
The Security Lottery: Measuring Client-Side Web Security Inconsistencies

Sebastian Roth†, Stefano Calzavara‡, Moritz Wilhelm†, Alvise Rabitti‡, Ben Stock†
{sebastian.roth,moritz.wilhelm,stock}@cispa.de; {stefano.calzavara,alvise.rabitti}@unive.it

† CISPA Helmholtz Center for Information Security ‡ Università Ca’ Foscari Venezia

Abstract
To mitigate a myriad of Web attacks, modern browsers sup-
port client-side security policies shipped through HTTP re-
sponse headers. To enforce these defenses, the server needs to
communicate them to the client, a seemingly straightforward
process. However, users may access the same site in variegate
ways, e.g., using different User-Agents, network access meth-
ods, or language settings. All these usage scenarios should
enforce the same security policies, otherwise a security lottery
would take place: depending on specific client characteristics,
different levels of Web application security would be provided
to users (inconsistencies). We formalize security guarantees
provided through four popular mechanisms and apply this to
measure the prevalence of inconsistencies in the security poli-
cies of top sites across different client characteristics. Based
on our insights, we investigate the security implications of
both deterministic and non-deterministic inconsistencies, and
show how even prominent services are affected by them.

1 Introduction

Web applications are one of the primary access points to
security-sensitive data and functionality which we use on a
daily basis, hence they represent a primary target for attackers.
Unfortunately, the attack surface against Web applications is
very large and Web application security is a complicated topic
which requires actions at very different levels, including the
use of transport layer encryption via HTTPS, the implemen-
tation of server-side sanitization routines against attacks like
SQL injection, and much more. An important and increas-
ingly popular defense layer of Web applications is client-side
Web security, i.e., the adoption of appropriate browser-side
defenses to prevent or mitigate relevant Web threats [37].
Examples of such defenses which are quite popular on high-
profile Web sites include cookie security attributes, Content
Security Policy (CSP) and HTTP Strict Transport Security
(HSTS). Several papers already studied (and criticized) the
adoption of different client-side security mechanisms in the

wild. For example, cookie security attributes turned out to be
underused by site operators [5, 39], CSP is most often config-
ured incorrectly [28, 43] and HSTS had a hard time getting
traction even on top sites [22, 33]. However, these studies
were performed in a fixed and often unspecified measurement
setting, e.g., measuring security using a single crawler running
a specific browser on a machine with a static IP.

In this paper, we investigate the client-side security of top
sites from a new angle. Our analysis starts from the observa-
tion that client-side security inherently depends on the correct
communication of security policies from the server to the
client. This seemingly straightforward process might hide
subtleties, which can affect Web application security and its
large-scale measurement [18]. In particular, we observe that
there is no guarantee that two clients accessing the same URL
receive the same security policies. For example, clients ac-
cessing the same Web application from different geolocations
might be served by different servers, due to the existence of
several localized variants of the same site. Moreover, the same
person might access the same Web application through dif-
ferent User-Agents, e.g., Chrome on their desktop computer
and Safari on their iOS mobile device, while the same client
might access the same Web application using different forms
of network access, e.g., through a VPN. Finally, even the same
HTTP request might receive different HTTP responses when
it is sent multiple times by the same client apparently under
the very same conditions, due to the DNS system resolving
the same hostname to different IP addresses and the possible
intervention of load balancers and HTTP middleboxes [16].

Intuitively, we (and Web users) would like all the responses
served across these multiple legitimate scenarios to enforce
the same security policies, otherwise a security lottery would
take place: depending on specific client characteristics, differ-
ent levels of Web application security would be provided to
users. We refer to this class of potential security flaws as in-
consistencies. Unfortunately, our research shows that multiple
client characteristics might inadvertently affect Web applica-
tion security in the wild, thus leaving users of prominent
services unprotected against both Web and network attacks.



Contributions

In this paper we measure the prevalence of inconsistencies
in the security policies of top sites across different client
characteristics and we quantify their security implications:

1. We propose a data collection methodology tailored to our
analysis and we build a dataset of 13,626,145 responses
collected from the 10,000 highest-ranking sites available
through HTTPS (based on Tranco [25]), while testing
a number of different client characteristics. Our tests
include the use of different User-Agents, network access
methods and language settings.

2. We introduce general definitions of consistency for client-
side security mechanisms and we instantiate them to a set
of popular defenses available in modern browsers. Our
definitions are semantics-based, i.e., they only capture
inconsistencies with a potential security import, rather
than superficial syntactic differences or other types of
false positives coming from the different enforcement
models of different security mechanisms.

3. We apply our definitions to the collected data and we
report on the key findings. Our measurement shows that
a significant fraction of the analyzed Web sites suffers
from different types of client-side security inconsisten-
cies. Remarkably, the majority of them can be attributed
to specific client characteristics, which identify weak
spots in the security configuration, while the others can
be attributed to non-deterministic factors, which may
nevertheless be exploited by attackers.

2 Background and Related Work

We first outline the relevant security mechanisms for our paper
and then review the related work in this area.

2.1 Client-Side Security Mechanisms

All the security mechanisms in the present section are acti-
vated by means of HTTP response headers or (in some cases)
by making use of meta tags within the HTML. In our analysis
we only focus on security policies set via response headers,
which is the most common deployment scenario indicated by
prior work [6, 28].

Threat Model The client-side security mechanisms under
study are designed to prevent different threats coming from
Web attackers and network attackers, the standard threat mod-
els of the Web security literature. Web attackers operate a
malicious site, say evil.com, and leverage it to launch at-
tacks against target Web applications. Relevant Web threats in-
clude Cross Site Scripting (XSS), Cross Site Request Forgery

(CSRF) and click-jacking. Network attackers extend the capa-
bilities of Web attackers with full control of the unencrypted
HTTP traffic, e.g., because they have access to the access
point where the victim is connected.

Cookie Security Attributes Cookies are the traditional
state management mechanism of the HTTP protocol, yet they
suffer from a range of security problems in their default con-
figuration. Site operators are thus recommended to improve
the level of protection of their cookies by marking them with
appropriate security attributes.

The HttpOnly attribute ensures that cookies are not accessi-
ble from JavaScript, which prevents cookie theft through mali-
cious scripts, e.g., injected through XSS. The Secure attribute
guarantees that cookies are never sent in plain HTTP requests,
but only over encrypted HTTPS connections, which rules out
network sniffing attempts. The combination of HttpOnly and
Secure significantly raises the confidentiality guarantees of
cookies, which is particularly important to protect against
session hijacking [5, 11].

The latest addition to the set of attributes is called SameSite,
which is meant to protect against CSRF attacks. If the attribute
is set to Lax, cookies are only sent on cross-site requests when
the main frame is navigated using a safe method like GET.
If instead the attribute is set to Strict, cookies are never sent
across sites. Some modern browsers like the latest versions of
Chrome automatically promote all cookies to SameSite Lax,
hence site operators can opt out from protection by setting
the SameSite attribute to None for compatibility reasons.

Content Security Policy Content Security Policy (CSP)
is a security mechanism originally aimed at mitigating the
dangers of XSS and later extended to cover additional threats.
In essence, a CSP is meant to ensure that only resources
explicitly allowed by the developer of a page can be included
therein. This is achieved by binding directives of the form
type-src (for different content types, e.g., scripts, images, etc.)
to a set of allowed sources, which can be as specific as a full
URL or as unspecific as https://*. Script execution can
also be controlled by allowing only script tags bearing a valid
nonce attribute or matching a given hash, which should be
preferred over allowlists [43].

Enforcing a CSP with a script-src (or alternatively a default-
src) directive implicitly disables a page’s ability to run in-
line scripts, inline event handlers, and string-to-code trans-
formation functions like eval, which are the most common
XSS vectors. These restrictions can be lifted by the ’unsafe-
inline’ or ’unsafe-eval’ source-expression, respectively, al-
though ’unsafe-inline’ is voided by the use of nonces / hashes
in modern browsers to authorize individual scripts. To support
dynamic inclusion of scripts, scripts with a valid nonce can
propagate trust to recursively included scripts via the ’strict-
dynamic’ source-expression. This source-expression voids

evil.com
https://*


any allowed hosts for script inclusion, forcing the exclusive
use of nonces / hashes to control scripts.

Other popular use cases of CSP include framing control
and TLS enforcement [28]. To support the former, CSP in-
troduced the frame-ancestors directive, which defines an al-
lowlist for framing. For the latter, CSP supports two useful
directives: upgrade-insecure-requests forces an automated
upgrade from HTTP to HTTPS for all resources loaded by
the page, while block-all-mixed-content strengthens the tradi-
tional mixed content policy implemented by major browsers
to rule out all forms of HTTP communication from HTTPS
pages. Note that upgrade-insecure-requests effectively sub-
sumes block-all-mixed-content.

X-Frame-Options X-Frame-Options (XFO) is one of the
oldest security headers, originally introduced in Internet Ex-
plorer to defend against click-jacking attacks by enforcing a
framing control policy. Though now deprecated in favor of
the frame-ancestors directive of CSP, XFO is still massively
deployed in the wild [7].

In modern browsers, XFO can be set to two different values:
SAMEORIGIN allows framing only on pages with the same
origin of the framed content; DENY instead forbids any form
of framing. XFO also used to support a third option, called
ALLOW-FROM, which could be used to allow framing only
from a given URL, however major browsers like Chrome and
Firefox do not support it anymore or even never supported it.

HTTP Strict Transport Security Although the Web is fast
progressing towards a full usage of transport layer encryption
through TLS, browsers do not automatically upgrade all con-
nections to HTTPS to avoid breakage. This introduces the
danger of attackers who force a victim’s browser to make a
request towards the HTTP version of a site, thus allowing the
attacker to perform impersonation attempts, e.g., for phishing
or to sniff non-Secure cookies.

To prevent these threats, HTTP Strict Transport Security
(HSTS) was introduced. In particular, once set for a specific
HTTPS host via the Strict-Transport-Security header, any
connection towards that host is automatically upgraded to
HTTPS by the browser for the duration specified in the max-
age attribute (or until a HSTS header with max-age set to 0
is received). Optionally, HSTS can specify the includeSub-
Domains directive, which extends protection to all the subdo-
mains of the host setting the security header. This is impor-
tant to defend against network attackers who could otherwise
forge cookies from HTTP subdomains and to prevent the
exfiltration of domain cookies lacking the Secure attribute.

