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In this article we present a large-scale empirical analysis of the use of web storage in the wild. By using dynamic taint tracking at

the level of JavaScript and by performing an automated classification of the detected information flows, we shed light on the key

characteristics of web storage uses in the Tranco Top 10k. Our analysis shows that web storage is routinely accessed by third parties,

including known web trackers, who are particularly eager to have both read and write access to persistent web storage information.

We then deep dive in web tracking as a prominent case study: our analysis shows that web storage is not yet as popular as cookies for

tracking purposes, however taint tracking is useful to detect potential new trackers not included in standard filter lists. Moreover, we

observe that many websites do not comply with the General Data Protection Regulation (GDPR) directives when it comes to their use

of web storage.
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1 INTRODUCTION

Modern web applications increasingly make use of JavaScript to provide an improved user experience, similar to

traditional desktop applications. The more the web application logic is pushed from the server to the client, however, the

more sensitive data are handled at the client side rather than at the server side. Unfortunately, the traditional approach

to handle client-side storage on the Web, i.e., HTTP cookies [4], suffers from significant shortcomings: cookies are

limited in size, have an unconventional semantics and are inconvenient to access programmatically [8]. The HTML5

standard thus introduced the Web Storage API [2], which retains the intuitive flavour of cookies, while addressing their

most relevant shortcomings. In particular, the Web Storage API offers a simple key-value view of client-side storage:

web applications can store in the browser a value 𝑣 bound to a key 𝑘 and later retrieve 𝑣 again by means of 𝑘 . This

approach offers a convenient programming abstraction with a clean semantics, while granting much enlarged storage

capacity with respect to cookies.

Although the Web Storage API has been around for a few years now and is fully supported by all major web browsers,

anecdotal evidence based on previous web measurements suggests that web storage is still far from the popularity

of cookies. Remarkably, contrary to cookies, web storage received just limited attention by the security and privacy
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community so far. This is concerning, because the web storage functionality is reminiscent of traditional cookies, hence

it can be employed to implement web authentication [7] or to track users across third parties [9], all uses that deserve

careful scrutiny. In the present article, we aim to improve our understanding of the usage of web storage in the wild. In

particular, we perform an empirical analysis of web storage information set by popular websites based on dynamic taint

tracking and an automated classification of the collected information flows. Our analysis uncovers several uses of web

storage in the wild, for which we discuss relevant security and privacy implications.

Contributions. To sum up, in the present article we make the following contributions:

(1) We implement a dynamic taint tracking engine for JavaScript based on Jalangi [29] and we configure it to detect

information flows involving the Web Storage API. The use of taint tracking is necessary because web storage

information is accessed and manipulated by JavaScript, hence one has to track how values read from / written to

the web storage propagate through the control flow of web applications (Section 3).

(2) We perform an empirical study to collect information flows on 10k live sites and shed light on the key character-

istics of the use of web storage in the wild. Our analysis is based on an automated classification of the detected

information flows along different axes. Specifically, we classify flows based on relevant security and privacy

properties: confidentiality, integrity, confinement, web tracking potential and persistence (Section 4).

(3) We deep dive in web tracking as a prominent case study. In particular, we first investigate the effectiveness of

filter lists at detecting tracking via the web storage, we then analyze the privacy implications of the detected

tracking flows and we finally evaluate the compliance of web storage uses in the wild against the key General

Data Protection Regulation (GDPR) directives (Section 5).

In the end, our analysis shows that web storage is routinely accessed by third parties, including known web trackers,

which are particularly eager to have both read and write access to persistent web storage information. Specifically, we

measure that 59% of the information flows involving the web storage can be attributed to known trackers detected by

popular filter lists. Although filter lists are too coarse-grained to reason about tracking at the flow level, we show that

28% of the detected information flows have tracking potential, because they include potential user identifiers according

to existing heuristics. Moreover, we show that taint tracking is useful to detect potential new trackers not included in

existing filter lists: indeed, our information flow analysis can identify 266 flows with tracking potential which escape

filter list detection, leading to the identification of 90 new (potentially) tracking scripts. Our analysis also shows that

cross-site tracking can readily happen in 44% of the domains where we identified any use of web storage, however our

data do not show significant abuses of first-party content for cross-site tracking as identified by recent research on

cookies [20, 23]. Finally, we observe that many websites do not comply with the GDPR directives when it comes to

their use of web storage; in particular we identify several violations to the consent and transparency dimensions of

GDPR. This motivates the need for further research on the security and privacy implications of web storage content.

2 BACKGROUND

We provide below a brief review of the technical ingredients required to understand this article. We assume familiarity

with the basic functionality of the web platform, e.g., basics of the HTTP protocol, HTML and JavaScript.

2.1 Same Origin Policy and Web Storage

The Same Origin Policy (SOP) is the baseline defense mechanism of web browsers, which enforces a strict separation

between content served by different origins, i.e., combinations of protocol, host and port. For example, scripts running
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in a page fetched from https://www.foo.com cannot access the DOM of a page fetched from https://www.bar.com. SOP

mediates both read andwrite accesses, thus acting as the security cornerstone to grant confidentiality and integrity on the

Web. Note that, when a page at https://www.foo.com includes a script from a different origin like https://www.bar.com,

the script inherits the origin of https://www.foo.com and is executed with the corresponding privileges.

The Web Storage API offers two different facilities, called local storage and session storage respectively. Both types of

storage are protected by SOP and have similar access interfaces, with the most notable difference being related to the

expiration of the stored content. While content in the local storage persists indefinitely, content in the session storage

is purged when the browser (or tab) is closed. We show an example use of session storage below: local storage can be

used just by replacing sessionStorage with localStorage in the method call.

1 sessionStorage.setItem('name', 'alice');

2 var n = sessionStorage.getItem('name');

3 // the next line prints "My name is alice"

4 console.log("My name is " + n);

In the following we use the term “web storage” to refer to both local storage and session storage when the distinction

is immaterial to the discussion. Similarly, in the textual discussion, we just write setItem or getItem to abstract from

the specific web storage object where the method is invoked.

2.2 Web Tracking

Web tracking operates by setting unique identifiers into client-side storage, such as cookies and web storage, and using

them to correlate navigation behaviors of web clients. It can be broadly categorized in two classes, with different goals

and privacy implications [24]:

• In same-site tracking, the tracking script is loaded into the web page by means of a <script> tag, hence it inherits

the origin of the embedding web page. This implies that the script sets tracking information which is under the

control of the web page, rather than the tracker. If the tracking script is also loaded in a different page, it has

no visibility of any identifiers set in the first page, hence the tracker has no immediate way to learn navigation

patterns across different websites. This form of tracking is normally used for analytics and statistics collection,

however recent work also investigated possible abuses of first-party identifiers, such as cookie syncing [20] and

UID smuggling [23].

• In cross-site tracking, the tracking script is loaded into the web page by means of an <iframe> tag, hence it

maintains the tracker’s origin. Since tracking information set by the script remains under the control of the

tracker, the tracker can detect navigation profiles across websites. Indeed, if the tracking script is also loaded

in a different page, its requests may attach the tracker-controlled identifier to pinpoint the client. This form of

tracking is thus normally used, e.g., for advertisement, where the tracker may construct navigation profiles to

provide personalized ads with higher revenues.

While browsers are generally lenient towards same-site tracking, several browsers such as Mozilla Firefox and

Brave now implement countermeasures such as partitioned storage to prevent cross-site tracking [23]. In this work, we

perform our analysis on top of Google Chrome, which does not implement any form of tracking protection by default

at the time of writing. The privacy implications drawn from our study thus directly apply to Google Chrome users,

which account for more than 60% of the web users as of August 2023.
1

1
https://gs.statcounter.com/browser-market-share
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2.3 General Data Protection Regulation (GDPR)

In order to bring data protection laws in line across member states, GDPR [1] was presented in January 2012, approved

on May 2016 and enforced on May 2018. GDPR has several implications for web services and is therefore supposed

to impact the technical design of websites, which data they collect, and how they inform users about their practices.

Importantly, Article 3 of GDPR regulates any service which is served in the European Union or monitors the behaviour

of the users within there, even when there is no legal representation of the service provider therein.

We consider two key requirements of GDPR as relevant to our study, i.e., consent and transparency. In legal literature,

the regulation is covered in further detail [25].

2.3.1 Consent. According to Article 6 of GDPR, the processing of personal data is only legitimate if “the data subject

has given consent to the processing of his or her personal data for one or more specific purposes”. Consent, in turn, is

explained in Article 4 as “any freely given, specific, informed and unambiguous indication of the data subject’s wishes

by which he or she, by a statement or by a clear affirmative action, signifies agreement to the processing of personal data

relating to him or her”. From a technical perspective, consent on the Web is normally granted by means of cookie banners,

i.e., small banners rendered via JavaScript to provide information about the nature and purposes of the data collected

by means of cookies; cookies should only be set in the user’s browser after approval is granted by clicking over the

banner [6, 11]. Note that some cookies are exempt from this requirement, most notably those cookies which are strictly

required for website functionality, e.g., to implement web sessions. Although the popular term “cookie banner” might

suggest that consent should only be granted for cookies, this is not the case: GDPR applies to all types of client-side

storage, including web storage [21, 25] .

