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1. INTRODUCTION
Verifying the security of modern distributed applications is an important and complex
challenge, which has attracted the interest of a growing research community audi-
ence over the last decade. Recent research has shown that it is possible to leverage
general-purpose theorem proving techniques to develop powerful type systems for the
verification of a wide range of security properties on application code, thus narrowing
the gap between the formal model designed for the analysis and the actual implemen-
tation of the protocols [Bengtson et al. 2011; Backes et al. 2011; Swamy et al. 2011].
The integration between type systems and theorem proving is achieved by resorting to
a form of dependent types, known as refinement types. A refinement type {x : T | F (x)}
qualifies the structural information of the type T with a property specified by the logi-
cal formula F : a value M of this type is a value of type T such that F (M) holds true.

Authorization systems based on refinement types use the refinement formulas to
express (and gain static control of) the credentials associated with the data and the
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cryptographic keys involved in the authorization checks. Clearly, the expressiveness
of the resulting analysis hinges on the choice of the underlying logic, and indeed sev-
eral logics have been proposed for the specification and verification of security prop-
erties [Chapin et al. 2008]. A number of proposals have thus set logic parametricity
as a design goal, to gain modularity and scalability of the resulting systems. Though
logic parametricity is in principle a sound and wise design choice, current attempts in
this direction draw primarily (if not exclusively) on classical (or intuitionistic) logical
frameworks. That, in turn, is a choice that makes the resulting systems largely inef-
fective on large classes of resource-aware authorization policies, such as those based
on consumable credentials, or predicating over access counts and/or usage bounds.

The natural choice for expressing and reasoning about such classes of policies are in-
stead substructural logics, such as linear and affine logic [Girard 1995; Troelstra 1992].
On the other hand, integrating substructural logics with existing refinement type sys-
tems for distributed authorization is challenging, as one must build safeguards against
the ability of an attacker to duplicate the data exchanged over the network, and cor-
respondingly duplicate the associated credentials, thus undermining their bounded
nature [Bugliesi et al. 2011].

Contributions. In this paper, we present an affine refinement type system for RCF
[Bengtson et al. 2011], a concurrent λ-calculus which can be directly mapped to a large
subset of a real functional programming language like F#. The type system guarantees
that well-typed programs comply with any given authorization policy expressed in
affine logic, even in the presence of an active opponent.

This type system draws on the novel concept of exponential serialization, a gen-
eral technique to protect affine formulas from the effect of duplication. This technique
makes it possible to factor the authorization-relevant invariants of the analysis out of
the type system, and to characterize them directly as proof obligations for the under-
lying affine logical system. This leads to a rather general and modular design of our
proposal, and sheds new light on the logical foundations of standard cryptographic pat-
terns underpinning distributed authorization frameworks. Furthermore, the concept
of serialization enhances the expressiveness of the type system, capturing program-
ming patterns out of the scope of many substructural type systems.

The clean separation between typing and logical entailment has the additional ad-
vantage of enabling the formulation of an algorithmic version of our system, in which
the non-deterministic proof search distinctive of substructural type systems can be dis-
pensed with. Intuitively, we can shift all the burden related to substructural resource
management into a single proof obligation to be discharged to an external theorem
prover. This proof obligation can be efficiently generated from a program in a syntax-
directed way: this is the key to achieve a practical implementation of our framework.

We show the effectiveness of our approach on two case studies, namely the EPMO
e-commerce protocol [Guttman et al. 2004] and the Kerberos authentication proto-
col [Steiner et al. 1988]. For both case studies we discuss the advantages in expres-
siveness enabled by the adoption of an underlying substructural logic.

Structure of the paper. Section 2 overviews the challenges and the most important
aspects of our theory on a simple example. Section 3 reviews intuitionistic affine logic.
Section 4 presents the meta-theory of exponential serialization. Section 5 reviews RCF
and defines our notion of safety. Section 6 outlines the type system. Section 7 discusses
encodings of network communication and our treatment of formal cryptography. Sec-
tions 8-9 present the case studies. Section 10 discusses the algorithmic formulation of
our type system. Section 11 overviews the related work. Section 12 concludes.

The proofs of the main theorems are provided in the appendixes: Appendix A es-
tablishes the soundness of exponential serialization; Appendix B details a soundness
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proof for our type system; Appendix C provides proofs of the soundness and complete-
ness of the algorithmic type system. The full proofs of all lemmas and other auxiliary
results are contained in the electronic appendix for this article, which can be accessed
in the ACM Digital Library.

Unpublished content. The present work extends and revises a conference paper pub-
lished at POST 2013 [Bugliesi et al. 2013], which received the EATCS award for the
best theory paper at ETAPS. In this extended version we present full details of the
formalization, including a complete presentation of the type system, its algorithmic
variant, and complete soundness proofs for our main results: all this material was not
published before, due to space constraints. Moreover, the Kerberos case study in Sec-
tion 9 is new and required us to define an encoding of “self-dependent key types” in
our type system, which we believe to be of independent interest.

2. OVERVIEW OF THE FRAMEWORK
Our protocol specification language is an affine variant of RCF, a concurrent λ-calculus
with message passing and refinement types originally introduced in [Bengtson et al.
2011]. We anticipate that RCF is very expressive and can be mapped to a large subset
of F#. For better readability, in the examples we use F#-like syntax with polymorphic
types: our theoretical framework lacks full-fledged polymorphism, but that can be re-
covered by duplicating definitions at multiple monomorphic types when needed.

2.1. Protocol verification with (affine) refinement types
Verifying distributed authorization protocols with refinement types presupposes that
protocols be annotated with security assumptions and assertions. The former are for-
mulas that are assumed to hold at a given point in time, and they are employed to
specify authorization policies and to encode the credentials available to request autho-
rization. In contrast, assertions act as guards defining the properties to be entailed by
the assumptions and the underlying policy, to grant authorization [Fournet et al. 2005;
2007; Bengtson et al. 2011].

An example will help in making the discussion concrete. We introduce a system to
place and ship orders in a distributed online service governed by a simple authoriza-
tion policy, establishing that an order can be cleared for shipping to a user only if that
user has indeed placed the order. For example, we could start by assuming the autho-
rization policy encoded by the first-order formula: P , ∀x, y.(Order(x, y) ⇒ Ship(x, y)).
The security-annotated code corresponding to the online service scenario is given be-
low:

let place_order = fun ch id item skey→
assume Order(id,item);
let pkt = sign skey (id,item) in send ch pkt

let ship_order = fun ch vkey→
let pkt = recv ch in

let (xc, xit ) = verify vkey pkt in
assert Ship(xc,xit)

The assumption Order(id,item) makes the required credential available to the
place_order function, enabling the subsequent code to sign a request with the key skey
and send it off over channel ch. Upon receiving the message, ship_order verifies the
signature using the verification key vkey, retrieves the two components xc and xit of
the request and asserts the formula Ship(xc,xit).
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A client and a server will execute the two functions, communicating on a shared
channel ch and using a pair of corresponding signing and verification keys, as shown
below (the server runs ship_order recursively to serve multiple requests):

let prot_spec ch =
assume P;
let sk = mksigkey () in

let vk = mkverkey sk in
let client = (place_order ch "alice" "book" sk) in

let rec server = (ship_order ch vk) � (server ch vk) in
client � server

The protocol specification given above may be proved robustly safe by existing refine-
ment type systems: this ensures that the conjunction of all the assertions which will
become active at runtime (i.e., Ship("alice", "book")), is entailed by the active assump-
tions (i.e., P, Order("alice", "book")), despite the best efforts of an arbitrary opponent.
Unfortunately, a closer look reveals that the authorization policy P is too weak to en-
force desirable resource-aware access constraints: for instance, in our example the on-
line service is presumably interested in ensuring that each user’s order can be cleared
and shipped only once, but in first-order logic we can prove:

∀x, y.(Order(x, y)⇒ Ship(x, y)),Order(id, item) ` Ship(id, item) ∧ Ship(id, item),

i.e., a single payment by the user can lead to the same order being shipped twice,
without violating the previous authorization policy and (robust) safety.

Remarkably, the desired resource-aware authorization policy can be naturally en-
coded in affine logic by assuming the formula: Pokay , !∀x, y.(Order(x, y)( Ship(x, y)),
where the bang modality (!) allows using the authorization policy arbitrarily many
times in a proof, while the multiplicative implication (() ensures that formulas of
the form Order(id, item) are consumed when proving Ship(id, item). Verifying the de-
sired injective correspondence between placed and shipped orders amounts then just
to reinterpreting the standard notion of (robust) safety by taking into account the mul-
tiplicative conjunction (⊗) of the top-level assertions rather than the standard conjunc-
tion of first-order logic: roughly, this ensures that the (multi-)set of assumptions can
be partitioned in different (multi-)sets, each proving one specific assertion, hence the
same assumption is never used in the proof of two different assertions.

Extending refinement type systems to show compliance with respect to affine logic
policies like Pokay is challenging. Technically, these type systems support a form of
compositional reasoning enabled by the structure of the cryptographic key types, and
the typing discipline enforced on them. Briefly, cryptographic key types are associated
with refinement types of the form Key({x : T | F}), enforcing the following invariants:
(i) to package a value M : T with a key of this type, one must be able to prove F (M)
and consequently, (ii) upon extracting a value w : T packaged under a key of this type,
one may in turn assume the formula F (w) to hold. These two invariants are enough
to derive static proofs of robust safety in traditional refinement type systems drawing
on classical and intuitionistic logics, but they fall short of providing the necessary
guarantees in resource-conscious settings such as the one we consider here.

2.2. Exponential serialization for protecting affine formulas
Given the nature of affine formulas as consumable resources, an affine refinement type
system must additionally provide protection against an unconstrained assumption of
the refinement formulas conveyed by the key types [Bugliesi et al. 2011]. For instance,
when receiving a packet signed with a key of type SigKey(x : T, {x : U | Order(x, y)}),
we must ensure that each time we verify the signature (and assume Order(x, y)) at the
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receiver side, a corresponding assumption has indeed been introduced at the sender
side.

Ensuring this kind of injective correspondence in distributed settings is known to
require some protective measures, as an adversary may easily break it by mounting
a replay attack and fool a receiver into deriving multiple assertions corresponding
to one single assumption. We can see that in our running example: given the protocol
specification defined above, assume we let it run over an untrusted network by passing
the function prot_spec as a parameter to the function adversary defined below, which
intercepts the message by the client and sends it twice to the server:

let adversary prot =
let ch = mkchan () in

prot ch;
let m = recv ch in (send ch m) � (send ch m)

The replay attack mounted by the adversary breaks the desired injective corre-
spondence between assumptions and assertions, since the system admits a run in
which the adversary intercepts the message exchanged on ch and duplicates it, lead-
ing to two assertions Ship("alice", "book") being made against just one assumption
Order("alice", "book"). More technically, in affine logic we have:

!∀x, y.(Order(x, y)( Ship(x, y)),Order(id, item) 6` Ship(id, item)⊗ Ship(id, item),

hence the protocol above is not robustly safe in our affine setting.
The problem we just outlined is, in fact, rather general and may be stated as follows:

data exchanged over the network is inherently exposed to replays, hence their creden-
tials, occurring as refinements of cryptographic key types, must be protected so that
replicating the data does not duplicate the credentials. In the type system, this may
be achieved by guarding the refinements of the key types with control formulas, which
are guaranteed to be assumed in at most one point of the protocol code.

The resulting typing discipline leverages the underlying computational measures
to counter replay attacks. Though the details vary for the different computational
mechanisms, the intuition applies uniformly. The types of cryptographic keys are built
around guarded refinements of the form:

{w̃ : T̃ , x̃ : Ũ | !(C(w̃)( F (x̃))},
protecting the credential F (x̃) with the control formula C(w̃). In a nonce-handshake
protocol, for instance, w̃ may represent a challenger-generated nonce, call it n, and
C(n) may be the corresponding guard assumed by the challenger, modeling that the
nonce has been freshly generated. Upon receiving the nonce, a responder willing to
transmit M will package the pair (n,M) under a key with the above type as a payload:
intuitively, the receiver can then open the cryptographic packet to assume the implica-
tion above and derive the desired formula F (M) by consuming the formula C(n), which
was never sent on the network and remained thus under the control of the challenger.

Notice that guarded refinement types as the one above contain an exponential for-
mula prefixed by the bang modality, hence opening messages packaged under a key
with this type more than once does not really provide additional information to the re-
ceiver and is perfectly safe. We call this packaging technique exponential serialization,
as it provides us with a safe way to transmit payload with affine refinement types over
an untrusted network, using an encoding based on exponential formulas.

2.3. Serializers for security type-checking
There is one problem left with the intuition above. A responder possessing the cre-
dential F (M) and willing to prove it to the challenger will not be able to do so, as
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in affine logic an assumption F (M) does not entail the guarded exponential formula
!(C(n)( F (M)), which the responder would need to prove to type-check the response.
To close this gap, each affine assumption in the code must be associated with a cor-
responding serializer, to enable its use in the guarded refinements of the key types.
Serializers have the general form:

!∀x̃.w̃(F (x̃)( !(C(w̃)( F (x̃)))),

and explicitly enable the transformation of the credential F (M̃) into its serialized form
!(C(ñ( F (M̃))), for appropriate terms ñ and M̃ .

Back to our example, assume we extend the protocol to include the nonce-handshake
mentioned above:

let place_order’ = fun ch1 ch2 id item skey→
let nonce = recv ch1 in

assume Order(id, item);
let pkt = sign skey (id,item,nonce) in send ch2 pkt

let ship_order’ = fun ch1 ch2 vkey→
let mknonce = (fun ()→ let x = mkfresh () in assume N(x); x) in

let nonce = mknonce () in
send ch1 nonce;
let pkt = recv ch2 in

let (xc, xit ,xn) = verify vkey pkt in
if (xn = nonce) then

assert Ship(xc, xit)
else

failwith "unauthorized"

We assume to be given access to a library function mkfresh : unit→ bytes, which gener-
ates fresh bit-strings. The function mknonce: unit → {x : bytes | N(x)} is a wrapper
around mkfresh, which additionally assumes the control formula N(x) over the re-
turned value x. The new assumption is reflected by the refined return type of mknonce.
Then, the typing of the signing and verification keys may be structured as follows:

skey : SigKey({x : string, y : string, z : bytes | !(N(z)( Order(x, y))})
vkey : VerKey({x : string, y : string, z : bytes | !(N(z)( Order(x, y))})

conveying the affine formula Order(xc, xit) conditionally to the guard N(nonce) as-
sumed by ship_order’. If the guard can be proved only once, Order(xc, xit) can also be
retrieved only once, irrespectively of the number of signature verifications performed.
To type-check the protocol, we need to assume the expected serializer:

S , !∀x, y.z.(Order(x, y)( !(N(z)( Order(x, y))).

Overall, we get the following revised protocol:

let prot_spec’ ch1 ch2 =
assume Pokay;
assume S;
let sk = mksigkey () in

let vk = mkverkey sk in
let client ’ = (place_order’ ch1 ch2 "alice" "book" sk) in

let rec server’ = (ship_order’ ch1 ch2 vk) � (server’ ch vk) in
client ’ � server’
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We briefly discuss how the two protocol components type-check. We start from the
server. Upon creating nonce, server’ assumes the control formula N(nonce) based on
the return type of the function mknonce by calling ship_order’. Upon verifying the re-
ceived signature, it extracts the refinement !(N(xn)( Order(xc, xit)) based on the type
of the verification key. Then, from the assumption N(nonce) and the nonce-checking
test xn = nonce that protects the assertion, it derives N(xn). Now, with two ( elimi-
nation steps, using the refinement above and the policy Pokay, it derives the asserted
formula Ship(xc, xit). As to the client, upon receiving the challenge, by calling the func-
tion place_order’, client’ assumes the formula Order("alice", "book") and then signs the
triple (cid,item,nonce) with vk. Typing the signature requires the serializer, which pro-
vides a direct way to prove the desired formula.

We notice here that serializers may be generated automatically for any given affine
formula, and we prove that introducing them as additional assumptions is sound, in
that it does not affect the set of entailed assertions, under the sufficient conditions dis-
cussed in Section 4. Furthermore, serializers capture a rather general class of mech-
anisms for ensuring timely communications, like session keys or timestamps, which
are all based on the consumption of an affine resource to assess the freshness of an
exchange. We discuss these patterns in our case studies in Sections 8-9.

3. REVIEW: AFFINE LOGIC
In our framework we focus on a simple, yet expressive, fragment of intuitionistic affine
logic [Troelstra 1992]. We presuppose an underlying signature Σ of predicate symbols,
ranged over by p, and function symbols, ranged over by f . The syntax of terms t and
formulas F is defined by the following productions:

t ::= x | f(t1, . . . , tn) terms (f of arity n in Σ)
A ::= p(t1, . . . , tn) | t = t′ atoms (p of arity n in Σ)
F ::= A | F ⊗ F | F ( F | ∀x.F | !F | 0 formulas

This is the multiplicative fragment of affine logic with conjunction (⊗) and implication
((), the universal quantifier (∀), the exponential modality (!) to express persistent
truths, logical falsity (0) to express negation, and syntactic equality. The logical truth
is written 1 and encoded as () = (), where () is the nullary function symbol encoding
the RCF “unit” value1. The negation of F , written F⊥, is encoded as F ( 0, while
inequality, written t 6= t′, is encoded as (t = t′)⊥. For simplicity, we do not consider
disjunction and existential quantification: the logic considered here suffices for our
purposes and we leave further extensions as future work.

The entailment relation ∆ ` F from multiset of formulas to formulas is given in
Table I. Observe that, in affine logic, rule (WEAK) can be liberally applied to disre-
gard formulas along a proof derivation, while rule (CONTR) is restricted to exponential
formulas, allowing for their unbounded duplication. Intuitively, the combination of the
two rules enforces the following usage policy for formulas: “every formula must be used
at most once in a proof, with the exception of exponential formulas, which can be used
arbitrarily many times”. This is in contrast with linear logic, where each formula must
be used exactly once [Girard 1995].

As informally discussed before, affine logic provides multiplicative counterparts of
standard logical connectives: for instance, rule (⊗-RIGHT) states that to prove the mul-
tiplicative conjunction F1 ⊗ F2 from the hypotheses ∆ = ∆1,∆2, we have to prove F1

from ∆1 and F2 from ∆2, thus each affine hypothesis in ∆ is used either to prove F1

or to prove F2. Analogously, rule ((-LEFT) formalizes the intuition that the multi-

1We mention here that RCF terms can be encoded into the logic using the locally nameless representation
of syntax with binders [de Bruijn 1972], as shown in [Bengtson et al. 2011].
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Table I The entailment relation ∆ ` F

(IDENT)
F ` F

(WEAK)
∆ ` F ′

∆, F ` F ′

(CONTR)
∆, !F, !F ` F ′

∆, !F ` F ′

(⊗-LEFT)
∆, F1, F2 ` F ′

∆, F1 ⊗ F2 ` F ′

(⊗-RIGHT)
∆1 ` F1 ∆2 ` F2

∆1,∆2 ` F1 ⊗ F2

((-LEFT)
∆1 ` F1 ∆2, F2 ` F ′

∆1, F1 ( F2,∆2 ` F ′

((-RIGHT)
∆, F1 ` F2

∆ ` F1 ( F2

(∀-LEFT)
∆, F{t/x} ` F ′

∆, ∀x.F ` F ′

(∀-RIGHT)
∆ ` F x /∈ fv(∆)

∆ ` ∀x.F

(!-LEFT)
∆, F ` F ′

∆, !F ` F ′

(!-RIGHT)
!∆ ` F
!∆ ` !F

(FALSE)
0 ` F

(=-SUBST)
∃σ = mgu(t, t′)⇒ ∆σ ` Fσ

∆, t = t′ ` F

(=-REFL)
∆ ` t = t

plicative implication F1 ( F2 acts as a sort of reaction, which consumes the resources
needed to prove the premise F1 to produce the conclusion F2.

Rule (!-LEFT) is often called the dereliction rule and allows exponential assumptions
to be degraded to affine assumptions, which can be used at most once. Rule (!-RIGHT),
instead, is typically referred to as the promotion rule, which allows one to prove expo-
nential formulas starting from the proof of an affine formula: the notation !∆ means
that every formula in ∆ must be of the form !F . The two rules for equality (=-SUBST)
and (=-REFL) are borrowed from [Tiu and Momigliano 2012]; in rule (=-SUBST), if the
terms t and t′ are not unifiable, then we consider the premise as trivially fulfilled.

4. METATHEORY OF EXPONENTIAL SERIALIZATION
Recall from Section 2.3 that we had to explicitly assume a serializer S to make our
example protocol type-check. In principle, the introduction of this serializer among the
assumed hypotheses could alter the intended semantics of the authorization policy
Pokay, due to the subtle interplay of formulas through the entailment relation defined
in Table I. Here, we isolate sufficient conditions under which exponential serialization
leads to a sound protection mechanism for affine formulas.

We presuppose that the signature Σ of predicate symbols is partitioned in two sets
ΣA and ΣC . Atomic formulas A have the form p(t1, . . . , tn) for some p ∈ ΣA; control
formulas C have the same form, though with p ∈ ΣC . We identify various categories of
formulas defined by the following productions:

B ::= A | B ⊗B | B( B | ∀x.B | !B base formulas
P ::= B | C | P ⊗ P payload formulas
G ::= C ( P | !G guarded formulas

Base formulas B are formulas of an authorization policy, built from atomic formulas
using logical connectives. We use base formulas as security annotations in the appli-
cation code. For simplicity, we dispense in this section with equalities and 0 to ensure
logical consistency: these elements are used in our typed analysis, but we stipulate
that they are never directly assumed in the protocol code (and thus never serialized).

Payload formulas P are formulas which we want to serialize for communication over
the untrusted network. Importantly, payload formulas comprise both base formulas
and control formulas, which allows, e.g., for the transmission of fresh nonces to re-
mote verifiers: this pattern is present in several authentication protocols [Gordon and
Jeffrey 2003]. Finally, guarded formulas G are used to model the serialized version of
payload formulas, suitable for transmission. Notice also that serializers are not gener-
ated by any of the previous productions, so we let S stand for any serializer of the form
!∀x̃.(P ( !(C ( P )). We write ∆ ` Fn for ∆ ` F ⊗ . . . ⊗ F (n times), with the proviso
that ∆ ` F 0 stands for ∆ 0 F .
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Intuitively, given a multiset of assumptions ∆, the extension of ∆ with the serializers
S1, . . . , Sn is sound if ∆ and its extension derive the same payload formulas. As it turns
out, this is only true when ∆ satisfies additional conditions, which we formalize next.

Definition 4.1 (Rank). Let rk : ΣC → N be a total, injective function. Given a for-
mula F , we define the rank of F with respect to rk, denoted by rk(F ), as follows:

rk(p(t1, . . . , tn)) = rk(p) if p ∈ ΣC

rk(F1 ⊗ F2) = min {rk(F1), rk(F2)}
rk(F ) = +∞ otherwise

Definition 4.2 (Stratification). A formula F is stratified with respect to a rank func-
tion rk if and only if: (i) F = C ( P implies rk(C) < rk(P ); (ii) F = P ( G implies
that G is stratified; (iii) F = ∀x.F ′ implies that F ′ is stratified; (iv) F = !F ′ implies
that F ′ is stratified. We assume F to be stratified in all the other cases. We say that a
multiset of formulas ∆ is stratified if and only if there exists a rank function rk such
that each formula in ∆ is stratified with respect to rk.

For instance, the multiset C1( C2, C2( C3, where C1, C2, C3 are built over distinct
predicate symbols, is stratified, given an appropriate choice of a rank function, while
the multiset C1 ( C2, C2 ( C1 is not stratified. Stratification is required precisely
to disallow these circular dependencies among control formulas and simplify the proof
of our soundness result, Theorem 4.4 below. To prove that result, we need a further
definition:

Definition 4.3 (Controlled Multiset). Let ∆ = P1, . . . , Pm, S1, . . . , Sn be a stratified
multiset of formulas. We say that ∆ is controlled if and only if ∆ ` Ck implies k ≤ 1 for
any control formula C.

The intuition underlying the definition may be explained as follows. Consider a mul-
tiset ∆, a payload formula P such that ∆ ` P and let S = !∀x̃.(P ( !(C ( P )) be a
serializer for P . Now, the only way that S may affect derivability is by allowing for the
duplication of the payload formula P via the exponential implication !(C ( P ), since
the latter can be used arbitrarily often in a proof derivation. However, this effect is
prevented if we are guaranteed that the control formula C guarding P is derived at
most once in ∆: that is precisely what the condition above ensures.

THEOREM 4.4 (SOUNDNESS OF SERIALIZATION). Let ∆ = P1, . . . , Pm. If ∆′ =
∆, S1, . . . , Sn is controlled and ∆′ ` P , then ∆ ` P for all payload formulas P .