Due to its design, HSTS faces a Trust-On-First-Use
(TOFU) problem because network attacks can be performed
before TLS connections are enforced via the Strict-Transport-
Security header in the first response. In order to get rid of this
issue, hosts supporting HSTS can also ask for inclusion in
the HSTS preload list [26], which is a public list of known

hosts where browsers should activate HSTS by default. To
be accepted into the HSTS preload list, a host must serve a
valid HSTS header with max-age set to at least one year, have
enabled includeSubDomains, and include the preload direc-
tive. Since preloading implies a fully functional HTTPS setup
for all of a site’s subdomains, which might cause problems in
practice, the preload list offers a feature for removal. For this
removal request to go through, a site has to serve a valid HSTS
header (i.e., at least specifying a max-age value) without the
preload directive [27]. After this, the site is removed from the
preload list without further notice to the site operator.

2.2 Related Work
We categorize related work in three key areas: client-side Web
security, Web security inconsistencies and Web measurements
from different vantage points.

Client-Side Web Security Client-side Web security re-
ceived an increasing amount of attention by the research
community in the last few years. Prior research studied the
adoption of different client-side security mechanisms, includ-
ing cookie security attributes [5, 39], CSP [6, 28, 43] and
HSTS [22, 33]. Stock et al. [37] investigated the historical
evolution of the most popular client-side security mechanisms
using archival data. However, none of these works focused
on client-side Web security inconsistencies, because they an-
alyzed the considered security mechanisms using a single,
fixed client with a specific network access method.

Web Security Inconsistencies Other related studies are
those on Web security inconsistencies, i.e., conflicting con-
figurations of protection mechanisms leading to insecurity.
This problem has been explored from different angles. A first
work investigated inconsistencies between the desktop and
the mobile version of the same site [21]. This work is largely
complementary to ours, because it analyzes vulnerabilities
enabled by security inconsistencies between a desktop site
like www.foo.com and its mobile variant m.foo.com. Our
analysis instead disregards such cases, because www.foo.com
and m.foo.com are not necessarily the same Web applica-
tion, hence they might legitimately have different security
requirements. Our methodology (see Section 5) is designed
to minimize false positives by taking the specific enforcement
models of existing security mechanisms into account and fo-
cuses on security inconsistencies in the same Web application
enabled by a wide range of different client characteristics
(including the use of a mobile client, but not limited to that).
Similar considerations apply to an analysis of HTTPS security
mismatches between www.foo.com and its parent [1].

Another complementary piece of work includes a large-
scale study of how different User-Agents enforce the same
click-jacking protection policy differently [7]. This is a dif-
ferent form of Web security inconsistency coming from the



variegate cross-browser support of specific security mech-
anisms [31, 32], something which we abstract from by as-
suming the use of a modern, fully compliant client. A last
work on Web security inconsistencies is the recent Site Policy
proposal, designed to tame inconsistent configurations of the
same security mechanism across different pages of the same
site, which is yet another orthogonal security issue [8].

Web Measurements Prior work proposed the use of multi-
ple vantage points for Web measurements [17, 18] and several
papers measured the impact of different vantage points on
specific aspects. Notable examples include papers analyz-
ing how geolocation may affect the behavior of Web track-
ers [13, 14, 30, 40] and the security guarantees of HTTPS [29].
The latter work also analyzes downgrades in the use of secu-
rity headers as part of a broader study, though its treatment is
not nearly as comprehensive as that of our paper: it considers
a more limited set of headers and use cases, it only covers
a specific type of inconsistency (lack of header) and it only
focuses on a single factor (geolocation). Other work studied
suspicious content manipulation performed by free proxies,
VPNs and middleboxes [12, 16, 19, 20, 24, 41, 42]. These
papers identified a range of malicious behaviors and shady
practices, including script injection, cookie injection, TLS
downgrades and generic header manipulations. Orthogonally,
we are only interested in server-side responses without any
network manipulation, i.e., we measure the impact of different
legitimate access methods on Web application security.

3 Motivation for Our Study

In contrast to prior work, we measure client-side Web secu-
rity across different client characteristics to identify specific
conditions that attackers might exploit to identify weak spots
in protection. We discuss a few relevant examples below.

A Web site may set the Secure attribute on its session
cookies when it is accessed using Chrome, but may forget the
attribute when it is accessed using Opera. This would leave
Opera users vulnerable to cookie sniffing attempts over HTTP,
which may enable session hijacking attacks against a specific
user population. In terms of exploitation, a network attacker
could just try a traditional cookie leak attempt, e.g., injecting
an HTTP image pointing to the target site, and profit from the
presence of Opera users on the network under her control.

A Web site may configure its CSP differently when ac-
cessed from different countries, e.g., due to the use of differ-
ent ad networks, and there is no guarantee that all these CSPs
enjoy the same security guarantees. For example, users from
specific countries may be left unprotected against XSS, so
a Web attacker might attempt targeted attacks where a link
containing an XSS payload is only shared on social media
platforms which are most popular on the vulnerable country.

Additionally, security mechanisms might change when

sites are accessed from different geolocations. These can ei-
ther occur because a visitor originates from a specific country
or because they rely on a VPN or the Onion network to spoof
their geolocation. Both the geolocation and the fact that a user
is connecting through the Onion network may have an impact
on security, which can be leveraged by an attacker if these
changes are deterministic based on the (spoofed) geolocation.

An orthogonal issue is that sites may change security head-
ers in a non-deterministic fashion. Indeed, we observed dif-
ferent security policies on the same Web page even when
the page was accessed under the very same client characteris-
tics, due to non-deterministic factors like load balancers. This
means that users may occasionally enjoy different levels of
protection even when no observable condition changes, hence
in our threat model we also consider determined attackers who
actively try to abuse such inconsistencies opportunistically.

In the following two sections, we lay the ground work for
our analysis. First, we explain our measurement setup and
chosen client characteristics, as well as how we selected sites
to ensure a measurement without network-level interference.
Second, we formalize a definition of consistency and apply it
to the previously outlined security mechanisms.

4 Data Collection Framework

Here, we discuss which types of factors we investigate to
understand differences in client-side Web security guarantees.
We then outline which information we use to collect data for
each of the factors and we discuss our key design choices.

4.1 Scope of the Study
We assume the use of a modern client implementing all the
security mechanisms in Section 2, e.g., the latest versions of
Chrome and Firefox as of January 1, 2022. We thus exclude
the use of legacy clients, because it is clear that this discour-
aged practice may severely downgrade Web application secu-
rity, e.g., because CSP is not supported by the browser. We
also assume that modern clients correctly implement all the
security mechanisms according to their official specifications,
i.e., if two different clients receive the same security headers,
we assume they enforce the same intended level of protection.
Finding bugs in the implementation of client-side security
mechanisms is an orthogonal issue [32].

We identify three factors which users may legitimately
manipulate as part of their everyday Web browsing experi-
ence, without realizing that they can unintendedly affect Web
application security:

1. User-Agent: users have different tastes and might prefer
different browsers, e.g., due to the privacy policies they
implement by default. Moreover, the same user might
use different browsers on different devices, possibly run-
ning different operating systems. As long as users make
use of a modern, up-to-date browser, they likely do not



Factor Set of tests Tests

User-Agent Windows client User-Agent header: Chrome 96, Firefox 95, Edge 96, Opera 82
Linux client User-Agent header: Chrome 96, Firefox 95, Opera 82
macOS client User-Agent header: Chrome 96, Firefox 95, Edge 96, Opera 82, Safari 15.2
Android client User-Agent header: Chrome 96, Firefox 95, Opera 96
iOS client User-Agent header: Chrome 96, Firefox 95, Edge 86, Safari 15.2

Vantage Point VPN service Servers from hidemyass.com - 1 per country (218 countries)
Onion network Standard Onion client - 1 end-node per country (49 countries)

Client Configuration Language Accept-Language header: en, es, cn, ru, de

Table 1: Selected client conditions that might influence the received security headers

expect Web application security to be affected, yet it is
possible that a site sets up different configurations based
on the value of the User-Agent header of the incoming
requests for generic reasons. This practice, known as
User-Agent sniffing, might leave some User-Agents un-
protected against specific classes of attacks. Note that we
use the terms browser and User-Agent interchangeably.

2. Vantage Point: users may access a given site from differ-
ent geographical vantage points. Users may not expect
this practice to affect Web application security, yet it is
possible that the geolocation has an impact on dynami-
cally loaded advertisement, which in turn might require
a different server-side configuration of CSP. Further, the
exit nodes of the Onion network are publicly known,
hence a connection through the Onion network might
result in a different response, possibly introducing a dif-
ference in security.

3. Client Configuration: some configuration settings might
influence the way clients interact with Web sites. For
example, the language of the client is normally adver-
tised in the Accept-Language header and the site might
use this information to redirect the client to a localized
homepage served by a different host, possibly with a
different security configuration. We only focus on this
aspect (language) in our analysis for simplicity.

Table 1 identifies for each factor a set of possible tests,
which can be easily simulated in a black-box fashion by a
Web crawler. We identify the respective User-Agent strings for
the browsers in the table via a public online repository [45].

4.2 Challenges and Design Choices
The discussion in the previous section does not directly yield
a dataset construction procedure, due to a couple of problems
we have to deal with. The first is related to the sheer number
of requests to send to each Web site, because it is possible that
security policies are influenced by a combination of multiple
factors. To mitigate this, we only cover a subset of all the
possible combinations by testing different factors in isolation:

1. User-Agent: when testing different User-Agents, we ac-
cess the network through a local machine with a German
IP, and we do not set the Accept-Language header.

2. Vantage Point: when testing different vantage points,

we set the User-Agent header to Chrome 96 for Win-
dows and we do not set the Accept-Language header.
We use hidemyass VPN1 to access the sites from 218
countries and additional 49 different countries through
for the Onion network.

3. Client Configuration: when testing different language
settings, we access the network through a local machine
with a German IP address and we set the User-Agent
header to Chrome 96 for Windows.

This way, we can measure meaningful intra-factor varia-
tions in the level of Web application security, e.g., by estimat-
ing the impact of the choice of a specific User-Agent when
the other two factors are fixed.

The second problem is related to non-determinism, because
the same request does not necessarily always receive the same
response. For example, DNS might resolve the same hostname
to different IP addresses at different times and load balancers
can forward requests for the same resource to different back-
end servers to improve performance. In either case, there is no
guarantee that all the hosts which might process the request
enforce the same security policies. Security inconsistencies
introduced by non-deterministic factors are in the scope of
our study, yet they complicate the attribution of security flaws.
To exemplify the problem, assume that Chrome appears to be
less protected than Firefox because it did not receive any secu-
rity headers at all. In this case, the User-Agent itself may not
be the actual cause of insecurity because non-determinism
may have played a role on the received response, e.g., the
DNS resolution accidentally redirected Chrome to a poorly
configured host. To mitigate this problem, each Web site is
visited multiple times (five in our collection) for each test and
all the corresponding responses are stored, which allows us
to detect non-deterministic security inconsistencies.

