite cookies to per-
form, e.g., de-authentication attacks.

Disclosure. We reported this vulnerability to Firefox develop-
ers [14] who confirmed the issue assigning it a severity rating
of Normal (blocks non-critical functionality), planning a fix
for the next release.

 SameSite Cookies Isolation
The SAT results returned from our pipeline for I.5 fall into
three categories: request, non-HTTP, or reload. Traces in
these categories all have a similar setup but differ in how
the cookie is retrieved. The setup follows this structure: (i) a

cookie c with SameSite attribute set to Strict or Lax is set
for domain d; (ii) a top-level request initiated by domain
d′, where c is not attached, opens page p with domain d,
which is cross-site with d′. From this point, request traces
perform a network request, initiated by d (from page p) that
is considered same-site and attaches c, violating I.5. This
request can be, for example, a subresource load, a request
to load the favicon, or a request generated by a call to the
fetch JavaScript API. Non-HTTP traces retrieve the cookie c
through a call to document.cookie from p, violating I.5. Fi-
nally, reload traces perform a call to location.reload, trig-
gering a same-site request that reloads page p and attaches c,
which violates I.5. Note that reload traces are not SAT for
Firefox. By manually investigating this inconsistency, we
discovered that Firefox does not attach SameSite cookies to
network requests initiated from calls to location.reload, as
it considers these requests cross-site.

Setting the SameSite attribute of cookies to Strict is con-
sidered an effective defense against CSRF and XS-Leak at-
tacks as these cookies are not attached to cross-site requests.
However, attackers can exploit the browser behavior high-
lighted by I.5 SAT results to bypass these restrictions. In par-
ticular, attackers can forge same-site requests starting from a
cross-origin position by abusing, e.g., redirection gadgets that
trigger attacker-controlled same-site navigation requests, ef-
fectively enabling CSRF attacks. Another security implication
is the possibility of performing XS-Leaks. Consider a page
that loads a script depending on whether the subresource load
request attaches SameSite=Strict cookies and that this script
modifies the DOM of the target page, altering window.length.
An attacker could navigate to this page through window.open,
and even though SameSite=Strict cookies are not attached
to the top-level request, they will be included in subresource
loads in the target page. An attacker can then use the length

property of the window handler to infer the authentication
status of the victim.
Disclosure. We are currently engaging with the HTTP Work-
ing Group to clarify the security properties that should be
expected from SameSite cookies [13].

 Mixed Content WebSockets Requests Not Blocked
These SAT results refer to a set of tests for the following
scenario: WebSocket requests sent from a Worker using the
ws protocol. If the Worker is created from a secure page, so
its origin is potentially trustworthy, we expect the request to
be blocked as mixed content. However, in Firefox it is not,
violating I.8. Investigating the issue uncovered that Firefox
incorrectly implements the filtering for WebSocket requests.
In particular, filtering is not performed if either the origin’s
scheme is blob: or the request is sent from a Worker created
in a trustworthy origin using a data: URI.
Disclosure. We disclosed the problem to Mozilla. The issue
has been fixed in Firefox 120.

 Mixed Content Autoupgrade Not Performed

From the analysis of these SAT results, we observed how both
Safari and Firefox do not perform protocol autoupgrading,
and as a consequence, upgradeable mixed content requests are
sent over the network, violating I.8 or I.9. When this happens,
network attackers can tamper with the content of upgradeable
requests to attempt phishing users by e.g. swapping the icons
of two buttons tricking them into performing destructive op-
erations (e.g., delete message instead of send message). To
prevent these attacks, the latest revision of the specification
forbids loading upgradeable mixed content, but, as of today,
neither Firefox nor Safari are compliant. However, they are
aware of the issue and are planning a fix [2, 15].

5.3 Comprehensiveness of Tests

In this section, we explore additional tests beyond those in
WPT, to (i) show that our pipeline can generalize to different
test suites without modifications, and (ii) to assess how the
comprehensiveness of the individual tests, in terms of the us-
age of Web features, affects the discovery of inconsistencies.
As mentioned in Sec. 5.1, the limited scope of tests may pre-
vent our pipeline from discovering violations. This is the case
when tests do not include actions that are preconditions for the
attack, e.g., when a violation is enabled by the combination
of multiple Web features.