2.3.2 Transparency. Article 12 of GDPR states that any service provider who processes/controls personal data should

inform the data subject about the fact and present the information in “a concise, transparent, intelligible, and easily

accessible form, using clear and plain language”. Article 13 more specifically lists what information needs to be provided.

This includes contact data, the purposes and legal basis for the processing, and the data subject’s rights regarding their

personal data, e.g., the rights to access, rectification, or deletion. From a technical perspective, these requirements make

it necessary for every website operating in the European Union to have a privacy policy and existing privacy policies

must be updated to comply with the new transparency requirements.

3 DYNAMIC TAINT TRACKING

We present the dynamic taint tracking engine that we developed to study the most prominent uses of web storage in

the wild. Taint tracking is a standard dynamic approach to information flow control [28], which we use to detect how

information read from / written to the web storage propagates in live websites. After reviewing the motivations and

high-level ideas of the proposed solution, we discuss the key technical details of our implementation.

3.1 Motivation and Overview

Contrary to cookies, which are normally set via HTTP headers and then automatically attached by the browser to

specific network requests, web storage can only be read and written via JavaScript. This means that one cannot monitor

the use of web storage just by inspecting network traffic, but has to deal with the complexity of JavaScript to reconstruct

valuable information. In particular, we are interested in detecting information flows involving the Web Storage API, i.e.,

data flows that either start by reading from the web storage or end by writing into the web storage. Flows of the former
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type may breach the confidentiality of web storage content, while flows of the latter type may compromise its integrity.

We thus leverage dynamic taint tracking as a standard approach for our principled investigation.

Taint tracking captures explicit flows of information, i.e., data dependencies rather than control flow dependencies,

which often leads to increased practicality [28, 32]. Taint tracking operates by introducing a taint when reading from a

sensitive source of information and propagating it across different operations, until it reaches a sink, where a potential

security issue is detected. For example, consider the following code snippet:

1 var n = sessionStorage.getItem('ccn');

2 var s = "Credit card number is: " + n;

3 var xhr = new XMLHttpRequest();

4 xhr.open('GET', 'https://foo.com/leak.php');

5 xhr.send(s);

Here, the variable n is tainted at line 1 after reading from the session storage. The variable s is then tainted at

line 2, because it is computed by concatenating a tainted value to an untainted string, hence the value of s depends

from tainted data. Finally, at line 5 we detect that a tainted value is written into a sink, thus detecting a potential

confidentiality violation. Note that detection is performed at runtime, because JavaScript is a challenging language

for static analysis. In particular, we target an automated measurement on live sites in this article, hence we prefer a

dynamic analysis which is naturally resilient to obfuscated/minified code that may occur in the wild.

Our dynamic taint tracking engine is a complex yet relatively standard solution based on existing technologies

and the extensive research line on information flow control [26]. In particular, we leverage the Jalangi framework

for JavaScript instrumentation [29]. Jalangi operates via a source-to-source transformation, aware of all the dynamic

features of JavaScript, which inserts callbacks for all the main operations performed by the JavaScript interpreter.

Analysis developers can thus customize the callbacks to track different information at runtime and use it appropriately.

The implementation of our dynamic taint tracking engine follows the approach proposed in Ichnaea [19]. Unfor-

tunately, since Ichnaea is not publicly available and is only semi-formally described in the original paper, we had to

engineer our own solution, which we detail in this section. The key idea of the proposed analysis approach is that

the instrumented JavaScript preserves the semantics of the original JavaScript, while running an abstract machine to

track information flows in parallel. The abstract machine manipulates a stack of abstract values that reflect the taints of

values on the runtime stack of the original JavaScript program, while also maintaining maps that associate abstract

values with local variables and object properties. To exemplify, Figure 1 shows the abstract machine code generated for

the previous example; we only show the instructions generated for lines 1, 2, 5 of the original code, because lines 3 and

4 are uninteresting for taint tracking purposes.

Some of the fundamental instructions of the abstract machine are employed here: push and pop to manipulate the

stack, join to merge the two topmost taints (here it is used to propagate taints for the binary ’+’ operation), readvar

and writevar to load and store the taintedness of variables, readproperty and writeproperty to load and store

the taintedness of object properties; note the use of readvar('_ret_') to load the taintedness of the return value

of a function call. At line 1 of the original code, after calling the method getItem, which is a source, the instruction

readvar('_ret_') pushes true onto the stack to track that the return value is tainted. At line 2, the ’+’ binary operator

combines a literal value, that is always untainted, with the tainted value generated at the previous line; in this case, we

join the taints of the operands, which are the two topmost elements of the stack, hence true is pushed at the top of the

stack. Finally, at line 5, the tainted value computed at line 2 is passed as argument when invoking the method send,
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1 // Line 1
2 readvar('sessionStorage'); // push taint (false) for variable 'sessionStorage'
3 readproperty('obj2', 'getItem'); // push taint (false) for property 'getItem' of object 'obj2'
4 // note: 'obj2' is the object ID currently assigned to variable 'sessionStorage'
5 push(false); // push taint (false) for literal 'ccn'
6 push(false); // push taint (false) for receiver object 'obj2'
7 // native function call
8 pop(); // pop taint (false) for receiver object obj2'
9 pop(); // pop taint (false) for first argument (string 'ccn')
10 pop(); // pop taint (false) for the called function
11 pop(); // pop taint (false) for object 'obj2' read from variable 'sessionStorage'
12 // since getItem is a source, taint the top of the stack and propagate it to variable 'n'
13 readvar('_ret_'); // push taint (true) for the return value
14 writevar('n'); // store taint (true) for variable 'n' (without pop)
15 pop(); // pop taint (true) at the end of expression
16

17 // Line 2
18 push(false); // push taint (false) for string 'Credit card number is: '
19 readvar('n'); // push taint (true) for variable 'n'
20 // the taint is propagated to the top of the stack (result of '+') and into variable 's'
21 join(); // propagate taints (true) to the result of binary '+' operation
22 writevar('s'); // store taint (true) for variable 's' (without pop)
23 pop(); // pop taint (true) at the end of expression
24

25 // Line 5
26 readvar('xhr'); // push taint (false) for variable 'xhr'
27 readproperty('obj19', 'send'); // push taint (false) for property 'send' of object 'obj19'
28 // note: 'obj19' is the object ID currently assigned to variable 'xhr'
29 readvar('s'); // push taint (true) for variable 's'
30 push(false); // push taint (false) for receiver object 'obj19'
31 // native function call
32 pop(); // pop taint (false) for receiver object 'obj19'
33 // the taint reaches a network sink, hence the tool logs the information flow
34 pop(); // pop taint (true) for first argument (variable 's')
35 pop(); // pop taint (false) for the called function
36 pop(); // pop taint (false) for object 'obj19' read from variable 'xhr'
37 readvar('_ret_'); // push taint (false) for the return value
38 pop(); // pop taint (false) at the end of expression

Fig. 1. Example of abstract machine code for taint tracking

which has been defined as a sink, therefore the tool reports the information flow from the source getItem at line 1 to

the network sink at line 5.

3.2 Analysis Specification

3.2.1 Core JavaScript. In order to provide a formal description of the taint tracking engine, we consider a core subset

of non-strict ECMAScript 5.1 [12]. Such subset, whose grammar is given in Figure 2, is subject to many simplifying

assumptions and excludes many of the language features, e.g., exception handling, and syntactic sugars described in the

full ECMAScript specification. Nevertheless, it suffices to provide the key ideas of our taint tracking approach. Additional

JavaScript features not included in our core subset, but supported by our implementation, are briefly discussed later.

The considered subset of JavaScript supports all the literals of primitive values and the null keyword. Objects are

initialized through object expressions by providing the list of key-value pairs for data properties. Similarly, functions are

anonymous and specified through function expressions by supplying the list of formal arguments and the body. Like in

traditional core programming languages, we also assume a set of unary and binary operators such that their evaluation

does not have side effects and does not involve any implicit type conversion of its operands (e.g., in JavaScript, the

evaluation of "obj:"+{} requires the object to be converted into a string). Our core subset of JavaScript supports variable
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Id ::= x | foo | ... (identifier)

Num ::= 0 | 1 | -1 | 0.1 | ... (numeric literal)

Str ::= "" | "hello" | ... (string literal)

Bool ::= true | false (boolean literal)

Lit ::= Num | Str | Bool | null (literal)

Obj ::= { Id : Expr , · · · , Id : Expr } (object)

Fun ::= function ( Id , · · · , Id ) { Stmt } (function)

uop ::= ! | typeof | ... (unary operator)

bop ::= + | * | ... (binary operator)

Expr ::= Lit (literal expression)

| Obj (object expression)

| Fun (function expression)

| uop Expr (unary operation)

| Expr bop Expr (binary operation)

| Id (variable read)

| Expr [ Expr ] (property read)

| Expr ( Expr , · · · , Expr ) (function call)

Stmt ::= var Id = Expr (variable declaration)

| Id = Expr (variable assignment)

| Expr [ Expr ] = Expr (property write)

| return Expr (return statement)

| Stmt ; Stmt (sequence)

Fig. 2. Syntax of a core subset of JavaScript

declarations to introduce bindings in the local scope, variable reads to load their value by means of the corresponding

identifier, and variable assignments to store a given value. Object properties are accessed for reading and writing as well,

but only using the bracket notation 𝐸𝑥𝑝𝑟[𝐸𝑥𝑝𝑟], in contrast to the full language that also supports the dot notation

𝐸𝑥𝑝𝑟 .𝐼𝑑 . Furthermore, while variable and property writes are expressions in JavaScript, here they are just statements.