Our crawler takes as input a set of Factors, a set of Tests as-
sociated to each factor, a set of URLs to access and a number
of visits n to perform for each test. For each factor f ∈Factors
and each associated test t ∈ Tests[ f ], each u ∈ URLs is visited
n times setting f to t. For the finally reached URL (after po-
tential redirects), we resolve its origin o and save the response
r in the dataset at the entry D[u, t], enriched with the origin o.
We refer to o as the end origin of the response r.

1https://www.hidemyass.com/

hidemyass.com
https://www.hidemyass.com/


5 Formalizing Inconsistencies

Before presenting the formal details, we present an overview
of our analysis methodology to explain its design and sub-
tleties. A simple notion of consistent security might be as
follows: all the responses collected from the same URL must
enforce the same security policies. However, this intuitive
definition of consistency is too strong to be useful in practice.

The first point we make is that requiring the same security
policies for all the collected responses is overly restrictive.
As a matter of fact, two security policies can be syntactically
different, yet provide an equivalent level of protection. For ex-
ample, two syntactically different CSPs may both effectively
mitigate the dangers of XSS. As another example, a host may
configure HSTS with tiny fluctuations in the value of the max-
age attribute which do not play any role in terms of practical
security. To abstract from syntactic differences without signif-
icant security implications, we define equivalence relations
∼m for each security mechanism m under study.

A second challenge of our analysis is related to legitimately
different policies we might get for different client characteris-
tics: for example, a Web site which activates CSP for desktop
clients might redirect mobile clients to a static error page
which requires no protection and thus enforces no CSP. We
do not want to consider these cases as security inconsistencies,
because the Web pages are different and legitimately require
a different level of protection. To filter out false positives, we
define compatibility relations ▷◁m for each security mecha-
nism m under study: incompatible responses cannot lead to
security inconsistencies, because m protects different objects.
For the sake of generality, our framework supports different
compatibility relations for different security mechanisms, be-
cause they may be based on different enforcement models,
e.g., CSP operates at the page level, while HSTS operates at
the host level. In our Web measurement, however, we use the
same compatibility definition ▷◁m for each security mecha-
nism m, because we want to be conservative in our findings
and avoid over-reporting (see Section 5.2).

Finally, we observe that not all inconsistencies are equal in
terms of real-world exploitation. Inconsistencies enabled by
non-deterministic factors can be exploited by attackers who
are determined (or lucky) enough to eventually stumble into
them, while inconsistencies enabled by deterministic factors
like the adoption of a specific User-Agent identify weak spots
that knowledgeable attackers can more easily take advantage
of. We discriminate these two cases by having two different
definitions of consistency, as detailed below.

5.1 Consistency

For any security mechanism m, we assume a reflexive and
transitive relation r ≲m r′ reading as: response r configures
m no more securely than response r′. We write r ∼m r′ if and
only if r configures m equivalently to r′, i.e., we have that both

Chrome 96 Firefox 95
H,H,H,H,H H,H,H,H,H
H,H,H,L,H H,H,H,H,H
H,H,H,H,H L,L,L,L,L

Table 2: Example observations upon crawling

r ≲m r′ and r′ ≲m r hold. Finally, we assume reflexive and
symmetric relations r ▷◁m r′ reading as: response r and r′ are
compatible with respect to the security mechanism m. We later
instantiate ≲m and ▷◁m to the different security mechanisms
considered in our study to capture specific security properties.

The first definition we introduce is called intra-test consis-
tency. It requires all compatible responses collected within
the same test to provide an equivalent level of protection. Vi-
olations to this consistency property are likely attributed to
non-deterministic factors, because all the observable client
conditions are the same across the received responses.

Definition 1 (Intra-Test Consistency). The page with URL u
satisfies intra-test consistency for the security mechanism m
within the test t if and only if for all responses r ∈ D[u, t] and
r′ ∈ D[u, t] such that r ▷◁m r′ we have r ∼m r′.

The second definition of consistency which we introduce
is called inter-test consistency. It requires all compatible re-
sponses collected within two different tests (defined for the
same factor) to provide an equivalent level of protection. We
require the two tests to satisfy intra-test consistency to rule
out inconsistencies enabled by non-deterministic factors, e.g.,
occasionally missing headers on responses collected within
the same test. This way, inter-test inconsistencies can be real-
istically attributed to specific client characteristics.

Definition 2 (Inter-Test Consistency). The page with URL u
satisfies inter-test consistency for the security mechanism m
across the tests t, t ′, defined for the same factor and satisfying
intra-test consistency, if and only if for all responses r ∈D[u, t]
and r′ ∈ D[u, t ′] such that r ▷◁m r′ we have r ∼m r′.

We exemplify the definitions at work on a few toy examples.
Let us focus on just two tests for the User-Agent factor for
simplicity: Chrome 96 for Windows and Firefox 95 for Linux.
Assume that pages are visited five times for each test and
may be classified in two security levels: low (L) and high
(H) with L ≲m H. Consider now the example observations in
Table 2, that we assume to be all pairwise compatible. The
first row models a straightforward scenario where both intra-
test consistency and inter-test consistency are satisfied. The
second row models a scenario where intra-test consistency
does not hold, due to the L observation for Chrome, hence
inter-test consistency is undefined: this case captures a non-
deterministic security downgrade. The third row represents
a scenario where intra-test consistency is satisfied, but inter-
test consistency is not: this captures a deterministic security
downgrade occurring when the page is visited using Firefox.



5.2 Compatibility Relations

Arguably, certain security mechanisms such as CSP are not
applicable to an origin per se, but rather to the content pro-
vided under a given URL. However, not every URL returns
the same content on each load, in particular in the presence of
errors or block pages. For such pages, which might originate
from CDNs like Cloudflare, enforcing the CSP of the original
page might not make sense. Hence, when we encounter an
inconsistency, we need to ensure that this inconsistency is
not due to different content being delivered. We leverage a
similarity score on Web pages for this task.

Page Similarity Based on preliminary analyses of the col-
lected data, our page similarity score takes into account four
factors: first, we rely on JavaScript as a proxy to implement
the pages’ functionality. Therefore we created sets of the
hosts from which scripts are loaded and computed their Jac-
card similarity. By manually investigating the script data that
we got from analyzing our responses, we encountered cases
where the Jaccard similarity of the script hosts was 1, e.g.,
because the page only used inline scripts. Notably, the number
of inline scripts differed significantly; hence, we also consider
the number of scripts for each host as a second factor for
our similarity. However, these first two factors do not work
well for pages that only rely on a few scripts or do not even
use JavaScript on their main page. To lower the impact of
this, we manually investigated those pages, and we observed
that the title of the page often changes in case of errors, e.g.,
showing just domain.com. We, therefore, compute the longest
common substring between the titles of two documents and
compute the ratio of this overlap as our third factor. In addi-
tion to that, we observed that the response size also differed
between error/block pages and pages with content. Thus we
define the content size of the response as our fourth factor
by assigning a value between 0 and 1 (indicating the relative
sizes). We finally combine our factors by computing their
average. The resulting value (between 0 and 1) is then used
to determine the similarity between two pages. We consider
two pages as similar if their similarity score is at least 0.8.

To find the page similarity threshold, we computed the
similarity score of pages where we have seen syntactically
different security headers after normalization (e.g., normaliz-
ing CSP nonces or report URLs). Specifically, for each such
case, we took the largest response as the baseline (under the
assumption that content pages are larger than error pages).
Then, we computed the similarity to this baseline for each of
the other responses. Figure 1 shows the result of this, both as
a histogram (bucket size 0.05), as well as the CDF for the en-
tirety of comparisons. We find that the peak of the histogram
is in the right-most bucket, i.e., similarity above 0.95. In the
CDF, we observe that the similarity for most of the cases in
that bucket is even beyond 0.98. Moreover, the shallow slope
of the CDF around 0.8 leads to taking this value as a candidate

Figure 1: Histogram and CDF of the similarity values for
syntactically different header values.

for a threshold to distinguish between content and error/block
pages. Notably, error or block pages are just one instance of a
potential difference. Our notion generally discerns dissimilar
pages, which could require differing levels of protection, so as
to avoid reasoning about security inconsistencies when these
are in fact legitimate.

To assess the effectiveness of the threshold, we performed
analyses to identify false negatives (similar pages marked
as dissimilar) and false positives (dissimilar pages marked
as similar). To confirm that pages below our threshold are
indeed no content pages, we spawned Chromium instances to
render those pages below the threshold and take screenshots
(after 5s) for further analysis. We then manually looked at
those 1,939 cases: for the very vast majority, the pages were
clearly error pages or block pages showing information about
robot detection / CAPTCHAs. Among the edge cases that
were close to the threshold, we found one site where the
page skeleton looked like the actual content pages for the
domain, but without any content. We confirmed this case as a
true negative, because the page was under the threshold and
seemed different in terms of the content.

Another case that was close to the threshold was a domain
that randomly showed a slightly different page that addition-
ally included items in sale. Therefore their title changed from
Mercado Libre Argentina to Hot Sale 2021, and due to the
additional content, the file size increased, bringing the simi-
larity down to 0.78. Nevertheless, both pages belonged to the
same application and were not empty, error, or block pages,
and hence we consider this case as a false negative. Notably,
we only faced this one false negative in our dataset.

In order to also assess the number of false positives, we
investigated the similarity of pages above the threshold and
below 0.95. For the remaining cases beyond 0.95, we are
confident to have no error pages in there, given the significant
overlap through all four metrics. By looking at those positive
(similar) pages, we have seen one single false positive. This
case had a similarity score of 0.82, although one HTML file
was clearly an error page. This happened due to the error page
also including the scripts from the content page. In addition,



False Negatives False Positives

1/1,939 (0.05%) 1/93 (1.08%)

Table 3: False positive & false negative rates for similarity

the pages were similar in size, yet different in the title (Hosting
Platform of Choice vs 404 Error | cPanel). Because this is
clearly an error page, we manually removed this error case
from our results. Except for this one case, we could not spot
any false positives in the pages above 0.8.