We construct a separate test suite comprising 9 tests to
exercise behavior not covered by WPT. The selected tests are
shown in Table 5. The first group (1-5) corresponds to the vio-
lations discovered by Veronese et al. [37] affecting the current
Web platform. These tests combine multiple features to repro-
duce the attack traces generated by WebSpec. For instance,
the first test uses domain relaxation to allow a subframe to set
a __Host- cookie for a different origin. The remaining web-
spec_* tests use a combination of CSP, Service Workers, and
Trusted Types. Given that our invariants only focus on cook-
ies and Mixed Content, these tests are not expected to reveal
new violations. The second group of tests (6-7) reproduces
the browser testing performed by Squarcina et al. [35]. In par-
ticular, the tests try to perform cookie tossing, eviction based
on cookie jar overflow, and serialization collisions based on
nameless cookies. Each test is composed of multiple sub-tests
that correspond to various combinations of cookie properties,
e.g., tossing of Secure cookies over insecure channels, or
eviction of __Host- cookies. Note that these tests are actively
abusing undefined behavior to perform eviction, as the RFC
does not impose a specific limit to the number of entries in
the cookie jar (although implementations are allowed to set
one). Finally, the last two (8-9) tests use features that are not
covered by WPT. The localhost_cookies test sets Secure,
__Secure-, and __Host- cookies for the localhost domain,
which is never used in WPT. The multi_nested_frames test
sets cookies using mixed-content resources loaded across mul-
tiple levels of frames, as WPT does not include cookies in
mixed-content tests and uses up to two levels of nesting.

Test Name SAT
I.1 I.3 I.6 I.7 I.8 I.9

1 webspec_host_frames – – – – –
2 webspec_csp_sw – – – – – –
3 webspec_csp_sop – – – – – –
4 webspec_tt_frames – – – – – –
5 webspec_csp_blob – – – – – –

6 crumbles_tossing (5) – – – – –
7 crumbles_eviction (8) – – – – – –

8 localhost_cookies (3) – – – – –
9 multi_nested_frames – – – –

Table 5: Additional tests and new violations.

Table 5 reports the results of running our pipeline on the
traces produced by the new test suite. The experiment con-
firms that new violations can be discovered using more com-
prehensive tests. In particular, I.3 does not hold for Fire-
fox, where domain relaxation allows compromising __Host-
cookies integrity. Interestingly, Chrome satisfies the invariant,
since starting from version 115, the document.domain prop-
erty is immutable [5], preventing pages from relaxing the SOP.
The I.1 invariant does not hold for Chrome, as it is possible
to set Secure cookies over an insecure connection when the
URL is localhost. This matches the behavior we discuss in
Sec. 3.1.4 and encode in I.7. Note that Firefox violates the
invariant only when a specific setting flag is enabled. The
new test suite, additionally, allows us to rediscover a viola-
tion for I.6, since the crumbles_tossing test uses nameless
cookies. Similarly, I.8 and I.9 are SAT because upgradeable
mixed content is not upgraded nor blocked in both Firefox
and Safari. Safari also incorrectly loads mixed-content frames
if the top-level window is loaded via HTTP, regardless of the
protocol used to load any intermediate frame. Specifically,
in multi_nested_frames, the test opens a window with
three nested frames, where the top-level window is loaded
via HTTP, the intermediate frames are over HTTPS, and the
innermost frame is over HTTP, which should be blocked.

This experiment shows that employing a more comprehen-
sive test suite has the potential to identify additional violations.
While our focus for this paper is WPT, as it is currently the
most complete and regularly updated browser testing suite
available, our pipeline can be applied to any alternative testing
suites, potentially improving its efficacy.

6 Related Work

Browser Testing. BrowserAudit is a test suite designed to as-
sess the implementation of Web security mechanisms in Web
browsers [25]. It includes more than 400 automated test cases
for SOP, CSP, CORS, cookies and security headers. While the
approach is undeniably useful to detect bugs, it suffers from
significant limitations compared with our proposal. First, test

cases in BrowserAudit were manually created by the authors.
Our approach instead leverages WPT, which is an actively
maintained existing test suite backed up by a large commu-
nity (to date, its GitHub repository counts more than 1,500
contributors). Moreover, the security implications of failed
BrowserAudit tests are also manually identified: failures are
categorized by the authors as warning or critical, supposedly
based on their security impact according to the authors’ under-
standing. Our approach instead detects effective violations of
Web security invariants, i.e., deviant behavior clearly contra-
dicting existing specifications. Concretely, the latest versions
of Chromium and Firefox pass all the tests in BrowserAudit
except for a few warnings, showing that the current set of test
cases cannot identify relevant bugs in existing browsers, as
opposed to our pipeline.

Other work on the automated detection of security bugs
in browsers targeted specific mechanisms or vulnerabilities.
For example, DiffCSP can detect bugs in CSP implementa-
tions [40], while other work investigated incoherencies in the
implementation of SOP [33, 34]. Automated testing has also
been used to detect new cross-site leaks in browsers [32] and
to study the support of Web security mechanisms in mobile
browsers [29]. All these proposals proved effective to iden-
tify new bugs, yet they are tailored to specific needs and do
not leverage general security notions like the concept of Web
security invariant adopted in this paper.