PROOF. See Appendix A.

Notice that checking if a multiset of formulas is controlled may be difficult, since this
depends on logical entailment, hence it may be not obvious when the theorem above
can be applied. Fortunately, however, we can isolate a sufficient criterion to decide
whether a multiset of formulas is controlled, based on a simple syntactic check.

PROPOSITION 4.5 (CHECKING CONTROL). If ∆ = P1, . . . , Pm, S1, . . . , Sn is strati-
fied and the control formulas occurring in P1, . . . , Pm are pairwise distinct, then ∆ is
controlled.

PROOF. See Appendix A.

5. RCF AND SAFETY
We now review RCF [Bengtson et al. 2011], a concurrent λ-calculus with message pass-
ing primitives, which provides the core language around which our theory is developed.
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Table II Syntax of RCF expressions
M,N ::= values

x variable
() unit
(M,N) pair
λx.E function
h M construction (h ∈ {inl, inr, fold})

D,E ::= expressions
M value
M N application
M = N syntactic equality
let x = E in E′ let (scope of x is E′)
let (x, y) = M in E pair split (scope of x, y is E)
matchM with h x then E else E′ match (scope of x is E)
(νa)E restriction (scope of a is E)
E � E′ fork
a!M message send
a? message receive
assume F assumption
assert F assertion

We also formally introduce the resource-aware variant of the standard notion of safety
for RCF, which we have been mentioning.

5.1. Review of RCF
We assume collections of names (a, b, c,m, n) and variables (x, y, z). The syntax of values
and expressions of RCF is introduced in Table II. The notions of free names and free
variables arise as expected, according to the scope defined in the table.

Values include variables, unit, pairs, functions and constructions; constructors ac-
count for the creation of standard tagged unions and iso-recursive types. We also en-
code the boolean values true , inl() and false , inr(). Expressions of RCF include stan-
dard λ-calculus constructs like values, applications, equality checks, lets, pair splits,
and pattern matching, as well as primitives for concurrent, message-passing compu-
tations in the style of process algebras.

The semantics is mostly standard. The function application (λx.E) N evaluates to
E{N/x}; the syntactic equality check M = N evaluates to true when M is equal to N
and to false otherwise; the let expression let x = E in E′ first evaluates E to a value N
and then behaves as E′{N/x}; the pair splitting let (x, y) = (M,N) in E evaluates to
E{M/x}{N/y}; and the pattern matching match M with h x then E else E′ evaluates to
E{N/x} when M is equal to h N for some N , while it evaluates to E′ otherwise. We
then have some constructs reminiscent of process algebras: expression (νa)E generates
a globally fresh channel name a and then behaves as E. Expression E � E′ evaluates
E and E′ in parallel, and returns the result of E′. Expression a!M asynchronously
outputs M on channel a and returns (). Expression a? waits until a term N is available
on channel a and returns N . These message-passing expressions can be used to model
the sending and receiving functions “send” and “recv” that are used in the code of our
examples and that we further explain in Section 7.1. Assumptions and assertions are
stuck expressions, which are just needed to state our safety notion (see below). The
formal semantics of RCF expressions is defined by the reduction rules in Table III.

The reduction semantics depends upon the heating relation E V E′, an asymmetric
version of the standard structural congruence, to perform some syntactic rearrange-
ments of expressions and allow reductions. We writeE ≡ E′ to denote that bothE V E′

and E′ V E. The definition of the heating relation is presented in Table IV, the only
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Table III Reduction semantics for RCF
(λx.E) N → E{N/x} (RED FUN)
let (x, y) = (M,N) in E → E{M/x}{N/y} (RED SPLIT)
matchM with h x then E else E′ → (RED MATCH){

E{N/x} if M = h N for some N
E′ otherwise

M = N →
{
true if M = N

false otherwise
(RED EQ)

a!M � a?→M (RED COMM)
let x = M in E → E{M/x} (RED LET VAL)
let x = E in E′′ → let x = E′ in E′′ if E → E′ (RED LET)
(νa)E → (νa)E′ if E → E′ (RED RES)
E � E′′ → E′ � E′′ if E → E′ (RED FORK 1)
E′′ � E → E′′ � E′ if E → E′ (RED FORK 2)
E → E′ if E V D,D → D′, D′ V E′ (RED HEAT)

difference with respect to the original RCF presentation is the introduction of the rule
(HEAT ASSERT ()), which simplifies our definition of safety.

Table IV Heating relation for RCF
E V E (HEAT REFL)
E V E′′ if E V E′ and E′ V E′′ (HEAT TRANS)
let x = E in E′′ V let x = E′ in E′′ if E V E′ (HEAT LET)
(νa)E V (νa)E′ if E V E′ (HEAT RES)
E � E′′ V E′ � E′′ if E V E′ (HEAT FORK 1)
E′′ � E V E′′ � E′ if E V E′ (HEAT FORK 2)
() � E ≡ E (HEAT FORK ())
a!M V a!M � () (HEAT MSG ())
assume F V assume F � () (HEAT ASSUME ())
assert F V assert F � () (HEAT ASSERT ())
E′ � (νa)E V (νa)(E′ � E) if a /∈ fn(E′) (HEAT RES FORK 1)
(νa)E � E′ V (νa)(E � E′) if a /∈ fn(E′) (HEAT RES FORK 2)
let x = (νa)E in E′ V (νa)(let x = E in E′) if a /∈ fn(E′) (HEAT RES LET)
(E � E′) � E′′ ≡ E � (E′ � E′′) (HEAT FORK ASSOC)
(E � E′) � E′′ V (E′ � E) � E′′ (HEAT FORK COMM)
let x = (E � E′) in E′′ ≡ E � (let x = E′ in E′′) (HEAT FORK LET)

5.2. Resource-aware safety
We are now ready to adapt the formal notion of safety defined for RCF expressions to
our resource-aware setting. Intuitively, an expression E is safe if, for all runs, the mul-
tiplicative conjunction of the top-level assertions is entailed by the top-level assump-
tions. Giving a precise definition, however, is somewhat tricky and it is convenient to
introduce the notion of structure for this purpose.

Let e denote an elementary expression, i.e., any expression that is not an assumption,
assertion, restriction, let, fork, or send. Structures formalize the idea that a computa-
tion state has four components: (1) a multiset of assumed formulas Fi; (2) a multiset of
asserted formulas F ′j ; (3) a series of messagesMk sent on channels but not yet received;
and (4) a series of elementary expressions e` being evaluated in parallel contexts. The
definition of a structure S is given in Table V. Structures are convenient, since their
syntactic form already exhibits all the necessary ingredients to state a simple notion
of static safety, the basic building block for safety.

We can prove that every expression E can be transformed into a structure by heat-
ing, hence we can define a suitable notion of safety for any expression.
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Table V Structures and static safety
Πi∈[1,n]Ei , () � E1 � · · · � En

L[e] ::= e | let x = L[e] in E
S ::= (νã)((Πi∈[1,m]assume Fi) � (Πj∈[1,n]assert F

′
j) � (Πk∈[1,o]ck!Mk) � (Π`∈[1,p]L`[e`]))

The structure S above is statically safe if and only if F1, . . . , Fm ` F ′1 ⊗ . . .⊗ F ′n.

LEMMA 5.1 (STRUCTURE). For every expression E, there exists a structure S such
that E V S.

PROOF. By induction on the structure of E.

Definition 5.2 (Safety). A closed expression E is safe if and only if, for all E′ and S,
if E →∗ E′ and E′ V S, then S is statically safe.

The real property of interest, however, is stronger than the previous one: we desire
protection despite the best efforts of an active opponent. We let an opponent be any
closed expression of RCF which does not contain any assumption or assertion. The
latter is a standard restriction, since opponents containing arbitrary assertions could
vacuously falsify the property we target; this does not involve any loss of generality
in practice, since we want to verify application code with respect to the security anno-
tations placed therein. We note that security annotations are simply considered a tool
for verification but that they hold no semantic meaning and are thus not necessary for
the opponent code.

Definition 5.3 (Robust Safety). A closed expression E is robustly safe if and only if,
for any opponent O, the application O E is safe2.

6. THE TYPE SYSTEM
Our refinement type system builds on previous work by Bengtson et al. [Bengtson et al.
2011], extending it to guarantee the correct usage of affine formulas and to enforce our
revised notion of (robust) safety.

6.1. Types, typing environments, and base judgements
The syntax of types is defined in Table VI. Again the notions of free names and free
variables arise as expected, according to the scope defined in the table.

Table VI Syntax of types
T, U, V ::= types

unit unit type
x : T → U dependent function type (scope of x is U )
x : T ∗ U dependent pair type (scope of x is U )
T + U sum type
µα. T iso-recursive type (scope of α is T )
α type variable
{x : T | F} refinement type (scope of x is F )

The unit value () is given type unit. Sum types have the form T + U , iso-recursive
types are denoted by µα. T , and type variables are denoted by α. There exist various
forms of dependent types: a function of type x : T → U takes as an input a value M
of type T and returns a value of type U{M/x}; a pair (M,N) has type x : T ∗ U if M
has type T and N has type U{M/x}; a value M has a refinement type {x : T | F} if M

2Here, we use the standard syntactic sugar O E for the expression let x = O in let y = E in x y.
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has type T and the formula F{M/x} holds true. We use type Un , unit to model data
that may come from, or be sent to the opponent, as it is customary for security type
systems.3 Type bool , unit + unit is inhabited by true , inl() and false , inr().

The type system comprises several typing judgements of the form Γ; ∆ ` J , where
Γ; ∆ is a typing environment collecting all the information which can be used to derive
J . In particular, Γ contains the type bindings, while ∆ comprises logical formulas
that are supposed to hold at run-time. Formally, we let Γ be an ordered list of entries
µ1, . . . , µn and ∆ be a multiset of affine logic formulas. Each entry µi in Γ denotes
either a type variable (α), a kinding annotation (α :: k), or a type binding for channels
(a l T ) or variables (x : T ). We let ε denote the empty list and ∅ the empty multiset. The
domain of Γ, written dom(Γ), is defined as follows: dom(α) = {α}; dom(α :: k) = {α};
dom(a l T ) = {a}; dom(x : T ) = {x}; and dom(µ1, . . . , µn) = dom(µ1) ∪ . . . ∪ dom(µn).
The set of free variables and free names is denoted by fnfv . The definition is standard.

We first discuss the base judgements of the type system. We use the judgement
Γ; ∆ ` � to denote that the typing environment Γ; ∆ is well-formed, i.e., it satisfies some
standard syntactic conditions (for instance, it does not contain duplicate type bindings
for the same variable). The only remarkable point in the definition of Γ; ∆ ` � is that
we forbid variables in Γ to be mapped to a refinement type: indeed, when extending a
typing environment with a new type binding x : T , we will use the function ψ to place
the structural type information in Γ and the function forms to place the associated
refinements in ∆. We also write Γ; ∆ ` T to denote that type T is well-formed in Γ; ∆
and Γ; ∆ ` F when the formulas in ∆ entail the formula F . We often abuse notation and
write Γ; ∆ ` F1, . . . , Fn to stand for Γ; ∆ ` F1⊗ . . .⊗Fn, with the proviso that Γ; ∆ ` ∅ is
equivalent to Γ; ∆ ` 1. A complete formal definition of the described elements is given
in Table VII below.

Table VII Auxiliary functions and base judgements

ψ(U) =

{
ψ(T ) if U = {x : T | F}
U otherwise

forms(y : U) =

{
F{y/x}, forms(y : T ) if U = {x : T | F}
∅ otherwise

(ENV EMPTY)
ε; ∅ ` �

(TYPE ENV ENTRY)
Γ; ∆ ` � dom(µ) ∩ dom(Γ) = ∅ µ = x : T ⇒ T = ψ(T ) ∧ fnfv(T ) ⊆ dom(Γ)

Γ, µ; ∆ ` �

(FORM ENV ENTRY)
Γ; ∆ ` � fnfv(F ) ⊆ dom(Γ)

Γ; ∆, F ` �

(TYPE)
Γ; ∆ ` � fnfv(T ) ⊆ dom(Γ)

Γ; ∆ ` T

(DERIVE)
Γ; ∆ ` � fnfv(F ) ⊆ dom(Γ) ∆ ` F

Γ; ∆ ` F

6.2. Environment rewriting
We stipulate that all the type information stored in Γ can be used arbitrarily often
in the derivation of any judgement of our type system, hence we dispense with affine
types4. The treatment of the formulas in ∆ is subtler, since affine resources must be

3Note that other types built over Un are available to the opponent through subtyping.
4In Section 6.8 we thoroughly discuss why this does not involve any loss in expressiveness, by showing an
encoding of affine types through exponential serialization.
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used at most once during type-checking: in particular, we need to split the environment
∆ among subderivations to avoid the unbounded duplication of the formulas therein.
However, a simple splitting of the formulas in ∆ would lead to a very restrictive type
system. To illustrate, let ∆ , A,A ( !B: if we just distributed the formulas A and
A ( !B between two distinct subderivations, then the formula !B would be available
only in (at most) one subderivation, despite it being an exponential formula, which we
may want to use arbitrarily often during type-checking.

The general structure of the rules of our system then looks as follows:

Γ; ∆1 ` J1 . . . Γ; ∆n ` Jn Γ; ∆ ↪→ Γ; ∆1, . . . ,∆n

Γ; ∆ ` J

where Γ; ∆ ↪→ Γ; ∆′ denotes the environment rewriting of Γ; ∆ to Γ; ∆′. This relation is
defined by rule (REWRITE) below:

(REWRITE)
∆ ` ∆′ Γ; ∆ ` � Γ; ∆′ ` �

Γ; ∆ ↪→ Γ; ∆′

where we write ∆ ` F1, . . . , Fn to denote that ∆ ` F1 ⊗ . . .⊗ Fn, again with the proviso
that ∆ ` ∅ stands for ∆ ` 1. Coming back to our previous example, notice that we have
A,A( !B ` !B ⊗ !B in affine logic, hence we can obtain two copies of !B upon rewrit-
ing and distribute them between two distinct subderivations upon type-checking. As
we will explain in Section 6.5, for soundness reasons we will often rely on rewriting
of the form Γ; ∆ ↪→ Γ; !∆′, where !∆′ is a so-called exponential environment, i.e., an
environment of the form !F1, . . . , !Fn.

The adoption of the environment rewriting relation as an house-keeping device for
the formulas in ∆ greatly improves the expressiveness of the type system in a very
natural way. This idea of extending to the typing environment a number of context
manipulation rules from the underlying substructural logic was first proposed by Man-
delbaum et al. [Mandelbaum et al. 2003], even though their solution is technically
different from ours. Namely, the authors of [Mandelbaum et al. 2003] allow for ap-
plications of arbitrary left rules from the logic inside the typing environment, while
our proposal is reminiscent of the (CUT) rule typical of sequent calculi. We find this
solution simpler to present and more convenient to prove sound.

Interestingly, all the non-determinism introduced by the application of the rewriting
rules and the splitting of the logical formulas among the premises of the type rules can
be effectively tamed by the algorithmic type system discussed in Section 10.

6.3. Kinding
Security type systems often rely on a kinding relation to discriminate whether or not
messages of a specific type may be sent to the attacker or generated by it. The kinding
judgement Γ; ∆ ` T :: k denotes that type T is of kind k. We distinguish between two
kinds: kind k = pub denotes that the inhabitants of a given type are public and may
be sent to the attacker, while kind k = tnt denotes that the inhabitants of a given type
are tainted and may come from the attacker. We let pub , tnt and tnt , pub.

The complete kinding relation is given in Table VIII. Most of the rules resemble
those presented in other security type systems [Bengtson et al. 2011; Backes et al.
2011] and only differ in the treatment of affine formulas, which is similar to the one
we employ for typing values and expressions. We postpone the discussion on this point
until the next section, where it will be easier to provide an intuitive understanding.
Here, we just point out some simple observations, which should hopefully guide the
reader in understanding a few important aspects.
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Table VIII Kinding rules

(KIND VAR)
Γ; ∆ ` � (α :: k) ∈ Γ

Γ; ∆ ` α :: k

(KIND UNIT)
Γ; ∆ ` �

Γ; ∆ ` unit :: k

(KIND FUN)
Γ; !∆1 ` T :: k Γ, x : ψ(T ); !∆2 ` U :: k

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T → U :: k

(KIND PAIR)
Γ; !∆1 ` T :: k Γ, x : ψ(T ); !∆2 ` U :: k

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T ∗ U :: k

(KIND SUM)
Γ; !∆1 ` T :: k Γ; !∆2 ` U :: k

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` T + U :: k

(KIND REC)
Γ, α :: k; !∆′ ` T :: k

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` µα. T :: k

(KIND REFINE PUBLIC)
Γ; ∆ ` {x : T | F} Γ; ∆ ` T :: pub

Γ; ∆ ` {x : T | F} :: pub

(KIND REFINE TAINTED)
Γ; ∆1 ` ψ(T ) :: tnt Γ, y : ψ(T ); ∆2 ` forms(y : T )

Γ; ∆ ↪→ Γ; ∆1,∆2 T refined
Γ; ∆ ` T :: tnt

The type unit is assumed to be both public and tainted by (KIND UNIT). According
to (KIND PAIR), a pair type is public if both its components are public and can be
disclosed to the opponent. Conversely, by the same rule, a pair type is tainted if both
its components are tainted, since, if even a single component of the pair is untainted,
then the pair cannot come from the opponent. The kinding of sum types (KIND SUM)
behaves analogously. By rule (KIND FUN) a function type is public (thus available to
the attacker) only if its return type is public (otherwise λx.Msecret could be public and
leak a secret to the attacker) and its argument type is tainted such that it can be called
by the attacker. The treatment of tainted function types is dual. To give kind k to an
iso-recursive type with a bound variable α, the rule (KIND REC) proceeds recursively
and extends the typing environment in the premise with the kinding annotation α :: k.
These kinding annotations are used when kinding a type variable (KIND VAR). By
(KIND REFINE PUBLIC) a refinement type is public if the structural type it refines is
public, while by (KIND REFINE TAINTED) it is tainted if its structural information is
tainted and its refinements are entailed by the typing environment.

6.4. Subtyping
The subtyping judgment Γ; ∆ ` T <: U expresses the fact that T is a subtype of U and,
thus, values of type T can be safely used in place of values of type U . The complete
presentation of the subtyping relation can be found in Table IX.

We first note that subtyping is reflexive by (SUB REFL). Furthermore, the subtyping
judgment makes public types subtype of tainted types through rule (SUB PUB TNT),
and further describes standard subtyping relations for types sharing the same struc-
ture: for instance, pair and sum types are covariant (cf. (SUB PAIR) and (SUB SUM)),
while function types are contravariant in their arguments and covariant in their re-
turn types (cf. (SUB FUN)). Intuitively, this means that a function can safely replace
another function if it is “more liberal” in the types it accepts and “more conservative”
in the types it returns.

The rule for iso-recursive types (SUB POS REC) is borrowed from [Backes et al. 2011]
and it differs from the standard Amber rule proposed in the original presentation of
RCF: the rule we consider here is easier to prove sound and the loss of expressiveness is
very mild. We refer the interested reader to [Backes et al. 2011] for further discussion
on this technical point.

The most interesting subtyping rule in Table IX is (SUB REFINE), which subsumes
the rules (SUB REFINE LEFT) and (SUB REFINE RIGHT) from the original presentation
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Table IX Subtyping rules

(SUB REFL)
Γ; ∆ ` T

Γ; ∆ ` T <: T

(SUB PUB TNT)
Γ; ∆1 ` T :: pub Γ; ∆2 ` U :: tnt

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` T <: U

(SUB FUN)
Γ; !∆1 ` T ′ <: T Γ, x : ψ(T ′); !∆2 ` U <: U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T → U <: x : T ′ → U ′

(SUB PAIR)
Γ; !∆1 ` T <: T ′ Γ, x : ψ(T ); !∆2 ` U <: U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T ∗ U <: x : T ′ ∗ U ′

(SUB SUM)
Γ; !∆1 ` T <: T ′ Γ; !∆2 ` U <: U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` T + U <: T ′ + U ′

(SUB POS REC)
Γ, α; !∆′ ` T <: T ′ α occurs only positively in T and T ′

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` µα. T <: µα. T ′

(SUB REFINE)
Γ; ∆1 ` ψ(T ) <: ψ(U) Γ, y : ψ(T ); ∆2, forms(y : T ) ` forms(y : U)

Γ; ∆ ↪→ Γ; ∆1,∆2 T and/or U refined
Γ; ∆ ` T <: U

of RCF, which are shown below:

(SUB REFINE LEFT)
Γ ` {x : T | F} Γ ` T <: U

Γ ` {x : T | F} <: U

(SUB REFINE RIGHT)
Γ ` T <: U Γ, x : T ` F

Γ ` T <: {x : U | F}

The first rule allows discarding unneeded logical formulas and conforms to the core
idea of “refinement” typing: values of type {x : T | F} can be safely replaced for val-
ues of type T , since they are just values of type T further qualified by the informa-
tion encoded by the formula F . The second rule, instead, generalizes the substitu-
tion principle underlying subtyping to the refinement formulas: for instance, we have
∅; ε ` {x : Un | x = 5} <: {x : Un | x > 0}, since the logical condition x = 5 is stronger
than the condition x > 0.

A natural adaptation of (SUB REFINE RIGHT) to our affine setting would be:

(SUB REFINE WRONG)
Γ; ∆1 ` T <: U Γ, x : ψ(T ); ∆2, forms(x : T ) ` F Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` T <: {x : U | F}

Unfortunately, this rule is unsound, since the affine formulas of T could actually be
duplicated and we could prove, for instance: ∅; ε ` {x : Un | F} <: {z : {x : Un | F} | F}
by using (SUB REFL) in the left premise of (SUB REFINE WRONG). This cannot happen
with our new rule, since F 0 F ⊗ F in affine logic.

While it is in principle possible to find out other sound counterparts of (SUB REFINE
RIGHT) in an affine setting, previous work [Bugliesi et al. 2011] highlighted that the
technical treatment of these rules is rather complicated, and we find rule (SUB RE-
FINE) more convenient for proofs. The previous discussion should have also provided
an intuition on the reasons behind a slightly more restrictive treatment for subtyping
pairs and functions with respect to the original RCF paper, i.e., we must take care in
applying the refinement stripping function ψ before extending the typing environment
in the second premise of the corresponding rules.
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6.5. Typing values
The typing judgement Γ; ∆ ` M : T denotes that value M is given type T under
environment Γ; ∆. The typing rules for values are given in Table X.

Table X Typing rules for values

(VAL VAR)
Γ; ∆ ` � (x : T ) ∈ Γ

Γ; ∆ ` x : T

(VAL UNIT)
Γ; ∆ ` �

Γ; ∆ ` () : unit

(VAL FUN)
Γ, x : ψ(T ); !∆′, forms(x : T ) ` E : U

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` λx.E : x : T → U

(VAL PAIR)
Γ; !∆1 `M : T Γ; !∆2 ` N : U{M/x}

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` (M,N) : x : T ∗ U

(VAL REFINE)
Γ; ∆1 `M : T Γ; ∆2 ` F{M/x}

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ `M : {x : T | F}

(VAL INL)
Γ; !∆′ `M : T Γ; !∆′ ` U

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` inlM : T + U

(VAL INR)
Γ; !∆′ `M : U Γ; !∆′ ` T

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` inr M : T + U

(VAL FOLD)
Γ; !∆′ `M : T{µa. T/α}

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` foldM : µα. T

The rules for variable and unit typing are standard: variables are typed by looking
up their type binding in the typing environment Γ using (VAL VAR); the unit value can
be given type unit under any well-formed environment using (VAL UNIT). Rule (VAL
REFINE) is a natural adaptation to an affine setting of the standard rule for refinement
types: a value M has type {x : T | F} if M has type T and the formula F{M/x} holds
true. Rules (VAL FUN) and (VAL PAIR) are more interesting: recall, in fact, that our
type system does not include affine types, since the type information in Γ is propagated
to all the premises of a typing rule. It is then crucial for soundness that both pairs and
functions are type-checked in an exponential environment, i.e., an environment of the
form !F1, . . . , !Fn. Indeed, using an affine formula F from the typing environment to
give a pair (M,N) type x : T ∗ {y : U | F} would lead to an unbounded duplication of
F upon repeated pair splitting operations on (M,N). Similar restrictions apply also to
sum types (cf. (VAL INL) and (VAL INR)) and iso-recursive types (cf. (VAL FOLD)).

Notice that allowing for affine refinements, but forbidding affine types, confines the
problem of resource management to the formula environment ∆, thus simplifying the
technical development of the type system, as well as its algorithmic variant. In Sec-
tion 6.8 we explain how our exponential serialization technique can be leveraged to
encode affine types in our framework, hence our choice does not lead to any loss of
expressiveness.