Our experiments show that the chosen threshold is appro-
priate to reason about inconsistencies, because it might suffer
from occasional false negatives, but produced just one false
positive and one false negative in our experiments (see Ta-
ble 3). This means that we might lose some inconsistencies,
but we are confident not to incorrectly report on inconsisten-
cies where there are, in fact, none (because the content to be
protected is different). We now use this page similarity notion,
to define the following compatibility relations:

Compatibility Given two responses r and r′, we let r ▷◁m r′

if and only if the end origins of r and r′ are the same and,
additionally, the page similarity between r and r′ reaches the
stipulated threshold. Note that we use the same compatibility
relation for each security mechanism m. This may be overly
conservative for host-based security mechanisms like HSTS,
because different pages under the same host may enforce dif-
ferent HSTS policies for the same object (host), hence one
may legitimately disregard page similarity in the compati-
bility relation for HSTS. However, we empirically noticed
that this weaker compatibility notion leads to over-reporting
inconsistencies for HSTS. In particular, for sites hosted by
CDNs, depending on our vantage point or frequency of re-
quests, we received block or CAPTCHA pages. For Cloud-
flare, these lacked HSTS. However, it can be argued that this
has no significant security implications. In particular, if the
site normally uses HSTS, the browser will likely be aware that
communication should be performed over HTTPS and the
lack of the HSTS header does not deactivate HSTS. For this
reason, we prefer to be conservative in our analysis and reuse
the same compatibility relation (with page similarity) for all
the security mechanisms to avoid potential over-reporting.

5.3 Equivalence Relations
We now define the ≲m relations (“no more secure than”) for
the different security mechanisms considered in the paper,
leading to corresponding security equivalence relations ∼m.
These definitions are motivated by the semantics of the secu-
rity mechanisms under study.

Cookie Security Attributes Defining inconsistencies for
cookie security attributes is straightforward, because the

HttpOnly and Secure attributes require no configuration, while
the SameSite attribute has three different configurations with
increasing level of protection: None, Lax, Strict.

We identify cookies with the triple including their name,
Domain and Path, as mandated by the corresponding RFC [3].
Formally, we let r ≲ck r′ if and only if all cookies c occurring
in both r and r′ satisfy the following conditions:

1. If c is marked as HttpOnly in r, then c is marked as
HttpOnly also in r′.

2. If c is marked as Secure in r, then c is marked as Secure
also in r′.

3. If c is marked as SameSite in r, then c is marked as Same-
Site also in r′ with at least the same level of protection,
e.g., if the SameSite attribute of c is set to Lax in r, then
it must be set to Lax or Strict in r′.

Content Security Policy Defining inconsistencies for CSP
is more complicated, since it is an expressive security mecha-
nism, which supports many use cases and can thus be analyzed
from multiple angles. To address this, we build multiple equiv-
alence relations for CSP to cover different use cases [28].

A first use case for CSP is XSS mitigation, which we study
by leveraging a definition of safe CSP for CSP Level 3 [8].
This definition ensures that the CSP puts some meaningful
restrictions against XSS: policies which do not comply with
the definition can be trivially bypassed by an attacker upon
any content injection.

Definition 3 (Safe CSP [8]). A CSP is safe if and only if
it contains a script-src directive (or a default-src directive in
its absence) bound to a value v satisfying both the following
conditions:

1. v does not contain the ’unsafe-inline’ source-expression,
unless nonces or hashes are also present in v.

2. v does not contain the wildcard * or any full scheme from
the following: http:, https:, data:, unless ’strict-dynamic’
is also present in v.

We let r ≲csp−xss r′ if and only if, whenever r sets a safe
CSP, then also r′ sets a safe CSP.

The second use case for CSP is framing control. To define
an equivalence relation for this use case, we divide responses
in four classes based on the enforced framing restrictions:

1. Framing is allowed on all origins.
2. Cross-origin framing is allowed only on selected origins.
3. Only same-origin framing is allowed.
4. Framing is not allowed on any origin.
We then let r ≲csp− f rm r′ if and only if the class of r is less

than or equal to the class of r′.
The last use case for CSP is TLS enforcement. Its equiv-

alence relation is defined by having r ≲csp−tls r′ if and only
if, whenever r activates upgrade-insecure-requests or block-
all-mixed-content, then also r′ does it. In other words, when
r forbids the use of HTTP, then also r′ enforces the same
security restriction.



X-Frame-Options We just focus on SAMEORIGIN and
DENY as possible values of XFO, since ALLOW-FROM is
unsupported by the modern clients considered in the present
study. This implies that responses can be categorized in just
three different classes:

1. Framing is allowed on all origins.
2. Only same-origin framing is allowed.
3. Framing is not allowed on any origin.
We then let r ≲x f o r′ if and only if the class of r is less than

or equal to the class of r′.

Strict Transport Security Defining inconsistencies for
HSTS requires some care, due to possible differences in the
max-age attribute which arguably have little to no impact in
terms of real-world security. Our choice is discriminating four
classes of responses, as follows:

1. Responses with max-age set to 0, thus forcing HSTS
deactivation for their host.

2. Responses without any HSTS header. These responses
do not activate HSTS, but do not forcibly deactivate it.

3. Responses with max-age enforcing protection for less
than one year. This practice can be useful, but does not
comply with the minimal required duration for inclusion
in the HSTS preload list.

4. Responses with max-age enforcing protection for at least
one year, qualifying the host for preload list inclusion.

We then let r ≲hsts r′ iff all the following conditions hold:
1. The class of r is less than or equal to the class of r′.
2. If r sets the includeSubDomains directive, so does r′.
3. If r sets the preload directive, then also r′ sets it.

Handling Multiple Headers Careful readers may have no-
ticed that the above definitions assume responses to contain at
most one header of each type, yet real-world responses might
violate this assumption because headers can be set multiple
times. Our dataset still contains at most a single header of
each type, because the Requests library used in our data col-
lection folds multiple headers into a single header set to a
comma-separated concatenation of their values. For handling
of multiple headers, we follow specifications where possible:

• If the same cookie (identified by name, Domain and
Path) is set in multiple headers, the last one should be
prioritized [3]. We thus normalize the collected headers
to reflect this behavior within a single header.

• If a response contains multiple CSP headers, all of them
should be enforced at the same time [44]. We thus nor-
malize the collected headers by replacing them with a
single header enforcing the conjunction of all CSPs.

• If a response contains multiple XFO headers, the cor-
rect browser behavior is undefined in the specification.
Since prior research showed that different clients handle
multiple XFO headers quite differently [7], we check for
syntactic differences if multiple values are present.

• If a response contains multiple HSTS headers, the first
one should be prioritized [15]. We thus clean our data to
keep just the first HSTS header.

6 Measuring Inconsistencies

We use the data collection framework in Section 4 to collect
data from live Web sites and apply the formalization in Sec-
tion 5 to measure inconsistencies. The focus of our study is
to understand inconsistencies caused by the servers of highly
ranked sites. To ensure that any data we collect could not be
tainted through network proxies or firewalls, we decided to
only include sites which were served through HTTPS. Specif-
ically, we visited each of the sites in the Tranco list [25]
through https://site.com and https://www.site.com,
disregarding those which were not accessible through HTTPS.
Further, for each final URL, we determined if this was still
under the same eTLD+1 as the originally visited one and not
a localized version, e.g., https://site.eu, so as to avoid
selecting a site which is actually not highly ranked. As a re-
sult, this process yields the list of the 10,000 highest-ranked
sites available over HTTPS.

Based on this methodology, we arrived at the set of top
10,000 HTTPS sites based on the Tranco list of January 1,
20222. We ran our first crawl, on which we report in the
following, from January 2 through January 4, 2022. To en-
sure that our measurement was not merely a single measure-
ment which is not repeatable, we ran three more confirmation
crawls (January 6, 10, and 14, 2022). For each crawl, we col-
lected between 13,626,145 and 13,742,760 responses. While
we focus on the results of the first crawl, the appendix lists the
overlap in findings between the first and the respective follow-
up crawls (Appendix B), which highlights that our results can
be confirmed over multiple crawls within 12 days. To ease
the confirmation and reproducibility of our findings we made
our crawling and analytics pipeline publicly available [10].

In the following, we outline the key results supported by
the analysis of the collected data. We first present a high-level
overview of the findings and then discuss security inconsis-
tencies introduced by different factors, as well as the security
implications of the inconsistencies.

6.1 Overview of the Findings
Usage Statistics To give an overview of the deployed secu-
rity mechanisms in the wild, we computed the number of sites
which activated a specific security mechanism at least once
across our data collection. Table 4 shows the resulting usage
statistics for each of the selected security mechanisms in the
second column. Note that this is an aggregate over all differ-
ent tests, i.e., it combines checks for different User-Agents,
vantage points and languages. In total, 8,174 sites made use

2Available at https://tranco-list.eu/list/XVWN

https://tranco-list.eu/list/XVWN


Mechanism Usage # Sites w/ intra-test inconsistencies # Sites w/ inter-test inconsistencies # Sites w/ only inter-test inconsistencies
UA Lang. VPN Tor Any UA Lang. VPN Tor Any UA Lang. VPN Tor Any

Content Security Policy 1,998 12 11 31 23 36 15 - 29 18 47 15 - 11 3 28
- for XSS mitigation 360 1 - 1 1 3 9 - 1 1 10 9 - 1 - 10
- for framing control 1,288 6 5 15 9 16 2 - 16 5 20 2 - 9 1 12
- for TLS enforcement 661 7 7 19 14 22 4 - 12 12 17 4 - 1 2 6

X-Frame-Options 5,692 20 18 43 22 50 7 - 29 13 37 7 - 9 5 20

Strict-Transport-Security 4,562 15 13 28 23 38 8 - 23 16 35 8 - 12 5 22
- w/o page similarity - 42 33 148 593 693 19 2 576 218 643 17 2 524 20 552
- preload 920 3 3 6 6 10 - - 9 4 10 - - 6 - 6↰

w/o page similarity - 5 6 20 113 124 1 1 124 48 137 1 1 117 2 119

Cookie Security 3,876 10 9 11 12 16 150 1 13 8 167 149 1 9 2 160
- Secure attribute 2,937 4 4 5 6 8 144 - 8 3 152 144 - 7 1 151
- SameSite attribute 788 5 5 5 6 7 6 1 4 4 14 6 1 2 - 9
- HttpOnly attribute 3,104 1 - 2 2 3 2 - 3 2 6 2 - 2 1 5

Any 8,174 51 44 103 75 127 177 1 82 49 267 174 1 34 12 194

Any (incl. HSTS w/o similarity) 8,174 77 64 222 634 765 188 3 631 252 833 183 3 541 26 429

Table 4: Detected intra-test and inter-test inconsistencies by factor (321 sites in total). We present the numbers with and without
page similarity for HSTS to highlight the impact of this choice on the measurement.

of any of the security mechanisms. The most widely used
mechanism was X-Frame-Options with 5,692 occurrences.
HSTS was used on 4,562 sites, whereas at least one cookie
was configured with any of the security attributes on 3,876
sites. The vast majority of these cases stem from the usage
of HttpOnly or Secure attributes, with only 788 sites making
use of SameSite cookies. The least widely used header was
Content-Security-Policy with 1,998 sites which deployed it.
Notably, the vast majority of sites used CSP for framing con-
trol rather than for its original purpose of XSS mitigation [35].
It is worth noting that for XSS mitigation, we only count those
cases which have a policy that is not trivial to bypass (Defini-
tion 3). Since our definition of inconsistency revolves around
such policies, any site that did not have any meaningful XSS
mitigation is not counted. Note that the number of sites for
the subclasses of CSP and cookie security do not add to the
overall usage, since a site may, e.g., configure a CSP that both
mitigates XSS and enforces TLS.