Browser Instrumentation. VisibleV8 (VV8) [26] is a
browser instrumentation framework, implemented as a set
of patches for the Chromium browser, that allows for tracing
JavaScript function calls and property access during naviga-
tion. The VV8 patches are designed to minimize the mod-
ified lines of code, so that they can be easily applied to
updated browser versions. Browser instrumentation imple-
mented as patches to the JavaSript engine, compared to in-
band JavaScript instrumentation (e.g., prototype patching),
has the unique advantage of being tamper-proof and impos-
sible to detect by malicious scripts. However, it suffers from
being tied to a specific browser implementation and requires
additional manual work to be ported to new browser versions.
For this reason, in this paper we opted for browser extensions,
which allow, via the WebExtension API, cross-platform in-
strumentation that requires minimal to no effort to be applied
to any extension-supporting browsers.

Similarly to VV8, JSgraph [28] is a patch to the Chromium
source code that instruments the interface between Blink
and V8, allowing for the recording of audit logs related to
the execution of JavaScript in the browser. JSgraph aims to
provide a detailed JS and DOM-related event log to aid in
analyzing and reconstructing Web attacks. To this end, the tool
includes a visualization component that shows the captured
events in the form of a graph, highlighting causal relationship
between events. JSgraph shares its main limitations with VV8,
being tied to the specific implementation of the Chromium
browser, requiring a substantial amount of manual work to

keep up with the constantly evolving browser code.

Formalization of Web Invariants. In their 2010 paper,
Akhawe et al. [18] presented a formal model of the Web plat-
form for the Alloy analyzer and used it to verify the security
of Web mechanisms such as CORS, the Origin header and
HTML5 forms, discovering three new vulnerabilities. The
authors encode in the model a set of security goals which are
grouped into security invariants and session integrity. In par-
ticular, they emphasize the importance to identify clear Web
security invariants that define the desired security goals of the
Web platform, proposing the definition of 4 invariants. More
recently, Veronese et al. proposed WebSpec [37], a frame-
work for the analysis of Web security mechanisms composed
of a model of the browser in the Coq proof assistant and a
toolchain for automated model-checking against Web security
invariants. In particular, the authors define 10 Web invariants
concerning cookies, the CSP and the CORS, discovering two
new attacks and presenting a formal proof of the correctness
of their proposed mitigations. Although our approach for the
definition of new Web invariants presents some similarities
to both works, previous research focused on models of the
browser and not on specific implementations. By leveraging
the WPT test suite, we can (i) automatically check the ac-
tual browser implementation behavior (i.e., execution traces)
against Web invariants; and (ii) sidestep the issue of requiring
to manually update a browser model to match the updates of
the Web platform. Additionally, compared to previous works,
we are the first to support Mixed Content, modeling its speci-
fication by defining two new Web invariants.

7 Conclusion

This paper presents a novel methodology for formally and
automatically detecting security issues in browser implemen-
tations of client-side Web security mechanisms. Leveraging
the WPT test suite, our framework collects browser execution
traces and validates them using the Z3 theorem prover against
Web security invariants. We formalized and encoded a total
of 9 Web invariants and discovered violations within WPT,
resulting in 10 unique attacks. We reported all our findings to
the affected parties and kickstarted discussions with standard-
ization bodies to address shortcomings at the specification
level. This research positively answers our initial research
question, showing that the proposed automated approach can
provide valuable guidance to browser vendors in identifying
vulnerable Web components requiring immediate attention.

Acknowledgments

The project leading to this publication has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 101034440.
Additionally, this work has been partially supported by

the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research (grant agreement
771527-BROWSEC); by the Vienna Science and Technol-
ogy Fund (WWTF) and the City of Vienna (Grant ID:
10.47379/ICT22060); by the Austrian Research Promotion
Agency (FFG) through the COMET K1 SBA; by DAIS - Uni-
versità Ca’ Foscari Venezia within the IRIDE program and
by project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European Union
- NextGenerationEU; by Fundação para a Ciência e a Tec-
nologia (FCT) under project UIDB/50008/2020 (Instituto de
Telecomunicações).

References

[1] Bug 1459321 - treat loads the result from lo-
cation.reload() as samesite. https://bugzilla.
mozilla.org/show_bug.cgi?id=1459321.

[2] Bug 247197 - upgrade requests in mixed content set-
tings. https://bugzilla.mozilla.org/show_bug.
cgi?id=1811787.

[3] Bypassing samesite restrictions using on-site gad-
gets. https://portswigger.net/web-security/
csrf/bypassing-samesite-restrictions.

[4] Chrome devtools protocol. https:
//chromedevtools.github.io/
devtools-protocol/.

[5] Chrome will disable modifying document.domain to
relax the same-origin policy. https://developer.
chrome.com/blog/immutable-document-domain/.