6.6. Typing expressions
The typing judgement Γ; ∆ ` E : T denotes that expression E is given type T under
environment Γ; ∆. The typing rules for expressions are given in Table XI.

Several typing rules make use of the extraction relation E ; [∆ | D] that destruc-
tively collects all the assumed formulas ∆ from the expression E and returns the ex-
pression D obtained by purging E of its assumptions. The relation is defined in Ta-
ble XII and will be explained further in the context of rule EXP FORK.

Rule (EXP SUBSUM) is a standard subsumption rule for expressions: if E can be
given type T , then it can be conservatively given any supertype of T . The rule for
typing function applications (EXP APPL) divides the formula environment ∆ among
its premises and checks that the type of the argument corresponds to the expected
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Table XI Typing rules for expressions
(EXP SUBSUM)
Γ; ∆1 ` E : T Γ; ∆2 ` T <: T ′

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` E : T ′

(EXP APPL)
Γ; ∆1 `M : x : T → U Γ; ∆2 ` N : T

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ `M N : U{N/x}

(EXP LET)
E ;∅ [∆′ | D] Γ; ∆1 ` D : T Γ, x : ψ(T ); ∆2, forms(x : T ) ` E′ : U x /∈ fv(U)

Γ; ∆,∆′ ↪→ Γ; ∆1,∆2

Γ; ∆ ` let x = E in E′ : U

(EXP SPLIT)
Γ; ∆1 `M : x : T ∗ U

Γ, x : ψ(T ), y : ψ(U); ∆2, forms(x : T ), forms(y : U), !((x, y) = M) ` E : V {x, y} ∩ fv(V ) = ∅
Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` let (x, y) = M in E : V

(EXP MATCH)
Γ; ∆1 `M : T Γ, x : ψ(H); ∆2, forms(x : H), !(h x = M) ` E : U Γ; ∆2 ` E′ : U

(h,H, T ) ∈ {(inl, T1, T1 + T2), (inr, T2, T1 + T2), (fold, T ′{µα. T ′/α}, µα. T ′)}
Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` matchM with h x then E else E′ : U

(EXP EQ)
Γ; ∆1 `M : T Γ; ∆2 ` N : U x /∈ fv(M) ∪ fv(N)

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ `M = N : {x : bool | !(x = true(M = N)}

(EXP ASSUME)
Γ; ∆, F ` assume 1 : T F 6= 1

Γ; ∆ ` assume F : T

(EXP TRUE)
Γ; ∆ ` �

Γ; ∆ ` assume 1 : unit

(EXP ASSERT)
Γ; ∆ ` F

Γ; ∆ ` assert F : unit

(EXP RES)
E ;a [∆′ | D] Γ, a l T ; ∆,∆′ ` D : U a /∈ fn(U)

Γ; ∆ ` (νa)E : U

(EXP SEND)
Γ; ∆ `M : T (a l T ) ∈ Γ

Γ; ∆ ` a!M : unit

(EXP RECV)
Γ; ∆ ` � (a l T ) ∈ Γ

Γ; ∆ ` a? : T

(EXP FORK)
E1 ;∅ [∆1 | D1] E2 ;∅ [∆2 | D2]
Γ; ∆′1 ` D1 : T1 Γ; ∆′2 ` D2 : T2

Γ; ∆,∆1,∆2 ↪→ Γ; ∆′1,∆
′
2

Γ; ∆ ` E1 � E2 : T2

function argument type; in the return type we substitute the argument to the vari-
able bound in the function type, thus implementing a form of value dependent typing.
In rule (EXP SPLIT) we exploit the logic to keep track of the performed pair splitting
operation and make type-checking more precise; a similar technique is used also in
(EXP MATCH) and (EXP EQ). The treatment of channels is mostly standard: For each
new channel a, a message type is determined (a l T ) and added to the typing environ-
ment Γ (cf. EXP RES) that is used to type-check the remaining expression. The rules
for sending (EXP SEND) and receiving (EXP RECV) messages on such channel assure
that the sent/received messages have the correct type. Rule (EXP ASSERT) is standard
and requires an asserted formula F to be derivable from the formulas collected by the
typing environment: in fact, these formulas under-approximate the formulas which
will be assumed at runtime. As we will see in the explanation of the rule (EXP FORK)
below, due to the affine nature of the logic, the treatment of assumptions is a delicate
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task. Assumptions can be typed using either rule (EXP TRUE) or (EXP ASSUME). The
former describes the trivial case of a truth assumption 1 that is always given type unit,
the latter is used for more complex formulas F , which are added to the formula envi-
ronment ∆. Intuitively, the intended usage of these rules to type-check an assumption
assume F with type T is as follows: (1) Prove Γ; ∆, F ` assume 1 : unit by rule (EXP
TRUE); (2) Refine the type unit into T by subtyping; (3) Use (EXP ASSUME) to conclude
Γ; ∆ ` assume F : T .

The most complex rule is (EXP FORK): intuitively, when type-checking the parallel
expressions E1 � E2, assumptions in E1 can be safely used to type-check assertions
in E2 and vice-versa. On the other hand, we need to prevent an affine assumption
in E1 from being used twice to justify assertions in both E2 and E1. This is achieved
by the extraction relation, i.e., through the premises of the form Ei ; [∆i | Di]: the
extraction operation destructively collects all the assumptions from the expression Ei

and returns the expression Di obtained by purging Ei of its assumptions. The typing
environment is then extended with the collected assumptions and partitioned to type-
check the purged expressionsD1 andD2. For instance, we can show that the expression
assume F � assert F is well-typed, while the expression (assume F � assert F ) � assert F
is not: indeed, notice that the latter is not safe according to Definition 5.2.

The extraction relation E ;ã [∆ | D] is formally defined in Table XII. Note that we
annotate the arrow with a list of names ã to prevent formulas containing free names
from being extracted outside the scope of the respective binders. For instance, in the
expression ((νa)assume F (a)) � assert F (a) we do not want to use the assumption to
type-check the parallel assertion, since the scope of the name a is limited to the as-
sumption itself. The extraction relation is used to type-check any expression possibly
containing “active” assumptions, i.e., lets (cf. (EXP LET)), restrictions (cf. (EXP RES)),
and assumptions themselves (cf. (EXP ASSUME), which hardcodes the extraction).

Table XII The extraction relation
(EXTR FORK)
E1 ;ã [∆1 | D1] E2 ;ã [∆2 | D2]

E1 � E2 ;ã [∆1,∆2 | D1 � D2]

(EXTR LET)
E1 ;ã [∆ | D1]

let x = E1 in E2 ;ã [∆ | let x = D1 in E2]

(EXTR RES)
E ;a,b̃ [∆ | D]

(νa)E ;b̃ [∆ | (νa)D]

(EXTR ASSUME)
F 6= 1 fn(F ) ∩ {ã} = ∅
assume F ;ã [F | assume 1]

(EXTR EXP)
no other rule applies

E ;ã [∅ | E]

6.7. Formal results
The main soundness results for our type system are given below.

THEOREM 6.1 (SAFETY). If ε; ∅ ` E : T , then E is safe.

PROOF. See Appendix B.

THEOREM 6.2 (ROBUST SAFETY). If ε; ∅ ` E : Un, then E is robustly safe.

PROOF. See Appendix B.

Theorem 6.2 above and Theorem 4.4 (Soundness of Serialization) constitute the two
building blocks of our static verification technique, which we may finally summarize
as follows. Given any expression E, we identify the payload formulas assumed in E,
and construct their serializers S1, . . . , Sn. Let then E? = assume S1 ⊗ · · · ⊗ Sn � E be
the original expression extended with the serializers. By Theorem 6.2, if ε; ∅ ` E? : Un,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Michele Bugliesi et al.

then E? is robustly safe. By Theorem 4.4, so is the original expression E, provided that
a further invariant holds for E?, namely that all multisets of formulas assumed during
the evaluation of E? are controlled.

While this latter invariant is not enforced by our type system, the desired guaran-
tees may be achieved by requiring that the assumption of control formulas be con-
fined within system code packaged into library functions, providing certified access
and management of the capabilities associated with those formulas. The certification
of the system code provided by the library function, in turn, may be achieved with lim-
ited effort, based on the sufficient condition provided by Proposition 4.5. Actually, we
observe that the syntactic criterion proposed by the proposition becomes a semantic
property of the program to type-check, since programs contain variables to be replaced
at runtime: we will discuss for our examples how we verify that the typing environ-
ment satisfies the conditions required for robust safety.

6.8. Discussion: encoding affine types
We now discuss how we can take advantage of exponential serialization to encode
affine types in our type system. For the sake of simplicity, we focus on the encoding
of affine pairs, but the same ideas applies uniformly to other data types (i.e., tagged
unions and iso-recursive types).

Consider the typing environment Γ; ∆ , x : Un, y : Un;A(x), B(y). Standard refine-
ment type systems [Bengtson et al. 2011] allow for the following type judgement:

Γ; ∆ ` (x, y) : {x : Un | A(x)} ∗ {y : Un | B(y)}
If the formulas A(x) and B(y) are interpreted as affine resources, however, the pre-
vious type assignment is sound only as long as the pair (x, y) can be split only once,
since every application of rule (EXP SPLIT) for pair destruction introduces the formu-
las A(x), B(y) into the typing environment of the continuation. Since our type system
does not feature affine types and has no way to enforce a single deconstruction of a
pair, it conservatively forbids the previous type judgement, in that the premises of
rule (VAL PAIR) require an exponential typing environment.

Nevertheless, the following type judgement is allowed by our type system:

x : Un, y : Un;A(x), B(y), S1, S2 ` (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}

where A′(x) , !(C1(x)( A(x)) and B′(y) , !(C2(y)( B(y)) are the serialized variants
of A(x) and B(y) respectively, while S1 , !∀x.(A(x) ( A′(x)) and S2 , !∀y.(B(y) (
B′(y)) are the corresponding serializers. Here, the main idea for type-checking is to
appeal to environment rewriting to consume the affine formulas A(x) and B(y), and
introduce their exponential counterparts A′(x) and B′(y) into the typing environment
before assigning a type to the components of the pair. In fact, notice that we have:

x : Un, y : Un;A(x), B(y), S1, S2 ↪→ x : Un, y : Un;A′(x), B′(y),

hence we can prove the following type judgement:

x : Un, y : Un;A′(x) ` x : {x : Un | A′(x)} x : Un, y : Un;B′(y) ` y : {y : Un | B′(y)}
x : Un, y : Un;A(x), B(y), S1, S2 ` (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}

The interesting point now is that the pair (x, y) can be split arbitrarily often, but
the affine formulas A(x) and B(y) can be retrieved at most once, as long as the control
formulas C1(x) and C2(y) are assumed at most once in the application code. In this way,
we recover the expressiveness provided by affine types. We actually even go beyond
that, allowing for a liberal usage of the value itself, as opposed to enforcing the affine
usage of any data structure which contains an affine component, as dictated by many
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earlier substructural frameworks (see [Fähndrich and DeLine 2002] for a thorough
discussion on this point).

7. A LIBRARY FOR COMMUNICATION AND CRYPTOGRAPHY
In this section we describe the primitives for communication that we use throughout
the examples in this work and discuss how we encode cryptography using sealing.
We note that our encoding of both communication and cryptography benefits from the
notion of exponential serialization: we will never use channels, references, or crypto-
graphic operations directly for messages with affine refinements, but we instead rely
on exponentially serialized versions of such refinements. Formally, our libraries build
on so-called exponential types that do not carry an affine refinement and are defined
in Table XIII. Since these types do not need to be protected from replication we can
immediately leverage existing non-affine libraries [Bengtson et al. 2011].

For the sake of simplicity, the definitions of the necessary functions and types are
parametric in a type variable γ used to denote exponential types. We recall, however,
that our system does not support full polymorphism, but we can recover its effects
by replicating library code to specialize it to the different types we need. Most of the
content of this section is taken from [Bengtson et al. 2011] and included for the reader’s
convenience to make the paper self-contained.

Table XIII Exponential types

T exponential if



T ∈ {unit, α}
U exponential for T = {x : U | !F}
T1 exponential and T2 exponential for T = x : T1 → T2
T1 exponential and T2 exponential for T = x : T1 ∗ T2
T1 exponential and T2 exponential for T = T1 + T2
U exponential for T = µα.U

7.1. An encoding of channels and messaging
In RCF channels are not values, hence they cannot be shared dynamically among
principals. That same effect may however be recovered with the following encoding
of channels for messages of exponential type γ (and the associated primitives for mes-
sage passing).

We report both the communication interface and its implementation below.

type Ch(γ) = (γ → unit) ∗ (unit→ γ)
val mkchan : unit→ Ch(γ)
val send : Ch(γ)→ γ → unit
val recv : Ch(γ)→ γ

let mkchan = fun _→ (new a)(fun x→ a!x, fun _→ a?)
let send = fun c x→ let (s, r) = c in s x
let recv = fun c→ let (s, r) = c in r ()

We note that references can be encoded analogously.

type Ref(γ) = Ch(γ)
val mkref : γ → Ref(γ)
val setref : Ref(γ)→ γ → unit
val deref : Ref(γ)→ γ
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let mkref = fun x→ let r = mkchan () in send r x; r
let setref = fun r x → let _ = recv r in send r x
let deref = fun r → let x = recv r in send r x; x

In the following we typically write “r := v” for “setref r v” and “!r” for “deref r”.
Note that the code for dereferencing a reference will not type-check for types that are

not exponential, since the value retrieved from the reference is used twice: it is stored
back into the reference and returned. Without the serialization approach, we would
thus need to change the implementation, for instance, by using destructive references
that erase their content after a read.

7.2. A sealing-based encoding of cryptography
Formal cryptography can be encoded inside RCF in terms of sealing [Morris 1973;
Sumii and Pierce 2007]. A seal for a type T is a pair of functions: a sealing function
T → Un and an unsealing function Un → T . Intuitively, for symmetric cryptography,
these functions model encryption and decryption operations, respectively. A payload
of type T can be sealed to type Un and sent over the untrusted network; conversely, a
message retrieved from the network with type Un can be unsealed to its correct type T .
This mechanism is implemented in terms of a list of pairs, which is stored in a global
reference that can only be accessed using the sealing and unsealing functions. Upon
sealing, the payload p is paired with a fresh, public value h (the handle) representing
its sealed version, and the pair (p, h) is stored in the list; conversely, the unsealing
function looks for the handle h in the list and returns the associated payload p.

Since for symmetric cryptography the possession of the key allows to perform both
encryption and decryption operations, for such cryptographic schemes we identify the
key with the seal, i.e., we give access to both the sealing and the unsealing functions
to any owner of the key and we let SymKey(T ) , (T → Un) ∗ (Un → T ). Different
cryptographic primitives, like public key encryptions and signature schemes, can be
encoded following the same recipe: for instance, since the owner of a signing key is
typically able to verify her own signature, the sealing-based abstraction of a signing
key may consist of both the sealing and the unsealing functions, and be given type
SigKey(T ) , (T → Un) ∗ (Un → T ). The corresponding verification key, instead, should
comprise only the unsealing function and be given type VerKey(T ) , Un→ T . The func-
tions “sign” and “verify” introduced in Section 2 can then be straightforwardly imple-
mented: sign M N just extracts the first component of M and calls it with parameter
N , while verify M N simply invokes M with parameter N .

As stated above, another important benefit of exponential serialization is that we
can immediately leverage the sealing-based cryptographic library proposed by Bengt-
son et al. [Bengtson et al. 2011], since we will define cryptographic operations to be
performed only on messages of exponential type. Without the serialization approach,
we would need to define a different implementation of the sealing/unsealing functions:
namely, we would have to enforce that an affine payload is never extracted more than
once from the list stored in the global reference, hence the dereferencing/unsealing
function would have to remove the payload from the secret list. This would compli-
cate the sealing-based abstraction of cryptography and require additional reasoning to
justify its soundness [Backes et al. 2010]. Instead, with our approach, the unsealing
function does not need to be changed: we can invoke it an arbitrary number of times
to retrieve the payload, but the associated refinements will be retrieved at most once
through exponential serialization.

We give full details of the cryptographic API used throughout this paper (just the
types, not the code) below.
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type Seal(γ) = (γ → Un) ∗ (Un→ γ)
type SealRef(γ) = Ref(List(γ ∗ Un))

val mkseal : string→ Seal(γ)
val seal : SealRef(γ)→ γ → Un
val unseal : SealRef(γ)→ Un→ γ

type SymKey(γ) = Sym of Seal(γ)
val mksymkey : unit→ SymKey(γ)
val sencrypt : SymKey(γ)→ γ → Un
val sdecrypt : SymKey(γ)→ Un→ γ

type SigKey(γ) = SK of Seal(γ)
type VerKey(γ) = VK of (Un→ γ)
val mksigkey : unit→ SigKey(γ)
val mkverkey : SigKey(γ)→ VerKey(γ)
val sign : SigKey(γ)→ γ → Un
val verify : VerKey(γ)→ Un→ γ

type DecKey(γ) = DK of Seal(γ)
type EncKey(γ) = EK of (γ → Un)
val mkdeckey : unit→ DecKey(γ)
val mkenckey : DecKey(γ)→ EncKey(γ)
val encrypt : EncKey(γ)→ γ → Un
val decrypt : DecKey(γ)→ Un→ γ

8. EXAMPLE: EPMO
We are finally ready to see our type system at work. We consider a variant of EPMO,
a nonce-based e-payment protocol proposed by Guttman et al. [Guttman et al. 2004].

8.1. Protocol description
The protocol narration is informally represented in Table XIV (the meaning of the
security annotations is explained below).

Initially, a customer C contacts a merchant M to buy some goods g for a given price
p; the request is encrypted under the public key of the merchant, ek(kM ) (which we
use as shorthand for “mkenckey kM ” throughout the example), and includes a fresh
nonce, nC . If M agrees to proceed in the transaction by providing a response signed
with the signing key skM , C informs her bank B to authorize the payment. The bank
replies by providing C a receipt of authorization, called the money order, which is
then forwarded to M . Now M can verify that C is entitled to pay for the goods and
complete the transaction by sending a signed request to B to cash the money order. At
the end of the run, the bank transfers the funds and the merchant ships the goods to
the customer.

8.2. Protocol analysis and challenges
A peculiarity of the protocol is that the identifier nC is employed by C to authenticate
two different messages, namely the replies by M and B. This pattern cannot be vali-
dated by most existing type systems, since the mechanisms hardcoded therein to deal
with nonce-handshakes enforce the freshness of each nonce to be checked only once.
Our framework, instead, allows for a very natural treatment of such authentication
pattern, whose implementation can be written mostly oblivious of the security verifi-
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Table XIV A variant of the EPMO protocol

Customer Merchant Bank

encrypt(ek(kM ), (C, nC , g, p))

assume ∀y.(Pay(y, p,M, nM )( Ship(M, g,C))

encrypt(ek(kC), sign(skM , (nC , nM ,M, g, C, p)))

encrypt(ek(kB), (C, nC , nM , p))

assume ∀y.Pay(B, p, y, nM )

encrypt(ek(kC), sign(skB , (B,C, nC , nB , nM , p)))

assert Ship(M, g,C)

encrypt(ek(kM ), sign(skB , (B,C, nC , nB , nM , p)))

encrypt(ek(kB), sign(skM , (B,M,nB , nM )))

cation process, based on lightweight logical annotations. For the sake of simplicity, we
focus only on the aspects of the verification connected to the guarantees provided to C,
which are the most interesting ones.

We define two predicates used in the analysis: Pay(B, p,M, nM ) states that B autho-
rizes the payment p to M in reference to the order identified by nM , while Ship(M, g,C)
formalizes that M will ship the goods g to C. After the first step of the protocol, we
let the merchant M state the formula ∀y.(Pay(y, p,M, nM ) ( Ship(M, g,C)), to signify
that she does not care about which bank is going to authorize the payment, but, as long
as there is one authorizing bank, she will ship the good g to the client C at the end of
the transaction. Conversely, after the appropriate checks on the client’s account, we let
the bank B assume the formula ∀y.Pay(B, p, y, nM ), to model that she authorizes the
payment for the transaction nM to any merchant chosen by the client. These two cre-
dentials allow the customer C to assert the formula Ship(M, g,C), a formal assurance
on the validity of the transaction.

8.3. Type-checking the customer
The protocol code for the customer, enriched with the most relevant type annotations
and the necessary serializers, is shown below. For the sake of readability, we use again
F#-like syntax and some standard syntactic sugar like tuples, refined tuple types, al-
gebraic types, and pattern matchings: all these can be encoded in RCF and our type
system using standard techniques [Bengtson et al. 2011].

(∗ Serializer for M, needed to type-check M ∗)
assume !∀xp, xM , xnM , xg , xC , xnC .

(∀y.(Pay(y, xp, xM , xnM )( Ship(xM , xg , xC ))(
!(N1(xnC )( (∀y.(Pay(y, xp, xM , xnM )( Ship(xM , xg , xC ))))

(∗ Serializer for B, needed to type-check B ∗)
assume !∀yB , yp, ynC , ynM .

(∀y.(Pay(yB , yp, y, ynM ))( !(N2(ynC )( (∀y.(Pay(yB , yp, y, ynM ))))

(∗ Typing the message from M to C ∗)
type MsgMC = MsgMC of (xnC : bytes ∗ xnM : bytes ∗ xM : string ∗ xg : string
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∗ xC : string ∗ xp : int)
{!(N1(xnC )( ∀y.(Pay(y, xp, xM , xnM )( Ship(xM , xg , xC ))}

(∗ Typing the message from B to C ∗)
type MsgBC = MsgBC of (yB : string ∗ yC : string ∗ ynC : bytes ∗ ynB : bytes
∗ ynM : bytes ∗ yp : int){!(N2(ynC )( ∀y.(Pay(yB , yp, y, ynM ))}

(∗ Generate transaction identifiers ∗)
let mktid : unit→ {x : bytes | N1(x)⊗ N2(x)} = fun ()→

let xf = mkfresh () in assume (N1(xf )⊗ N2(xf )); xf

(∗ Customer code ∗)
let cust C addC M addM B addB g p kC ekM ekB

(vkM: VerKey(MsgMC + MsgMB) (vkB: VerKey(MsgBC)) =
let nC = mktid () in
(∗ N1(nC ) and N2(nC ) hold true ∗)
let msgCM1 = encrypt ekM (C, nC, g, p) in send addM msgCM1;
let signMC = decrypt kC (receive addC) in
let plainMC = verify vkM signMC in
match plainMC with MsgMC (=nC, xnM, =M, =g, =C, =p)→

(∗ !(N1(nC )( ∀y.(Pay(y, p,M, xnM )( Ship(M, g,C)) holds true ∗)
let msgCB = encrypt ekB (C, nC, xnM, p) in send addB msgCB;
let signBC = decrypt kC (receive addC) in
let plainBC = verify vkB signBC in

match plainBC with MsgBC (=B, =C, =nC, xnB, =xnM, =p)→
(∗ !(N2(nC )( ∀y.(Pay(B, p, y, xnM )) holds true ∗)
assert Ship(M, g,C);
let msgCM2 = encrypt ekM signBC in send addM msgCM2

Initially, we let the customer call the library function mktid, which generates a fresh
transaction identifier, corresponding to nC in the protocol specification, and provides
via its return type two distinct capabilities N1(nC ) and N2(nC ), later employed to
authenticate the two different messages received by C.

Since the signing key of M is used to certify messages of two different types (at steps
2 and 6 of the protocol), the corresponding verification key available to the customer
through the variable vkM refers to a sum type. We present only the MsgMC component
of this type, since it is the one needed to type-check the code of C: the refined formula
in the corresponding type definition is retrieved upon verification of signMC and de-
scribes the promise by M to ship the goods as soon as the requested payment has been
authorized by any bank chosen by the client.

We finally use vkB to convey the other formula which is needed to type-check C,
namely a statement thatB authorizes the payment to any merchant to whom C wishes
to transfer the money order: this statement is available after verifying the message
signBC. The hypotheses collected by C are enough to prove her assertion, i.e., to be
sure that the request by M has been fulfilled and the goods will be shipped, hence the
implementation is well-typed.

Notice that, to conclude that the code actually respects the authorization policy de-
spite the introduction of the serializers, we also have to show that the program ensures
the invariant that each control formula is assumed at most once, corresponding to the
sufficient condition for control dictated by Proposition 4.5. This is an easy task to carry
out, since we can just observe that control formulas are only assumed in the body of
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the mktid function, which in turn only performs these assumptions over the results of
the mkfresh function for the generation of fresh bitstrings.

9. EXAMPLE: KERBEROS
In the EPMO protocol presented before, the nonce nC is checked twice by the customer
C and plays the role of a transaction identifier. Interestingly, there are protocols where
these identifiers are not just checked multiple times, but also by different parties. This
is exactly the case for the mutual authentication step of the Kerberos protocol [Steiner
et al. 1988].