Detected Inconsistencies In total we detected some incon-
sistency in 321 sites. Table 4 further shows three groups of
columns: intra-test inconsistent, inter-test inconsistent, and
only inter-test inconsistent sites. For the final column group,
we removed all those sites for which we found an intra-test
inconsistency for the given mechanism. This is to ensure that
a site exhibiting a non-deterministic behavior is not acciden-
tally flagged as suffering from inter-test inconsistencies, as
required by our formal definition. Hence, the last column is
a confident lower bound for the number of sites affected by
inter-test inconsistencies. Overall, our crawl detected 127 sites
which have some type of intra-test inconsistency and from
194 to 267 sites with inter-test inconsistencies. Notably, our
confirmation crawls exhibited two interesting phenomena, i.e.,
the instability of intra-test inconsistencies and the stability of

inter-test inconsistencies. Considering the union of all sites
that suffered from intra-test inconsistencies at least once in
our crawls, we found a total of 210 sites (Appendix Table 5).
This likely means that the actual dangers of non-deterministic
intra-test inconsistencies is more severe than what we could
measure through our five observations. Conversely, the confir-
mation crawls showed that the number of sites with inter-test
inconsistencies is stable over time (Appendix Table 6).

6.2 Intra-Test Inconsistencies

Intra-test inconsistencies come with particular security risks,
as an attacker can abuse these to attack users opportunistically.
In the following, we present case studies of intra-test inconsis-
tencies for every mechanism and explain the corresponding
security implications.

Cookie Security If a cookie may non-deterministically lack
the HttpOnly attribute, an attacker could steal the cookie via
malicious JavaScript by performing an XSS attack multiple
times until access to the cookie succeeds. One of the three
sites where we encountered this kind of inconsistency sets its
authentication cookie named authcookie_loggedIn sometimes
with and sometimes without the HttpOnly attribute.

A non-deterministically missing Secure attribute, as it
happened on eight sites, allows a network attacker to
steal the corresponding cookie. One site for example non-
deterministically set their csrfToken cookie as Secure or not.
Thus, attackers can steal this cookie and perform CSRF at-
tacks because they know the anti-CSRF token. A similar issue
happens on another site, for which the Secure attribute is in-
consistently set on the session identifier JSESSIONID, thus
potentially leading to session hijacking.

In seven sites, we found intra-test inconsistent deployments



of the SameSite attribute, which is sometimes set to Lax and
sometimes missing. This behavior might not be a problem for
modern browsers, because Chromium-based browsers default
to Lax in case of a missing SameSite attribute. However, all
Safari-based browsers still face the problem that cross-site at-
tacks such as CSRF are possible due to this misconfiguration.
One site, for example, sometimes set their ASP.NET_SessionId
cookie with SameSite attribute set to Lax, and sometimes the
SameSite attribute was not set, which enables an attacker to
perform attacks such as CSRF.

Content Security Policy Overall, we found three sites for
which XSS mitigation was enforced non-deterministically.
For example, the responses from one site sometimes did not
have any CSP for clients from Germany or Australia. Thus,
an attacker can succeed by performing the attack multiple
times until one of the responses does not carry a CSP.

For framing control, we found a total of 16 inconsistent
sites across our tests. Note that the majority of inconsisten-
cies were detected in the VPN crawl. This is because, in the
VPN crawl, we test from 218 vantage point (compared to 49
tests for Onion, and 20 and five respectively, for User-Agent
and language), which increases the chances of eventually
getting an inconsistent response. For example, a site non-
deterministically deployed frame-ancestors or not, hence an
attacker can perform the attack multiple times (or load the
target in multiple iframes) until the attack succeeds.

Finally, TLS was inconsistently enforced on 22 sites. For
example, one site in our dataset deploys a CSP that aims to
enforce TLS. However, irrespective of the factors that we
checked, this CSP is not present in some responses. Nowa-
days, Chromium-based browsers auto-upgrade mixed con-
tent [4], whereas Firefox and Safari merely block it. There-
fore, the security implications of missing TLS enforcement
is limited. However, inconsistencies in this feature can lead
to functionality issues. In 2020, Roth et al. [28] showed that
77/251 sites which use CSP for TLS enforcement have HTTP
resources linked from their front page. Thus, these inconsis-
tencies might lead to essential resources being blocked in
Firefox and Safari.

X-Frame-Options The most common intra-test inconsis-
tency for X-Frame-Options was alternating between a de-
ployed header and not deploying XFO at all (41 sites). This
behavior enables an attacker to attempt the attack multiple
times (or load the target in multiple iframes) until it succeeds.
For the other nine cases, the Web applications alternate be-
tween a valid XFO header and a malformed one (e.g. some-
times prepending a : to its XFO header) or one using an
unsupported feature such as ALLOW-FROM. As with omit-
ting the header, an attacker can opportunistically exploit this.

Strict Transport Security Of the 38 sites with intra-test in-
consistencies on HSTS, only six are present in the preload list,
for which the issue has no implication on the client’s security.
For 23 sites the inconsistency is related to headers which are
sometimes entirely omitted. For those not preloaded, this is
problematic since the non-deterministic absence of the header
might prolong the time frame where an attack is possible due
to the trust-on-first-use problem of HSTS.

While inconsistencies for preloaded sites have no direct
impact on a client, they nevertheless pose a threat. In our
dataset seven hosts deploy an HSTS header sometimes with,
sometimes without the preload directive. Here an attacker can
remove the affected site from the HSTS preload list by asking
for removal of the site [27]. If the HSTS preload crawler hits
a case without preload being present in the HSTS header, the
site will be removed without the operator even noticing it.
According to our tests with an author-owned preloaded site,
there seems to be no rate-limiting in place to stop such abuse.

An intra-test inconsistent deployment of the HSTS in-
cludeSubdomains directive can also lead to problems, as
it happened for four sites. For example, a payment service
provider showed this behavior on several islands (e.g., Falk-
land Islands, Antigua and Barbuda, Bahamas, and Bermuda).
Here an attacker could, in case of a lacking includeSubDo-
mains directive, abuse the subdomains to attack the main
domain (e.g., using subdomains to inject cookies into the
top-level domain).

The most critical inconsistency in terms of exploitability is
a host that randomly alternates between enabled and disabled
HSTS, or has multiple enabled and disabled HSTS headers
in random order (only the first entry is processed). Three
sites have this kind of intra-test inconsistency. They, for ex-
ample, alternate between max-age=0, max-age=15768001
and max-age=15768001. Since the HSTS specification man-
dates adhering to the first observed HSTS header, the first
case always deactivates HSTS. Similarly, one site non-
deterministically disabled HSTS in certain (mostly eastern
Europe) countries such as Lithuania, Moldova, Romania, and
Ukraine. In both cases, an attacker could perform the attack
several times until it succeeds because HSTS has been dis-
abled in the last response. We also identified one site that
alternate between a short max-age (<= 5 min) and a properly
configured header. In those cases, the site allows an attacker to
abuse the HSTS TOFU problem at a higher frequency because
if the last HSTS header received was a short one, the next
visit after a short time period (e.g., 5 min) will be vulnerable
again, because the browser no longer enforces TLS.

Reasons for Intra-Test Inconsistencies In order to find the
cause behind the intra-test inconsistencies, we took a closer
look into the gathered data from the responses, such as peer IP
addresses or cache headers. Here we noticed that indeed some
of the different response headers were caused by caching,
because all misconfigured header values also had a differ-



ent cache-control header (18 sites) or a different x-cache
header (five sites). For two sites, our data indicate that de-
pending on the geolocation, we were redirected to a different
end URL (under the same origin), which then causes the in-
consistency. In the case of five sites, we were also able to
attribute the inconsistency to certain peer IP addresses, which
indicates that misconfigured origin servers might be the un-
derlying problem. This hypothesis is also supported by one
answer from the notification campaign, which indicates that
“one of the origin servers seems to be configured differently”.
However, here we observed that this inconsistency does not
depend on the peer IP address, which indicated that what we
see as the peer IP might only be a load balancer, sending our
request to different origin servers on a back channel. Notably,
the probability of getting a different origin server is much
higher in the case of different geolocations. This, together
with the fact that the number of crawls for VPN and onion are
much higher than in the case of user-agent and language set-
tings, explains the comparatively higher number of intra-test
inconsistencies.

One inconsistency that is standing out, due to its prevalence
in our dataset, was the inconsistent setting of SameSite for
the ASP.NET_SessionId cookie. According to Microsoft, the
framework does not support “.NET versions lower than 4.7.2
for writing the same-site cookie attribute”[23]. Thus, if some
of the origin servers have a new version of .NET while others
still use the old version, the cookie would show exactly the
behavior we observed, which is why we believe this to be a
contributing factor.

6.3 Inter-Test Inconsistencies

This section sheds light on the inter-test inconsistencies, i.e.,
for a single deterministic factor such as the User-Agent, our
crawls revealed different security guarantees (see middle col-
umn of Table 4).

Cookie Security The vast majority of sites (144/150) that
have inter-test inconsistencies for cookie security are those
that deterministically gave back cookies without the Secure
attribute to some User-Agents. Notably, the cause of this
inconsistency is in most cases (130), special handling for the
User-Agent for Firefox on iOS. For example, one site set their
sid cookie Secure for all clients except Firefox on iOS, leaving
those clients unprotected against network attackers. Other
sites gave non-Secure cookies to a group of User-Agents that
visited their page, another site for Safari-based clients, one
for mobile clients, and another one for all iOS clients.

Two sites inconsistently deployed HttpOnly cookies for
their clients. In one case, a site delivered CM_SESSIONID
without HttpOnly attribute to clients that use Firefox on iOS.
In another case a site only gave out HttpOnly cookies to
non-Safari-based clients. In both cases, attackers can steal or

manipulate cookies via an XSS attack and eventually perform
state-changing actions on behalf of the user.