Finally, the full JavaScript language provides three different semantics of invocation: (𝑖) function call, (𝑖𝑖) method call,

and (𝑖𝑖𝑖) constructor invocation. To complicate things, there exist numerous situations in which a function is implicitly

executed by the JavaScript engine, including implicit type conversions, accessing accessor properties, asynchronous

operations, and so on. For simplicity, here we just consider regular function calls as the simplest form of invocation.

Moreover, we assume that functions must be invoked with a number of actual arguments equal to the number of formal

arguments and that invocations must terminate with a return statement, differently from the real-world language

in which functions can be invoked with a number of actual arguments lesser or greater than the number of formal

arguments and an invocation may exit without executing a return statement.

3.2.2 Abstract Machine. The abstract machine manipulates a stack of abstract values reflecting the taint of values in

the stack of the JavaScript program, while also maintaining maps that associate abstract values to variables and object

properties. With the aim of identifying the different types of sources that influence concrete values during the script

execution (e.g., local storage, network, and so on), we model abstract values with label sets 𝜏 . Accordingly, the empty label

set annotates a non-tainted concrete value, while a non-empty label set annotates a concrete value which is tainted by

the labels it contains. A label is a triple ℓ = (type, loc, extras) which represents the operation that led to its creation, where
7
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ℓ ::= (𝑆𝑡𝑟, 𝑆𝑡𝑟, 𝑆𝑡𝑟∗) (label)

𝜏 ::= {ℓ1, ..., ℓ𝑛} | ∅ (taint, abstract value)

𝐼𝑛𝑠𝑡 ::= push(𝜏) (push constant value onto stack)

| pop() (pop value from stack)

| initvar(𝐼𝑑) (pop value, initialize variable with it)

| readvar(𝐼𝑑) (push current value of variable)

| writevar(𝐼𝑑) (write value at top of stack into variable)

| initproperty(𝐼𝑑, 𝐼𝑑) (pop value, initialize object property with it)

| readproperty(𝐼𝑑, 𝐼𝑑) (push current value of object property)

| writeproperty(𝐼𝑑, 𝐼𝑑) (write value at top of stack into object property)

| join() (pop two values, join, push result)

Fig. 3. Instruction set of the abstract machine

type ∈ Str is the type of label, which identifies a specific type of operation, loc ∈ Str represents the code location where

the operation was executed, and extras ∈ Str∗ is a sequence of extra information about that operation. For example, the

label ("localStorage.getItem", "https://foo.com/index.js:15:48", ⟨"theme", "dark"⟩) represents a call to the

getItemmethod of localStorage, located at row 15 and column 48 of https://foo.com/index.js, with extra information

about the key of the item being accessed - "theme" - and its value - "dark". We use labels to represent also sinks in the

taint analysis. When a source generates a value, we put a new label representing that operation into the set which

annotates such value; afterwards, when a tainted value, i.e., a value annotated with a non-empty label set 𝜏 , reaches a

sink, we record the information flow as a pair (𝜏, 𝑠), where 𝑠 is a label representing the sink.

Figure 3 shows the list of instructions supported by our abstract machine. The instructions for manipulating the stack

of abstract values (push, pop), accessing the maps of abstract values associated to local variables (initvar, readvar,

writevar) and accessing object properties (initproperty, readproperty, writeproperty) are common between our

tool and Ichnaea [19]. We point out that the identifiers that refer to variables and properties in the abstract machine are

fully-qualified names, which are fresh and unique along the whole script execution. In addition, our abstract machine

supports the join instruction, which extracts two abstract values from the top of the stack and then pushes their join

(in terms of label sets, their union). We need this instruction for our treatment of native functions, whose internal

behavior is not observable because their code is not instrumented by Jalangi.

3.2.3 Instruction Generation. The idea behind taint tracking is to propagate the taint of the sub-expressions to the

result upon expression evaluation. We hold the invariant that the last values pushed onto the stack represent the taint of

the previously calculated sub-expressions, hence we generate instructions that push a number of abstract values on top

of the stack equal to the number of sub-expressions. At the end of the evaluation, at the top of the stack there will be

the value reflecting the taint of the whole expression. Taints are then propagated across statements, e.g., assignments.

Figure 4 shows how abstract machine instructions are generated for each type of operation specified in the core subset

of JavaScript. For each expression and statement, we formalize a simple model of the callbacks implemented in Jalangi

for taint tracking purposes [29]. Jalangi allows one to define callbacks both before and after execution of operations: we

denote these callbacks with pre() and post() respectively. The callbacks have access to different parameters depending

on the performed operation, e.g., callbacks for binary expressions have access to both the operand and the values of the

evaluated sub-expressions. For most of the core language constructs, we do not need the full generality of the Jalangi

approach and we just define the post() callback. The figure is commented in detail in the rest of this section.
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Operation Callbacks Explanation

Expressions (𝐸𝑥𝑝𝑟 )

𝑙 ∈ Lit post(𝑣𝑙 )
Emit(push( ∅))

Literals are never tainted.

𝑜 ∈ Obj
𝑜 ≡ {𝑝1:𝑒1,· · · ,𝑝𝑛:𝑒𝑛}

post(𝑣𝑜 )
Emit(initproperty(oid (𝑣𝑜 ), 𝑝𝑛))
· · ·
Emit(initproperty(oid (𝑣𝑜 ), 𝑝1))
Emit(push( ∅))

Initialize properties using the 𝑛 topmost values of

the stack. The object itself is not tainted.

𝑓 ∈ Fun post(𝑣𝑓 )
Emit(push( ∅))

Functions are never tainted.

uop 𝑒 post(uop, 𝑣𝑒 )
do nothing

The taint of the result corresponds to the taint of

the operand at the top of stack, hence nothing to

do.

𝑒1 bop 𝑒2 post(𝑣1, bop, 𝑣2)
Emit(join())

The taints of the two operands at the top of the

stack propagate to the result.

𝑛𝑎𝑚𝑒 ∈ Id post(𝑛𝑎𝑚𝑒)
Emit(readvar(name))

Push the taint associated to the variable name.

𝑒𝑜[𝑒𝑝] post(𝑣𝑜 , 𝑣𝑝 )
Emit(pop())
Emit(pop())
Emit(readproperty(𝑜𝑖𝑑 (𝑣𝑜 ), offset (𝑣𝑝 )))

Pop the taints of the property name and the object;

then, push the taint of the property 𝑣𝑝 of 𝑣𝑜 .

𝑒𝑓 (𝑒1,· · · ,𝑒𝑛) pre(𝑣𝑓 , 𝑣1, · · · , 𝑣𝑛)
if 𝑣𝑓 is user-defined function then
Enter-User-Function(𝑣1, · · · , 𝑣𝑛 )
𝑣𝑓 ≡ function (arg

1
, · · · , arg𝑛) { · · · }

Emit(initvar(arg𝑛 ))
· · ·
Emit(initvar(arg

1
))

else
Enter-Native-Function(𝑣1, · · · , 𝑣𝑛 )

end if

post(𝑣𝑓 , 𝑣1, · · · , 𝑣𝑛, 𝑣𝑟 )
if 𝑣𝑓 is user-defined function then
Leave-User-Function(𝑣𝑟 )

Emit(pop())
Emit(readvar("_ret_"))

else
Leave-Native-Function(𝑣𝑟 )

end if

pre: If 𝑣𝑓 is a user-defined function, initialize the

formal arguments using the 𝑛 topmost values of

the stack. The procedures Enter-User-Function

and Enter-Native-Function are described in

Figure 5 and explained later.

post: If 𝑣𝑓 is a user-defined function, discard the

called function and read the special _ret_ variable

to load the returned value onto the stack. The

procedures Leave-User-Function and

Leave-Native-Function are described in Figure 5

and explained later. The parameter 𝑣𝑟 contains the

concrete value returned by the function

invocation.

Statements (𝑆𝑡𝑚𝑡 )

var name = 𝑒 post(name, 𝑣𝑒 )
Emit(initvar(name))

Initialize the variable name with the value on top

of the stack.

name = 𝑒 post(name, 𝑣𝑒 )
Emit(writevar(name))
Emit(pop())

Assign the value on top of the stack to the variable

name; then, discard the assigned value.

𝑒𝑜[𝑒𝑝] = 𝑒 post(𝑣𝑜 , 𝑣𝑝 , 𝑣𝑒 )
Emit(writeproperty(oid (𝑣𝑜 ), offset (𝑣𝑝 )))
Emit(pop())
Emit(pop())
Emit(pop())

Assign the value on top of the stack to the

property 𝑣𝑝 of 𝑣𝑜 ; then, discard the assigned value

and the taints of the property name and the object.

return 𝑒 post(𝑣𝑒 )
Emit(writevar("_ret_"))
Emit(pop())

Assign the value on top of the stack to the special

_ret_ variable for communicating the return value

to the caller; then, discard the assigned value.