9.1. Protocol description
An informal narration of the protocol is shown in Table XV (the meaning of the security
annotations is explained below).

Table XV The Kerberos protocol (mutual authentication)

Alice Bob Server

A,B

assume Key(kAB , A,B)

sencrypt(kAS , (tS , kAB , B, sencrypt(kBS , (tS , kAB , A))))

sencrypt(kBS , (tS , kAB , A)), sencrypt(kAB , tA)

assume Auth(kAB , A,B)

sencrypt(kAB , tA + 1)

assert Session(kAB , A,B)

The goal of the protocol is to establish a fresh session key kAB between principals A
and B through a trusted server S, which shares a symmetric key with both A and B.
Kerberos employs timestamps like tS and tA to prove session recentness and protect
against replay attacks. Initially, A contacts the server S, providing the identities of
the two agents A and B who want to establish a session. The server generates a fresh
timestamp tS and a new session key kAB , then it packages all this information into
a message for A and a message for B, which are combined by a nested encryption at
step 2 of the protocol. Later, A removes the outer layer of the encryption, checks tS and
retrieves kAB . If the timestamp is fresh, she forwards the inner encrypted message
to B; additionally, A includes a fresh timestamp tA encrypted under kAB . Now B can
decrypt the message encrypted by S, check its freshness, and retrieve the session key
kAB . Using this key, B can disclose the timestamp tA and reply to A with tA + 1, thus
authenticating herself.

9.2. Protocol analysis and challenges
An intriguing point for our static verification technique is that the timestamp tS gen-
erated by the server is checked by both A and B to ensure that the session key kAB

is fresh. As anticipated, this pattern is more sophisticated than the one we discussed
for EPMO, but the expressiveness of our underlying affine logic framework allows for
a simple encoding, discussed in the next section. For the sake of simplicity, in the fol-
lowing we will just focus on the verification of the initiator A.
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We start by defining two predicates used in the analysis: Key(kAB , A,B) states that
kAB is a fresh symmetric key intended to establish a session between A and B, while
Auth(kAB , A,B) formalizes that B wishes to communicate with A using key kAB . In-
tuitively, these are the guarantees available to A after steps 2 and 4 of the protocol,
respectively: by combining these two assurances, A can conclude that kAB is a fresh
session key which can be safely used to communicate with B. We model this last infor-
mation through the predicate Session(kAB , A,B) and we formalize the previous deduc-
tion by assuming the authorization policy:

!∀x, y, z.(Key(x, y, z)⊗ Auth(x, y, z)( Session(x, y, z)).

We next discuss how we can show the compliance of the protocol against the previous
policy by refinement type-checking.

9.3. Implementing and typing timestamps
We turn our attention to the implementation. We build on a very simple library for
timestamp management, that we allow the principals to access. We note that times-
tamps are modeled as monotonic counters. To guarantee the freshness of a timestamp
in the case that the opponent executes the protocol function multiple times, we pair the
counter with a global, instance-dependent, fresh random bitstring rand that is created
at the beginning of the protocol specification using the function mkfresh. This usage of
a random bitstring models the assumption that different sessions of Kerberos running
in parallel will use different timestamps. Of course, we could consider more realistic
and complicated implementations, but the following one suffices to convey the intuition
about our methodology:

(∗ Typing a timestamp ∗)
type TStamp = TS of (bytes ∗ int)

(∗ Increment a timestamp by 1 ∗)
let inc_ts t =

match t with TS (rt, tt)→
TS (rt, tt + 1)

(∗ Pick a fresh timestamp, based on the value stored in r ∗)
let get_ts r = fun () →

r := inc_ts !r; !r

(∗ Check a timestamp t for freshness, based on the value stored in r ∗)
let check_ts r id t ’ =

match !r with TS (rt, tt)→
match t’ with TS (=rt, tt’) →
if ( tt ’ > tt ) then

r := t ’; assume F(id, t’)
else

failwith "not_a_fresh_timestamp"

(∗ The handle to access the two functions above ∗)
let init_ts rand glob id =

let tss = !glob in
let res = search tss id in
match res with
| Some(r) −> (get_ts r, check_ts r id)
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| None −> let newref = mkref TS (rand, 0) in
glob := (id,newref)::tss; (get_ts newref, check_ts newref id)

Each principal stores the last received timestamp in a reference, created by an invo-
cation to the function init_ts, described below. The function inc_ts: TStamp → TStamp
is used to increment a timestamp by 1, the function get_ts: Ref(TStamp) → unit →
TStamp is used to create fresh timestamps, and the dependent function check_ts:
Ref(TStamp) → x : string → y : TStamp → {_ : unit | F(x, y)} is used to check whether a
received timestamp y is fresh and can be used to deem timely a communication with
the principal x. The code of the function performs a conditional branch: if the times-
tamp is fresh, it assumes the logical formula encoding such a fact; otherwise, it fails.
The function failwith throws an exception, so it can be safely given the polymorphic
type string → α; as a consequence, check_ts can be given the previous dependent func-
tion type, whose refined return type provides the freshness assumption.

The function init_ts is more complicated. It takes three parameters: the global
instantiation-specific nonce rand, the identity of a principal id and a global reference
glob, containing a list of pairs (id’,r’), where id’ is the identity of a principal and r’ is
a reference containing the last timestamp presented by id’ (TS (rand, 0) if none). The
function starts by retrieving this list from glob, bounding it to tss, and then uses an
auxiliary function search to detect if there exists an entry of the form (id,r) in tss. If
this is the case, init_ts returns a pair of functions (get_ts r, check_ts r id), which will
allow the caller to get a fresh timestamp and to check the freshness of the timestamps
received by id. If id has never presented a timestamp when init_ts is invoked, the
function creates a fresh reference containing TS (rand, 0) and updates the list stored
in the reference glob to preserve the expected invariant, then it returns again a pair
of functions for timestamp management. This implementation ensures that different
instances of a protocol participant with the same identity will share the same counter
for timestamps, which is important to protect the protocol against replay attacks. The
init_ts function has type:

bytes→ Ref(List(string ∗ TStamp))→ x : string→
((unit→ TStamp) ∗ (y : TStamp→ {_ : unit | F(x, y)})).

9.4. Typing the session key using self-dependent key types
Before discussing the implementation of the principal A, we must first consider a sub-
tle issue related to verification. We pointed out that, at step 4 of the protocol, A must
be able to infer that kAB has been previously authenticated by B. The problem for ver-
ification is that the formula Auth(kAB , A,B) modeling this fact must be conveyed by
the type of the key kAB itself, but neither the key kAB nor the two identifiers A and B
occur in the payload of the last protocol message, hence we cannot predicate on them
using dependent typing. While the problem of letting the payload of the key refer to
the identifiers A and B can be solved quite easily, since the referred to identities are
globally and publicly known, the problem of letting the payload of a key predicate over
the key itself is more involved due to lexical scoping. We show how to devise an en-
coding to solve the problem of self-dependent key types, which is close in spirit to the
session key treatment advocated in previous work [Bugliesi et al. 2012].

Here we rely on a sealing-based encoding, where the self-dependent key kAB consists
of a key identifier iAB and a pair k′AB composed of the sealing and unsealing functions,
thus having the form kAB = (iAB , k

′
AB ). The predicate Auth of the protocol refers to

the identifier iAB of the key kAB , i.e., we actually assume Auth(iAB , A,B) rather than
Auth(kAB , A,B) as we were discussing in the previous informal overview. The link be-
tween each self-dependent key k and its respective key identifier i is logically modeled
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by the predicate KeyIdent(k, i), which holds true for all valid key-identifier pairs. The
adapted authorization policy then looks as follows:

!∀w, x, y, z.(Key(x, y, z)⊗ KeyIdent(x,w)⊗ Auth(w, y, z)( Session(x, y, z)).

In the following we present the definition of our sealing-based library for the self-
dependent session key kAB . For presentation convenience, we make use of the following
notation:

type MsgAB<x,y,z> = ({t : TStamp | !(F(y, t)( Auth(x, y, z))}+ TStamp

to denote the (open) type MsgAB of the session key payload. Here, x ∈ fv(MsgAB<x,y,z>)
refers to the key identifier, while y, z ∈ fv(MsgAB<x,y,z>) refer to the globally available
public identifiers A and B respectively. Note that this type is a sum type, since the
key kAB will be used by B to encrypt a timestamp of type (t : TStamp){!(F(B, t) (
Auth(x, y, z))} and by A to encrypt a non-refined timestamp of type TStamp (since we
do not focus on the verification of B here). The sealing-based library for the dependent
key kAB shared between A and B is given below:

(∗ Closed type of the session key established by Kerberos.
Here, w stands for the key identifier discussed above ∗)

type DSymKey = DSym of (w : string ∗ ((MsgAB<w,A,B>→ Un) ∗
(Un→ MsgAB<w,A,B>)))

(∗ Generate a fresh identifier ∗)
val new_fresh_id: unit→ string

(∗ Create a new self-dependent key ∗)
let mkdepkey: unit→ DSymKey = fun ()→

let id = new_fresh_id () in
let s = mkseal "dsymkey" in

DSym (id,s)

(∗ Get the key identifier corresponding to a self-dependent key ∗)
let get_key_ident k: (k : DSymKey→ {x : string | !KeyIdent(k, x)}) =

match k with DSym (x, _)→ assume !KeyIdent(k, x); x

(∗ Self-dependent symmetric encryption function ∗)
let depencrypt x k m: (x : string→ DSymKey→ MsgAB<x,A,B>→ Un) =

match k with DSym (=x, (seal, _))→ seal m

(∗ Self-dependent symmetric decryption function ∗)
let depdecrypt x k c: (x : string→ DSymKey→ Un→ MsgAB<x,A,B>) =

match k with DSym (=x, (_, unseal))→ unseal c

In the function mkdepkey we call the existing seal creation function mkseal, which is
used to generate a new seal that is paired with a fresh key identifier. Specifically, recall
that we have:

type Seal(α) = (α→ Un) ∗ (Un→ α)
val mkseal: string→ Seal(α)

In the case of the key generation function mkdepkey, the placeholder α is replaced by
the monomorphic type MsgAB<id,A,B>. Hence we must ensure that id is in scope when
specializing the mkseal function.
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Finally, we can briefly comment the other functions of our small library. The function
get_key_ident extracts the identifier i from a dependent key k and tracks the logical de-
pendence KeyIdent(k, i) through its refined return type. Contrary to standard sealing-
based encryption and decryption, the functions depencrypt and depdecrypt take the
key identifier as an additional argument and perform a pattern-matching operation
to bridge the dependent typing allowed by pair splitting and the dependent typing
enabled by the definition of these functions. In the syntax of types, the need for this
pattern matching operation is made apparent by the occurrence of the same variable
x in both the function type of depencrypt/depdecrypt and the data type MsgAB<x,A,B>.

9.5. Type-checking the initiator
We finally have all the ingredients to discuss how the initiator A is type-checked. The
code of the principal looks as follows:

(∗ Authorization policy ∗)
assume !∀w, x, y, z.(Key(x, y, z)⊗ KeyIdent(x,w)⊗ Auth(w, y, z)( Session(x, y, z))

(∗ Typing the message from A to B, where MsgAB<x,y,z> will be
closed by instantiating it in the definition of the session key type ∗)

type MsgAB<x,y,z> = MsgAB of {t : TStamp | !(F(y, t)( Auth(x, y, z))}+ TStamp

(∗ Typing the session key established by Kerberos ∗)
type DSymKey = DSym of (w : string ∗ ((MsgAB<w,A,B>→ Un)∗

(Un→ MsgAB<w,A,B>)))

(∗ Typing the message from S to A, where MsgSA<x> will be
closed by instantiating it in the initiator function ∗)

type MsgSA<x> = MsgSA of (xts : TStamp ∗ xkAB : DSymKey ∗ xB : string ∗ y : Un)
{!(F(xB , xts)( Key(xkAB , x , xB))}

(∗ Initiator code, where rand is a fresh global bitstring and
glob denotes a global reference, which are both provided in the
protocol specification and are not under the control of the opponent ∗)
let initiator rand glob A addA B addB S addS (kAS: SymKey(MsgSA<A>)) =

let (get_tsB, check_tsB) = init_ts rand glob B in
send addS (A,B);
let msgSA = receive addA in
let plainSA = sdecrypt kAS msgSA in
match plainSA with

MsgSA (xts, xkAB, =B, y)→
(∗ !(F(B, xts)( Key(xkAB , A,B)) holds true ∗)
let _ = check_tsB xts in
(∗ F(B, xts) holds true ∗)
let tA = get_tsB () in
let iAB = get_key_ident xkAB in
(∗ !KeyIdent(xkAB , iAB) holds true ∗)
let msgAB = depencrypt iAB xkAB tA in
send addB (y,msgAB);
let msgBA = receive addA in
(∗ tA′ = tA + 1 ∗)
let tA’ = inc_ts tA in
let (=tA’) = depdecrypt iAB xkAB msgBA in
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(∗ !(F(B, tA′)( Auth(iAB , A,B)) holds true ∗)
let _ = check_tsB tA’ in
(∗ F(B, tA′) holds true ∗)
assert Session(xkAB , A,B)

Decryption and pattern-matching introduce the guarded formulas needed to type-
check the initiator, while invocations to the timestamp library extend the typing en-
vironment with the control formulas needed to retrieve the payload formulas of inter-
est. Specifically, the initiator starts by creating the handle to the timestamp library
through the call init_ts B, which returns the two functions get_tsB and check_tsB. The
interesting point here is the type of check_tsB, i.e., y : TStamp → {_ : unit | F(B, y)},
hence a successful call to this function allows for deeming a communication with B as
timely. To understand why the function is given that type, recall that init_ts has the
following type:

bytes→ Ref(List(string ∗ TStamp))→ x : string→
((unit→ TStamp) ∗ (y : TStamp→ {_ : unit | F(x, y)})).

and observe that check_tsB is obtained by projecting the second component of the pair
returned by the call init_ts rand glob B. Now, the logical environment is populated as
follows:

(i) when A decrypts the message from S and performs pattern matching, we introduce
the formula !(F(B, xts)( Key(xkAB , A,B)), based on the type of the symmetric key
kAS : SymKey(MsgSA<A>);

(ii) when A calls the check_tsB function on the timestamp xts received by S, we intro-
duce the formula F(B, xts), based on the typing discussed above;

(iii) when A calls the get_key_ident function on the self-dependent key xkAB shared with
B, we introduce the formula !KeyIdent(xkAB , iAB), where iAB is the key identifier
associated to xkAB;

(iv) when A decrypts the message from B using the self-dependent key xkAB identified
by iAB, we introduce the formula !(F(B, tA′)( Auth(iAB , A,B)), based on the type
of the depdecrypt function associated to xkAB, where tA′ corresponds to tA incre-
mented by 1;

(v) finally, when A calls the check_tsB function on the timestamp tA′ received by B, we
introduce the formula F(B, tA′), similarly to what we do at point (ii).

Using (i) and (ii), we can prove Key(xkAB , A,B), while using (iv) and (v) we can prove
Auth(iAB , A,B). These two formulas, along with !KeyIdent(xkAB , iAB) at point (iii),
allow to derive the assertion Session(xkAB , A,B) based on the underlying authorization
policy, hence the initiator is well-typed.

To conclude that the protocol actually respects the authorization policy despite the
introduction of the serializers, it is enough to ensure that F(B, t) is assumed at most
once for any possible choice of t. To prove it, we must guarantee that at the beginning
of the protocol specification function:

(1) the global fresh value rand is freshly generated using the function mkfresh that
never generates the same value twice;

(2) the global reference glob storing the received timestamps is correctly instantiated
to the empty list and is not provided by the opponent as an argument to the pro-
tocol specification function. We thus note that different participants running with
identity A share the same counter for timestamps management by construction of
our library (cf. Section 9.3) and that each invocation to check_tsB always returns an
assumption predicating over increasing values of t.
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Table XVI Selected algorithmic rules for typing values and expressions
(VAL VAR ALG)
Γ `alg � (x : T ) ∈ Γ

Γ `alg x : T ;1

(VAL FUN ALG)
Γ, x : ψ(T ) `alg E : U ;F ′ fnfv(T ) ⊆ dom(Γ) ∪ {x}
Γ `alg λx : T.E : (x : T → U); !∀x.(forms(x : T )( F ′)

(VAL REF ALG)
Γ `alg M : T ;F ′ fnfv(F ) ⊆ dom(Γ) ∪ {x}
Γ `alg M{x:_ | F} : {x : T | F};F ′ ⊗ F{M/x}

(VAL PAIR ALG)
Γ `alg M : T ;F1 Γ `alg N : U{M/x};F2

Γ `alg (M,N) : x : T ∗ U ; !F1⊗!F2

(EXP LET ALG)
E ;

∅ [∆′ | E′]
Γ `alg E′ : T ;F1 Γ, x : ψ(T ) `alg D : U ;F2 x /∈ fv(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg let x = E in D : U ; ∆′ ( (F1 ⊗ ∀x.(forms(x : T )( F2))

Notation: Here E := 〈E〉 denotes the expression obtained from E by erasing all its
typing annotations.

10. ALGORITHMIC TYPE-CHECKING
The type system presented in Section 6 includes several non-deterministic rules, which
make it hard to implement an efficient decision procedure for typing. In this section we
outline an algorithmic variant of the type system, which we prove sound and complete.
We first focus on presenting the main intuitions behind the algorithmic type system
design and then show the complete formalization.

10.1. Overview
While standard sources of non-determinism (like subtyping or refining value types) can
be eliminated using type annotations, the rewriting of logical environments, which is
the distinctive source of non-determinism of our system, is harder to deal with. The
core idea underlying the algorithmic version of the type system is to dispense with
the logical environment ∆ and to construct bottom-up a single logical formula that
characterizes all the proof obligations that would normally be introduced along the
type derivation. In such a way, all the burden due to resource management can be
shifted to an external affine logic theorem prover, which has to deal with this issue
anyway.

More in detail, every typing judgement of the form Γ; ∆ ` J is matched by an algo-
rithmic counterpart of the form Γ `alg J ;F . Intuitively, typing an expression algorith-
mically constitutes of two steps:

(1) The expression (decorated with type annotations whenever needed) is type-checked
using the algorithmic type system. This process is syntax-directed and fully deter-
ministic, and in case of success yields one proof obligation F .

(2) The proof obligation is verified, e.g., using an external theorem prover.

If both steps succeed, then the expression is well-typed.

10.2. Key ideas
We illustrate the main ideas behind our algorithmic type system on some represen-
tative rules, shown in Table XVI. The algorithmic rules for kinding (cf. Section 10.4),
subtyping (cf. Section 10.5), and typing the remaining values and expressions (cf. Sec-
tion 10.6) follow along the same lines. For the sake of readability we often abuse nota-
tion and we let the multiset F1, . . . , Fn stand for the formula F1 ⊗ . . .⊗ Fn.
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We first notice that, according to standard practice, we rely on typing annotations
to deal with non-structural rules. Annotated terms and expressions are denoted by
M and E, respectively. Their syntax is given in Table XXI. The explicit erasure of
all typing annotations of an expression is denoted by 〈E〉. For instance, we explicitly
annotate values that are expected to be given a refinement type (cf. (VAL REF ALG))
with the expected refinement F and use annotations to assign an explicit argument
type T to functional values (cf. (VAL FUN ALG)). In this way, every possible syntactic
form for expressions is matched by a single type rule and the selection of appropriate
types and refinements does not rely on non-determinism.

We now exemplify the general concepts underlying our technique by contrasting the
standard typing rule (VAL FUN) with its algorithmic counterpart (VAL FUN ALG). The
main source of non-determinism in (VAL FUN) is the rewriting of ∆ to !∆′. As previ-
ously mentioned, our goal is to dispense with logical environments and their rewriting,
by collecting a single proof obligation that accounts for the proof obligations generated
in the original type system. In the algorithmic version, the proof obligation obtained
by giving λx : T.E type V = x : T → U in the environment Γ is:

!∀x.(forms(x : T )( F ′),

where F ′ is the proof obligation collected by giving E type U in Γ, x : ψ(T ).
In the following, we briefly justify why this approach is sound, i.e., we argue why

Γ `alg λx : T.E : V ; !∀x.(forms(x : T ) ( F ′) implies that Γ; ∆ ` λx. 〈E〉 : V for any ∆
such that Γ; ∆ ` !∀x.(forms(x : T )( F ′). Notice that the latter judgement is equivalent
to assuming that ∆ entails !∀x.(forms(x : T ) ( F ′) and both the multiset and the
formula are well-formed with respect to Γ. Using the rules of the logic, we can show
that a proof of Γ; ∆ ` !∀x.(forms(x : T ) ( F ′) implies that there exists ∆′ such that
Γ; ∆ ↪→ Γ; !∆′ and:

Γ; !∆′ ` ∀x.forms(x : T )( F ′.

Intuitively, this means that we can eliminate the exponential modality by rewriting
the logical environment in exponential form. Furthermore, the well-formedness of the
(algorithmic) environment Γ, x : ψ(T ) and the (non-algorithmic) environment Γ; !∆′

ensures that x /∈ dom(Γ) and thus x /∈ fv(!∆′): in this case, the logic allows us to
further eliminate the universal quantification, adding a type binding for x in order
to keep the logical environment well-formed (the actual type is not relevant from the
logic point of view). Thus, we have:

Γ, x : ψ(T ); !∆′ ` forms(x : T )( F ′.

Using rule ((-LEFT), we can finally prove:

Γ, x : ψ(T ); !∆′, forms(x : T ) ` F ′.

By inductive reasoning, Γ, x : ψ(T ); !∆′, forms(x : T ) ` 〈E〉 : U , hence (VAL FUN) allows
us to derive Γ; ∆ ` λx. 〈E〉 : V . The proof of completeness is similar.

The other algorithmic (typing) rules are constructed along the same lines, using the
following additional observations:

— If a typing rule contains no kinding, subtyping, or typing premise (e.g., (VAL VAR)),
the proof obligation of the corresponding algorithmic rule is set to 1 (cf. (VAL VAR
ALG)) and thus trivially fulfilled.

— If a typing rule contains multiple premises (e.g., (VAL PAIR)), then we combine the
proof obligations obtained from the premises conjunctively (cf. (VAL PAIR ALG)).

— If a typing rule relies on extraction (e.g., (EXP LET)) and adds the extracted environ-
ment ∆′ to the environment before rewriting, the algorithmic variant of the rule (EXP
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LET ALG) creates a proof obligation of the form ∆′( F , where F is the proof obliga-
tion obtained by combining the proof obligations of the premises using the techniques
described above.

With these insights in mind, we now show the complete formalization of the algo-
rithmic type system.

10.3. Base judgements
The base judgements of the algorithmic type system are reported in Table XVII.

Table XVII Algorithmic well-formedness rules

(ENV EMPTY ALG)
ε `alg �

(TYPE ENV ENTRY ALG)
Γ `alg � dom(µ) ∩ dom(Γ) = ∅

µ = x : T ⇒ T = ψ(T ) ∧ fnfv(T ) ⊆ dom(Γ)

Γ, µ `alg �

(TYPE ALG)
Γ `alg � fnfv(T ) ⊆ dom(Γ)

Γ `alg T

The only remarkable point here is that we do not have any algorithmic counterpart of
rule (DERIVE). In fact, we never need to prove a formula in the algorithmic formulation
of the type system, but we just collect the proof obligation for the external affine logic
theorem prover.

10.4. Kinding
Table XVIII presents the algorithmic kinding rules. The non-inductive standard kind-
ing rules (KIND VAR) and (KIND UNIT), which just check well-formedness of the envi-
ronment (or environment membership) and which do not contain a proof obligation of
the form Γ; ∆ ` F amongst their hypotheses, are translated into algorithmic rules that
generate the proof obligation 1. All other (recursive) rules (e.g., (KIND FUN)) strongly
resemble their algorithmic counterparts (e.g., (KIND FUN ALG)). The proof obligation
that is generated in the algorithmic variant consists of a conjunction of the proof obli-
gations that are recursively generated by the premises of that rule, following the same
principles of the algorithmic typing rules for values and expressions that we discussed
in Section 10.2. Note that a premise that checks the well-formedness of an environ-
ment or type does not generate a proof obligation (cf. (KIND REFINE PUBLIC ALG)).