For inconsistencies of the SameSite attribute, we found 14
cases where sites either send cookies with the attribute or
do not set it at all. One site, for example, only gives Same-
Site cookies if the Accept-Language header of the client is
not set to English. As mentioned in the intra-test inconsis-
tencies, this behavior might not be a problem in Chromium-
based browsers, because those browsers default to Lax in case
of a missing SameSite attribute. However, all Safari-based
browsers and Firefox still face the problem that cross-site at-
tacks such as CSRF are possible due to this misconfiguration.

Content Security Policy XSS mitigation as the original
use-case of CSP also faced inter-test inconsistencies in ten
cases. In general, if a site’s CSP alternates between a safe
policy and a trivially bypassable one based on some client
characteristics, an attacker can specifically target the affected
user population. Due to the (at the time of writing) porous
support for the ’strict-dynamic’ source-expression, some sites
had inter-test inconsistencies that only deployed a CSP with
this source-expression to clients that actually support it. Nu-
merous sites removed ’strict-dynamic’ from their CSP for all
Safari (and thus all iOS) clients. The problem here is that
https: is also present in the policy, i.e., clients without sup-
port for ’strict-dynamic’ would allow script inclusion from any
HTTPS host, which is insecure. Removing ’strict-dynamic’
is a bad practice, because the CSP design is backward com-
patible and unknown source-expressions are just ignored by
browsers. Importantly, Safari recently announced support for
’strict-dynamic’ and already supports it in its technology pre-
view [9], hence dropping ’strict-dynamic’ may unduly leave
Safari users unprotected. Other sites dropped their entire CSP
for XSS mitigation for all Safari clients, while again others
did not send a CSP at all for Android clients. One Web site
only deployed XSS mitigation to some countries (like Russia,
Spain, or Sweden), but did not deploy CSP for others (e.g.,
US, Pakistan, or South Africa).

CSP for framing control is also used inter-test inconsis-
tently across different clients (two sites) and geolocations (18
sites). For example, one site did not send a CSP controlling
framing via frame-ancestors to all iOS clients, leaving those
users unprotected against framing-based attacks.

Like for the case of intra-test inconsistent deployment of
CSP for TLS enforcement, the inter-test inconsistent deploy-
ment of this CSP feature does not have a security impact but
a functionality impact. However, while it is a randomly occur-
ring problem for the intra-test inconsistencies, the problem
deterministically occurs for parts of the user-base on 17 sites.

X-Frame-Options An inter-test inconsistent deployment of
X-Frame-Options exposes a part of the user base to framing-
based attacks. In seven out of 37 cases, this type of inconsis-
tency occurred due to specific operating systems or browsers



are getting different configurations. Some sites deployed XFO
for desktop clients, but mobile browsers got no protection at
all, making them vulnerable to framing-based attacks. In other
cases specific browsers were excluded from the protection:
one site did not deploy XFO for Opera clients, while another
excluded Firefox browsers. This behavior was also present
against users of a specific operating system, as some sites
only gave XFO to non-iOS clients. In addition to that, 13 sites
(Onion) and 29 sites (VPN) decided to exclude specific ge-
olocations from the protection against framing based-attacks.

Strict Transport Security In case of inter-test inconsis-
tencies in HSTS it makes no difference if HSTS is disabled
(max-age=0) or not present because the affected clients/coun-
tries will deterministically get the same insecure configuration.
While cross-checking the inconsistent sites with the HSTS
preload list, we observed that only five out of the 35 inter-
inconsistent sites are actually preloaded.

There are eight Web sites that handle browsers differently.
For example, one site only gives enabled HSTS to desktop
clients but not to mobile clients, another does not send HSTS
to Firefox and Safari-based clients, which exposes parts of
the user-base to possible network attacks. In addition to that,
30 sites deploy HSTS inconsistently depending on the geolo-
cation. Another site deploys a proper HSTS for all countries
except for clients from India, which do not get an HSTS
header. Also, six sites have the inter-test inconsistent deploy-
ment of HSTS with/without the includeSubdomains directive.
One site, for example, deployed an HSTS header with the
directive for clients from some countries such as Hungary or
Ireland, but not for others such as Germany or Japan. Here
an attacker could abuse subdomains to attack the main do-
main (e.g., using subdomains to inject cookies into the parent
domain).

Reasons for Inter-Test Inconsistencies Inter-test inconsis-
tencies are naturally attributed to deterministic factors, how-
ever a few observations are interesting. In many cases flawed
User-Agent parsing or wrong handling of the parsed browser
information seem to be a problem. Surprisingly many inter-
test inconsistencies happened specifically for Firefox on iOS.
Therefore we tested this User-Agent in different parsing li-
braries. All of them showed Firefox with version 40 (released
August 11, 2015) as output for our Firefox iOS User-Agent
string. In the case of Firefox, the version numbers for the
iOS client are different from other operating systems, pos-
sibly due to the fact Firefox is based on WebKit instead of
Gecko on iOS, so the User-Agent is incorrectly recognized
as a legacy client. Notably, the Firefox iOS version number
recently jumped from 40.2 to 96.0 on January 18, 2022 [2].

Not only the version number of Firefox, but also the iOS
version number present in the User-Agent was the reason for
some of the inconsistencies. The User-Agent from an online

repository used in our crawler had an old iOS version num-
ber (12.1, October 2018). However, with the same Firefox
and WebKit version, but a newer iOS version (15.2, Decem-
ber 2021), these inconsistencies were not present, although
they are still concerning for a specific user population. In-
deed, users may not have control of their OS version due to
hardware restrictions.

Also, as mentioned in Section 6.3, some sites deliver a
CSP without the ’strict-dynamic’ expression to Safari-based
clients. During our notification campaign, a videotelephony
service confirmed that they are doing this because those
clients lack support for this CSP feature. In either case, none
of those special handling for browsers is actually neces-
sary; unknown cookie attributes and unknown CSP source-
expressions are simply ignored by browsers. Furthermore if
certain features are going to be supported in future release
(like ’strict-dynamic’ in Safari’s current Technology Preview),
the special handling for certain browsers might cause secu-
rity issues because the browser switches are not updated or
removed. This highlights that having browser switches for
security mechanisms is a dangerous practice, at least if the
provided level of security differs.

In case of network related inter-test inconsistencies, pos-
sible reasons are similar to those from the intra-test incon-
sistencies. If misconfigured origin servers are only used for
requests from specific countries, or if CDNs cache responses
for certain countries longer than for others, we can observe in-
consistent deployment of security mechanisms depending on
the geolocation. We detected three sites with different peer IP
adresses that seem to cause the issue, ten sites with different
cache-control header, and two with different x-cache. For
example, based on the x-cache header sent by one site we
hypothesize that for certain countries like France they have
a cache in place, because all requests from there produced a
cache hit, while other requests for example from Australia
only produces cache errors/misses.

6.4 Disclosure

Our findings imply that certain users of the sites under test
might be at risk; either because an attacker can target them
based on certain properties (e.g., their User-Agent) or can
opportunistically exploit the non-determinism of the server.
To enable site operators to fix the inconsistencies, but also to
gain knowledge about the root cause of the inconsistencies,
we attempted to disclose the issues to all sites using security@
and webmaster@ aliases. The email that we sent contained
information about our institutions and us, as well as a detailed
description of the individual inconsistent headers and how
they were collected. Also, we informed site operators that we
are interested in the reason for the inconsistency such that
we can better help others that face similar issues and offered
them our assistance and further information.

In total, we sent out 256 emails (see Appendix A for the



template). For 197 domains, we received an email delivery
failed message. Notably, we sent the email to both aliases
(security@ and webmaster@), so we might have received a
failure message, although one of the two addresses received
our email. Research has shown that scaling up notifications
is a known problem [36, 38], also due to the low availability
of generic aliases [34]. In addition to that, only 25 out of
the 256 domains hosted a security.txt, with 7 of those
setting their contact email to security@. Thus, we only got
21 answers that were more than just an automatic response
message. Seven operators asked us to provide more details,
like the IP addresses of the servers that we connected to. One
of those even asked us to provide a demo video that shows the
inconsistency problem. In all cases, we were happy to provide
them with more detailed data in order to ease their search
for the reason behind the issue. Additional seven claimed
that they can confirm the issue and will get right back to
us, which nearly none of them have done so far. The other
seven answered us that they confirmed and fixed the issue or
explained to us that this is out of their control, e.g., because
they are not self-hosting their sites in some countries.

Many of those that answered instructed us to contact
HackerOne to report vulnerabilities. Notably, our message
did not include the word “vulnerability” or similar words like
“exploit”. Therefore, we answered those emails that we were
not interested in any bug bounty, because we only wanted to
help and raise attention for the inconsistent behavior such that
all clients can be secured consistently. Notably, none of the
notified parties answered that this issue is not present in their
option, which further strengthens our confidence in the results.
The previous Reasons for subsections have outlined some of
the answers from our disclosure campaign that we used to
reason about the inconsistencies in some of the case studies.
To increase remediation rates, we tested the problematic sites
again in May 2022. Here, we found that 184 still contained
the issues we attempted to disclose before. By manually inves-
tigating those sites, we were able to find 105 email addresses.
In this second round, only four of the manually curated email
addresses responded with a failure message.

7 Discussion

Here, we discuss limitations of the work and summarize the
security impact of our findings.

7.1 Limitations
Our analysis already shows that client characteristics play a
relevant role for Web application security, however it could
be improved along different directions. One limitation of our
study is the assumption that all the tested browsers implement
all the security mechanisms according to their official speci-
fications, which simplified the technical development. This
assumption is motivated by our focus on modern clients, yet

we are well aware that it is not entirely accurate, e.g., at the
time of writing Safari does not support the ’strict-dynamic’
source-expression of CSP Level 3 and browsers might suffer
from bugs (like all software), especially in corner cases. That
said, we manually vetted most of the detected security incon-
sistencies and we confirm that they are not subtle enough to
invalidate the general findings of our study due to our assump-
tion on browser behavior.

Another limitation of our work is the best-effort attribution
of the identified security inconsistencies. Discussing correla-
tion rather than causation is a common and accepted limitation
of Web measurements. We crawled each page multiple times
and formalized different definitions of consistency to mitigate
the effects of non-determinism, however we cannot entirely
rule out non-determinism, e.g., due to the presence of server-
side load balancers. It is possible that we collected five times
the same response from a Web page due to non-determinism,
rather than due to our testing conditions, however all the cases
explicitly named in Section 6 have been manually vetted and
confirmed as vulnerable.