Fig. 4. Rules for generating abstract machine instructions from our core subset of JavaScript; we assume that instructions for
gray-colored expressions have already been issued, i.e., may already have affected the stack

Basic Operations. Literal and function expressions are constant values in the source code, which generally do not

represent sensitive information; accordingly, a push(∅) instruction is issued for the abstract machine, indicating that

such values are not tainted. Objects, instead, are more complex, because object expressions define a number of properties,

9
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let us say𝑛, whose values have been pushed onto the stack just before evaluating the object itself; those𝑛 properties must

be initialized in reverse order using the 𝑛 topmost values of the stack, therefore we emit 𝑛 initproperty instructions.

The taint of the result of unary operations corresponds to the taint of the single operand at the top of the stack,

hence it is not necessary to issue any instructions for the abstract machine. Instead, in the case of binary operations,

the taint of the two operands must propagate to the result; therefore, we emit a join() instruction in order to merge

the two topmost taints into a single one.

Variables and object properties are both considered containers of data, so their taint is associated to the value

they carry. A variable is declared in the abstract machine as a result of generating an initvar(name) instruction.
Afterwards, it can be accessed by issuing readvar(name) for reading and writevar(name) for writing. The name

parameter includes both the variable name and the identifier of the activation frame where the variable has been declared.

Analogously, the access to the property 𝑣𝑝 of an object 𝑣𝑜 is possible by emitting a readproperty(oid (𝑣𝑜 ), offset (𝑣𝑝 ))
to get the assigned value and writeproperty(oid (𝑣𝑜 ), offset (𝑣𝑝 )) to put another one. In this case, oid and offset are

mappings from JavaScript objects and property values to their corresponding unique identifiers in the abstract machine.

It is also worth noticing that writevar and writeproperty do not extract from the stack the value they store, hence

those instructions must be followed by pop(); furthermore, readproperty and writeproperty do not pull out of the

stack the taints for the object and the property name, so once again a pop() instruction must be issued twice.

Function Calls. Handling function calls is themost challenging part of the analysis, because the JavaScript specification

defines a significant amount of native functions, i.e., built-in functions available in the browser which are not amenable

for instrumentation, because their internals are invisible to Jalangi. Ichnaea bridges the lack of information on data

dependencies with the help of manually crafted models for specific native functions, which generate instructions for the

abstract machine that mimick their internals. However, this strategy is only effective for the supported functions, thus it

cannot easily scale to the whole JavaScript standard library and is also hard to maintain in terms of engineering effort.

Since we do not have access to Ichnaea and its models of native functions, we design a different solution based

on standard concepts, which is not as precise as Ichnaea’s manually crafted models, but works for any invocation of

both user-defined and native functions, thus being more general and easier to maintain. Essentially, since operations

performed within a native function are unknown, in such a case we determine an over-approximation of the taint

for the returned value. Along with the existing assumptions, we suppose that the instrumented code allows us to

intercept the entry into and exit from a function invocation, be it user-defined or native, except for the case of the

invocation of a native function by another native function, because such calls are not observable by Jalangi due to lack

of instrumentation. With this in mind, let us examine all the possible types of function calls.

The simplest instance is the one in which a user-defined function invokes another user-defined function:
in this case, when the function is called, the stack contains the taints of 𝑛 actual arguments as the 𝑛 topmost values.

Hence, first of all the formal arguments must be initialized in reverse order by generating 𝑛 initvar instructions. Then,

upon reaching a return 𝑒 statement, the taint for the value of 𝑒 on top of the stack is stored in a special variable,

called _ret_, with the writevar("_ret_") instruction, and is subsequently pulled out of the stack with pop(). After
the call, the top value of the stack is the taint for the called function, so it is discarded with pop(), and finally the value

associated to the special _ret_ variable is read by emitting a readvar("_ret_") instruction, in order to communicate

the returned value to the caller.

When a user-defined function invokes a native function, the taints for 𝑛 actual arguments combine into a single

value as a result of generating 𝑛 − 1 join instructions; the obtained value on top of the stack is the over-approximated

10
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taint for the result of the invocation. If no argument has been passed, we push ∅ onto the stack. Such taint is then

recursively joined with the taints associated to the properties of objects passed as an argument, because the values

of these properties may influence the result too. At the end, the taint for the result is stored into the special _ret_

variable if the returned value is primitive, otherwise we recursively propagate it to the properties of the returned object

and replace the taint associated to the _ret_ variable with ∅, thus preserving the rule that objects are never tainted.
The recursion through objects for updating the taint of their properties must take into account the possibility of cyclic

references, for example in case of an object referring to itself; in order to avoid infinite recursion, we process an object

only if it has not been visited yet in a single traversal.

Finally, we discuss the case in which a native function invokes a user-defined function. This may happen in the

case of higher-order native functions, i.e., functions that accept another function as an argument. An example is the

Array.prototype.map native function, that progressively applies a given callback to all the elements of an array and

then creates a new array with the corresponding results. Note that we can observe this kind of invocation because

we are able to detect when the execution enters a user-defined function, knowing that the last observed operation is

a native function call. In this case, we duplicate the topmost value of the stack, i.e., the resulting taint of the native

function, for each primitive value passed as an argument, while issuing push(∅) for each passed object. This means that

the taints for the arguments may depend on each of the arguments passed to the native caller. Duplication is achieved

using an auxiliary _arg_ variable, that is written once and read as many times as necessary. On the return, we load

the taint for the _ret_ variable and perform a weak update of the native function’s resulting taint by joining these

two values: in fact, the user-defined callback may have returned a value annotated with a new label, that we have to

consider for the final result of the native function call or the arguments of another invocation of the callback.

Our approach is formally described in Figure 5: we define a collection of procedures that emit instructions for the

abstract machine whenever the execution enters and leaves a user-defined or native function, in accordance with the

above rules. In particular, we call from inside user-defined functions the Enter-User-Function procedure before

initializing formal arguments and the Leave-User-Function procedure before returning to the caller, while we call the

Enter-Native-Function and Leave-Native-Function procedures respectively before and after the invocation of

native functions, since we are able to observe the entry and exit of this kind of invocation only from the caller (see

Figure 4). The behavior of these procedures is stateful with respect to a stack of abstract activation frames, which

reflects the nature of invoked functions in the runtime call stack of being user-defined (with the "USER" string) or native

(with the "NATIVE" string). We clarify that such abstract call stack is just an auxiliary data structure for generating

abstract machine instructions and hence the abstract machine is totally independent from it. It is possible to manipulate

the abstract call stack with the following standard procedures: Push-Frame pushes an abstract frame onto the stack,

Pop-Frame removes an abstract frame from the stack, and Top-Frame gets the abstract frame at the top of the stack

without removing it.

3.2.4 Additional JavaScript Features. The JavaScript standard specification includes a lot of additional features that we

have not covered in the formal discussion. For the majority of them, including arrays, getters and setters, dynamic code

evaluation (eval()), and arguments in function calls, we borrow the treatment from Ichnaea and so we refer readers

to [19] for further details. Instead, we briefly explain why and how we behave differently with respect to one important

feature of the language: exception handling.

When a function executes a throw statement, the JavaScript engine interrupts that function and returns to the caller

recursively, until it hits a try-catch statement or the stack of activation frames is empty. In the first base case, the

11
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Require: 𝑎1, · · · , 𝑎𝑛 Actual arguments

procedure Enter-User-Function(𝑎1, · · · , 𝑎𝑛 )
if Top-Frame() = "NATIVE" then

Emit(writevar("_arg_"))
for 𝑖 ← 1..𝑛 do

if 𝑎𝑖 is primitive then
Emit(readvar("_arg_"))

else if 𝑎𝑖 is object then
Emit(push( ∅))

end if
end for

end if
Push-Frame("USER")

end procedure

Require: 𝑟 Return value

procedure Leave-User-Function(𝑟 )
Pop-Frame()
if Top-Frame() = "NATIVE" then

Emit(readvar("_ret_"))
Emit(join())

end if
end procedure

Require: 𝑎1, · · · , 𝑎𝑛 Actual arguments

procedure Enter-Native-Function(𝑎1, · · · , 𝑎𝑛 )
if 𝑛 = 0 then

Emit(push( ∅))
else

for 𝑛 − 1 times do
Emit(join())

end for
end if
for 𝑖 ← 1..𝑛 do

if 𝑎𝑖 is object then
Obj-Taint(𝑎𝑖 )
Emit(join())

end if
end for
Push-Frame("NATIVE")

end procedure

Require: 𝑟 Return value

procedure Leave-Native-Function(𝑟 )
Pop-Frame()
Emit(writevar("_ret_"))
Emit(pop())
if 𝑟 is object then