Table XVIII Algorithmic kinding rules

(KIND VAR ALG)
Γ `alg � (α :: k) ∈ Γ

Γ `alg α :: k;1

(KIND UNIT ALG)
Γ `alg �

Γ `alg unit :: k;1

(KIND FUN ALG)
Γ `alg T :: k;F1

Γ, x : ψ(T ) `alg U :: k;F2

Γ `alg x : T → U :: k; !F1 ⊗ !F2

(KIND PAIR ALG)
Γ `alg T :: k;F1

Γ, x : ψ(T ) `alg U :: k;F2

Γ `alg x : T ∗ U :: k; !F1 ⊗ !F2

(KIND SUM ALG)
Γ `alg T :: k;F1

Γ `alg U :: k;F2

Γ `alg T + U :: k; !F1 ⊗ !F2

(KIND REC ALG)
Γ, α :: k `alg T :: k;F

Γ `alg µα. T :: k; !F

(KIND REFINE PUBLIC ALG)
Γ `alg {x : T | F} Γ `alg T :: pub;F ′

Γ `alg {x : T | F} :: pub;F ′

(KIND REFINE TAINTED ALG)
Γ `alg ψ(T ) :: tnt;F ′ Γ, x : ψ(T ) `alg � T refined

Γ `alg {x : T | F} :: tnt; (∀x.forms(x : T ))⊗ F ′
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10.5. Subtyping
The algorithmic subtyping rules are presented in Table XX. They resolve the non-
determinism related to the environment splitting by following the key insights of al-
gorithmic typing presented in Section 10.2.

Furthermore, the algorithmic subtyping rules resolve the non-determinism that
arises due to the fact that standard subtyping is not syntax-driven as described in
the following. We use T 6=> U to denote that T and U are not refined and do not share
the same top-level constructor.

The algorithmic type system makes use of the following observation: for all non-
refined types T,U there are at most three standard subtyping rules applicable, namely
(SUB REFL), (SUB PUB TNT), and in the case that T and U share the same top-
level constructor one corresponding structural subtyping rule, e.g., (SUB FUN) or (SUB
PAIR). In the case that T or U are refined, the three standard subtyping rules (SUB
REFL), (SUB PUB TNT), or (SUB REFINE) might be applicable.

To reduce this level of non-determinism the algorithmic subtyping rules allow the
reflexivity rule (SUB REFL ALG) to be applied only to the non-inductive type unit and
type variables α. Furthermore, we restrict the application of the kinding based rule
(SUB PUB TNT ALG) to types T,U that are structurally different and not refined,
i.e., T 6=> U . Therefore, we can determine the appropriate subtyping rule by simple
syntactic checks. Note that two types T,U , which share the same top-level constructor
can still be subtyped using reflexivity or kinding by recursively applying the corre-
sponding structural subtyping rule until one of the subgoals matches the premise of
either the (SUB REFL ALG) or (SUB PUB TNT ALG) rule. Similarly, if either T or U
or both are refined they can be typed using reflexivity or kinding by first applying the
refinement rule (SUB REFINE ALG) and then applying either the (SUB REFL ALG) or
(SUB PUB TNT ALG) rule to the subgoal.

This approach is sound and complete for all but the subtyping of two iso-recursive
types. This is related to our choice of adapting the iso-recursive subtyping proposed by
Backes et al. [Backes et al. 2011], which requires the recursive variable to occur only
positively in the iso-recursive type, instead of the Amber rule (cf. (SUB POS REC) in
Section 6.4). For instance, given the above constraints, subtyping Γ `alg µα. (x : α →
T ) <: µα. (x : α → T );F or Γ `alg µα. (x : α → unit) <: µα. (x : α → unit + unit);F would
not be possible, thus lacking reflexivity and kinding based algorithmic subtyping for
iso-recursive types. Therefore, our algorithmic type system contains three rules for
subtyping two iso-recursive types: (SUB REFL REC ALG), (SUB PUB TNT REC ALG),
and (SUB POS REC ALG), respectively. While checking whether or not to apply rule
(SUB REFL REC ALG) can be done by performing a simple equality check on the types,
the decision between (SUB PUB TNT REC ALG) and (SUB POS REC ALG) requires some
guidance, leading to the introduction of manual annotations of the form SPT to denote
that the rule (SUB PUB TNT REC ALG) should be applied. This annotation appears
in the subtyping rule for expressions (cf. (EXP SUBSUM ALG)), which we explain in
Section 10.6.

The syntax of annotated types T is introduced in Table XIX. Intuitively, we allow
type annotations SPT only on iso-recursive types and require them to not be nested.
We let 〈T 〉 denote the explicit erasure of all annotations SPT from an annotated type
T . To facilitate readability we often write T to denote the non-annotated counterpart
〈T 〉 of the annotated type T . We can easily extend the definition of the function ψ (used
for the removal of top-level refinements) to annotated types.
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Table XIX Syntax of annotated types and annotation erasure
T , U, V ::= annotated types

unit unit
α type variable
x : T → U dependent function type (scope of x is U )
x : T ∗ U dependent pair type (scope of x is U )
T + U sum type
µα. T iso-recursive type without top-level annotation
(µα. T )SPT iso-recursive type with top-level annotation
{x : T | F} refinement type (scope of x is F )

ψ(U) =

{
ψ(T ) if U = {x : T | F}
U otherwise

〈U〉 =



unit if U = unit

α if U = α

x : 〈U1〉 → 〈U2〉 if U = x : U1 → U2

x : 〈U1〉 ∗ 〈U2〉 if U = x : U1 ∗ U2

〈U1〉+ 〈U2〉 if U = U1 + U2

µα. 〈T 〉 if U = µα. T

µα. T if U = (µα. T )SPT
{x : 〈T 〉 | F} if U = {x : T | F}

10.6. Typing values and expressions
The algorithmic typing rules for values and expressions are given in Table XXII and
Table XXIII, respectively. The rules follow according to the intuition described in Sec-
tion 10.2. We furthermore rely on type annotations to guide the selection of applicable
typing rules and appropriate types. The syntax of annotated values and expressions
is given in Table XXI. Here “_” is used to denote a type that is derived by the typing
rules and thus does not need to be specified by the annotator. We denote the recursive
erasure of all typing annotations by 〈E〉 and often use E to denote the expression 〈E〉
obtained from the annotated expression E by erasing all its typing annotations. The
extraction relation E ;∅ [∆ | D] for annotated expressions (cf. Table XXIV) extracts
formulas as in the non-annotated case while keeping annotations on the expressions
intact but for the case of assumptions, where it changes the type annotation in the orig-
inal assumption to a subtyping annotation in the extracted assumption for all types
different from unit. The notions of free names and free variables correspond to the
non-annotated case.

Since in the typing rule (VAL FUN) for functions the type of the input is chosen non-
deterministically, we use the annotation λx : T.E to guide the algorithmic type system
(VAL FUN ALG) in the selection of a suitable input type T . The annotationM{x:_ | F} ex-
plicitly triggers the rule (VAL REF ALG) and expects M to type-check with refinement
F , while the annotations (inl M)_+U and (inl M)T+_ are used to provide the respective
missing type in the sum type T + U that will be assigned to inl M and inr M (cf. (VAL
INL ALG) and (VAL INR ALG)). Furthermore, the rule (EXP SUBSUM) is highly non-
deterministic, since its application can be tried at any time using any combination of
possible sub- and supertypes. In the algorithmic version of the type system we prevent
the unnecessary application of subtyping and help the choice of an appropriate su-
pertype T ′ by annotating an expression E as E_<:T ′ whenever subtyping is necessary
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Table XX Algorithmic subtyping rules
(SUB REFL ALG)
Γ `alg T T ∈ {unit, α}

Γ `alg T <: T ;1

(SUB PUB TNT ALG)
Γ `alg T :: pub;F1 Γ `alg U :: tnt;F2 T 6=> U

Γ `alg T <: U ;F1 ⊗ F2

(SUB FUN ALG)
Γ `alg T ′ <: T ;F1 Γ, x : ψ(T ′) `alg U <: U ′;F2

Γ `alg x : T → U <: x : T ′ → U ′; !F1 ⊗ !F2

(SUB PAIR ALG)
Γ `alg T <: T ′;F1

Γ, x : ψ(T ) `alg U <: U ′;F2

Γ `alg x : T ∗ U <: x : T ′ ∗ U ′; !F1 ⊗ !F2

(SUB SUM ALG)
Γ `alg T <: T ′;F1 Γ `alg U <: U ′;F2

Γ `alg T + U <: T ′ + U ′; !F1 ⊗ !F2

(SUB POS REC ALG)
Γ, α `alg T <: T ′;F T 6= T ′ α occurs only positively in T and T ′

Γ `alg µα. T <: µα. T ′; !F

(SUB REFL REC ALG)
Γ `alg µα. T

Γ `alg µα. T <: µα. T ;1

(SUB PUB TNT REC ALG)
Γ `alg µα. T :: pub;F1 Γ `alg µα.U :: tnt;F2

s = SPT⊕ s′ = SPT

Γ `alg (µα. T )s <: (µα. T ′)s′ ;F1 ⊗ F2

(SUB REFINE ALG)
Γ `alg ψ(T ) <: ψ(U);F T and/or U refined Γ `alg T Γ `alg U

Γ `alg T <: U ;F ⊗ ∀y.(forms(y : T )( forms(y : U))

Notation: We write T 6=> U to denote that T and U are not refined and do not share
the same top-level constructor. ⊕ denotes the exclusive or. We use T to denote the
non-annotated counterpart 〈T 〉 of the annotated type T .

(cf. (EXP SUBSUM ALG)). Note that the type T ′ will additionally be annotated with SPT
in case that the subtyping should make use of rule (SUB PUB TNT REC ALG), resulting
in the annotated type T ′. Since the typing rule (EXP ASSUME) non-deterministically
chooses a type T , its algorithmic counterpart (EXP ASSUME ALG) requires an explicit
annotation of the form (assume F )T to provide the expected type T .

10.7. Formal results
We can state and prove the following formal results, which highlight the correctness
and the accuracy of the algorithmic type system.

THEOREM 10.1 (SOUNDNESS OF ALGORITHMIC TYPING). If Γ `alg E : T ;F and
Γ; ∆ ` F , then Γ; ∆ ` 〈E〉 : T .

PROOF. See Appendix C.

THEOREM 10.2 (COMPLETENESS OF ALGORITHMIC TYPING). If Γ; ∆ ` E : T ,
then there exist E,F such that 〈E〉 = E and Γ `alg E : T ;F and Γ; ∆ ` F .

PROOF. See Appendix C.

10.8. Example
The proof obligation assigned to the cust function in Section 8 by the algorithmic for-
mulation of our type system is shown below:

∀C.∀M.∀B.∀g.∀p.
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Table XXI Syntax of annotated RCF expressions
M,N ::= values

x variable
() unit
(M,N) pair
λx : T.E annotated function with input of type T
(inlM)_+T annotated left constructor
(inr M)T+_ annotated right constructor
foldM fold constructor
M{x:_ | F} value to be refined with F
M_<:T value to be subtyped to T

D,E ::= expressions
M value
M N application
M = N syntactic equality
let x = E in E

′ let (scope of x is E′)
let (x, y) = M in E pair split (scope of x, y is E)
matchM with h x then E else E′ match (scope of x is E)
(νa)E restriction (scope of a is E)
E � E′ fork
a!M message send
a? message receive
assume 1 non-annotated truth assumption
(assume F )T annotated assumption with expected type T
assert F assertion
E_<:T expression to be subtyped to T

Table XXII Algorithmic typing rules for values
(VAL VAR ALG)
Γ `alg � (x : T ) ∈ Γ

Γ `alg x : T ;1

(VAL UNIT ALG)
Γ `alg �

Γ `alg () : unit;1

(VAL FUN ALG)
Γ, x : ψ(T ) `alg E : U ;F ′ fnfv(T ) ⊆ dom(Γ) ∪ {x}
Γ `alg λx : T.E : x : T → U ; !∀x.(forms(x : T )( F ′)

(VAL PAIR ALG)
Γ `alg M : T ;F1 Γ `alg N : U{M/x};F2

Γ `alg (M,N) : x : T ∗ U ; !F1 ⊗ !F2

(VAL REF ALG)
Γ `alg M : T ;F ′ fnfv(F ) ⊆ dom(Γ) ∪ {x}
Γ `alg M{x:_ | F} : {x : T | F};F ′ ⊗ F{M/x}

(VAL INL ALG)
Γ `alg M : T ;F ′ Γ `alg U

Γ `alg (inlM)_+U : T + U ; !F ′

(VAL INR ALG)
Γ `alg M : U ;F ′ Γ `alg T

Γ `alg (inr M)T+_ : T + U ; !F ′

(VAL FOLD ALG)
Γ `alg M : T{µa. T/α};F ′

Γ `alg foldM : µα. T ; !F ′

Notation: Here M = 〈M〉 denotes the value obtained from M by erasing all its typing
annotations.

∀nC .((N1(nC )⊗ N2(nC ))(
∀xnM .(!(N1(nC )( (∀y.Pay(y, p,M, xnM )( Ship(M, g,C)))(

!(N2(nC )( (∀z.Pay(B, p, z, xnM )))(
Ship(M, g,C)))

For the sake of readability we removed all unnecessary occurrences of 1 and all unused
quantified variables. In this example, as well as in the other protocol we considered,
the problem of solving equalities is reduced to the unification of variables. This allows
us to use the llprover [Tomura 1995] theorem prover, which at the time of writing
does not support equality theories. The above formula is discharged in less than 20 ms.
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Table XXIII Algorithmic typing rules for expressions
(EXP SUBSUM ALG)
Γ `alg E : T ;F1 Γ `alg T <: T ′;F2

Γ `alg E_<:T ′ : T ′;F1 ⊗ F2

(EXP APPL ALG)
Γ `alg M : x : T → U ;F1 Γ `alg N : T ;F2

Γ `alg M N : U{N/x};F1 ⊗ F2

(EXP LET ALG)
E ;∅ [∆′ | E′] Γ `alg E′ : T ;F1 Γ, x : ψ(T ) `alg D : U ;F2 x /∈ fv(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg let x = E in D : U ; ∆′ ( (F1 ⊗ ∀x.(forms(x : T )( F2))

(EXP SPLIT ALG)
Γ `alg M : x : T ∗ U ;F1 Γ, x : ψ(T ), y : ψ(U) `alg E : V ;F2 {x, y} ∩ fv(V ) = ∅

Γ; ∆ `alg let (x, y) = M in E : V ;F1 ⊗ ∀x.∀y.(forms(x : T )⊗ forms(y : U)⊗ !((x, y) = M)( F2)

(EXP MATCH ALG)
Γ `alg M : T ;F1 Γ, x : ψ(H) `alg E : U ;F2 Γ; ∆2 `alg D : U ;F3

(h,H, T ) ∈ {(inl, T1, T1 + T2), (inr, T2, T1 + T2), (fold, T ′{µα. T ′/α}, µα. T ′)} fnfv(H) ⊆ dom(Γ) ∪ {x}
Γ; ∆ `alg matchM with h x then E else D : U ;F1 ⊗ ∀x.(forms(x : H)⊗ !(h x = M)( F2)⊗ F3

(EXP EQ ALG)
Γ `alg M : T ;F1 Γ `alg N : U ;F2 x /∈ (fv(M) ∪ fv(N))

Γ `alg M = N : {x : bool | !(x = true(M = N)};F1 ⊗ F2

(EXP ASSUME ALG)
Γ `alg (assume 1)_<:T : T ;F ′ F 6= 1 fnfv(F ) ⊆ dom(Γ)

Γ `alg (assume F )T : T ;F ( F ′

(EXP TRUE ALG)
Γ `alg �

Γ ` assume 1 : unit;1

(EXP ASSERT ALG)
Γ `alg � fnfv(F ) ⊆ dom(Γ)

Γ `alg assert F : unit;F

(EXP RES ALG)
E ;a [∆′ | E′] Γ, a l T `alg E′ : U ;F a /∈ fn(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg (νa l T )E : U ; ∆′ ( F

(EXP SEND ALG)
Γ `alg M : T ;F (a l T ) ∈ Γ

Γ `alg a!M : unit;F

(EXP RECV ALG)
Γ `alg � (a l T ) ∈ Γ

Γ `alg a? : T ;1

(EXP FORK ALG)
E1 ;∅ [∆1 | D1]

E2 ;∅ [∆2 | D2] Γ `alg D1 : T1;FA Γ `alg D2 : T2;FB fnfv(∆1,∆2) ⊆ dom(Γ)

Γ `alg E1 � E2 : T2; (∆1,∆2)( (FA ⊗ FB)

Notation: Here E = 〈E〉 denotes the expression obtained from E by erasing all its
typing annotations.

11. RELATED WORK
Several papers develop type systems for (variants of) RCF [Bhargavan et al. 2010;
Bengtson et al. 2011; Fournet et al. 2011; Backes et al. 2011; Swamy et al. 2011] but,
with the exception of F∗ [Swamy et al. 2011], they do not support resource-aware poli-
cies: in fact, even for simple linearity properties like injective agreement they rely on
hand-written proofs [Bhargavan et al. 2009].

F∗ [Swamy et al. 2011] is a dependently typed functional language for secure dis-
tributed programming, featuring refinement types to reason about authorization poli-
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Table XXIV The extraction relation for annotated expressions
(EXTR FORK)
E1 ;ã [∆1 | D1] E2 ;ã [∆2 | D2]

(E1 � E2)s ;ã [∆1,∆2 | (D1 � D2)s]

(EXTR LET)
E1 ;ã [∆ | D1]

(let x = E1 in E2)s ;ã [∆ | (let x = D1 in E2)s]

(EXTR RES)
E ;a,b̃ [∆ | D]

((νa)E)s ;b̃ [∆ | ((νa)D)s]

(EXTR ASSUME UNIT)
F 6= 1 fn(F ) ∩ {ã} = ∅

((assume F )unit)s ;ã [F | (assume 1)s]

(EXTR ASSUME)
F 6= 1 fn(F ) ∩ {ã} = ∅ T 6= unit

((assume F )T )s ;ã [F | ((assume 1)_<:T )s]

(EXTR EXP)
no other rule applies

E ;ã [∅ | E]

Remark: Note that here s is either SPT or ε (i.e., no annotation).

cies and affine types to reason about stateful computations on affine values. Similarly
to companion proposals for RCF, however, the type system of F∗ assumes the existence
of the contraction rule in the underlying logic, hence it does not support authorization
policies built over affine formulas. While some simple authentication patterns (e.g.,
basic nonce handshakes) may certainly be expressed by encoding affine predicates
in terms of affine values, other more complex authentication mechanisms are much
harder to handle in these terms. The EPMO protocol we analyze in Section 8 provides
one such case, as (i) the nonce it employs may not be construed as an affine value be-
cause it is used twice, and (ii) the logical formulas justified by cryptographic message
exchanges are more structured than simple predicates. Though it might be possible
to come up with sophisticated encodings of these authentication mechanisms in the
programming language (by resorting to, e.g., pairs of affine tokens to encode a double
usage of the same nonce and special functions to eliminate logical implications), such
encodings are hard to formulate in a general manner and, we argue, are much better
expressed in terms of policy annotations than in some ad-hoc programming pattern.

Bhargavan et al. [Bhargavan et al. 2008] propose a technique for the verification of
F# protocol implementations by automatically extracting ProVerif models [Blanchet
2001], using an extension of the functions-as-processes encoding proposed by Mil-
ner [Milner 1992]. Remarkably, the analysis can deal with injective agreement. On the
other hand, the analysis carried out with ProVerif is not modular and has been shown
less robust and scalable than type-checking [Bhargavan et al. 2010]. Furthermore, the
fragment of F# considered is rather restrictive: for instance, it does not include higher-
order functions and admits only very limited uses of recursion and state.

A formal account on the integration of refinement types and substructural logics was
first proposed by Mandelbaum et al. [Mandelbaum et al. 2003] with a system for local
reasoning about program state built around a fragment of intuitionistic linear logic.
Later, Bierhoff and Aldrich developed a framework for modular type-state checking of
object-oriented programs [Bierhoff and Aldrich 2007; Sunshine et al. 2011; Naden et al.
2012]. However, none of these systems deals with the presence of hostile (or untyped)
program components, or attackers, a feature that is instead distinctive of our system:
adapting the previous frameworks to take into account interactions with an untyped
context would require fundamental changes to their typing rules. The original RCF
type-checker [Bengtson et al. 2011], for instance, employs a security-oriented kinding
relation to reason about messages sent to and received from the attacker, which we
also adopt in our type system. Recent variants of the RCF type-checker dispense with
the kinding relation and even with concurrency [Swamy et al. 2011], but they rely on
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manually proven logical invariants capturing security properties of the cryptographic
library and, in some cases, of the protocol itself.

Tov and Pucella [Tov and Pucella 2010] have recently shown how to use behavioral
contracts to link code written in an affine language to code written in a conventionally
typed language. The idea is to coerce affine values to non-affine ones that can be shared
with the context, but can still be reasoned about safely using dynamic access counts.
There are intriguing similarities between this approach and the usage of nonces and
session keys to enforce linearity properties in an adversarial setting, which are worth
to be investigated in the future. The two type systems are, however, fundamentally dif-
ferent, since our present work deals with an affine refinement logic and an adversarial
setting, which makes a precise comparison hard to formulate.

Various techniques have been proposed to statically analyze authenticity properties
of cryptographic protocols [Armando et al. 2005; Backes et al. 2007a; Cremers 2008;
Meier et al. 2013; Blanchet 2011; Backes et al. 2008], among which several types and
effects systems [Gordon and Jeffrey 2003; 2004; Bugliesi et al. 2004b; Maffei 2004;
Bugliesi et al. 2004a; 2005; 2007; Backes et al. 2007b; Backes et al. 2009; Focardi and
Maffei 2011]. These type systems incorporate ad-hoc mechanisms to deal with nonce
handshakes and, thus, to enforce injective agreement properties. Our exponential se-
rialization technique can be seen as a logic-based generalization of such mechanisms,
independent of the language and the type system. As a consequence, our type system
is similarly able to verify authenticity in terms of injective agreement, while allowing
for expressing also a number of more sophisticated properties involving access counts
and usage bounds. As a downside, the current formulation of our type system does not
allow to validate some specific nonce-handshake idioms, like the SOSH scheme [Gor-
don and Jeffrey 2004]. Still, this can be recovered by extending our type system with
union and intersection types, as shown in [Backes et al. 2011; 2014].

In previous work [Bugliesi et al. 2011; 2012], we made initial steps towards the de-
sign of a sound system for resource-sensitive authorization, drawing on techniques
from type systems for authentication and an affine extension of existing refinement
type systems for the applied pi-calculus [Abadi and Fournet 2001]. That work aims
at analyzing cryptographic protocols as opposed to their implementations. Further-
more, such a type system is designed around a specific cryptographic library: the con-
sequence is that extending the analysis to new primitives requires significant changes
in the soundness proof of the type system. In contrast, the usage of a λ-calculus in
this work allows us to encode cryptography in the language using a standard sealing
mechanism (cf. Section 7.2), which makes the analysis technique easily extensible to
new cryptographic primitives. Finally, the non-standard nature of our previous type
system makes it difficult to devise an efficient algorithmic variant, which in turn can
be cleanly designed for the present proposal.

12. CONCLUSIONS
We presented the first type system for statically enforcing the (robust) safety of cryp-
tographic protocol implementations with respect to authorization policies expressed
in affine logic. Our type system benefits from the novel concept of exponential seri-
alization to achieve a general and flexible treatment of affine formulas in distributed
systems: we showed the effectiveness of this technique on two existing cryptographic
protocols. We finally proposed an efficient, sound, and complete algorithmic variant
of the type system, which is the key for a practical implementation of our analysis
technique.

We are currently working on the mechanization of our theory by implementing a
type-checker based on the algorithmic typing rules. We plan to facilitate type-checking
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and reduce the need for manual type annotations by taking advantage of recent re-
search on type inference in intuitionistic linear logic [Baillot and Hofmann 2010].
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APPENDIX
A. SOUNDNESS OF EXPONENTIAL SERIALIZATION
We detail a soundness proof for the exponential serialization technique. The main idea
behind the proof is to extend the notion of rank from formulas to multiset of assump-
tions: the rank of the multiset is computed by taking into account the serializers oc-
curring therein. On the basis of the rank, we can always identify a serializer whose
presence in the multiset can be shown to not affect the logical entailment of payload
formulas, thus it can be safely removed from the assumptions. Iterating this process
for each serializer, we establish that none of them affects derivability. In the proof we
heavily rely on the stratification hypothesis.

In Appendix A.1 we introduce definitions and notations, which are needed for the
technical development. In Appendix A.2 we present several auxiliary lemmas, which
are used in the proof of the main results. In Appendix A.3 we carry out the proof
of Theorem 4.4, establishing the soundness of exponential serialization. Finally, in
Appendix A.4 we prove Proposition 4.5, which states a syntactic criterion for checking
if a multiset of formulas is controlled.

A.1. Preliminaries
We first introduce some notational conventions. We let:

Ŝ ∈ {!∀x̃.(P ( !(C ( P )),∀x̃.(P ( !(C ( P ))}

for some (possibly empty) x̃ and some payload formula P and some control formula C.
We also write ∆, Fn as a short for the multiset ∆, F, . . . , F (with n occurrences of F ).