[6] chrome.declarativenetrequest extension api. https:
//developer.chrome.com/docs/extensions/
reference/declarativeNetRequest/.

[7] chrome.webrequest extension api. https:
//developer.chrome.com/docs/extensions/
reference/webRequest/.

[8] Remote protocol (cpd) - firefox. https:
//firefox-source-docs.mozilla.org/remote/
cdp/.

[9] [RFC6265bis] Accept nameless cookies.
https://github.com/httpwg/http-extensions/
commit/0178223.

[10] [RFC6265bis] Clarify behaviour on page refresh for
samesite cookies. https://github.com/httpwg/
http-extensions/issues/628.

https://bugzilla.mozilla.org/show_bug.cgi?id=1459321
https://bugzilla.mozilla.org/show_bug.cgi?id=1459321
https://bugzilla.mozilla.org/show_bug.cgi?id=1811787
https://bugzilla.mozilla.org/show_bug.cgi?id=1811787
https://portswigger.net/web-security/csrf/bypassing-samesite-restrictions
https://portswigger.net/web-security/csrf/bypassing-samesite-restrictions
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://developer.chrome.com/blog/immutable-document-domain/
https://developer.chrome.com/blog/immutable-document-domain/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/webRequest/
https://developer.chrome.com/docs/extensions/reference/webRequest/
https://developer.chrome.com/docs/extensions/reference/webRequest/
https://firefox-source-docs.mozilla.org/remote/cdp/
https://firefox-source-docs.mozilla.org/remote/cdp/
https://firefox-source-docs.mozilla.org/remote/cdp/
https://github.com/httpwg/http-extensions/commit/0178223
https://github.com/httpwg/http-extensions/commit/0178223
https://github.com/httpwg/http-extensions/issues/628
https://github.com/httpwg/http-extensions/issues/628

[11] [RFC6265bis] Inconsistent browser behavior with se-
cure and prefix cookies on localhost. https://github.
com/httpwg/http-extensions/issues/2605.

[12] [RFC6265bis] Refactor cookie retrieval algorithm to
support non-http apis. https://github.com/httpwg/
http-extensions/pull/1428.

[13] [RFC6265bis] SameSite=Strict cookie isolation on
cross-site windows. https://github.com/httpwg/
http-extensions/issues/2644.

[14] Samesite cookies are set by cross-site iframe naviga-
tions. https://bugzilla.mozilla.org/show_bug.
cgi?id=1844827.

[15] Ship mixed content level 2 upgrading of passive mixed
content. https://bugzilla.mozilla.org/show_
bug.cgi?id=1811787.

[16] The Web Platform Tests project. https://
web-platform-tests.org/.

[17] Webkit web inspector. https://webkit.org/
web-inspector/.

[18] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and
D. Song. Towards a Formal Foundation of Web Security.
In CSF, 2010.

[19] A. Barth, C. Jackson, and J. C. Mitchell. Securing
Frame Communication in Browsers. In USENIX Se-
curity, 2008.

[20] P. Bernardo, L. Veronese, V. D. Valle, S. Calzavara,
M. Squarcina, P. Adão, and M. Maffei. Web platform
threats: Automated detection of web security issues with
WPT – artifacts and source code. https://github.
com/SecPriv/web-platform-threats, 2023.

[21] A. Bohannon and B. C. Pierce. Featherweight firefox:
Formalizing the core of a web browser. In J. K. Ouster-
hout, editor, USENIX Security, 2010.

[22] S. Calzavara, R. Focardi, M. Squarcina, and M. Tem-
pesta. Surviving the web: A journey into web session
security. ACM Comput. Surv., 2017.

[23] L. Chen, S. Englehardt, M. West, and J. Wilander. Cook-
ies: HTTP State Management Mechanism (IETF Draft).
RFC 6265bis, 2022.

[24] D. Fett, R. Küsters, and G. Schmitz. A Comprehensive
Formal Security Analysis of OAuth 2.0. In CCS, 2016.

[25] C. Hothersall-Thomas, S. Maffeis, and C. Novakovic.
BrowserAudit: automated testing of browser security
features. In ISSTA, 2015.

[26] J. Jueckstock and A. Kapravelos. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In IMC. ACM,
2019.

[27] S. Kim, Y. M. Kim, J. Hur, S. Song, G. Lee, and B. Lee.
FuzzOrigin: Detecting UXSS vulnerabilities in browsers
through origin fuzzing. In USENIX Security, 2022.

[28] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci. Jsgraph:
Enabling reconstruction of web attacks via efficient
tracking of live in-browser javascript executions. In
NDSS, 2018.

[29] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis.
Time does not heal all wounds: A longitudinal analysis
of security-mechanism support in mobile browsers. In
NDSS, 2019.

[30] Mozilla. Public Suffix List. https://publicsuffix.
org/.