7.2 Overall Security Impact

In general, an attacker can abuse the inter-test inconsistent
behavior of some sites to attack a certain part of the user base
by specifically targeting the less secured clients like specific
User-Agents or users from certain geolocations. For the intra-
test inconsistent sites, an opportunistic attacker can exploit
the non-determinism of the deployed security mechanism by
executing the attack multiple times. The individual advantage
of the attacker in both cases depend on the mechanism that is
deployed inconsistently.

For Cookies, a missing security attribute enables an at-
tacker to access the cookie via XSS (HttpOnly) or to steal the
cookie by downgrading the connection security and eaves-
dropping on the traffic (Secure). Also, missing or inconsis-
tently deployed SameSite Attributes allows attackers to suc-
cessfully execute cross-site attacks such as CSRF. In either
case, the difference between inter-test and intra-test inconsis-
tencies in the case of cookies does not change the attack itself
but only the way it can be successfully executed, because the
attacker either needs to target a certain group of users (inter),
or perform the attack multiple times (intra). Therefore the
user-base (or party of it) of more than 172 Web sites can be
attacked due to inconsistencies.

In case of an inconsistent Content Security Policy header
an attacker can perform XSS attacks (inconsistent XSS miti-
gation), framing-based attacks such as Clickjacking (incon-
sistent frame-ancestors), or perform network-based attacks
(inconsistent TLS enforcement). While the latter is only rele-
vant for functionality rather than security, because Chromium-
based browsers nowadays auto-upgrade mixed content [4]
and Firefox and Safari block it, the other two cases can indeed
be exploited by an attacker. Thus in case of inconsistent XSS



mitigation and/or inconsistent framing control, the attacker
can exploit a certain group of users (inter), or try the attack
multiple times (intra) on 41 different Web sites.

Similar to the exploitability of inconsistent CSP frame-
ancestors, inconsistent deployment of the X-Frame-Options
header can lead to framing-based attacks such as Clickjack-
ing. Notably, however, XFO will be ignored by CSP Level
2 supporting browsers as soon as CSP frame-ancestors is
present. Still, only ten sites that showed inconsistencies in
XFO have deployed a CSP that restricts framing. Thus, the
users of 43 sites would still be exploitable by performing the
attack multiple times (intra), and a specific group of users
would be attackable on 17 sites.

For Strict Transport Security we have cases that lead
to different attacks depending on the type of inconsistency.
If, for example, the preload directive is deployed intra-test
inconsistently, an attacker can remove this site from the HSTS
preload list by asking for removal of the site multiple times
until the HSTS checker encounters the header without preload.
For inconsistencies in the includeSubDomains or inconsistent
max-age duration, an attacker can run network attacks against
a certain group of users (inter), or perform the attack multiple
times (intra) on 60 different Web sites. Notably, those sites
are only cases where the page similarity was considered, so
the number of potentially exploitable sites could be higher,
as HSTS protects the connection security between client and
server, and does not care about the actual content of that is
delivered via the server.

8 Conclusion

In this paper we investigated the inconsistent configuration
of client-side security mechanisms on top sites across differ-
ent client characteristics (inter-test) or even across multiple
communications of the same HTTP request (intra-test).

Our measurement has highlighted that client-side security
mechanisms are not equally delivered to all clients. Specifi-
cally, we found several sites in our dataset that returned dif-
ferent security policies with different semantics in at least
some of our tests. Our findings have implications in three
dimensions: first, Web users may receive different protection
based on subtle differences in their browser or vantage point
(inter-test inconsistencies). Second, intra-test inconsistencies
may enable an adversary to launch attacks in an opportunistic
fashion, given that the responses for the same request may
non-deterministically enforce different security. Acquiring
this knowledge is an easy task for the attacker, as they can
probe for non-deterministic behavior of the server as we did.
Third, our analysis has shown that prior measurements (see
related work in Section 2.2) may have inadvertently under- or
over-reported findings with respect to the deployment of secu-
rity mechanisms. Specifically, we identified intra-test security
inconsistencies in 127 sites and inter-test security inconsis-
tencies in 194 sites. Our semantics-based analysis gives clear

evidence of the potential security implications of the detected
inconsistencies, by identifying characteristics which might
enable exploitation, while being expressive enough to gen-
eralize over previous studies which only focus on missing
security headers [29].

To the best of our knowledge, we are the first to systemati-
cally study the problem of intra-test inconsistencies. Luckily,
dealing with such inconsistencies in Web security measure-
ments appears relatively easy: since most of them (80.4%) are
due to unexpectedly missing headers, it suffices to crawl the
same page multiple times to detect and fix these omissions.
Nevertheless, prior Web measurements on the impact of client
characteristics on Web security and privacy might have per-
formed an incorrect attribution of security downgrades, since
a single page access does not suffice to assess the impact of
non-determinism. Luckily, the number of sites suffering from
intra-test inconsistencies is not high enough to invalidate the
big picture drawn by prior studies.

Inter-test inconsistencies are likely less surprising to re-
searchers working on Web measurements, due to the pub-
lication of papers studying variations of the topic [17, 18].
However, inter-test inconsistencies are particularly concern-
ing to site operators, because they identify weak spots in
their security policies reported by our analysis. We observe
that inter-test inconsistencies across network access methods
might arise due to misconfigured origin server for specific
geolocations. Also, User-Agent sniffing leads to security in-
consistencies on 177 sites, which can all be attributed to site
operators. Notably, due to backwards compatibility of the
investigated security mechanisms, none of the individual re-
sponses for specific browsers were actually necessary.

Acknowledgments

We would like to thank the reviewers for their advices on how
to improve the presentation and reproducibility of our paper.
In particular, we thank Yinzhi Cao for his guidance during
the shepherding process.

This work was conducted in the scope of a dissertation at
the Saarbrücken Graduate School of Computer Science and
was partially supported by DAIS - Università Ca’ Foscari
Venezia within the IRIDE program.

References

[1] Eman Salem Alashwali, Pawel Szalachowski, and An-
drew Martin. Does" www." mean better transport layer
security? In ARES, 2019.

[2] Mozilla Mobile Applications. Releases of Firefox-iOS.
GitHub.

[3] Adam Barth. RFC6265: HTTP State Management
Mechanism. 2011.

https://github.com/mozilla-mobile/firefox-ios/releases


[4] Chromium Blog. No More Mixed Messages About
HTTPS. chromium.org.

[5] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi,
and Wilayat Khan. Cookiext: Patching the browser
against session hijacking attacks. Journal of Computer
Security (IOS Press), 2015.

[6] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Semantics-based analysis of content security policy de-
ployment. ACM TWEB, 2018.

[7] Stefano Calzavara, Sebastian Roth, Alvise Rabitti,
Michael Backes, and Ben Stock. A tale of two headers:
A formal analysis of inconsistent click-jacking protec-
tion on the web. In USENIX Security, 2020.

[8] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius
Steffens, and Ben Stock. Reining in the web’s inconsis-
tencies with site policy. In NDSS, 2021.

[9] CanIUse.com. headers HTTP header: csp: Content-
Security-Policy: strict-dynamic. CanIUse.com.

[10] CISPA. The Security Lottery. GitHub.

[11] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
The cookie hunter: Automated black-box auditing for
web authentication and authorization flaws. In ACM
CCS, 2020.

[12] Zakir Durumeric, Zane Ma, Drew Springall, Richard
Barnes, Nick Sullivan, Elie Bursztein, Michael Bailey,
J Alex Halderman, and Vern Paxson. The security im-
pact of https interception. In NDSS, 2017.

[13] Steven Englehardt, Dillon Reisman, Christian Eubank,
Peter Zimmerman, Jonathan Mayer, Arvind Narayanan,
and Edward W Felten. Cookies that give you away: The
surveillance implications of web tracking. In WWW,
2015.

[14] Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and
Rebecca Balebako. Variations in tracking in relation to
geographic location. W2SP, 2015.

[15] Jeff Hodges, Collin Jackson, and Adam Barth.
RFC6797: Strict-Transport-Security Response Header
Field Processing. 2012.

[16] Shan Huang, Félix Cuadrado, and Steve Uhlig. Mid-
dleboxes in the internet: a http perspective. In TMA,
2017.

[17] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Panagi-
otis Papadopoulos, Matteo Varvello, Benjamin Livshits,
and Alexandros Kapravelos. The blind men and the
internet: Multi-vantage point web measurements. arXiv
preprint arXiv:1905.08767, 2019.

[18] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan
Beggs, Panagiotis Papadopoulos, Matteo Varvello, Ben-
jamin Livshits, and Alexandros Kapravelos. Towards
realistic and reproducible web crawl measurements. In
WWW, 2021.

[19] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M
Voelker, Alex C Snoeren, Chris Kanich, and Narseo
Vallina-Rodriguez. An empirical analysis of the com-
mercial vpn ecosystem. In IMC, 2018.

[20] Akshaya Mani, Tavish Vaidya, David Dworken, and
Micah Sherr. An extensive evaluation of the internet’s
open proxies. In ACSAC, 2018.

[21] Abner Mendoza, Phakpoom Chinprutthiwong, and
Guofei Gu. Uncovering http header inconsistencies
and the impact on desktop/mobile websites. In WWW,
2018.

[22] K Michael and B Joseph. Upgrading https in mid-air:
an empirical study of strict transport security and key
pinning. In NDSS, 2015.

[23] Rick Anderson (Microsoft). Work with SameSite cook-
ies in ASP.NET. microsoft.com.

[24] Diego Perino, Matteo Varvello, and Claudio Soriente.
Long-term measurement and analysis of the free proxy
ecosystem. ACM TWEB, 2019.

[25] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. NDSS, 2019.

[26] Chromium Project. HSTS preload list. hstspreload.org,
.

[27] Chromium Project. HSTS preload list removal. hst-
spreload.org, .

[28] Sebastian Roth, Timothy Barron, Stefano Calzavara,
Nick Nikiforakis, and Ben Stock. Complex security
policy? a longitudinal analysis of deployed content se-
curity policies. In NDSS, 2020.

[29] Eman Salem Alashwali, Pawel Szalachowski, and An-
drew Martin. Exploring https security inconsistencies:
A cross-regional perspective. arXiv e-prints, 2020.

[30] Nayanamana Samarasinghe and Mohammad Mannan.
Towards a global perspective on web tracking. Elsevier:
Computers & Security, 2019.