Obj-Propagate(𝑟 )
Emit(push( ∅))
Emit(writevar("_ret_"))
Emit(pop())

end if
end procedure

Require: 𝑜 The object to get the taint from

procedure Obj-Taint(o)
Emit(push( ∅))
if 𝑜 has not been visited yet then

Let 𝑜 ≡ {𝑝1 : 𝑣1, · · · , 𝑝𝑛 : 𝑣𝑛 }
for 𝑖 ← 1..𝑛 do

if 𝑣𝑖 is primitive then
Emit(readproperty(oid (𝑜), offset (𝑝𝑖 ))

else if 𝑣𝑖 is object then
Obj-Taint(𝑣𝑖 )

end if
Emit(join())

end for
end if

end procedure

Require: 𝑜 The object to which to propagate the taint (from the special

_ret_ variable)

procedure Obj-Propagate(o)
if 𝑜 has not been visited yet then

Let 𝑜 ≡ {𝑝1 : 𝑣1, · · · , 𝑝𝑛 : 𝑣𝑛 }
for 𝑖 ← 1..𝑛 do

if 𝑣𝑖 is primitive then
Emit(readproperty(oid (𝑜), offset (𝑝𝑖 ))
Emit(readvar("_ret_"))
Emit(join())
Emit(writeproperty(oid (𝑜), offset (𝑝𝑖 ))
Emit(pop())

else if 𝑣𝑖 is object then
Obj-Propagate(𝑣𝑖 )

end if
end for

end if
end procedure

Fig. 5. Procedures for generic function invocations, describing our treatment of native and user-defined functions

variable in the catch clause is filled with the parameter of the throw statement. It is well specified that Ichnaea, as

well as our tool, passes the taint of such parameter to the variable in the catch clause through another special variable

called _throw_, similar to the treatment of values returned by functions. However, the description of Ichnaea does not

mention anything about cleaning up the stack of abstract values from intermediate values of interrupted functions. This

12
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detail is important for the correctness of the taint tracking engine: if not considered properly, the state of the abstract

machine may get out of sync with respect to the concrete state every time an exception occurs, leading to erroneous

analysis results. To remedy this problem, we extend our model of abstract activation frame with an additional numeric

information, which we denominate “frame pointer”. This value corresponds to the height of the stack of abstract values

at the time of creation of the activation frame, i.e., when the JavaScript engine enters the last invoked function. When

the running function gets interrupted exceptionally, a number of pop() instructions is emitted until the height of the

stack of abstract values is equal to the corresponding frame pointer. This way, no more taints associated to intermediate

values of the interrupted function are present in the stack of abstract values, hence the alignment between the abstract

and the concrete state is preserved.

4 EMPIRICAL WEB STORAGE ANALYSIS

We now explain how we performed our empirical measurement of the use of web storage in the wild and we report

on the most relevant findings of our study, based on an automated classification of the detected information flows

involving the web storage from a security and privacy perspective.

4.1 Methodology

We use the developed dynamic taint tracking engine to automatically identify information flows involving the Web

Storage API in the top 10k domains of the Tranco list [22] generated on April 17th, 2023.
2
More formally, an information

flow involves the Web Storage API if and only if: (𝑖) it starts from a call to the getItem method and ends into a sink, or

(𝑖𝑖) it starts from a source and ends into a call to the setItemmethod. We refer to the former as confidentiality flows and

to the latter as integrity flows, thus taking the web storage perspective. Table 1 reports the different sources and sinks

considered in our analysis, largely inspired by previous web measurements based on information flow control [10, 30].

Note that the web storage was largely ignored as source or sink in previous work, to the best of our knowledge. Besides

detecting the flows, we use our taint tracking engine to log all the calls to setItem, saving the key, the value and the

script which performed the call. This is useful to understand the popularity of web storage in the wild and investigate

other use cases that do not fit our information flow pattern (see the privacy analysis in Section 5.2).

We use the Puppeteer library
3
to drive our instrumented browser (Google Chrome) to each domain in the Tranco

list, leaving 120 seconds to render the HTML content after connecting. For each correctly accessed domain, we leverage

taint tracking to collect all the information flows involving the Web Storage API on all the frames within the web page.

The use of a relatively high timeout of 120 seconds is intended to give to our dynamic analysis a reasonable amount of

time to discover useful information flows during JavaScript execution. To better understand the use of web storage, we

then perform an automated classification of the collected information flows. This is a non-trivial task, that we dealt

with after a preliminary manual investigation to understand the nature of the collected data. In particular, we categorize

the flows along different axes, all fully amenable to automation, as described in the following.

Confinement. A first relevant aspect we investigate is related to the origins involved in the flows. We say that a flow

is internal if and only if it is confined within a single origin. In other words, these flows do not include network sources

or sinks (cf. Table 1), unless network communication only involves the same origin where the flow was detected. The

other flows, which we call external, are more interesting from a security and privacy perspective, because they involve

2
https://tranco-list.eu/list/GZ7NK

3
https://pptr.dev/
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Table 1. List of sources and sinks used in our taint tracking engine

Class Details Tracked Information

Sources

Cookies document.cookie Read value and script URL

Current URL

document.URL

Read value and script URL

location
document.location
window.location

Navigator

navigator.geolocation

Read value and script URL

navigator.language
navigator.platform
navigator.userAgent

Network XMLHttpRequest (input) Input URL and script URL

Web storage

localStorage.getItem
Read value, key and script URL

sessionStorage.getItem

Sinks

Cookies document.cookie Written value and script URL

Network

XMLHttpRequest (output)
Output URL and script URLnavigator.sendBeacon

src attribute of HTML element

Web storage

localStorage.setItem
Written value, key and script URL

sessionStorage.setItem

third parties. For example, a page at https://www.foo.com may include a script which reads the content of the local

storage and sends it to https://www.bar.com, thus potentially leaking sensitive information from https://www.foo.com.

The reason why we define confinement at the origin level, rather than at the site
4
level, is that web storage content is

origin-scoped and thus subject to SOP.

Tracking. Tracking is one of the driving forces of the web ecosystem and it is extremely common in the wild. We call

a tracking flow any information flow that starts from a source, or ends into a sink, located in a script served by a known

web tracker. To reconstruct this information, we leverage the fact that the instrumentation performed by Jalangi keeps

track of the URL from which each script was downloaded. By matching this script URL against popular filter lists like

EasyList and EasyPrivacy [13], we can detect the involvement of known web trackers in the identified web storage

accesses. Note that, although filter lists are not perfect [14, 17], they are actively maintained by their communities and

routinely used both in web privacy measurements and browser extensions such as Ghostery.
5
In Section 5 we further

investigate tracking flows to better assess their privacy implications.

Persistence. A last relevant aspect is the persistence of the information involved in the flow. Though both local storage

and session storage can store arbitrary information, the content of local storage may persist indefinitely. Persistence

may have important implications on both security and privacy. For example, the local storage may become a source of

persistent XSS [33] and may potentially enable perpetual tracking of web users. For each flow, we thus track the type of

the involved web storage. Notice that the same flow may involve both the local storage and the session storage, e.g.,

because local storage and session storage information is combined together before network communication.

4
A site is defined as an effective top-level domain (eTLD) + 1. For example, foo.example.com and baz.example.com belong to the same site example.com.

5
https://www.ghostery.com/
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Table 2. Sources and sinks involved in confidentiality and integrity flows

Class #Flows #Domains

Confidentiality Cookies 444 123

Network 390 224

Integrity

Cookies 1,225 426

Current URL 910 305

Navigator 224 113

Network 314 226

4.2 Measurement Results

Overall, our crawler successfully accessed and instrumented JavaScript code on 7,179 domains, with a success rate of

the instrumentation process of around 89% (other failures were attributed to connection timeouts and generic errors).

At the end of the crawling, we detected 19,290 information flows involving the Web Storage API on 1,887 domains (26%).

These included a significant number of flows where the web storage acts as both source and sink, which we filtered out

because they are confined to the Web Storage API and thus have limited security and privacy implications. Moreover,

we removed all the flows where the source and the sink were located in different scripts, because we manually verified

that most such cases are false positives arising from the complexity of performing accurate taint tracking on real-world

JavaScript. After filtering, we were left with 3,402 information flows on 995 domains (14%), including 834 confidentiality

flows (25%) and 2,568 integrity flows (75%). Overall, we detected 69,262 calls to setItem on 3,884 domains (54%). This

means that, although web storage is used on more than half of the domains that we crawled, the number of cases

where some relevant information flow is found is much lower. This is related to the fact that web storage can be used

for generic reasons which have nothing to do with our list of sources and sinks, e.g., to store timestamps, language

preferences or any other type of client-side information.

Table 2 reports a first breakdown of the detected flows in terms of the involved sources and sinks.
6
As we can see,

390 confidentiality flows (47%) involve a network sink. This already suggests that privacy might be a concern, since it is

common for web storage information to be communicated over the network. We then focus on a more fine-grained

classification of the detected flows, as we described in the previous section. Overall, we observe that 647 flows (19%) are

external, i.e., a significant amount of the flows related to the Web Storage API also involve an origin different from the

origin of the page where the flow was detected. Moreover, 2,003 flows (59%) are related to tracking, i.e., the majority of

the detected flows can be attributed to scripts downloaded from known trackers included in popular filter lists. Finally,

2,490 flows (73%) only make use of local storage, 865 flows (25%) only make use of session storage and just 47 flows

make use of both. All this combined information preliminarily suggests that a common use case of web storage is

persistent web tracking via the local storage, possibly involving third parties.

To provide further insights on the use of web storage in the wild, we also investigate potential correlations between

the different axes considered in our classification. The results of our analysis are visualized as a heatmap in Table 3. The

table supports the following selected observations:

• Confidentiality flows are roughly equally split between internal and external flows, while integrity flows are

mostly internal (89%). This shows that it is more common to send web storage information to third parties, rather

than having third parties write information in the web storage.