[31] PortSwigger. Bypassing SameSite cookie restric-
tions. https://portswigger.net/web-security/
csrf/bypassing-samesite-restrictions.

[32] J. Rautenstrauch, G. Pellegrino, and B. Stock. The leaky
web: Automated discovery of cross-site information
leaks in browsers and the web. In S&P. IEEE, 2023.

[33] J. Schwenk, M. Niemietz, and C. Mainka. Same-origin
policy: Evaluation in modern browsers. In E. Kirda and
T. Ristenpart, editors, USENIX Security, 2017.

[34] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the
Incoherencies in Web Browser Access Control Policies.
In S&P, 2010.

[35] M. Squarcina, P. Adão, L. Veronese, and M. Maffei.
Cookie crumbles: Breaking and fixing web session in-
tegrity. In USENIX Security ’23, 2023.

[36] A. Sudhodanan, S. Khodayari, and J. Caballero. Cross-
origin state inference (cosi) attacks: Leaking web site
states through xs-leaks. In NDSS, 2019.

[37] L. Veronese, B. Farinier, P. Bernardo, M. Tempesta,
M. Squarcina, and M. Maffei. Webspec: Towards
machine-checked analysis of browser security mech-
anisms. In S&P. IEEE, 2023.

[38] W3C. Secure Contexts. https://w3c.github.io/
webappsec-secure-contexts/, 2021.

[39] W3C. Mixed Content. https://www.w3.org/TR/
mixed-content, 2023.

[40] S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son. Dif-
fcsp: Finding browser bugs in content security policy
enforcement through differential testing. In NDSS, 2023.

https://github.com/httpwg/http-extensions/issues/2605
https://github.com/httpwg/http-extensions/issues/2605
https://github.com/httpwg/http-extensions/pull/1428
https://github.com/httpwg/http-extensions/pull/1428
https://github.com/httpwg/http-extensions/issues/2644
https://github.com/httpwg/http-extensions/issues/2644
https://bugzilla.mozilla.org/show_bug.cgi?id=1844827
https://bugzilla.mozilla.org/show_bug.cgi?id=1844827
https://bugzilla.mozilla.org/show_bug.cgi?id=1811787
https://bugzilla.mozilla.org/show_bug.cgi?id=1811787
https://web-platform-tests.org/
https://web-platform-tests.org/
https://webkit.org/web-inspector/
https://webkit.org/web-inspector/
https://github.com/SecPriv/web-platform-threats
https://github.com/SecPriv/web-platform-threats
https://publicsuffix.org/
https://publicsuffix.org/
https://portswigger.net/web-security/csrf/bypassing-samesite-restrictions
https://portswigger.net/web-security/csrf/bypassing-samesite-restrictions
https://w3c.github.io/webappsec-secure-contexts/
https://w3c.github.io/webappsec-secure-contexts/
https://www.w3.org/TR/mixed-content
https://www.w3.org/TR/mixed-content

A Encoding Known Web Invariants

We report in the following our encoding in first-order logic of
the 3 invariants which were previously defined in the literature.
For each invariant, we provide the natural language version
of the property and its encoding in our model.

A.1 Integrity of Secure Cookies
The RFC dictates that it should not be possible to set cookies
with the Secure attribute from insecure channels [23, §5.5].
This invariant has been previously formalized as part of the
WebSpec framework [37] as follows.

Invariant (I.1). Cookies with the Secure attribute can only
be set over secure channels.

The invariant is encoded in our model as follows:
SECURE-COOKIES-INVARIANT(tr) :=

t2 > t1 ∧
net-response(_, url, {set-cookie-headers}, _)@trt1 ∧
set-cookie ∈ set-cookie-headers∧
name++"="++ value ∈ split-cookie(set-cookie)∧
"Secure" ∈ split-cookie(set-cookie)∧
cookie-jar-set(name, value, {Secure=true}), false)@trt2)⇒

(url-proto(url, "wss")∨ url-proto(url, "https"))

For every network response at time t1 that leads to a cookie
being set in the cookie jar (at time t2) that has the Secure

attribute set to true, then the protocol of the response url is
either htt ps or wss (i.e., it is a secure channel).

A.2 Confidentiality of HttpOnly cookies
The HttpOnly cookie attribute informs browsers that accesses
to cookies with this attribute set to true by non-HTTP APIs,
i.e., document.cookie, should not be allowed. This property
was formalized in the literature [37] as:

Invariant (I.2). Scripts can only access cookies without the
HttpOnly attribute.