We say that a multiset of formulas is well-formed when it is stratified and it satisfies
further simple syntactic conditions, consistent with the productions given in Section 4.

Definition A.1 (Well-formation). A multiset of formulas ∆ = ∆1,∆2,∆3 is well-
formed if and only if it is stratified and ∆1 = P1, . . . , Pl, ∆2 = G1, . . . , Gm, ∆3 =

Ŝ1, . . . , Ŝn.

We define a partial function guard from formulas to control formulas, defined in the
following cases:

— guard(C ( P ) = C;
— guard(P ( G) = guard(G);
— guard(∀x.F ) = guard(F ) whenever guard(F ) is defined;
— guard(!F ) = guard(F ) whenever guard(F ) is defined.

We extend the notion of rank to a multiset of formulas ∆ as follows:

rk(∆) = min {rk(C) | ∃F ∈ ∆ : guard(F ) = C}

If the previous set is empty, we stipulate rk(∆) = +∞.
A control formula C is active in ∆ if and only if rk(C) ≤ rk(∆); we simply say that C

is active whenever ∆ is clear from the context. The previous notion is useful to relax
the definition of controlled multiset to a weaker variant.

Definition A.2 (Weak Control). A well-formed multiset ∆ is weakly controlled if and
only if, for every active control formula C, we have that ∆ ` Ck implies k ≤ 1.

We note as expected that any controlled multiset is also weakly controlled.

PROPOSITION A.3. If ∆ is controlled, then it is weakly controlled.

In the next results we focus without loss of generality on cut-free proofs.
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A.2. Auxiliary results
The first two lemmas are needed to show that the induction hypothesis can indeed be
applied in the proof of a number of subsequent results.

LEMMA A.4. Let ∆ be well-formed. The following implications hold:

(1) if ∆ = ∆′, F , then ∆′ is well-formed and rk(∆) ≤ rk(∆′);
(2) if ∆ = ∆′, !F , then ∆, !F is well-formed and rk(∆) = rk(∆, !F );
(3) if ∆ = ∆′, F1 ⊗ F2, then ∆′, F1, F2 is well-formed and rk(∆) = rk(∆′, F1, F2);
(4) if ∆ = ∆1,∆2, F1( F2, then ∆2, F2 is well-formed and rk(∆) ≤ rk(∆2, F2);
(5) if ∆ = ∆′,∀x.F , then for every t we have that ∆′, F{t/x} is well-formed and rk(∆) =

rk(∆′, F{t/x});
(6) if ∆ = ∆′, !F , then ∆′, F is well-formed and rk(∆) = rk(∆′, F ).

LEMMA A.5. Let ∆ be weakly controlled. The following implications hold:

(1) if ∆ = ∆′, F , then ∆′ is weakly controlled;
(2) if ∆ = ∆′, !F , then ∆, !F is weakly controlled;
(3) if ∆ = ∆′, F1 ⊗ F2, then ∆′, F1, F2 is weakly controlled;
(4) if ∆ = ∆1,∆2, F1( F2 and ∆1 ` F1, then ∆2, F2 is weakly controlled;
(5) if ∆ = ∆′,∀x.F , then ∆′, F{t/x} is weakly controlled for every t;
(6) if ∆ = ∆′, !F , then ∆′, F is weakly controlled.

The next lemma formalizes the intuition behind stratification: formulas with a given
rank are never needed in the proof of a control formula with a lower rank. This obser-
vation plays a prominent role in many of the later results.

LEMMA A.6 (STRATIFICATION). Let ∆ = ∆′, F1, . . . , Fm be well-formed and let C be
active in ∆. If ∆ ` Cn with n ≥ 1 and ∀i ∈ [1,m] : rk(Fi) > rk(C), then ∆′ ` Cn.

The next result is a strengthening lemma: if a multiset does not entail a given control
formula C, then any implication of the form C ( P occurring therein can be removed
without affecting derivability.

LEMMA A.7 (STRENGTHENING). Let ∆ = ∆′, C ( P be well-formed and let C be
active in ∆. If ∆ ` P ′ and ∆′ 0 C, then ∆′ ` P ′.

The next technical lemma allows to apply the induction hypothesis in the proof of
the subsequent results.

LEMMA A.8. Let ∆ be weakly controlled, then ∆, B is weakly controlled. Moreover,
we have rk(∆) = rk(∆, B).

The next lemma formalizes an important intuition: since any active control formula
C can be proved at most once in a weakly controlled multiset, all the implications of the
form C ( P occurring therein can be replaced by a single implication of the same form
without affecting derivability. This is needed in the proof of Lemma A.11 (Dereliction).

LEMMA A.9 (BOUNDED REACTION). Let ∆ = ∆′, (C ( P )n be weakly controlled.
If ∆ ` P ′ and C is active in ∆, then ∆′, C ( P ` P ′.

The next technical corollary is used in the proof of Lemma A.11 (Dereliction) below.

COROLLARY A.10. Let ∆ be well-formed. If ∆ ` C and C is active in ∆, then ∆
contains at least an affine formula.

The next lemma is reminiscent of the idea behind Lemma A.9 (Bounded Reaction):
since any active control formula C can be proved at most once in a weakly controlled
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multiset, an exponential implication of the form !(C ( P ) occurring therein can be
replaced by an affine implication C ( P without affecting derivability.

LEMMA A.11 (DERELICTION). Let ∆ = ∆′, !(C ( P ) be weakly controlled. If ∆ `
P ′ and C is active in ∆, then ∆′, C ( P ` P ′.

The next lemma states that an implication of the form C ( P is useless whenever
the payload formula P is already available in the context. This is needed to prove
Corollary A.13 (Bounded Usage), which is the real result of interest and formalizes a
similar idea.

LEMMA A.12. Let ∆ = ∆′, C ( P be well-formed. If ∆ ` P ′, then ∆′, P ` P ′.

COROLLARY A.13 (BOUNDED USAGE). Let ∆ = ∆′, !(C ( P ) be weakly controlled.
If ∆ ` P ′ and C is active in ∆, then ∆′, P ` P ′.

A.3. Proof of Theorem 4.4
We are finally ready to show that serializers do not affect the derivability of payload
formulas. However, since a serializer S = !∀x̃.(P ( !(C ( P )) has a non-trivial struc-
ture, in the proof of the main theorem we must take into account the possibility of
decomposing S through the left rules of the logic, by (i) removing the exponential
modality, and (ii) instantiating the quantifiers. Lemma A.14 below accounts for such
scenario: its proof relies on Corollary A.13 (Bounded Usage), the central result of the
previous section.

LEMMA A.14. Let ∆ = ∆′, P ( !(C ( P ) be weakly controlled and let C be active
in ∆. If ∆ ` P ′, then ∆′ ` P ′.

Lemma A.15 strongly resembles Lemma A.14 and serves a similar purpose: a for-
mula of the form ∀x̃.(P ( !(C ( P )) is obtained from a serializer by removing the
exponential modality from it. Since formulas of this form can arise in the proof of the
main result, we must first deal with them.

LEMMA A.15. Let ∆ = ∆′,∀x̃.(P ( !(C ( P )) be weakly controlled and let C be
active in ∆. If ∆ ` P ′, then ∆′ ` P ′.

The next lemma is the key to proving our main theorem: it states that serializers
whose guard is active can be safely removed from a weakly controlled multiset without
affecting the derivability of payload formulas.

LEMMA A.16 (WEAK SOUNDNESS). Let ∆ = ∆′, !∀x̃.(P ( !(C ( P )) be weakly
controlled and let C be active in ∆. If ∆ ` P ′, then ∆′ ` P ′.

The next proposition is needed to identify a candidate serializer to remove in the
proof of the main theorem, according to the explained proof strategy.

PROPOSITION A.17. Let ∆ = P1, . . . , Pm, S1, . . . , Sn. If n > 0, then there exists Si ∈
∆ such that guard(Si) is active in ∆.

In the next lemma we make explicit our proof strategy. The lemma immediately
entails our real result of interest, Theorem 4.4 below.

LEMMA A.18. Let ∆′ = P1, . . . , Pm. If ∆ = ∆′, S1, . . . , Sn is weakly controlled and
∆ ` P ′, then ∆′ ` P ′.

RESTATEMENT 1 (OF THEOREM 4.4). Let ∆′ = P1, . . . , Pm. If ∆ = ∆′, S1, . . . , Sn is
controlled and ∆ ` P ′, then ∆′ ` P ′.
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PROOF. Immediate by Lemma A.18, since any controlled multiset is also weakly
controlled by Proposition A.3.

A.4. Proof of Proposition 4.5
The next proposition is a simple observation on the derivability of control formulas. It
is needed in the proof of Proposition 4.5 below.

PROPOSITION A.19. Let ∆ = B1, . . . , Bl, C1, . . . , Cm. If ∆ ` Ck, then C occurs at
least k times in ∆.

Finally, we are ready to prove the correctness of our syntactic criterion for checking
if a multiset is controlled.

RESTATEMENT 2 (OF PROPOSITION 4.5). If ∆ = B1, . . . , Bl, C1, . . . , Cm, S1, . . . , Sn

is stratified and the control formulas in ∆ are pairwise distinct, then ∆ is controlled.

PROOF. We first show that ∆ is weakly controlled. Let ∆1 = B1, . . . , Bl, ∆2 =
C1, . . . , Cm and ∆3 = S1, . . . , Sn. Let us assume by contradiction that ∆ ` Ch with h ≥ 2
for some active control formula C. By Lemma A.6 (Stratification) we have ∆2 ` Ch,
since any formula in ∆1 and ∆3 has an infinite rank, while the rank of C is finite. By
Proposition A.19, C must occur at least h times in ∆2, but this is contradictory with
respect to the initial hypotheses.

Now we know that ∆ is weakly controlled and we can show that it is, in fact, con-
trolled. Let us assume by contradiction that ∆ ` Ch with h ≥ 2 for some arbitrary
control formula C, then by Lemma A.18 we have ∆1,∆2 ` Ch. By Proposition A.19,
C must occur at least h times in ∆1,∆2, but this is contradictory with respect to the
initial hypotheses.

B. SOUNDNESS OF THE TYPE SYSTEM
We present a complete soundness proof for our type system. The structure of the proof
is standard: we first establish a Subject Reduction theorem, which shows that types are
preserved upon reduction, and then we prove that well-typed programs are statically
safe. By combining these two guarantees, we establish that the type system enforces
our safety notion. Finally, we prove an Opponent Typability lemma, which states that
any opponent is trivially well-typed: this allows us to carry out a simple proof of robust
safety, based on our safety theorem.

The present appendix is organized as follows:

— Appendix B.1 develops basic properties of affine logic, which are needed in the sound-
ness proof of the type system;

— Appendix B.2 establishes some basic results about the type system and the environ-
ment rewriting relation;

— Appendix B.3 presents the main properties of kinding and subtyping, most notably
the transitivity of the subtyping relation;

— Appendix B.4 establishes a standard substitution lemma;
— Appendix B.5 provides the inversion lemmas for the constructed values of our frame-

work;
— Appendix B.6 presents the fundamental properties of the extraction relation;
— Appendix B.7 details the proof of the Subject Reduction theorem, building upon the

results of the previous sections;
— Appendix B.8 presents the proof of robust safety.
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B.1. Properties of the logic
We first show that affine logic is closed under substitution of variables with closed
terms. This is important to prove the substitution lemma of our type system.

LEMMA B.1 (SUBSTITUTION FOR THE LOGIC). For all ∆, F and all substitutions σ
of variables with closed terms, it holds that ∆ ` F implies ∆σ ` Fσ.

In the next result we recall that we write ∆ ` ∆′ to stand for ∆ ` F1 ⊗ . . . ⊗ Fn

whenever ∆′ = F1, . . . , Fn. If ∆′ is empty, we let ∆ ` ∆′ stand for ∆ ` 1.

LEMMA B.2 (PROPERTIES OF CONJUNCTION). The following properties hold:

(1) For all n ≥ 0, we have ∆, F1, . . . , Fn ` F iff ∆, F1 ⊗ . . .⊗ Fn ` F .
(2) For all ∆,∆′ it holds that ∆′ ⊆ ∆ implies ∆ ` ∆′.

The next result is a generalization to multisets of formulas of the standard Cut rule,
characteristic of sequent calculi presentation of formal logic.

LEMMA B.3 (MULTICUT). If ∆ ` ∆′ and ∆′,∆′′ ` ∆′′′, then ∆,∆′′ ` ∆′′′.

The next technical lemma formalizes the intuition that exponential formulas can be
proved an arbitrary number of times.

LEMMA B.4 (PROPERTIES OF CONTRACTION). The following properties hold:

(1) For all ∆ it holds that !∆ ` !∆, !∆.
(2) For all ∆,∆′ it holds that if ∆ ` !∆′, then ∆ ` !∆′, !∆′.

B.2. Basic results
The next results are completely standard. In the following we typically let J range
over the judgements {�, T, F, T :: k, T <: U,E : T}.

LEMMA B.5 (DERIVED JUDGEMENTS). It holds that:

(1) If Γ; ∆ ` �, then fnfv(∆) ⊆ dom(Γ) and ∀∆′ ⊆ ∆ : Γ; ∆′ ` � .
(2) If Γ; ∆ ` � and (x : T ) ∈ Γ, then T = ψ(T ).
(3) If Γ; ∆ ` T , then Γ; ∅ ` ψ(T ).
(4) If Γ; ∆ ` T , then Γ; ∆ ` � and fnfv(T ) ⊆ dom(Γ).
(5) If Γ; ∆ ` F , then Γ; ∆ ` � and fnfv(F ) ⊆ dom(Γ).
(6) If Γ; ∆ ↪→ Γ; ∆′, then Γ; ∆ ` � and Γ; ∆′ ` �.
(7) If Γ; ∆ ` T :: k, then Γ; ∆ ` T .
(8) If Γ; ∆ ` T <: T ′, then Γ; ∆ ` T and Γ; ∆ ` T ′.
(9) If Γ; ∆ ` E : T , then Γ; ∆ ` T and fnfv(E) ⊆ dom(Γ).

LEMMA B.6 (JOINING ENVS). If Γ; ∆ ` � and Γ; ∆′ ` �, then Γ; ∆,∆′ ` �.
Notation 1 (Environment Entry η). We define an environment entry η to be either

a type environment entry µ or a formula F .

Notation 2 (Environment Join •). We introduce the following notation for environ-
ment join:

(Γ; ∆) • µ ,
{

Γ, x : ψ(T ); ∆, forms(x : T ) if µ = x : T

Γ, µ; ∆ otherwise

(Γ; ∆) • F , Γ; ∆, F

(Γ; ∆) • (Γ′; ∆′) , Γ,Γ′; ∆,∆′
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LEMMA B.7 (WEAKENING). If (Γ; ∆) • (Γ′; ∆′) ` J and (Γ; ∆) • η • (Γ′; ∆′) ` �, then
(Γ; ∆) • η • (Γ′; ∆′) ` J .

The next lemma establishes some basic properties of the rewriting relation. Intu-
itively, we show that this relation is consistent with logical entailment, in that it sat-
isfies some expected properties which hold true for the latter.

LEMMA B.8 (PROPERTIES OF REWRITING). The following statements hold true:

(1) If Γ; ∆ ` � and ∆′ ⊆ ∆, then Γ; ∆ ↪→ Γ; ∆′.
(2) If Γ; ∆1 ↪→ Γ; ∆′1 and Γ; ∆2 ↪→ Γ; ∆′2, then Γ; ∆1,∆2 ↪→ Γ; ∆′1,∆

′
2.

(3) If Γ; ∆ ↪→ Γ; ∆′ and Γ; ∆′ ↪→ Γ; ∆′′, then Γ; ∆ ↪→ Γ; ∆′′.
(4) If Γ; ∆ ↪→ Γ; !∆′, then Γ; ∆ ↪→ Γ; !∆′, !∆′.

The next result states that, if an environment Γ; ∆ can be rewritten to an environ-
ment Γ; ∆′, then it can derive all the judgements provable by the latter.

LEMMA B.9 (REWRITE WEAK). If Γ; ∆′ ` J and Γ; ∆ ↪→ Γ; ∆′, then Γ; ∆ ` J .

The next technical lemma states that rewriting does not introduce free variables.

LEMMA B.10 (REWRITING AND VARIABLES). If x /∈ dom(Γ) and Γ; ∆ ↪→ Γ; ∆′, then
x /∈ fv(∆′).

The next lemma is an expected property of the refinement stripping function ψ, i.e.,
that it removes all the refinement formulas from a type.

LEMMA B.11 (SOUNDNESS OF ψ). For every type T , we have forms(x : ψ(T )) = ∅.

The next lemma states that the stripping function ψ is idempotent, i.e., there is no
purpose in stripping refinements twice from the same type.

LEMMA B.12 (IDEMPOTENT ψ). For every type T , we have ψ(ψ(T )) = ψ(T ).

B.3. Properties of kinding and subtyping
The next result states that, whenever a typing environment can assign a kind to a type
T , then it can be rewritten so as to be split in two distinct components: the first one
is exponential and it is needed to kind-check the structural information ψ(T ), while
the second one can be used to derive the refinement formulas forms(x : T ) when T
is tainted. This result is extensively used in the proofs, most likely to deal with the
subtleties introduced by environment splitting.

LEMMA B.13 (BARE KINDS). If Γ; ∆ ` T :: k, then there exist !∆′ and ∆′′ such that
Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ ` ψ(T ) :: k. Moreover, if k = tnt, we can also require
∆′′ ` forms(x : T ) for any x /∈ dom(Γ).

The next technical lemma is needed in the proof of Lemma B.19 below. It states that
the assignment of a public kind does not depend on the refinement formulas associated
to the type, but only on structural information.

LEMMA B.14 (BARE KINDS REVERSE). If Γ; ∆ ` T and Γ; ∆ ` ψ(T ) :: pub, then
Γ; ∆ ` T :: pub.

The next result is similar in spirit to Lemma B.13, but it applies to subtyping. Again
the goal is to identify a possible rewriting of the typing environment such that the
structural subtyping relation and the refinement formulas can be proved separately.
This is needed in a number of places to deal with the complications introduced by
environment splitting.
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LEMMA B.15 (BARE SUBTYPES). If Γ; ∆ ` T <: U , then there exist !∆′ and ∆′′ such
that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ ` ψ(T ) <: ψ(U) and ∆′′, forms(x : T ) ` forms(x : U)
for any x /∈ dom(Γ).

The next technical lemma is needed in the proof of Lemma B.19 below. It states that
only refinement formulas are relevant for many judgements of our type system, so we
can always replace a purely structural type ψ(T ) with any other (well-formed) purely
structural type ψ(T ′) in the typing environment.

LEMMA B.16 (REPLACING UNREFINED BINDINGS). For all J ∈ {�, U, F, U ::
k, U <: U ′} it holds that if Γ, x : ψ(T ),Γ′; ∆ ` J and Γ; ∅ ` ψ(T ′), then Γ, x :
ψ(T ′),Γ′; ∆ ` J . Moreover, the depth of the two derivations is the same.

Definition B.17 (Compartmental Notation for Environments). Let Γ[(µi)
i∈{1,...,n}]

denote the environment obtained by inserting the entries µ1, . . . , µn at fixed positions
between the entries of the environment Γ.

The next technical lemma is needed in the proof of Lemma B.19 below. Intuitively,
it states that kinding annotations for type variables do not play any role for many
judgements of our type system.

LEMMA B.18 (TYPE VARIABLES AND KINDING). For all Γ = Γ0[(αi)
i∈{1,...,n}] and

Γ̂ = Γ0[(αi :: ki)
i∈{1,...,n}] it holds that:

(1) dom(Γ) = dom(Γ̂);
(2) Γ; ∆ ` � if and only if Γ̂; ∆ ` �;
(3) Γ; ∆ ↪→ Γ; ∆′ if and only if Γ̂; ∆ ↪→ Γ̂; ∆′;
(4) Γ; ∆ ` T if and only if Γ̂; ∆ ` T ;
(5) Γ; ∆ ` F if and only if Γ̂; ∆ ` F ;
(6) If Γ; ∆ ` T :: k, then Γ̂; ∆ ` T :: k.

The next lemma states that any subtype of a public type is public, while any super-
type of a tainted type is tainted. This is needed to prove Lemma B.20 below.

LEMMA B.19 (PUBLIC DOWN/TAINTED UP). For all environments Γ; ∆ and types
T, T ′ it holds that:

(1) If Γ; ∆ ` T <: T ′ and Γ; ∆′ ` T ′ :: pub, then Γ; ∆,∆′ ` T :: pub.
(2) If Γ; ∆ ` T <: T ′ and Γ; ∆′ ` T :: tnt, then Γ; ∆,∆′ ` T ′ :: tnt.

The next result is central to proving the transitivity of our subtyping relation. It
establishes a standard characterization of public and tainted kinds: a type is public iff
it is a subtype of Un, while it is tainted iff it is a supertype of Un.

LEMMA B.20 (PUBLIC TAINTED). For all environments Γ; ∆ and types T we have:

(1) Γ; ∆ ` T :: pub if and only if Γ; ∆ ` T <: Un.
(2) Γ; ∆ ` T :: tnt if and only if Γ; ∆ ` Un <: T .

The next technical lemma details a relationship between the stripping function ψ
and the subtyping relation. It is invoked only once in the proof of transitivity for the
subtyping relation.

LEMMA B.21 (SUBTYPING AND ψ). The following statements hold true:

(1) If Γ; ∅ ` T , then Γ; ∅ ` T <: ψ(T ).
(2) If Γ; ∆ ` ψ(T ) <: U and Γ; ∅ ` T , then Γ; ∆ ` T <: U .
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We are finally ready to prove the transitivity of the subtyping relation. This is a
standard formulation for an affine setting.

LEMMA B.22 (TRANSITIVITY). If Γ; ∆ ` T <: T ′ and Γ; ∆′ ` T ′ <: T ′′, then
Γ; ∆,∆′ ` T <: T ′′.

B.4. Properties of substitution
The next result establishes for value typing judgements a property we already showed
for kinding and subtyping judgements. Namely, if a typing environment Γ; ∆ can as-
sign a type T to a value M , then it can be rewritten into two distinct typing envi-
ronments: an exponential environment Γ; !∆′ where M is assigned the structural type
ψ(T ) and a possibly non-exponential environment Γ; ∆′′ where the refinement formu-
las forms(x : T ) can be proved on the value M .

LEMMA B.23 (BARE TYPES). Let fv(M) = ∅. If Γ; ∆ ` M : T , then there exist !∆′

and ∆′′ such that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ `M : ψ(T ) and ∆′′ ` forms(x : T ){M/x}
for any x /∈ dom(Γ).

The next lemma states that multiplicative conjunctions occurring in refinement
types can be equivalently broken into their atomic components. This is needed in the
proof of Lemma B.25 below.

LEMMA B.24 (⊗ SUB). If Γ; ∆ ` {x : T | F1 ⊗ F2}, then Γ; ∅ ` {x : T | F1 ⊗ F2} <:>
{x : {x : T | F1} | F2}.

The next result is a very convenient lemma, which is needed in the proof of our
substitution lemma. It essentially states that, if a typing environment Γ; ∆ can assign
a type T to a value M , then it can be rewritten into two distinct typing environments:
an exponential environment Γ; !∆′ where M is assigned the structural type ψ(T ) and
a possibly non-exponential environment Γ; ∆′′ where M is assigned the original type
T . Hence, purely structural typing judgements can be proved arbitrarily many times.
This is again needed to deal with the subtleties introduced by environment splitting.

LEMMA B.25 (AFFINE TYPING). If Γ; ∆ ` M : T , then there exist !∆′ and ∆′′ such
that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ `M : ψ(T ) and Γ; ∆′′ `M : T .

The next simple lemma states that, if a value M is assigned a refinement type T ,
then the refinement formulas forms(x : T ) can be proved on M from the formulas in
the typing environment.

LEMMA B.26 (FORMULAS). If Γ; ∆ ` M : T and x /∈ dom(Γ), then ∆ ` forms(x :
T ){M/x}.

The next lemma establishes some basic syntactic properties of substitution.

LEMMA B.27 (BASIC SUBSTITUTION). The following statements hold true:

(1) For every type T , we have ψ(T ){M/x} = ψ(T{M/x}).
(2) If x 6= y, then forms(y : T ){M/x} = forms(y : T{M/x}).

Finally, we can state and prove our substitution lemma, showing that typing is pre-
served by substitution of closed values for variables with the same type. The statement
is complicated by the necessity to join different environments, but the formulation is
consistent with standard presentations of substructural type systems.