6
The sum of the integrity flows exceeds 2,568, because a flow may involve multiple sources. In this case, the same flow is counted on two different rows

of the table, e.g., Cookies and Network.
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Table 3. Classification of the detected information flows

C
onfi

dentiality

Integrity

Internal

External

T
racking

N
on-T

racking

Local

Session

B
oth

Confidentiality
462

(55%)

372

(45%)

507

(61%)

327

(39%)

768

(92%)

53

(6%)

13

(2%)

Integrity
2,293

(89%)

275

(11%)

1,496

(58%)

1,072

(42%)

1,722

(67%)

812

(32%)

34

(1%)

Internal
462

(17%)

2,293

(83%)

1,615

(59%)

1,140

(41%)

1,936

(70%)

783

(28%)

36

(1%)

External
372

(57%)

275

(43%)

388

(60%)

259

(40%)

554

(86%)

82

(13%)

11

(2%)

Tracking
507

(25%)

1,496

(75%)

1,615

(81%)

388

(19%)

1,454

(73%)

514

(26%)

35

(2%)

Non-Tracking
327

(23%)

1,072

(77%)

1,140

(81%)

259

(19%)

1,036

(74%)

351

(25%)

12

(1%)

Local
768

(31%)

1,722

(69%)

1,936

(78%)

554

(22%)

1,454

(58%)

1,036

(42%)

Session
53

(6%)

812

(94%)

783

(91%)

82

(9%)

514

(59%)

351

(41%)

Both
13

(28%)

34

(72%)

36

(77%)

11

(23%)

35

(74%)

12

(26%)

• The majority of the confidentiality flows can be attributed to trackers (61%). Remarkably, however, roughly the

same percentage of integrity flows can similarly be attributed to trackers (58%). Indeed, the table also shows that

the majority of the tracking flows are integrity flows (75%). This suggests that trackers routinely both read and

write web storage information in the wild.

• External flows are more likely to be confidentiality flows than internal flows (57% vs. 17%) and the majority of

the external flows can be attributed to trackers (60%). Moreover, a significant percentage of the tracking flows

are external (19%). This suggests that trackers may send web storage information to third parties.

• Tracking flows normally operate on local storage (73%) rather than session storage. Moreover, flows involving the

session storage are more likely to be internal than flows involving the local storage (91% vs. 78%). This suggests

that local storage is the prime target of trackers, while session storage is largely dedicated to internal use within

a single origin.

• Finally, we observe that confidentiality flows are more likely to operate on local storage than integrity flows

(92% vs. 67%), just like external flows involve local storage more frequently than internal flows (86% vs. 70%).

This shows that the persistent information saved in the local storage is often the target of information leaks,

likely towards third parties.
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Table 4. Additional breakdown of the external information flows

Same-Site Cross-Site
Confidentiality 91 (24%) 281 (76%)

Integrity 28 (10%) 247 (90%)

Tracking 68 (18%) 320 (82%)

Non-Tracking 51 (20%) 208 (80%)

Local 110 (20%) 444 (80%)

Session 7 (9%) 75 (91%)

Both 2 (18%) 9 (82%)

Table 5. Most popular libraries introducing information flows in the crawled domains. The Tracker column shows whether the domain
providing the library is included in a filter list.

Library #Flows #Domains Tracker?
https://bat.bing.com/bat.js 322 142 ✓

https://mc.yandex.ru/metrika/tag.js 108 76 ✓

https://cdn.cxense.com/sp1.html 39 39 ✓

https://top-fwz1.mail.ru/js/code.js 78 38 ✓

https://s.pinimg.com/ct/lib/main.da2a1c8f .js 29 28 ✗

https://mc.yandex.ru/metrika/watch.js 20 19 ✓

https://sofire.bdstatic.com/js/dfxaf3-635b4cd6.js 47 13 ✓

https://j.6sc.co/6si.min.js 13 13 ✓

https://script.4dex.io/localstore.js 10 10 ✓

https://assets.ubembed.com/universalscript/releases/v0.180.0/bundle.js 9 9 ✗

To further shed light on the security and privacy implications of web storage in the wild, we also perform an

additional classification of the detected external information flows, i.e., information flows involving two different origins.

In particular, we analyze how many such flows are still within the same site and how many are cross site. This is an

interesting information, because different domains under the same site normally belong to the same owner, i.e., the

entity who performed the domain registration, hence same-site external flows are likely less significant from a security

and privacy perspective. The results of our analysis are shown in Table 4. They highlight that the very large majority of

the external flows are cross-site and this observation is uniform across all classes of external flows, including tracking

flows (82%). This further confirms the relevance of our findings.

The last analysis we carry out estimates how many information flows are introduced by libraries. These flows are

particularly interesting, because libraries are normally used by multiple pages, hence the analysis of a single library

may shed light on the behavior of multiple pages. To identify libraries, we look for duplicate flows within different

domains and we aggregate them based on the script URL information provided by Jalangi. Specifically, we use the script

URL of the source for the integrity flows and the script URL of the sink for the confidentiality flows. Table 5 reports

information on the top 10 most popular libraries, based on the number of domains where an information flow was

detected. As we can see, the majority of these libraries (8 out of 10) are related to web tracking and the most popular

library is used for tracking on 142 domains. Overall, we identify 331 distinct domains (33% of the domains with some

information flow) making use of at least one of the libraries reported in the table.
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4.3 Accuracy of Dynamic Taint Tracking

Our taint tracking engine may suffer from both false positives and false negatives. False positives may be introduced,

e.g., as the result of the over-approximation introduced by the invocation of native functions which are not instrumented

by our implementation. False negatives may also occur for generic reasons, such as dynamic code generation that

accidentally escapes Jalangi. We consider false positives particularly harmful in our context, because our work draws

conclusions based on the detected information flows.

To estimate the prevalence of false positives, we perform a manual investigation on a random subset of 212 flows

from 66 domains. In particular, for each detected flow, we first check whether the value read from the source occurs as

a substring of the value written to the sink: we consider these cases as true positives, because there is clear evidence

that some information was transferred from the source to the sink. Of course, this simple recipe cannot account for all

possible cases, e.g., the value read from the source may be encoded or encrypted before reaching the sink, hence we

integrate our analysis with an in-depth manual inspection. In total, we identify 197 true positives (93%), most often

thanks to the simple recipe based on substring match, hence we are confident about the accuracy of our findings.

5 CASE STUDY: WEB TRACKING

Since we showed that the majority of the information flows involving the web storage can be attributed to tracking

purposes, we now perform an additional investigation of this important use case of web storage. In particular, we first

carry out a systematic evaluation of the preliminary tracking detection heuristics based on filter lists, that we compare

against a different detection approach proposed in the literature [9]. Based on the results of this analysis, we improve

tracking detection by combining the two techniques to minimize false positives and we deep dive into the final set of

tracking flows. We first analyze such flows to understand their privacy implications and we finally further inspect them

to identify GDPR violations on popular sites.

5.1 Effectiveness of Filter Lists

Filter lists are a state-of-the-art tool to mitigate the dangers of web tracking, however prior research identified relevant

shortcomings in their construction and maintenance [14, 17]. In particular, filter lists may suffer from both false positives

(incorrect inclusion of non-trackers) and false negatives (incomplete coverage of existing trackers). Moreover, filter

lists only allow for a coarse-grained detection of tracking flows, because all the flows created by a script downloaded

from a known tracker are marked as tracking flows in our web measurement. This is sub-optimal, because even known

trackers may use the web storage for different purposes. We thus consider an alternative approach to detect tracking

behavior and we compare it against the use of filter lists to collect additional insights.

5.1.1 Methodology. To better understand the effectiveness of filter lists and their impact on the results of our web

measurement, we consider an alternative approach to detect tracking flows based on semantic information, i.e., web

storage items must contain uniquely identifying information to be used for tracking. For example, a tracker may set a

local storage item lang with value en to track the language of the user, however this information cannot be used for

tracking individuals - long, uniquely-identifying information is rather required. In particular, we adapt the tracking

detection heuristics proposed for first-party cookies in [9] to the web storage setting, because the tracking techniques

available for first-party cookies and web storage are similar, except for the inclusion of an improvement proposed in

recent work [23]. According to the proposed heuristics, a web storage item (𝑘, 𝑣) may be used for tracking if and only if

all the following conditions hold:
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Script URL in filter list Script URL not in filter list
Heuristics marked flow as tracking TP: 949 FN: 266

Heuristics marked flow as non-tracking FP: 1,054 TN: 1,133

Table 6. Comparison of the classification approaches for information flows (confusion matrix)

(1) The item is set in the local storage, i.e., it persists when closing the browser;

(2) The length of the unquoted value 𝑣 is at least 8 characters;

(3) A web storage item (𝑘, 𝑣 ′) with the same key 𝑘 is set when visiting the same web page from a different browser

instance, i.e., a fresh browser without any web storage information;

(4) The values 𝑣 and 𝑣 ′ are “significantly different”, i.e., the web storage item allows one to readily tell apart different

browser instances;

(5) The web storage item (𝑘, 𝑣) persists with the same value 𝑣 when the page is reloaded.

The notion of “significantly different” values is also taken from [9]. Specifically, values are pre-processed to remove

all the timestamps occurring therein and to recursively strip their longest common sub-sequence, until the longest

common sub-sequence includes at most two characters. The similarity score of the residual values is then computed

using the Ratcliff-Obershelp algorithm, setting a threshold of 66%. Values whose similarity score is below the threshold

are considered significantly different. The last condition was proposed in [23] to ensure that ephemeral information

whose scope is limited to a single page request is not incorrectly marked as useful for tracking.