We encode the invariant as:
HTTP-ONLY-INVARIANT(tr) :=

t2 > t1 ∧
cookie-jar-set(name, value, {http-only, secure, domain, path})@trt1 ∧
js-get-cookie(ctx, cookies)@trt2 ∧
name++"="++ value ∈ split-cookie(cookies)∧
cookie-match(path, domain, secure, ctx-location(ctx))⇒

http-only = false

For every access to document.cookie in the domain domain
at time t2 that successfully returns a cookie previously stored
in the cookie jar for the same domain (at time t1) then the
cookie’s HttpOnly attribute has the value f alse.

A.3 Integrity of __Host- cookies
Browsers should enforce that cookies with a name prefix
of __Host- are set with an empty domain attribute, making

these cookies host-only. Effectively, these cookies can only
be set by responses to the domain that created them or by
scripts running in that domain. Veronese et al. [37] discuss
this property of the __Host- prefix and propose the following
natural language formalization:

Invariant (I.3). A __Host- cookie set for domain d can only
be set by d or by scripts included in pages on d.
We encode the invariant in our model as:

HOST-INVARIANT(tr) :=
t2 > t1 ∧
(net-response(_, url, {set-cookie-headers}, _)@trt1 ∧

set-cookie ∈ set-cookie-headers∧
"__Host-"++ cname++"="++ cvalue ∈ split-cookie(set-cookie)∧
url-domain(url, host))∨

(js-set-cookie(ctx, set-cookie, _)@trt1 ∧
"__Host-"++ cname++"="++ cvalue ∈ split-cookie(set-cookie)∧
url-domain(ctx-location(ctx), host))

cookie-jar-set("__Host-"++ cname, cvalue, {domain}, false)@trt2 ⇒
domain = host

For every network response or access to Document.cookie
property at t1 that causes a cookie-jar-set event at t2 which
sets a __Host--prefixed cookie, the effective domain of the
cookie must be equal to the domain of the url of the net-
work response or to the browsing context where the access to
Document.cookie was performed.

B Test Selection

Table 6 reports the considered tests for our evaluation. In par-
ticular, we execute all testharness.js tests from the d888ebb

version of WPT (Apr 2023).

C Design Space Analysis

We consider several approaches to browser instrumentation:
Browser extensions are software modules that extend browser
functionality. Extensions are powerful as they can access
internal browser structures such as the cookie jar, monitor and
intercept network traffic, and access and modify the DOM.
Service workers are scripts that run in the background and
control the behavior of Web pages. They act as proxy servers
between Web applications, the browser, and the network.
However, they run on a different JavaScript context and have
no access to the DOM.
WebDriver is a Web standard that describes a remote inter-
face that allows the control and introspection of browsers.
Chrome Devtools Protocol (CDP) is a remote debugging
protocol [4] which provides access to the DOM, network
activity, and a JavaScript debugger.
External proxies act as intermediaries between a Web server
and the browser and allow the monitoring and intercepting of
network traffic.
Browser source code patching allows access to all internal
browser structures and events, enabling the most comprehen-
sive monitoring and trace collection.

html 6404
referrer-policy 1301
content-security-policy 821
fetch 754
dom 473
IndexedDB 454
svg 448
xhr 391
navigation-api 375
workers 321
service-workers 296
websockets 276
streams 251
webaudio 247
wasm 246
bluetooth 230
encoding 215
upgrade-insecure-requests 197
shadow-dom 169
webrtc 168
mixed-content 163
webmessaging 154
mathml 140
webxr 137
custom-elements 132
pointerevents 124
speculation-rules 123
resource-timing 122
WebCryptoAPI 119
web-animations 119
scheduler 108
encrypted-media 106
client-hints 104
scroll-animations 102
eventsource 100
editing 98
infrastructure 91
trusted-types 88
FileAPI 87
layout-instability 81
media-source 78
permissions-policy 76
performance-timeline 76
encoding-detection 75
web-locks 73
webcodecs 73
webvtt 71
fullscreen 70
intersection-observer 69
cookies 69
selection 63
user-timing 62
largest-contentful-paint 61
signed-exchange 60
cookie-store 60
compression 59
serial 58
webidl 55
url 54
event-timing 54
paint-timing 53
navigation-timing 53
mediacapture-streams 51
webnn 50
preload 50
webusb 49
webstorage 49
feature-policy 49
fs 48
loading 47
clipboard-apis 47
element-timing 46
uievents 43
portals 42
webtransport 37
webauthn 36
js 35
document-policy 33
storage 32