[31] Jörg Schwenk, Marcus Niemietz, and Christian Mainka.
Same-origin policy: Evaluation in modern browsers. In
USENIX Security, 2017.

https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://caniuse.com/mdn-http_headers_csp_content-security-policy_strict-dynamic
https://github.com/cispa/the-security-lottery
https://docs.microsoft.com/en-us/aspnet/samesite/system-web-samesite
https://hstspreload.org/
https://hstspreload.org/removal
https://hstspreload.org/removal


[32] Kapil Singh, Alexander Moshchuk, Helen J Wang, and
Wenke Lee. On the incoherencies in web browser access
control policies. In IEEE S&P, 2010.

[33] Suphannee Sivakorn, Angelos D Keromytis, and Jason
Polakis. That’s the way the cookie crumbles: Evaluating
https enforcing mechanisms. In ACM WPES, 2016.

[34] Wissem Soussi, Maciej Korczynski, Sourena Maroofi,
and Andrzej Duda. Feasibility of large-scale vulner-
ability notifications after gdpr. In IEEE EuroS&PW,
2020.

[35] Sid Stamm, Brandon Sterne, and Gervase Markham.
Reining in the web with content security policy. In
WWW, 2010.

[36] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Mar-
tin Johns, and Michael Backes. Hey, you have a problem:
On the feasibility of {Large-Scale} web vulnerability
notification. In USENIX Security, 2016.

[37] Ben Stock, Martin Johns, Marius Steffens, and Michael
Backes. How the web tangled itself: Uncovering the
history of client-side web (in) security. In USENIX
Security, 2017.

[38] Ben Stock, Giancarlo Pellegrino, Frank Li, Michael
Backes, and Christian Rossow. Didn’t you hear
me?—towards more successful web vulnerability no-
tifications. 2018.

[39] Shuo Tang, Nathan Dautenhahn, and Samuel T King.
Fortifying web-based applications automatically. In
ACM CCS, 2011.

[40] Martino Trevisan, Stefano Traverso, Eleonora Bassi, and
Marco Mellia. 4 years of eu cookie law: Results and
lessons learned. PETS, 2019.

[41] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis,
Elias Athanasopoulos, and Michalis Polychronakis. A
large-scale analysis of content modification by open http
proxies. In NDSS, 2018.

[42] Gareth Tyson, Shan Huang, Felix Cuadrado, Ignacio
Castro, Vasile C Perta, Arjuna Sathiaseelan, and Steve
Uhlig. Exploring http header manipulation in-the-wild.
In WWW, 2017.

[43] Lukas Weichselbaum, Michele Spagnuolo, Sebastian
Lekies, and Artur Janc. Csp is dead, long live csp! on
the insecurity of whitelists and the future of content
security policy. In ACM CCS, 2016.

[44] Mike West. Content Security Policy Level 3. w3.org.

[45] WhatIsMyBrowser.com. Latest user agents for web
browsers & operating systems. whatismybrowser.com.

A Disclosure Email
Hello,

We are a team of security researchers from the CISPA Helmholtz
Center for Information Security located in Saarland, Germany
and Università Ca' Foscari Venezia, Italy. In our current
research project, we investigate inconsistent behavior in the
deployment of security headers for Web applications.

↪→
↪→
↪→
↪→

For that, we have visited your site through different vantage
points (VPN and Tor) as well as with different configurations
(User-Agents and Accept-Language request headers).

↪→
↪→

In our automated tests, we detected both non-deterministic
differences (e.g., we received different levels of security
even with the same user agent) or those differences which
seemed related to the vantage point or configuration.

↪→
↪→
↪→

We would like to raise your attention to one of those
inconsistencies that occurred on <DOMAIN>:↪→

<DETAILS_ABOUT_INCONSISTENCY>

We would appreciate if you can check the reason for the issue,
address it to ensure consistent security, and also let us know
about what such a reason might have been, since this will allow
us to better help others in the future.

↪→
↪→
↪→

If you have any questions or need further information, please do
not hesitate to contact us by answering this email.↪→

B Overview of Additional Crawls

Our confirmation crawls offer two additional insights: on the
stability of inter-test inconsistent sites and on the instability
of the intra-test inconsistent cases. The data, which is shown
in the following tables, highlights that even 12 days after our
original crawl, we could still detect 194 inter-test inconsis-
tent sites (see Table 6). Intersecting the sites with intra-test
inconsistencies, however, shows that the numbers seemingly
decline (through 100 sites down to 96). This is to be expected,
as we are measuring non-deterministic behavior. However, if
we take the union of all sites which had at least one intra-test
inconsistency across any of our crawls, this sums up to 210
(see Table 5) sites instead of only 127. This likely means that
the actual dangers of non-deterministic header deployment is
more severe than what we are able to measure through our
limited number of observations.

Mechanism Usage # Sites w/ intra-test inconsistencies
UA Lang. VPN Tor Any

Content Security Policy 2,029 20 16 42 32 50
- for XSS mitigation 364 1 - 3 1 4
- for framing control 1,313 11 10 23 17 28
- for TLS enforcement 673 12 10 23 16 25

X-Frame-Options 5,751 30 30 64 39 74

Strict-Transport-Security 4,607 27 22 49 50 80
w/o page similarity* 4,607 80 57 365 947 1,152

Cookie Security 3,975 22 16 26 28 33
- Secure attribute 3,009 9 8 13 13 17
- SameSite attribute 812 13 8 13 17 18
- HttpOnly attribute 3,196 2 - 2 2 3

Any 8,237 90 73 163 135 210

Table 5: Union of all intra-test inconsistencies snapshots.

https://www.w3.org/TR/CSP3/
https://www.whatismybrowser.com/guides/the-latest-user-agent/


Mechanism Usage # Sites w/ intra-test inconsistencies # Sites w/ inter-test inconsistencies # Sites w/ only inter-test inconsistencies
UA Lang. VPN Tor Any UA Lang. VPN Tor Any UA Lang. VPN Tor Any

Intersection of January 2 and January 6

Content Security Policy 1,987 7 4 27 18 29 15 - 25 15 43 15 - 8 4 27
- for XSS mitigation 357 1 - - 1 2 9 - 1 1 10 9 - 1 - 10
- for framing control 1,281 3 3 14 7 14 2 - 13 5 17 2 - 6 2 10
- for TLS enforcement 659 4 1 16 11 17 4 - 11 9 16 4 - 1 2 7

X-Frame-Options 5,662 15 13 35 17 44 7 - 22 7 30 7 - 7 2 15

Strict-Transport-Security 4,553 13 12 23 17 30 8 - 17 9 28 8 - 9 3 19
w/o page similarity - 37 23 75 322 394 18 2 515 145 583 17 2 489 27 520
- preload 918 3 3 6 6 10 - - 8 3 9 - - 6 - 6↰

w/o page similarity - 5 4 12 59 67 1 1 115 29 129 1 1 109 4 112

Cookie Security 3,836 9 7 10 11 15 147 1 9 4 158 147 1 8 1 156
- Secure attribute 2,907 4 2 5 6 8 142 - 6 3 148 142 - 6 1 148
- SameSite attribute 777 5 5 5 5 7 5 1 3 1 10 5 1 2 - 8
- HttpOnly attribute 3,069 - - 1 1 2 2 - 2 1 4 2 - 2 - 4

Any 8,145 39 31 86 59 100 174 1 64 30 244 172 1 26 8 191

Intersection of January 2 and January 10

Content Security Policy 1,986 9 4 27 18 30 15 - 26 16 43 15 - 10 4 29
- for XSS mitigation 354 - - - 1 2 9 - 1 1 10 9 - 1 - 10
- for framing control 1,285 5 3 15 8 15 2 - 14 5 18 2 - 7 1 10
- for TLS enforcement 658 5 1 16 10 18 4 - 11 10 15 4 - 2 3 9

X-Frame-Options 5,654 14 12 35 19 43 7 - 20 12 30 7 - 6 5 17

Strict-Transport-Security 4,549 12 12 21 16 30 8 - 17 9 27 8 - 10 4 20
w/o page similarity - 32 24 77 370 443 18 2 512 139 573 17 2 480 18 503
- preload 914 2 3 5 5 9 - - 8 4 9 - - 6 1 7↰

w/o page similarity - 4 4 11 71 81 1 1 114 28 130 1 1 108 3 112

Cookie Security 3,841 10 8 11 10 16 147 1 10 4 159 146 1 7 1 154
- Secure attribute 2,914 4 3 5 5 8 141 - 6 3 147 141 - 5 1 146
- SameSite attribute 781 5 5 5 5 7 6 1 4 1 12 6 1 2 - 9
- HttpOnly attribute 3,075 1 - 2 1 3 2 - 2 1 4 2 - 2 - 4

Any 8,142 39 30 86 58 100 174 1 66 35 244 173 1 29 12 194

Intersection of January 2 and January 14

Content Security Policy 1,985 8 5 26 20 31 15 - 26 16 43 15 - 10 4 29
- for XSS mitigation 359 - - - 1 1 9 - 1 1 10 9 - 1 - 10
- for framing control 1,278 5 2 15 8 16 2 - 13 5 17 2 - 6 2 10
- for TLS enforcement 659 4 3 15 12 18 4 - 12 10 16 4 - 3 2 9

X-Frame-Options 5,654 14 8 32 18 38 6 - 18 11 26 6 - 7 5 15

Strict-Transport-Security 4,548 12 10 19 17 26 7 - 15 7 24 7 - 11 2 19
w/o page similarity - 33 22 65 369 424 17 2 535 136 595 16 2 512 20 535
- preload 913 3 2 5 6 9 - - 8 4 9 - - 6 - 6↰

w/o page similarity - 5 5 10 66 73 1 1 119 29 131 1 1 114 2 116

Cookie Security 3,825 10 9 11 11 16 148 1 11 4 161 147 1 9 1 157
- Secure attribute 2,897 4 4 5 6 8 143 - 8 3 151 143 - 7 1 150
- SameSite attribute 778 5 5 5 5 7 5 1 3 1 10 5 1 2 - 8
- HttpOnly attribute 3,066 1 - 2 1 3 2 - 2 1 4 2 - 2 - 4

Any 8,135 38 27 79 61 96 174 1 61 33 239 173 1 31 10 194

Table 6: Overview of overlap with additional snapshots of our analysis


	Introduction
	Background and Related Work
	Client-Side Security Mechanisms
	Related Work

	Motivation for Our Study
	Data Collection Framework
	Scope of the Study
	Challenges and Design Choices

	Formalizing Inconsistencies
	Consistency
	Compatibility Relations
	Equivalence Relations

	Measuring Inconsistencies
	Overview of the Findings
	Intra-Test Inconsistencies
	Inter-Test Inconsistencies
	Disclosure

	Discussion
	Limitations
	Overall Security Impact

	Conclusion
	Disclosure Email
	Overview of Additional Crawls