LEMMA B.28 (SUBSTITUTION). Suppose that Γ; ∆ ` M : U and fv(M) = ∅. The
following statements hold true:
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(1) If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` �, then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` �.
(2) If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` F , then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` F{M/x}.
(3) If (Γ; ∆′) • x : U • (Γ′; ∆′′) ↪→ Γ, x : ψ(U),Γ′; ∆∗, then

Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↪→ Γ,Γ′{M/x}; ∆∗{M/x}.
(4) If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` T , then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` T{M/x}.
(5) If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` T :: k, then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` T{M/x} :: k.
(6) If (Γ; ∆′)•x : U • (Γ′; ∆′′) ` T <: T ′, then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` T{M/x} <:

T ′{M/x}.
(7) If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` E : T , then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` E{M/x} :

T{M/x}.

B.5. Inversion lemmas
The next result is a standard bound weakening lemma: any occurrence of a type T in
the typing environment can be safely replaced with a subtype T ′.

LEMMA B.29 (BOUND WEAK). Let Γ; ∆ ` T ′ <: T . If Γ, x : ψ(T ),Γ′; ∆′, forms(x :
T ) ` J , then Γ, x : ψ(T ′),Γ′; ∆,∆′, forms(x : T ′) ` J .

We now present two technical lemmas which are needed to establish the inversion
result for iso-recursive type constructors.

LEMMA B.30 (TYPE VARIABLES AND KINDING). If Γ, α,Γ′; ∆ ` T :: k, then α /∈
fnfv(T ).

LEMMA B.31 (TYPE SUBSTITUTION). For all T, T ′ such that T = ψ(T ) and T ′ =
ψ(T ′) it holds that:

(1) If Γ, α,Γ′; ∆ ` J and Γ; ∆′ ` T , then Γ, (Γ′{T/α}); ∆,∆′ ` J {T/α}.
(2) If Γ, α :: k,Γ′; ∆ ` � and Γ; ∆′ ` T :: k, then Γ, (Γ′{T/α}); ∆,∆′ ` �.
(3) If Γ, α :: k,Γ′; ∆ ` U and Γ; ∆′ ` T :: k, then Γ, (Γ′{T/α}); ∆,∆′ ` U{T/α}.
(4) If Γ, α :: k,Γ′; ∆ ` U :: k′ and Γ; ∆′ ` T :: k, then Γ, (Γ′{T/α}); ∆,∆′ ` U{T/α} :: k′.
(5) We have:

— If Γ, α,Γ′; ∅ ` U and α only occurs positively in U and Γ; !∆ ` T <: T ′, then
Γ, (Γ′{T/α}); !∆ ` U{T/α} <: U{T ′/α}.

— If Γ, α,Γ′; ∅ ` U and α only occurs negatively in U and Γ; !∆ ` T <: T ′, then
Γ, (Γ′{T/α}); !∆ ` U{T ′/α} <: U{T/α}.

(6) If Γ, α,Γ′; ∆ ` U <: U ′ and α only occurs positively in U,U ′ and Γ; ∆′ ` T <: T ′, then
Γ, (Γ′{T/α}); ∆,∆′ ` U{T/α} <: U ′{T ′/α}.
We can finally state and prove a number of inversion results for the constructed

values of our framework. The goal is showing that the elementary components of these
constructed values have indeed the expected types. There is a substantial amount of
work to do, but the technical details are mostly standard.

LEMMA B.32 (INVERSION FOR FUNCTIONS). The following statements hold:

(1) If Γ; ∆ ` λx.E : V , then there exist ∆1,∆2, T, U such that Γ; ∆ ↪→ Γ; ∆1,∆2 and
Γ; ∆1 ` λx.E : x : T → U (by a top-level application of VAL FUN) and Γ; ∆2 ` x :
T → U <: ψ(V ).

(2) If Γ; ∆ ` x : T → U <: x : T ′ → U ′, then there exist ∆1,∆2 such that Γ; ∆ ↪→
Γ; !∆1, !∆2 and Γ; !∆1 ` T ′ <: T and Γ, x : ψ(T ′); !∆2 ` U <: U ′.

(3) If Γ; ∆ ` λx.E : x : T → U , then there exists a ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and
(Γ; !∆′) • x : T ` E : U .

(4) If Γ; ∆ ` λx.E : x : T → U , then (Γ; ∆) • x : T ` E : U .

LEMMA B.33 (INVERSION FOR PAIRS). The following statements hold:
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(1) If Γ; ∆ ` (M,N) : V , then there exist ∆1,∆2, T, U such that Γ; ∆ ↪→ Γ; ∆1,∆2 and
Γ; ∆1 ` (M,N) : x : T ∗ U (by a top-level application of VAL PAIR) and Γ; ∆2 ` x :
T ∗ U <: ψ(V ).

(2) If Γ; ∆ ` x : T ∗ U <: x : T ′ ∗ U ′, then there exist ∆1,∆2 such that Γ; ∆ ↪→ Γ; !∆1, !∆2

and Γ; !∆1 ` T <: T ′ and Γ, x : ψ(T ); !∆2 ` U <: U ′.
(3) If Γ; ∆ ` (M,N) : x : T ∗ U , then there exist ∆1,∆2 such that Γ; ∆ ↪→ Γ; !∆1, !∆2 and

Γ; !∆1 `M : T and Γ; !∆2 ` N : U{M/x}.

LEMMA B.34 (INVERSION FOR SUM CONSTRUCTORS). The following statements
hold:

(1) Let h ∈ {inl, inr}. If Γ; ∆ ` h M : V , then there exist ∆1,∆2, T, U such that Γ; ∆ ↪→
Γ; ∆1,∆2 and Γ; ∆1 ` h M : T + U (by a top-level application of VAL H) and Γ; ∆2 `
T + U <: ψ(V ).

(2) If Γ; ∆ ` T + U <: T ′ + U ′, then there exist ∆1,∆2 such that Γ; ∆ ↪→ Γ; !∆1, !∆2 and
Γ; !∆1 ` T <: T ′ and

(3) If Γ; ∆ ` inl M : T + U , then there exist !∆ such that Γ; ∆ ↪→ Γ; !∆ and Γ; !∆ ` M : T
and Γ; !∆ ` U .

(4) If Γ; ∆ ` inr M : T +U , then there exist ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and Γ; !∆′ `M : U
and Γ; !∆′ ` T .

(5) If Γ; ∆ ` inlM : T + U , then Γ; ∆ `M : T .
(6) If Γ; ∆ ` inr M : T + U , then Γ; ∆ `M : U .

LEMMA B.35 (INVERSION FOR RECURSIVE CONSTRUCTORS). The following state-
ments hold:

(1) If Γ; ∆ ` foldM : V , then there exist ∆1,∆2, T such that Γ; ∆ ↪→ Γ; ∆1,∆2 and Γ; ∆1 `
foldM : µα. T (by a top-level application of VAL FOLD) and Γ; ∆2 ` µα. T <: ψ(V ).

(2) If Γ; ∆ ` µα. T <: µα. T ′, then there exists ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and Γ; !∆′ `
T{µα. T/α} <: T ′{µα. T ′/α}.

(3) If Γ; ∆ ` fold M : µα. T , then there exist ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and Γ; !∆′ ` M :
T{µα. T/α}.

(4) If Γ; ∆ ` foldM : µα. T , then Γ; ∆ `M : T{µα. T/α}.

B.6. Properties of extraction
We first present some simple, but useful properties of the extraction relation.

LEMMA B.36 (EXTRACTION AND FREE VALUES). If E ;ã [∆ | D], then fnfv(∆) ∪
fnfv(D) ⊆ fnfv(E).

LEMMA B.37 (EXTENDING EXTRACTION). If E ;b̃ [∆ | D] and a /∈ fn(E), then
E ;a,̃b [∆ | D].

LEMMA B.38 (RESTRICTING EXTRACTION). If E ;ã [∆ | D] and E ;b̃ [∆′ | D′]
with {b̃} ⊆ {ã}, then D ;b̃ [∆′′ | D′], where ∆′ = ∆,∆′′.

LEMMA B.39 (TRANSITIVITY OF EXTRACTION). Let E ;b̃ [∆′ | E′] and E′ ;c̃

[∆′′ | E′′], where {c̃} ⊆ {b̃}, then E ;c̃ [∆′,∆′′ | E′′].

LEMMA B.40 (IDEMPOTENT EXTRACTION). If E ;ã [∆ | D], then D ;ã [∅ | D].

The next result shows that heating preserves logic: if E V E′, then the formulas
extracted from E are exactly the same of the formulas extracted from E′. Moreover,
the purged expressions D and D′ obtained after extracting the assumptions from E
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and E′ respectively are again related by heating. All this information is needed to
show that heating preserves typing (Lemma B.46 below). In the following proofs we
often write E ; [∆ | D] whenever E ;ã [∆ | D] for some ã clear from the context.

LEMMA B.41 (HEATING PRESERVES LOGIC). If E V E′ and E ;ã [∆ | D], then
E′ ;ã [∆ | D′] for some D′ such that D V D′. Moreover, the depth of the derivation of
D V D′ equals that of E V E′.

The next lemma is in the same spirit of Lemma B.41, but it predicates over the
reduction relation rather than on heating and it is slightly more complicated. This is
needed in the proof of Subject Reduction (Theorem B.48 below).

LEMMA B.42 (REDUCTION PRESERVES LOGIC). If E → E′ and E ;ã [∆ | D], then
D → D′ and E′ ;ã [∆,∆′ | D′′] for some D′, D′′,∆′ such that D′ ;ã [∆′ | D∗] with
D∗ V D′′. Moreover, the depth of the derivation of D → D′ equals that of E → E′.

B.7. Proof of subject reduction
In the proof of Lemmas B.44, B.45, B.46 and Theorem B.48 below we rely on an ob-
servation about the structure of the type derivations to simplify the formal reasoning
and carry out the proofs. First, we consider an alternative formulation of typing for
values, presented in Table XXV, which removes the non-structural rule (VAL REFINE).
We also assume to keep the original typing rules for expressions.

Table XXV Alternative rules for typing values

VAL VAR REFINE
(x : T ) ∈ Γ Γ; ∆ ` F{x/y}

Γ; ∆ `alt x : {y : T | F}

VAL UNIT REFINE
Γ; ∆ ` F{()/y}

Γ; ∆ `alt () : {y : unit | F}

VAL FUN REFINE
(Γ; !∆1) • x : T `alt E : U

Γ; ∆2 ` F{λx.E/y}
Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt λx.E : {y : x : T → U | F}

VAL PAIR REFINE
Γ; !∆1 `alt M : T

Γ; !∆2 `alt N : U{M/x}
Γ; ∆3 ` F{(M,N)/y}

Γ; ∆ ↪→ Γ; !∆1, !∆2,∆3

Γ; ∆ `alt (M,N) : {y : x : T ∗ U | F}

VAL INL REFINE
Γ; !∆1 `alt M : T

Γ; !∆1 ` U Γ; ∆2 ` F{inlM/y}
Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt inlM : {y : T + U | F}

VAL INR REFINE
Γ; !∆1 `alt M : U

Γ; !∆1 ` T Γ; ∆2 ` F{inr M/y}
Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt inr M : {y : T + U | F}

VAL FOLD REFINE
Γ; !∆1 `alt M : T{µa. T/α}

Γ; ∆2 ` F{foldM/y}
Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt foldM : {y : µα. T | F}

We can show that the original and the alternative formulation coincide.

LEMMA B.43 (ALTERNATIVE TYPING). Γ; ∆ ` E : T if and only if Γ; ∆ `alt E : T .

Now the idea is to appeal to the transitivity of both the subtyping relation
(Lemma B.22) and the environment rewriting relation (Lemma B.8) to rearrange
the structure of any type derivation constructed under the alternative typing rules.
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Namely, we observe that for any expression E the general form of such a type deriva-
tion is as follows:

Γ; ∆1 `alt E : T1 Γ; ∆2 ` T1 <: T2 Γ; ∆3 ↪→ Γ; ∆1,∆2

...
Γ; ∆2n−1 `alt E : T2n−1 Γ; ∆2n ` T2n−1 <: T Γ; ∆ ↪→ Γ; ∆2n−1,∆2n

Γ; ∆ `alt E : T

where the last rule applied to derive Γ; ∆1 `alt E : T1 is not (EXP SUBSUM). Without
loss of generality, we reorganize the derivation as follows:

Γ; ∆1 `alt E : T1 Γ; ∆∗ ` T1 <: T Γ; ∆ ↪→ Γ; ∆1,∆
∗

Γ; ∆ `alt E : T

with ∆∗ = ∆2,∆4, . . . ,∆2n. Notice that also derivations which do not use rule (EXP
SUBSUM) can be rearranged as detailed, since the subtyping relation is reflexive. More-
over, given that original typing and alternative typing coincide by Lemma B.43, we
note that the previous transformation can be applied to any type derivation.

Now we can show that extraction preserves typing: this is needed to show that heat-
ing preserves typing (Lemma B.46 below).

LEMMA B.44 (EXTRACTION PRESERVES TYPING). If Γ; ∆ ` E : T and E ;ã

[∆′ | E′], then Γ; ∆,∆′ ` E′ : T .

Similarly to the previous result, we can also show that inverting an extrac-
tion preserves typing: again, this is needed to prove that heating preserves typing
(Lemma B.46 below).

LEMMA B.45 (INVERTING EXTRACTION PRESERVES TYPING). Let E ;b̃ [∆′ | E′].
If Γ; ∆,∆′ ` E′ : T , then Γ; ∆ ` E : T .

The next result, sometimes called Subject Heating, shows that typing is preserved
by heating. This is needed in the proof of the Subject Reduction theorem, since the
reduction relation is closed under heating.

LEMMA B.46 (HEATING PRESERVES TYPING). If Γ; ∆ ` E : T and E V E′, then
Γ; ∆ ` E′ : T .

The next simple lemma states that tautologies can be safely removed from any typ-
ing environment. This is used in some cases of the Subject Reduction proof, to deal
with the logical formulas we explicitly introduce in the typing environment to make
type-checking more precise (cf. EXP SPLIT).

LEMMA B.47 (REMOVING TAUTOLOGIES). If Γ; ∆, F ` E : T and ∅ ` F , then Γ; ∆ `
E : T .

We can finally prove the Subject Reduction theorem. Its statement is remarkably
simple: this is mainly due to our type system design, which discharges to the under-
lying affine logical framework all the complicated issues related to resource consump-
tion. Thus, we do not need to explicitly track in the semantics which resources are
consumed upon reduction, unlike to many other substructural type systems.

THEOREM B.48 (SUBJECT REDUCTION). Let fv(E) = ∅. If Γ; ∆ ` E : T and E →
E′, then Γ; ∆ ` E′ : T .

PROOF. By induction on the derivation of E → E′. In the proof we implicitly appeal
to Lemma B.5 and Lemma B.8 several times:
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Case (RED FUN): assume (λx.E) N → E{N/x} and Γ; ∆ ` (λx.E) N : T . The
typing judgement must follow by an instance of (EXP APPL) after an instance of
(EXP SUBSUM), hence it must be the case that Γ; ∆A ` (λx.E) N : U ′{N/x} and
Γ; ∆B ` U ′{N/x} <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

— Γ; ∆A ↪→ Γ; ∆1,∆2

— Γ; ∆1 ` λx.E : x : T ′ → U ′

— Γ; ∆2 ` N : T ′

By Lemma B.32 we know that Γ; ∆1 ` λx.E : x : T ′ → U ′ implies (Γ; ∆1) • x : T ′ `
E : U ′. Now notice that x /∈ dom(Γ) by Lemma B.5, hence x /∈ fv(∆1) by Lemma B.10.
By applying Lemma B.28, we then get Γ; ∆1,∆2 ` E{N/x} : U ′{N/x}. Since Γ; ∆ ↪→
Γ; (∆1,∆2),∆B , the conclusion Γ; ∆ ` E{N/x} : T follows by an application of (EXP
SUBSUM).

Case (RED SPLIT): assume let (x, y) = (M,N) in E → E{M/x}{N/y} and Γ; ∆ `
let (x, y) = (M,N) in E : T . The typing judgement must follow by an instance of
(EXP SPLIT) after an instance of (EXP SUBSUM), hence it must be the case that
Γ; ∆A ` let (x, y) = (M,N) in E : V and Γ; ∆B ` V <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

— Γ; ∆A ↪→ Γ; ∆1,∆2

— Γ; ∆1 ` (M,N) : x : T ′ ∗ U ′
— (Γ; ∆2) • x : T ′ • y : U ′ • !((x, y) = (M,N)) ` E : V
— {x, y} ∩ fv(V ) = ∅
By Lemma B.33 we know that Γ; ∆1 ` (M,N) : x : T ′ ∗ U ′ implies:
— Γ; ∆1 ↪→ Γ; ∆11,∆12

— Γ; ∆11 `M : T ′

— Γ; ∆12 ` N : U ′{M/x}
Now notice that x /∈ dom(Γ) by Lemma B.5, hence x /∈ fv(∆2) by Lemma B.10.
By applying Lemma B.28 twice and noting that {x, y} ∩ fv(V ) = ∅, we then get
Γ; ∆11,∆12,∆2, !((M,N) = (M,N)) ` E : V . Since ∅ ` !((M,N) = (M,N)), the
latter judgement implies Γ; ∆11,∆12,∆2 ` E : V by Lemma B.47. Since Γ; ∆ ↪→
Γ; (∆11,∆12,∆2),∆B , the conclusion Γ; ∆ ` E : T follows by (EXP SUBSUM).

Case (RED MATCH): assume match h N with h x then E else E′ → E{N/x} and Γ; ∆ `
match h N with h x then E else E′ : T . The typing judgement must follow by an
instance of (EXP MATCH) after an instance of (EXP SUBSUM), hence it must be the
case that Γ; ∆A ` match h N with h x then E else E′ : V and Γ; ∆B ` V <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

— Γ; ∆A ↪→ Γ; ∆1,∆2

— Γ; ∆1 ` h N : T ′

— (Γ; ∆2) • x : U ′ • !(h x = h N) ` E : V
— Γ; ∆2 ` E′ : V
— (h, T ′, U ′) ∈ {(inl, T1 + T2, T1), (inr, T1 + T2, T2), (fold, µα. T1, T1{µα. T1/α})}
According to the form of h, we invoke either Lemma B.34 or Lemma B.35. and we
get Γ; ∆1 ` N : U ′. Now we notice that Γ; ∆2 ` E′ : V implies fnfv(V ) ⊆ dom(Γ)
by Lemma B.5, hence the fact that x /∈ dom(Γ) implies x /∈ fv(V ). Moreover, x /∈
dom(Γ) implies x /∈ fv(∆2) by Lemma B.10. By applying Lemma B.28 we then get
Γ; ∆1,∆2, !(h N = h N) ` E{N/x} : V . Since ∅ ` !(h N = h N), the latter judgement
implies Γ; ∆1,∆2 ` E{N/x} : V by Lemma B.47. Since Γ; ∆ ↪→ Γ; (∆1,∆2),∆B , the
conclusion Γ; ∆ ` E{N/x} : T follows by (EXP SUBSUM).
Assume now match M with h x then E else E′ → E′ with M 6= h N for all N . The
type derivation has the same structure as before, but for the obvious changes. Since
Γ; ∆2 ` E′ : V and Γ; ∆ ↪→ Γ; ∆2,∆B , the conclusion Γ; ∆ ` E′ : T follows by (EXP
SUBSUM).
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Case (RED EQ): assume we have M = M → true and Γ; ∆ ` M = M : T . The typing
judgement must follow by an instance of (EXP EQ) after an instance of (EXP SUB-
SUM), hence it must be the case that:

Γ; ∆A `M = M : {x : bool | !(x = true(M = M)}
and:

Γ; ∆B ` {x : bool | !(x = true(M = M)} <: T.

with Γ; ∆ ↪→ Γ; ∆A,∆B . Recall now that true , inl( ) and bool , unit+ unit, so it is easy
to show that we have Γ; ∆A ` true : bool. Now we note that:

Γ; ∅ ` !(true = true(M = M),

thus we get Γ; ∆A ` true : {x : bool | !(x = true( M = M)} by (VAL REFINE) and the
conclusion Γ; ∆ ` true : T follows by an application of (EXP SUBSUM).
Assume, instead, that M = N → false with M 6= N and Γ; ∆ ` M = N : T . The
typing judgement must follow by an instance of (EXP EQ) after an instance of (EXP
SUBSUM), hence it must be the case that:

Γ; ∆A `M = N : {x : bool | !(x = true(M = N)}
and:

Γ; ∆B ` {x : bool | !(x = true(M = N)} <: T.

with Γ; ∆ ↪→ Γ; ∆A,∆B . Now we note that:

Γ; ∅ ` !(false = true(M = N),

thus we get Γ; ∆A ` false : {x : bool | !(x = true( M = N)} by (VAL REFINE) and the
conclusion Γ; ∆ ` false : T follows by an application of (EXP SUBSUM).

Case (RED COMM): assume a!M � a? → M and Γ; ∆ ` a!M � a? : T . The typing judge-
ment must follow by an instance of (EXP FORK) after an instance of (EXP SUBSUM),
hence it must be the case that Γ; ∆A ` a!M � a? : V and Γ; ∆B ` V <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

— a!M ; [∅ | a!M ]
— a? ; [∅ | a?]
— Γ; ∆A ↪→ Γ; ∆1,∆2

— Γ; ∆1 ` a!M : U
— Γ; ∆2 ` a? : V
We notice that Γ; ∆1 ` a!M : U must follow by an instance of (EXP SEND) after an
instance of (EXP SUBSUM), hence:
— Γ; ∆1 ↪→ Γ; ∆11,∆12

— Γ; ∆11 ` a!M : unit
— Γ; ∆12 ` unit <: U
— (a l T ′) ∈ Γ
— Γ; ∆11 `M : T ′

We also notice that Γ; ∆2 ` a? : V must follow by an instance of (EXP RECV) after an
instance of (EXP SUBSUM), hence:
— Γ; ∆2 ↪→ Γ; ∆21,∆22

— Γ; ∆21 ` a? : T ′, since (a l T ′) ∈ Γ
— Γ; ∆22 ` T ′ <: V
Thus we get Γ; ∆11,∆22 `M : V by (EXP SUBSUM). Since Γ; ∆ ↪→ Γ; ∆11,∆22,∆B , the
conclusion Γ; ∆ `M : T follows by an application of (EXP SUBSUM).

Case (RED LET VAL): assume let x = M in E → E{M/x} and Γ; ∆ ` let x = M in E : T .
The typing judgement must follow by an instance of (EXP LET) after an instance of
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(EXP SUBSUM). Notice that M ; [∅ | M ], hence it must be the case that Γ; ∆A `
let x = M in E : V and Γ; ∆B ` V <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

— Γ; ∆A ↪→ Γ; ∆1,∆2

— Γ; ∆1 `M : U
— (Γ; ∆2) • x : U ` E : V
— x /∈ fv(V )
Now notice that x /∈ dom(Γ) by Lemma B.5, hence x /∈ fv(∆2) by Lemma B.10. By
applying Lemma B.28 and noting that x /∈ fv(V ), we then get Γ; ∆1,∆2 ` E{M/x} :
V . Since Γ; ∆ ↪→ Γ; (∆1,∆2),∆B , the conclusion Γ; ∆ ` E{M/x} : T follows by an
application of (EXP SUBSUM).

Case (RED LET): assume let x = E in E′′ → let x = E′ in E′′ with E → E′ and
Γ; ∆ ` let x = E in E′′ : T . The typing judgement must follow by an instance of
(EXP LET) after an instance of (EXP SUBSUM), hence it must be the case that Γ; ∆A `
let x = E in E′′ : V and Γ; ∆B ` V <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

—E ; [∆′ | D]
— Γ; ∆A,∆

′ ↪→ Γ; ∆1,∆2

— Γ; ∆1 ` D : U
— (Γ; ∆2) • x : U ` E′′ : V
By Lemma B.42 we know that E → E′ and E ; [∆′ | D] imply that there exist
D′,∆′′, D′′, D∗ such thatD → D′ and E′ ; [∆′,∆′′ |D′′] withD′ ; [∆′′ |D∗] andD∗ V
D′′. Since Lemma B.42 is depth-preserving, we can apply the inductive hypothesis
and get Γ; ∆1 ` D′ : U . Given that D′ ; [∆′′ | D∗] and Γ; ∆1 ` D′ : U , we get
Γ; ∆1,∆

′′ ` D∗ : U by Lemma B.44. Since D∗ V D′′ and Γ; ∆1,∆
′′ ` D∗ : U , we get

Γ; ∆1,∆
′′ ` D′′ : U by Lemma B.46. Hence, we have:

—E′ ; [∆′,∆′′ | D′′]
— Γ; ∆A,∆

′,∆′′ ↪→ Γ; (∆1,∆
′′),∆2

— Γ; ∆1,∆
′′ ` D′′ : U

— (Γ; ∆2) • x : U ` E′′ : V
We can then apply rule (EXP LET) to get Γ; ∆A ` let x = E′ in E′′ : V . The conclusion
Γ; ∆ ` let x = E′ in E′′ : T follows by (EXP SUBSUM).