compute-pressure 30
web-bundle 29
focus 29
domparsing 29
soft-navigation-heuristics 28
cors 27
payment-request 26
shape-detection 25
webrtc-encoded-transform 24
credential-management 24
animation-worklet 24
reporting 23
mediacapture-image 23
import-maps 23
domxpath 23
worklets 22
orientation-event 21
inert 20
requestidlecallback 19
longtask-timing 19
visual-viewport 18
storage-access-api 18
long-animation-frame 18
hr-time 18
screen-wake-lock 17
quirks 17
notifications 17
mediacapture-record 17
js-self-profiling 17
battery-status 17
urlpattern 16
orientation-sensor 16
measure-memory 16
geolocation-API 16
screen-orientation 15
old-tests 15
browsing-topics 15
beacon 15
web-share 14
resize-observer 14
input-events 14
imagebitmap-renderingcontext 14
background-fetch 14
secure-payment-confirmation 13
presentation-api 13
picture-in-picture 13
payment-handler 13
console 13
scroll-to-text-fragment 12
is-input-pending 12
font-access 12
accelerometer 12
web-nfc 11
speech-api 11
page-visibility 11
network-error-logging 11
idle-detection 11
geolocation-sensor 11
forced-colors-mode 11
server-timing 10
screen-capture 10
sanitizer-api 10
pending-beacon 10
mediacapture-insertable-streams 10
media-capabilities 10
magnetometer 10
gyroscope 10
compat 10
audio-output 10
ambient-light 10
webrtc-extensions 9
touch-events 9
permissions 9
webgl 8
video-rvfc 8
subapps 8
secure-contexts 8
keyboard-map 8
document-picture-in-picture 8

webvr 7
remote-playback 7
pointerlock 7
mediasession 7
mediacapture-fromelement 7
keyboard-lock 7
fledge 7
x-frame-options 6
webrtc-stats 6
shared-storage 6
gamepad 6
file-system-access 6
close-watcher 6
badging 6
webrtc-svc 5
wai-aria 5
push-api 5
delegated-ink 5
content-index 5
clear-site-data 5
webrtc-identity 4
vibration 4
ua-client-hints 4
proximity 4
payment-method-basic-card 4
mimesniff 4
merchant-validation 4
lifecycle 4
device-memory 4
virtual-keyboard 3
trust-tokens 3
top-level-storage-access-api 3
timing-entrytypes-registry 3
screen-details 3
periodic-background-sync 3
parakeet 3
netinfo 3
mst-content-hint 3
generic-sensor 3
autoplay-policy-detection 3
webrtc-priority 2
webhid 2
savedata 2
png 2
permissions-revoke 2
permissions-request 2
managed 2
intervention-reporting 2
installedapp 2
html-media-capture 2
direct-sockets 2
deprecation-reporting 2
density-size-correction 2
background-sync 2
window-placement 1
webrtc-ice 1
web-otp 1
webmidi 1
webdriver 1
subresource-integrity 1
private-click-measurement 1
payment-method-id 1
page-lifecycle 1
media-playback-quality 1
mediacapture-region 1
mediacapture-handle 1
mediacapture-extensions 1
input-device-capabilities 1
eyedropper 1
entries-api 1
ecmascript 1
custom-state-pseudo-class 1
contenteditable 1
content-dpr 1
contacts 1
apng 1
acid 1
accname 1

Table 6: Considered WPT tests.
Total: 24896, WPT Version: d888ebb

Instrumentation Ease of Cross-Browser ObservabilityImplementation Compatibility

Browser Extensions
Service Workers

WebDriver
Chrome Devtools Protocol

External Proxies
Source Patching

Table 7: Design space analysis: comparison of browser instru-
mentation methods. (: High, : Medium, : Low)

We evaluate these options according to three criteria:
(i) ease of implementation, (ii) cross-browser compatibility,

and (iii) observability, i.e., how many events the instrumenta-
tion method can collect, and summarize the results in Table 7.

Ease of Implementation. Browser extension implementa-
tions generally depend on the complexity of the extension,
which, for our use case, is directly proportional to the number
of different events we mean to collect in the traces. How-
ever, since the extension API is well documented, and exten-
sions are written in JavaScript, which is not verbose, we deem
the ease of implementing our browser instrumentation using
browser extensions high. Service Workers and the remote pro-
tocols would also be high in the ease of implementation scale
for our use-case, for the same reasons as browser extensions,
if not for the fact that Service Workers and WebDriver are
either testing target or testing mechanisms of WPT, which
means that the WPT framework and testing suite would re-
quire extra modifications, making its implementation more
complex. External proxies also require low implementation
effort for the same reasons as browser extensions, making use
of expressive programming languages and well-documented
APIs, with a small set of potential events to monitor. On the
opposite end of the spectrum, source code patching requires
extensive manual effort in understanding browser implemen-
tations, which are generally written in lower-level languages
like C++ and are very extensive.