5.1.2 Results. We now have two different approaches to detect tracking flows, one based on filter lists and another

one based on existing heuristics capturing necessary conditions for tracking. We compare the performance of two

approaches in practice by means of Table 6, i.e., a 2x2 matrix capturing how each information flow is classified by the

two methods. If we consider the heuristic approach as the ground truth, because it captures reasonable requirements

for web tracking, the table is effectively a confusion matrix reporting on true positives (TP), false positives (FP), true

negatives (TN) and false negatives (FN). The resulting values of the true positive rate and true negative rate coming

from the use of filter lists are 0.78 and 0.52 respectively. The high true positive rate reflects a low number of false

negatives and means that filter lists are very effective at detecting tracking flows, however the low true negative rate

reflects a high number of false positives, which implies that filter lists are too coarse-grained in practice to support

classifications at the flow granularity. In particular, this suggests that it is common practice even for scripts downloaded

from a known tracker to introduce information flows that are not actually used for tracking.

Nevertheless, from a privacy perspective, classifying scripts is arguably more interesting than classifying information

flows. We then carry out a similar analysis but with a different level of granularity, i.e., working on script URLs rather

than on information flows. We first collect all the script URLs in our dataset of flows and we mark all of them as tracking

or non-tracking, depending on whether they occur in a filter list or not. We then perform a different labeling, based on

whether the script URL was ever found to be responsible for the introduction of at least one tracking flow on some web

page according to the heuristics adapted from [9]. The results are shown in Table 7, leading to a true positive rate and a

true negative rate of 0.82 and 0.51 respectively. This result is quite interesting, because it suggests two key observations.

First, although the true positive rate is even higher than before, there are a non-negligible number of tracking scripts (90)

which are not detected by filter lists, hence the use of dynamic taint tracking may be useful to uncover new potential

trackers. Moreover, the low true negative rate still reflects a significant number of false positives, which tells us that

many web trackers already included in filter lists do not yet use the web storage for tracking purposes, i.e., cookie-based
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Script URL in filter list Script URL not in filter list
Heuristics marked script as tracking TP: 397 FN: 90

Heuristics marked script as non-tracking FP: 337 TN: 344

Table 7. Comparison of the classification approaches for scripts (confusion matrix)

tracking is likely still more prevalent in the wild than tracking via the web storage. Note that this does not tell that

filter lists are wrong, just that tracking does not (yet) happen via the web storage.

While a full investigation of the 90 potentially tracking scripts evading detection by filter lists is difficult and goes

beyond the scope of the present article, we manually inspected some of the domains serving such scripts and it was easy

to find several examples of content used for analytics and tracking. A particularly interesting example is a script served

by a subdomain of rockerbox.com, an analytics service advertising in its homepage the implementation of custom

tracking techniques designed to counter third-party cookie blocking and the Intelligent Tracking Protection system by

Apple. We conjecture that other services might leverage web storage to bypass protection against more known tracking

vectors like cookies and we plan to investigate this further as future work.

5.1.3 Conclusion. To conclude, we investigated two techniques to detect tracking flows (filter lists and heuristics), yet

none of them turned out to be perfect. In the following, we use the term tracking flows to refer to those flows which

are marked as tracking according to both techniques, so as to minimize false positives. In particular, observe that the

combination of the two techniques ensures that (𝑖) the information flow was introduced by a script downloaded from a

known tracker and (𝑖𝑖) the script involves a local storage item containing a potential user identifier. Based on this new

definition, we identify 949 tracking flows (28%) spread across 397 domains (40% of the domains with some information

flow). This confirms that web storage is often used for tracking purposes in the wild, although the introduction of the

additional check on user identifiers roughly halves the number of tracking flows identified in practice.

5.2 Privacy Implications

We now perform a systematic privacy analysis of the identified uses of web storage in the wild. We first focus on the

uses of local storage in a third-party position, i.e., within an iframe. We identify 1,708 domains setting at least one

key in the local storage within an iframe, including 1,338 domains storing a tracking item according to our detection

heuristics. This amounts to 44% of the domains where we found a call to setItem. Since such local storage items are set

in a tracker-controlled position, they can be readily leveraged for cross-site tracking, thus allowing the owner of the

domain loaded in the iframe to build a precise navigation profile of the user across different sites. Table 8 reports the

top domains serving content in iframes setting a tracking item in the local storage, sorted by decreasing number of

domains embedding scripts from them. Despite the potential tracking capabilities of such domains, we observe that the

majority of them are not marked as trackers according to filter lists. Indeed, if we additionally checked whether the

domain loaded in the iframe occurs in a filter list, the number of domains susceptible to cross-site tracking would drop

just to 202 (5%), which is somewhat concerning.

We then move to the analysis of the uses of local storage in a first-party position, i.e., within the top-level page.

We expect most of these flows to be attributed to less privacy invasive activities than the previous ones, such as site

analytics and statistics collection, which do not enable cross-site tracking. Nevertheless, recent literature identified

abuses of first-party items as well [20, 23]. For these cases, it is important to understand how local storage items flow

across different parties, which we can do by leveraging our taint tracking approach. In particular, we identify 315
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Table 8. Domains with the highest potential for cross-site tracking, sorted by decreasing number of embedding domains. The Tracker
column shows whether the domain is included in a filter list or not.

Embedded Domain #Domains Tracker?
www.google.com 745 ✗

www.youtube.com 185 ✗

ads.pubmatic.com 44 ✓

player.vimeo.com 41 ✗

eus.rubiconproject.com 41 ✓

www.recaptcha.net 38 ✗

ls.hit.gemius.pl 35 ✓

cdn-gl.imrworldwide.com 34 ✓

consent-pref .trustarc.com 29 ✗

geo.captcha-delivery.com 23 ✗

tracking flows leading to network sinks across 91 domains, i.e., around 33% of the tracking flows involve network

communication. The majority of such flows are indeed immediately compliant with our intuition of same-site tracking,

i.e., the flow is directed to the same site which originally set the tracking item: this is the case for 283 flows (90%).

The other 32 flows on 16 domains are more interesting from a privacy perspective, because they might reveal cookie

syncing practices [20], which we should rather call “web storage syncing” in our case. This happens when a script

loaded from some tracker sets a user identifier in the local storage which is later communicated to a different party.

Still, we manually vet all these cases and observe that the change of site never implies a change of organization, e.g., an

item set from bdstatic.com is communicated to baidu.com, but both domains are owned by the same company (Baidu).

To conclude, our investigation shows that the use of web storage in the wild has significant privacy implications,

because it may allow cross-site tracking (much as third-party cookies) in 44% of the domains where we found a call to

setItem. However, we did not detect any abuse of first-party storage items, which are just used for same-site tracking

according to our collected data. This means that users of privacy-aware browsers implementing partitioned storage,

such as Mozilla Firefox and Brave, do not suffer major privacy threats from the use of web storage. We leave the

investigation of more sophisticated privacy threats such as UID smuggling [23] to future work, since its measurement

is more complicated to carry out and its popularity was proved to be still limited in practice in recent studies.

5.3 Web Storage and GDPR

We finally investigate to which extent web storage information in the wild is compliant with GDPR. Cookies and web

storage play very similar roles in practice and are subject to the same regulations, however web storage is arguably less

known than cookies and received less attention by the research community, hence it deserves careful scrutiny. We

particularly investigate the consent and transparency dimensions of GDPR.

5.3.1 Web Storage and Consent. A first insight on whether the use of web storage in the wild complies with the consent

dimension of GDPR already comes from the results of our previous experiment in Section 4. In particular, our web

measurement identified tracking flows across 397 different domains of Tranco. Since our crawler does not interact with

web pages in any way, and in particular it does not click through cookie banners, this immediately tells us that 397

domains (10% of the domains making a call to setItem) exhibit tracking behavior through the web storage although

the user never granted her consent. These cases are arguably violations to GDPR, because tracking flows are not strictly

needed for website functionality.
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Includes cookie banner No cookie banner
Includes tracking flows 39 60

No tracking flows 49 51

Table 9. Presence of cookie banners in the wild

To further investigate the consent dimension of GDPR, we also carry out an additional experiment. Starting from the

top 10k domains in the Tranco list, we identify all the domains including a tracking flow and all the domains without

any tracking flow based on our measurement. We then sample 100 domains from each of the two categories and we

manually investigate their homepages to check for the presence of cookie banners, successfully accessing 199 of them.

Table 9 shows how such domains are distributed based on the presence of cookie banners and tracking flows:

• 39 domains include both a tracking flow and a cookie banner. These domains may provide valuable information

to their users via cookie banners, however they may also perform tracking via the web storage even before the

cookie banner is clicked, hence they are not fully compliant with GDPR.

• 60 domains include a tracking flow, yet do not have a cookie banner at all. These cases are concerning, because

they arguably represent violations to the consent dimension of GDPR. Interestingly, 15 domains out of 60 are

Chinese (25%) and sit out of the European Union.

• 49 domains have a cookie banner, but do not include any tracking flow. These domains are either compliant

with GDPR or just do not use the web storage for tracking purposes. We manually confirmed that 19 out of such

domains populate the web storage after clicking through the cookie banner.