Cross-Browser Compatibility. Browser extension features
are dictated by the manifest versions supported by a given
browser. However, all major browsers support manifest ver-
sions v2 (Firefox and Safari) or v3 (Chromium), which signif-
icantly overlap in the supported APIs, making it possible to
write powerful cross-browser extensions. The Service Worker
API is a standard supported by all major browsers. The Web-
Driver protocol is also a standard, and its core set of func-
tionality is supported across browsers. The Chrome Devtools
Protocol is not a standard and, therefore, not supported con-
sistently across different browsers [8], [17]. External proxies
are completely browser agnostic and score high on compati-
bility. Source code patching concerns only a given browser,
significantly hindering its cross-browser compatibility

Observability. Browser extensions provide access to browser
internal structures and events, like network activity and the
cookie jar, and allow the dynamic inclusion of arbitrary
JavaScript in pages using only the overlapping APIs between
manifest v2 and v3, completely cross-browser and indepen-
dent from WPT. However, this approach also has some limi-
tations. For instance, manifest v3 does not allow the inspec-
tion of network request and response bodies for privacy rea-
sons [6, 7], and Chromium-based browsers no longer support
manifest v2 extensions. Service workers are similar to exter-
nal proxies in observability, as they are limited to monitoring
network traffic since they do not have access to the DOM.
Remote protocols like WebDriver and CDP also provide ac-
cess to browser internal structures and events, like network
activity and the cookie jar, and allow the dynamic inclusion

of JavaScript in the target pages, similar in observability to
browser extensions. Source code patching provides the high-
est possible level of observability since it grants access to
every internal structure in the given browsers.

D False Positives

In this section, we examine the false positives we obtained
during our evaluation of the Web invariants against WPT
traces and discuss their causes.

 Incorrect event ordering
For one trace, our pipeline returned SAT for I.5 due to out-
of-order events. Since our monitoring of network events is
based on callbacks, which are subject to scheduling delays,
and our monitoring of CookieJar events is polling-based, the
order in which these events are collected may not match the
concrete browser execution. Invariant I.5 matches a specific
order of events, i.e., a cookie-jar-set event setting cookie c,
followed by a cross-site network request that opens a page
p where cookie c is not attached, and an access to cookie c
from page p. Consider a concrete browser execution where
a first network request leads to a cookie being set, which is
then attached to a subsequent request. If the first two events
are swapped in the trace, this incorrect trace can be matched
by invariant I.5, leading to a violation.

 Missing events from sandboxed iframes
Our pipeline reported SAT for the traces of the test
cookies/samesite/sandbox-iframe-subresource.https.-

html on Chromium and Firefox for I.6. In this trace, a
previously set cookie is expected to be attached to a network
request from an iframe. However, since the iframe has the
sandbox attribute, it cannot attach existing cookies to network
requests. Since our instrumentation cannot observe events
originating from sandboxed iframes, nor detect whether an
iframe is sandboxed, invariant I.6 cannot account for this
behavior. In this trace, browsers correctly withheld a cookie
that I.6 expects to be attached to a network request, leading
to an invariant violation.

 Missing delete cookie event
In some cases, our browser instrumentation is unable to detect
cookie deletion events. Missing cookie deletion events cause
some of the SAT results for I.6. Consider an execution where
a previously set cookie c is deleted before a network request
that would attach c, but the cookie deletion event is missing
from the trace. I.6 will expect the cookie to be attached to the
network request since, according to the trace, that cookie is
still in the Cookiejar. However, since in the browser execution
the cookie no longer exists, it is not attached to the network
request, leading to an invariant violation.

 Incorrectly tagged requests
For three traces, Z3 returned SAT for I.8 on Safari. These are
caused by the lack of the request-type field in the Request

object returned by the instrumentation for network events. In
particular, a toplevel request to a URL which is not potentially
trustworthy should be allowed. However, the absence of the
request type makes the expression type = main_frame false
in I.8, violating the invariant. Similarly, one Chromium trace
violates I.6 since a network event in the trace is missing the
origin field, i.e., the origin of the request initiator. Since the
origin field is used by cookie-should-be-sent to determine if
a SameSite cookie should be attached to a request, a request
missing the initiator origin information and containing no
cookie can be incorrectly tagged as violating when cookie-
should-be-sent incorrectly (because of the missing origin)
determines that cookies should be present.

	Introduction
	Background
	Web Invariants
	Traces and Events
	Integrity of =`SameSite Cookies
	Isolation of =`SameSite Cookies
	Cookie Serialization Collision Resistance
	Confidentiality of =`Secure Cookies
	Blockable Mixed Content
	Upgradeable Mixed Content

	Trace Verification Pipeline
	Motivating Example
	Methodology
	Browser Instrumentation
	Implementation
	Limitations

	Discussion: Extensibility

	Evaluation Results
	Preliminary Results
	Attacks on Major Browsers
	Comprehensiveness of Tests

	Related Work
	Conclusion
	Encoding Known Web Invariants
	Integrity of Secure Cookies
	Confidentiality of HttpOnly cookies
	Integrity of __Host- cookies

	Test Selection
	Design Space Analysis
	False Positives