• 51 domains include neither a tracking flow, nor a cookie banner. These cases do not perform any form of tracking

via the web storage, hence do not need to explain its use and ask for consent through a cookie banner.

These numbers suggest that many uses of web storage in the wild are not yet compliant with the consent dimension

of GDPR, because we identify from 60 to 99 violations in 199 domains, based on whether we want to optimistically

consider the presence of a cookie banner alone as sufficient for GDPR compliance. The amount of violations thus ranges

from 30% to 50% approximately, depending on how we count violations.

5.3.2 Web Storage and Transparency. We finally investigate to which extent web storage is accounted for in existing

privacy policies, as detailed below.

Dataset Construction. We automatically scraped the privacy policies of the websites where web storage is used for

setting tracking information. We used the tool developed in [16] to automatically scan websites for the links to their

privacy policies. This led to a corpus of 420 policies downloaded from 397 domains. For our current study, we only

consider privacy policies written in English, because this makes it feasible to manually confirm the correctness of our

findings. To extract the text of the privacy policies from the original raw dataset of HTML pages, we used boilerpipe
7
,

a plain-text-from HTML extraction library, in order to remove unnecessary HTML like menus, footers, scripts, etc.

We finally scrutinized all the extracted textual versions of the privacy policies to remove the unavoidable errors of an

automated scraping pipeline like the one in [16]. In the end, we were left with a dataset of 373 privacy policies from 234

domains, i.e., roughly 89% of the extracted policies turned out to be correct. The filtered out cases include a few privacy

policies which do not contain any textual content or are written in a language other than English, for which we cannot

confirm correctness.

7
https://github.com/slaveofcode/boilerpipe3
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Category Keywords
Cookies “cookie”, “cookies”

Web Storage

“local storage”, “localstorage”

“session storage”, “sessionstorage”

“web storage”, “webstorage”

General Terms “similar technology”, “similar technologies”

“ tracking technology”, “tracking technologies”

“other technology” , “other technologies”

Table 10. Keywords searched in the privacy policies and cookie banners, defining policy categories
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Fig. 6. Comparison of keywords presence in privacy policies

Policy Analysis. In order to investigate whether the collected policies are transparent with respect to the use of

web storage, we search for specific keywords in the extracted text. We specifically look for the strings “local storage”,

“session storage” and “web storage”, possibly without the whitespace. We also look for the strings “similar technology”,

“other technology”, “tracking technology” and their plural versions, because we empirically observed that websites

sometimes generalize over cookies by using such terminology. Table 10 reports the full set of keywords that we look

for in the collected policies. Based on the keywords therein, each policy can be assigned to one or more categories:

“Cookies”, “Web Storage” and “General Terms”. We carefully scrutinize all the policies to ensure that the automated

assignment of categories performed by our analysis script is correct.

Figure 6 shows how the collected policies are categorized according to the considered keywords. As we can see, only

26 privacy policies (7%) explicitly mention specific keywords related to the web storage, which shows that the very

majority of the websites using web storage for tracking purposes are not fully transparent with respect to its adoption.

If we take a more relaxed approach and we rather focus on policies including general terms which might be associated

to the web storage by experienced users, we instead find 196 such policies (52%). This is somewhat reassuring, however

we observe these policies do not necessarily provide a clear understanding of data collection, e.g., because users would

not know the details of the involved tracking technologies and may face challenges at clearing the corresponding

client-side data. Nevertheless, we also observe that references to cookies are much more popular in privacy policies

than references to the web storage, because 309 policies mention cookies at least once (82%). To confirm the validity
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Fig. 7. Comparison of keywords presence in cookie banners

of our results, we perform a random sampling of 10 policies where a keyword was found and 10 policies where no

keyword was found to confirm correctness based on our human understanding of the policies.

Cookie Banners. In order to further shed light on the transparency dimensions of GDPR, we also perform the

classification proposed for privacy policies on the set of the 88 collected cookie banners. The results are shown in

Figure 7: it is remarkable that not even a single cookie banner ever explicitly mentions the web storage. Moreover, even

references to general terms that might refer to the web storage are uncommon in cookie banners. This is concerning,

because we observed that at least 39 domains shipping the cookie banners (43%) use the web storage for tracking

purposes and this number may further increase when clicking through the cookie banners.

6 RELATEDWORK

Many papers presented dynamic analysis techniques for JavaScript, we refer to [3] for a recent survey on the topic.

Despite the popularity of JavaScript analyses, however, we are not aware of prior empirical studies on the use of web

storage in the wild. A notable exception is a study carried out by Belloro and Mylonas in 2018 [5]. In their work, the

authors analyzed how less known client-side storage mechanisms like web storage, IndexedDB and Web SQL Database

(now deprecated) were used for web tracking on popular sites and questioned the lack of user control over the locally

stored data. In our work, instead, we take a holistic view of web storage and we carry out a systematic analysis of its

use in the wild, based on an automated categorization of the detected information flows along different axes. Moreover,

our study is based on a dynamic information flow analysis, which minimizes false positives and provides meaningful

semantics to different usages of the Web Storage API. Their work, in turn, uses a lightweight static analysis which only

detects API calls, hence cannot discriminate between actual information leaks and simple “feature detection” libraries

like Modernizr.
8
Of course, their analysis did not take a look into GDPR compliance for web storage content, because

GDPR was not yet in effect when their study was performed.

Chen and Kapravelos presented a taint tracking engine called Mystique and used it to track information leakage

from browser extensions [10]. Mystique was applied to a total of 181,683 browser extensions, detecting 3,686 extensions

leaking private information. In later work, Mystique was also used to investigate the leakage of first-party cookies to

8
https://modernizr.com/
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third-party cookies for web tracking [9]. In particular, the authors estimated that around 57% of the sites in the Alexa

top 10k include at least one cookie containing a unique user identifier which is exchanged with multiple third parties.

In our work, we reuse their heuristics for detecting user identifiers in the web storage setting.

Sjosten et al. proposed EssentialFP, a principled approach to the dynamic detection of browser fingerprinting [30].

EssentialFP is based on dynamic analysis and in particular on an extension of JSFlow [15]. To capture the essence of

fingerprinting, EssentialFP relies on an extensive list of browser-specific sources and looks for information flows ending

in known network sinks. The efficacy of EssentialFP was illustrated through an empirical study based on two classes

of web pages: fingerprinting pages (authentication, bot detection and more) and non-fingerprinting pages (analytics,

polyfills, advertisement).

Karim et al. implemented a platform-independent dynamic taint analysis tool for JavaScript, called Ichnaea [19].

They encoded the taint propagation logic as instructions for an abstract machine, so as to leverage an existing JavaScript

instrumentation framework called Jalangi [29]. To evaluate Ichnaea, the authors applied it to a Tizen web application

to detect privacy leaks and identified flows of tainted input data to sensitive sinks in Node.js modules, thus detecting

both known and unknown vulnerabilities. Our implementation follows the approach proposed in Ichnaea with some

modifications, yet it is targeted to a different application scenario. Unfortunately, we could not reuse Ichnaea directly in

our analysis, because it is not publicly available.

Staicu et al. performed an empirical investigation of information flows in existing JavaScript code [32]. Their study

accounted for both explicit and implicit information flows, concluding that explicit flows are by far the most prevalent

in the wild and the additional runtime overhead required to track implicit flows may be unjustified. Their analysis

is also based on Jalangi [29], which the authors used to implement a dynamic information flow tracker inspired to

JSFlow [15]. Based on their investigation, we decided to only track explicit flows in our analysis.

Previous research explored various techniques to detect and counter web tracking [9, 14, 24, 27]. Our work mainly

focuses on understanding and exploring the usage of web storage in the wild, covering different use cases (including

tracking). This means that our work does not investigate tracking as deeply as previous work on the topic, however

existing work on tracking does not look into web storage as thoroughly as we do here. Cookie banners and privacy

policies have been widely studied in literature, covering different axes of GDPR [6, 11, 31]. Different sets of tools are

being used to collect and pre-process privacy policies from websites in order to study cookies compliance with GDPR,

while our work investigates to which extent web storage information in the wild is compliant with GDPR.

7 CONCLUSION

In this article, we performed a first empirical analysis of the use of web storage in the wild, based on dynamic taint

tracking and an automated classification of the detected information flows. Our analysis showed that web storage

is routinely accessed by third parties, including known web trackers, who are particularly eager to have both read

and write access to persistent web storage information. A further investigation on web tracking highlighted that web

storage is not yet as popular as cookies for tracking purposes, however taint tracking is useful to detect potential new

trackers not included in standard filter lists. It is also concerning that many websites do not make use of web storage

according to the GDPR regulations, based on our empirical investigation in the wild. The findings of our work thus

motivate the need for further research on the security and privacy implications of web storage content.

As future work, constructive solutions designed to prevent web storage abuses would be particularly worth inves-

tigating, e.g., the recently proposed “page-length storage” approach designed to mitigate the effects of stateful web

tracking [18]. We also want to take a more in-depth look into the most popular libraries introducing information
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flows involving the Web Storage API, given the impact that libraries may have in practice. Finally, we would like to

further refine our classification of information flows to account for common use cases that we anticipate, e.g., web

authentication and browser fingerprinting. Digging into selected use cases may be helpful to provide additional insights

of the uses and abuses of web storage in the wild.
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