Case (RED RES): assume (νa)E → (νa)E′ with E → E′ and Γ; ∆ ` (νa)E : T . The
typing judgement must follow by an instance of (EXP RES) after an instance of (EXP
SUBSUM), hence it must be the case that Γ; ∆A ` (νa)E : V and Γ; ∆B ` V <: T with:
— Γ; ∆ ↪→ Γ; ∆A,∆B

—E ;a [∆′ | D]
— Γ, a l U ; ∆A,∆

′ ` D : V
By Lemma B.42 we know that E → E′ and E ;a [∆′ | D] imply that there exist
D′,∆′′, D′′, D∗ such that D → D′ and E′ ;a [∆′,∆′′ | D′′] with D′ ;a [∆′′ | D∗]
and D∗ V D′′. Since Lemma B.42 is depth-preserving, we can apply the inductive
hypothesis and get Γ, a l U ; ∆A,∆

′ ` D′ : V . Given that D′ ;a [∆′′ | D∗] and
Γ, a l U ; ∆A,∆

′ ` D′ : V , we get Γ, a l U ; ∆A,∆
′,∆′′ ` D∗ : V by Lemma B.44.

By Lemma B.46 we get Γ, a l U ; ∆A,∆
′,∆′′ ` D′′ : V . Hence, we have:

—E′ ;a [∆′,∆′′ | D′′]
— Γ, a l U ; ∆A,∆

′,∆′′ ` D′′ : V
We can then apply rule (EXP RES) to get Γ; ∆A ` (νa)E′ : V . The conclusion Γ; ∆ `
(νa)E′ : T follows by (EXP SUBSUM).

Case (RED FORK 1): assume E � E′′ → E′ � E′′ with E → E′ and Γ; ∆ ` E � E′′ : T .
The typing judgement must follow by an instance of (EXP FORK) after an instance of
(EXP SUBSUM), hence it must be the case that Γ; ∆A ` E � E′′ : V and Γ; ∆B ` V <: T
with:
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— Γ; ∆ ↪→ Γ; ∆A,∆B

—E ; [∆′ | D1]
—E′′ ; [∆′′ | D2]
— Γ; ∆A,∆

′,∆′′ ↪→ Γ; ∆1,∆2

— Γ; ∆1 ` D1 : U
— Γ; ∆2 ` D2 : V
By Lemma B.42 we know that E → E′ and E ; [∆′ | D1] imply that there exist
D′1,∆

∗, D′′, D∗ such that D1 → D′1 and E′ ; [∆′,∆∗ | D′′] with D′1 ; [∆∗ | D∗]
and D∗ V D′′. Since Lemma B.42 is depth-preserving, we can apply the inductive
hypothesis and get Γ; ∆1 ` D′1 : U . Given that D′1 ; [∆∗ | D∗] and Γ; ∆1 ` D′1 : U , we
get Γ; ∆1,∆

∗ ` D∗ : U by Lemma B.44. By Lemma B.46 we get Γ; ∆1,∆
∗ ` D′′ : U .

Hence, we have:
—E′ ; [∆′,∆∗ | D′′]
—E′′ ; [∆′′ | D2]
— Γ; ∆A,∆

′,∆∗,∆′′ ↪→ Γ; (∆1,∆
∗),∆2

— Γ; ∆1,∆
∗ ` D′′ : U

— Γ; ∆2 ` D2 : V
We can then apply rule (EXP FORK) to get Γ; ∆A ` E′ � E′′ : V . The conclusion
Γ; ∆ ` E′ � E′′ : T follows by (EXP SUBSUM).

Case (RED FORK 2): analogous to the previous case.
Case (RED HEAT): assume E → E′ with E V D, D → D′ and D′ → E′. Assume further
that Γ; ∆ ` E : T . By Lemma B.46 we have Γ; ∆ ` D : T . By inductive hypothesis
Γ; ∆ ` D′ : T , hence Γ; ∆ ` E′ : T again by Lemma B.46.

B.8. Proof of (robust) safety
We first show that well-typed structures are statically safe.

LEMMA B.49 (STATIC SAFETY). If ε; ∅ ` S : T , then S is statically safe.

The safety theorem below states that any well-typed expression is safe. Its proof is
simple and relies on the previous results.

RESTATEMENT 3 (OF THEOREM 6.1). If ε; ∅ ` E : T , then E is safe.

PROOF. In order to prove that E is safe it suffices to show that, for all expressions
E′ and structures S such that E →∗ E′ and E′ V S, it holds that S is statically safe.

By Theorem B.48, ε; ∅ ` E : T implies ε; ∅ ` E′ : T . By Lemma B.46, E′ V S implies
ε; ∅ ` S : T . We can conclude that S is statically safe by Lemma B.49.

The next lemma is important to show that any opponent is trivially well-typed: it
identifies Un with a number of structural types built around Un itself.

LEMMA B.50 (UNIVERSAL TYPE). If Γ; ∅ ` �, then Γ; ∅ ` T <:> Un for all T ∈
{unit, x : Un→ Un, x : Un ∗ Un,Un + Un, µα.Un}.

We can now show that any opponent is well-typed. The statement is slightly more
general than expected, since we appeal to inductive reasoning in the proof.

LEMMA B.51 (OPPONENT TYPABILITY). Let Γ; ∅ ` �. Let O be an expression that
does not contain any assumption or assertion such that (a l Un) ∈ Γ for each a ∈ fn(O)
and (x : Un) ∈ Γ for each x ∈ fv(O), then Γ; ∅ ` O : Un.
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Finally, we can prove our main result of interest: if an expression E is assigned type
Un by our type system, then it is robustly safe. The proof is an easy consequence of
Theorem 6.1 and Lemma B.51.

RESTATEMENT 4 (OF THEOREM 6.2). If ε; ∅ ` E : Un, then E is robustly safe.

PROOF. Consider an arbitrary opponent O, we need to show that the application
O E is safe. Recall that:

O E , let f = O in let x = E in f x.

Let Γ = a1 l Un, . . . , an l Un with fn(O) = {a1, . . . , an}. Since the opponent O is closed
by definition, by Lemma B.51 we know that Γ; ∅ ` O : Un. We can apply (EXP SUBSUM)
and Lemma B.50 to derive:

Γ; ∅ ` O : Un→ Un. (1)

We can apply Lemma B.7 to ε; ∅ ` E : Un and get Γ; ∅ ` E : Un. Assume nowE ; [∆ |D],
by Lemma B.44 we have Γ; ∆ ` D : Un. By Lemma B.7 we then get:

Γ, f : Un→ Un; ∆ ` D : Un. (2)

Since O ;∅ [∅ | O], we can construct the following type derivation:

(1)
. . .

Γ; ∅ ` O : Un→ Un

(2)
. . .

Γ, f : Un→ Un; ∆ ` D : Un

. . .

Γ, f : Un→ Un, x : Un; ∅ ` f x : Un
EXP APPL

Γ, f : Un→ Un; ∅ ` let x = E in f x : Un
EXP LET

Γ; ∅ ` let f = O in let x = E in f x : Un
EXP LET

Since O E ;b̃ [∅ | O E] for all b̃, we can get ε; ∅ ` (νa1) . . . (νan)(O E) : Un by applying
n times rule (EXP RES) to the conclusion of the derivation above. By Theorem 6.1, we
then know that (νa1) . . . (νan)(O E) is safe. Since restrictions do not affect safety, we
can conclude.

C. SOUNDNESS AND COMPLETENESS OF ALGORITHMIC TYPING
In this section we prove the soundness (Theorem 10.1) and completeness (Theo-
rem 10.2) of the algorithmic variant of our type system.

C.1. Logical properties
We begin by showing some important properties of the logic that play a pivotal role
in the bottom-up construction of the unique proof obligation in the algorithmic type
system and the corresponding proofs of soundness and completeness.

We use the following convenient notation to denote all logical entailment rules that
modify the set of premises.

Definition C.1 (Left Rules `L). We say ∆ `L F if the last applied logical entailment
rule is a rule of the form (R-LEFT) or (CONTR) or (WEAK).

LEMMA C.2 (IMPLICATION).

(1) For all ∆, F, F ′ we have that ∆ ` F ( F ′ iff ∆, F ` F ′.
(2) For all Γ,∆, F, F ′ we have that Γ; ∆ ` F ( F ′ iff Γ; ∆, F ` F ′.

LEMMA C.3 (UNIVERSAL QUANTIFICATION). It holds that:

(1) For all x,∆, F such that x /∈ fv(∆), we have that ∆ ` F iff ∆ ` ∀x.F .
(2) For all Γ, x, T,∆, F such that Γ, x : ψ(T ); ∆ ` � and x /∈ fnfv(∆), we have that Γ, x :

ψ(T ); ∆ ` F iff Γ; ∆ ` ∀x.F .
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Table XXVI Intermediate Subtyping <:alg
(SUB REFL *)
Γ; ∆ ` T T ∈ {unit, α}

Γ; ∆ ` T <:alg T

(SUB PUB TNT *)
Γ; ∆1 ` T :: pub Γ; ∆2 ` U :: tnt Γ; ∆ ↪→ Γ; ∆1,∆2 T 6=> U

Γ; ∆ ` T <:alg U

(SUB FUN *)
Γ; !∆1 ` T ′ <:alg T

Γ, x : ψ(T ′); !∆2 ` U <:alg U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T → U <:alg x : T ′ → U ′

(SUB PAIR *)
Γ; !∆1 ` T <:alg T ′

Γ, x : ψ(T ); !∆2 ` U <:alg U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T ∗ U <:alg x : T ′ ∗ U ′

(SUB SUM *)
Γ; !∆1 ` T <:alg T ′ Γ; !∆2 ` U <:alg U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` T + U <:alg T ′ + U ′

(SUB POS REC *)
Γ, α; !∆′ ` T <:alg T ′

α occurs only positively in T and T ′
T 6= T ′ Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` µα. T <:alg µα. T ′

(SUB REFL REC *)
Γ; ∆ ` µα. T

Γ; ∆ ` µα. T <:alg µα. T

(SUB PUB TNT REC *)
Γ; ∆1 ` µα. T :: pub Γ; ∆2 ` µα.U :: tnt
s = SPT⊕ s′ = SPT Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` (µα. T )s <:alg (µα.U)s′

(SUB REFINE *)
Γ; ∆1 ` ψ(T ) <:alg ψ(U) Γ, y : ψ(T ); ∆2, forms(y : T ) ` forms(y : U)

Γ; ∆ ↪→ Γ; ∆1,∆2 T and/or U refined
Γ; ∆ ` T <:alg U

Notation: We use T to denote the non-annotated counterpart 〈T 〉 of the annotated
type T .

C.2. Soundness and completeness of the algorithmic judgements
LEMMA C.4 (SOUNDNESS AND COMPLETENESS OF ALGORITHMIC WELL-FORMEDNESS).

For all Γ, the following holds true:

(1) Γ `alg � iff Γ; ∅ ` �
(2) for all T , Γ `alg T iff Γ; ∅ ` T

LEMMA C.5 (SOUNDNESS AND COMPLETENESS OF ALGORITHMIC KINDING).
For all Γ, T, k, the following holds true:

(1) for all F,∆ such that Γ `alg T :: k;F and Γ; ∆ ` F , we have that Γ; ∆ ` T :: k.
(2) for all ∆ such that Γ; ∆ ` T :: k, there exists F such that Γ `alg T :: k;F and Γ; ∆ ` F ;

In order to prove soundness and completeness of subtyping we will proceed in two
steps: we first introduce an intermediate algorithmic variant of the standard subtyping
relation Γ; ∆ ` T <:alg U for annotated types that extends the standard one by adding
the side conditions in (SUB REFL) and (SUB PUB TNT) present in algorithmic subtyp-
ing and provides three disjoint rules for subtyping two iso-recursive types, following
the insights given in Section 10.5.

We will then show that we can find annotations to prove the standard subtyping
and intermediate subtyping equivalent and show the soundness and completeness of
algorithmic subtyping with respect to intermediate subtyping <:alg.

The full definition of the intermediate subtyping rules can be found in Table XXVI.
The rules make use of the previously introduced annotated types T that might contain
type annotation SPT. As in algorithmic subtyping, we assume the function ψ to extend
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to annotated types and we write T = 〈T 〉 to denote the type that results from erasing
all type annotations from T . We say T and T are equal up to type annotations.

The soundness and completeness proof of intermediate subtyping makes use of
the following propositions and lemmas. We write T = {xm : . . . {x2 : {x1 :
U | F1} | F2} . . . | Fm} to denote nested (annotated) refinement types, for m = 0 this
notation simply denotes the annotated type U .

The following proposition states that all types are also annotated types by construc-
tion, which we will use implicitly throughout the following proofs.

PROPOSITION C.6 (TYPES AND ANNOTATED TYPES). Let T be a type. Then T is
also an annotated type, such that 〈T 〉 = T .

LEMMA C.7 (REFINEMENT ERASURE OF ANNOTATED TYPES). For all types T and
annotated types T such that T = 〈T 〉 it holds that ψ(T ) = ψ(〈T 〉) = 〈ψ(T )〉.

LEMMA C.8 (NESTED REFINEMENTS). For all types T it holds that there exist m ≥
0 and Tmin and F1, . . . , Fm, x1, . . . , xm (if m > 0) such that T = {xm : . . . {x2 : {x1 :
Tmin | F1} | F2} . . . | Fm} and ψ(T ) = ψ(Tmin) = Tmin .

LEMMA C.9 (ANNOTATED REFINEMENT TYPES). For all types T = {xm : . . . {x2 :
{x1 : Tmin | F1} | F2} . . . | Fm}, where ψ(T ) = ψ(Tmin) = Tmin , and all annotated types
Tmin and T = {xm : . . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm} such that Tmin = 〈Tmin〉 it
holds that

— 〈T 〉 = T and
— ψ(T ) = Tmin .

LEMMA C.10 (SOUNDNESS AND COMPLETENESS OF INTERMEDIATE SUBTYPING).
For all Γ,∆, T, U it holds that:

(1) If Γ; ∆ ` T then Γ; ∆ ` T <:alg T .
(2) If there exist ∆1,∆2 such that Γ; ∆ ↪→ Γ; ∆1,∆2 and Γ; ∆1 ` T :: pub and Γ; ∆2 `

U :: tnt then there exist annotated types T and U such that T = 〈T 〉, U = 〈U〉, and
Γ; ∆ ` T <:alg U .

(3) If Γ; ∆ ` T <:alg U and T = 〈T 〉, U = 〈U〉, then Γ; ∆ ` T <: U .
(4) If Γ; ∆ ` T <: U then there exist T ,U such that T = 〈T 〉, U = 〈U〉, and Γ; ∆ ` T <:alg

U .

LEMMA C.11 (SOUNDNESS AND COMPLETENESS OF ALGORITHMIC SUBTYPING).

(1) For all Γ,∆, T , U , the following holds true:
(a) For all F such that Γ `alg T <: U ;F and Γ; ∆ ` F , we have that Γ; ∆ ` T <:alg U .
(b) If Γ; ∆ ` T <:alg U , then there exists F such that Γ `alg T <: U ;F and Γ; ∆ ` F ;

(2) For all Γ,∆, T, U , the following holds true:
(a) For all T ,U, F such that Γ `alg T <: U ;F and Γ; ∆ ` F and T = 〈T 〉, U = 〈U〉, we

have that Γ; ∆ ` T <: U .
(b) If Γ; ∆ ` T <: U then there exist T ,U, F such that T = 〈T 〉, U = 〈U〉, and

Γ `alg T <: U ;F and Γ; ∆ ` F .

The following lemma is used in the proof of soundness and completeness of algorithmic
typing and states that for algorithmic subtyping type annotations need only occur in
either the sub- or supertype.
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LEMMA C.12 (ONE-SIDED TYPE ANNOTATIONS). For all Γ, T , U, T, UF such that
Γ `alg T <: U ;F such that T = 〈T 〉 and U = 〈U〉 it holds that:

(1) there exist U ′ such that 〈U〉 = 〈U ′〉 = U and Γ `alg T <: U
′
;F ;

(2) there exist T ′ such that 〈T 〉 = 〈T ′〉 = T and Γ `alg T
′
<: U ;F .

The following proposition is used in the proof of soundness and completeness of algo-
rithmic typing and states that extraction is unaffected by typing annotations.

PROPOSITION C.13 (ANNOTATED EXTRACTION). For all ã,∆ it holds that:

(1) for all E,D such that E ;ã [∆ | D] it must be the case that 〈E〉;ã [∆ | 〈D〉];
(2) for all E,D,D such that D = 〈D〉 and E ;ã [∆ | D] it must be the case that there

exists an annotated expression E such that E = 〈E〉 and E ;ã [∆ | D].

LEMMA C.14 (TYPING TRUTH ASSUMPTION). For all Γ,∆, T such that Γ; ∆ `
assume 1 : T it holds that Γ; ∅ ` assume 1 : T and Γ; ∆ ` unit <: T .

RESTATEMENT 5 (OF THEOREMS 10.1 AND 10.2). For all Γ,∆, T , the following
holds true:

(1) for all E,F such that Γ `alg E : T ;F and Γ; ∆ ` F , we have that Γ; ∆ ` 〈E〉 : T ;
(2) for all E such that Γ; ∆ ` E : T , there exist E,F such that 〈E〉 = E, Γ `alg E : T ;F ,

and Γ; ∆ ` F .

PROOF.

(1) The proof proceeds by induction on the length of Γ `alg E : T ;F . The base cases
are (VAL VAR ALG), (VAL UNIT ALG), (EXP TRUE ALG), (EXP RECV ALG), and
(EXP ASSERT ALG): in all of these cases E = 〈E〉 (meaning E does not contain
annotations) and they follow by an inspection of the typing rules and by Lemma C.4.
We show the induction cases in the following. Most cases follow a very similar struc-
ture so we show detailed examples for standard proof strategies and omit the details
for analogous cases.

Case (VAL FUN ALG): Γ `alg λx : T1. D : x : T1 → T2; !∀x.(forms(x : T1)( F ′) is proved
by Γ, x : ψ(T1) `alg D : T2;F ′. We also know that Γ; ∆ `!∀x.(forms(x : T1)( F ′).

To show: Γ; ∆ ` 〈λx : T.D〉 : x : T1 → T2. We first note that 〈λx : T.D〉 is equal
to λx. 〈D〉. By (REWRITE), (DERIVE), and Lemma B.5 we know that Γ; ∆ ↪→
Γ; !∀x.(forms(x : T1) ( F ′) and Γ; !∀x.(forms(x : T1) ( F ′) ` ∀x.(forms(x :
T1)( F ′) by (IDENT), (!-LEFT), and (DERIVE).
Without loss of generality, let us assume x /∈ dom(Γ) and, thus, x /∈
fnfv(!∀x.(forms(x : T1)( F ′)). (This assumption can be fulfilled by α-renaming
x if necessary.)
By Lemma B.5, we can easily see that Γ, x : ψ(T1); !∀x.(forms(x : T1)( F ′) ` �.
By Lemma C.3, Γ, x : ψ(T1); !∀x.(forms(x : T1) ( F ′) ` forms(x : T1) ( F ′. By
Lemma C.2, Γ, x : ψ(T1); !∀x.(forms(x : T1)( F ′), forms(x : T1) ` F ′.
By induction hypothesis, Γ, x : ψ(T1); !∀x.(forms(x : T1) ( F ′), forms(x : T1) `
〈D〉 : T2.
The result follows by an application of (VAL FUN).

Case (VAL PAIR ALG): Γ `alg (M,N) : x : T1 ∗ T2; !F1⊗!F2 is proved by Γ `alg M : T1;F1

and Γ `alg N : T2{M/x};F2, where M := 〈M〉. We also know that Γ; ∆ `!F1⊗!F2.
To show: Γ; ∆ ` 〈(M,N)〉 : x : T1 ∗ T2. We first note that 〈(M,N)〉 is equal to
(〈M〉, 〈N〉). By (REWRITE), (DERIVE), and Lemma B.5 we know that Γ; ∆ ↪→
Γ; !F1, !F2 and Γ; !F1 ` F1 and Γ; !F2 ` F2 by (IDENT), (!-LEFT), and (DERIVE).
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By applying the induction hypothesis twice we know that Γ; !F1 ` 〈M〉 : T1 and
Γ; !F2 ` 〈N〉 : T2{〈M〉/x}.
The result follows by an application of (VAL PAIR).

Case (VAL INL ALG): Γ `alg (inl M)_+T2 : T1 + T2; !F ′ is proved by Γ `alg M : T1;F1 and
Γ `alg T2. We also know that Γ; ∆ `!F ′.

To show: Γ; ∆ ` 〈(inlM)_+T2〉 : T1 + T2. We first note that 〈(inlM)_+T2〉 is equal
to inl 〈M〉. By (REWRITE), (DERIVE), and Lemma B.5 we know that Γ; ∆ ↪→
Γ; !F ′ and Γ; !F ′ ` F ′ by (IDENT), (!-LEFT), and (DERIVE).
By applying the induction hypothesis we know that Γ; !F ′ ` 〈M〉 : T1.
By Lemma C.4 we know that Γ; ∅ ` T2 and thus by Lemma B.7 Γ; !F ′ ` T2.
The result follows by an application of (VAL INL).

Case (VAL INR ALG): The proof is analogous to the one for (VAL INL ALG).
Case (VAL FOLD ALG): Γ `alg fold M : µα. T ′; !F ′ is proved by Γ `alg M :

T ′{µa. T ′/α};F ′. We also know that Γ; ∆ `!F ′.
To show: Γ; ∆ ` 〈foldM〉 : µα. T ′. We first note that 〈fold M〉 is equal to
fold 〈M〉. By (REWRITE), (DERIVE), and Lemma B.5 we know that Γ; ∆ ↪→ Γ; !F ′

and Γ; !F ′ ` F ′ by (IDENT), (!-LEFT), and (DERIVE).
By applying the induction hypothesis we know that Γ; !F ′ ` 〈M〉 : T ′{µa. T ′/α}.
The result follows by an application of (VAL FOLD).

Case (VAL REF ALG): Γ `alg M{x:_ | F} : {x : T ′ | F};F ′ ⊗ F{〈M〉/x} is proved by Γ `alg
M : T ′;F ′ and fnfv(F ) ⊆ dom(Γ) ∪ {x}. We also know that Γ; ∆ ` F ′ ⊗ F{〈M〉/x}.

To show: Γ; ∆ ` 〈M{x:_ | F}〉 : {x : T ′ | F}. We first note that 〈M{x:_ | F}〉 is
equal to 〈M〉. By (REWRITE), (DERIVE), and Lemma B.5 we know that Γ; ∆ ↪→
Γ;F ′, F{〈M〉/x} and Γ;F ′ ` F ′ and Γ;F{〈M〉/x} ` F{〈M〉/x} by (IDENT). By
induction hypothesis, Γ;F ′ ` 〈M〉 : T . The result follows from (VAL REFINE).

Case (EXP APPL ALG): The proof follows straightforwardly from (REWRITE), (DE-
RIVE), Lemma B.5, (IDENT) by applying the induction hypothesis twice.

Case (EXP LET ALG): Γ `alg let x = E1 in E2 : T ; ∆′ ( (F1 ⊗ (∀x.forms(x : U)( F2)) is
proved by E1 ;∅ [∆′ | E′1], Γ `alg E′1 : U ;F1, Γ, x : ψ(U) `alg E2 : T ;F2, x /∈ fv(T ). We
also know that Γ; ∆ ` ∆′( (F1 ⊗ (∀x.forms(x : U)( F2)).

To show: Γ; ∆ ` 〈let x = E1 in E2〉 : T . We first note that 〈let x = E1 in E2〉 is
equal to let x = 〈E1〉 in 〈E2〉. By Lemma C.2 and Lemma B.2, Γ; ∆,∆′ ` F1 ⊗
(∀x.forms(x : U)( F2).
By (REWRITE), (DERIVE), and Lemma B.5 it holds that Γ; ∆,∆′ ↪→
Γ;F1, (∀x.forms(x : U) ( F2) and Γ;F1 ` F1 and Γ; ∀x.forms(x : U) ( F2 `
∀x.forms(x : U)( F2 by (IDENT) and (DERIVE).
Without loss of generality, let us assume x /∈ dom(Γ) and, thus, x /∈
fnfv(∀x.forms(x : U)( F2). (This assumption can be fulfilled by α-renaming x
if necessary.)
By Lemma B.5, we can easily see that Γ, x : ψ(U);∀x.forms(x : U) ( F2 ` �.
By Lemma C.3, Γ, x : ψ(U);∀x.forms(x : U) ( F2 ` forms(x : U) ( F2. By
Lemma C.2, Γ, x : ψ(U);∀x.forms(x : U)( F2, forms(x : U) ` F2.
We note that by statement (1) of Proposition C.13 it holds that 〈E1〉 ;∅

[∆′ | 〈E′1〉].
By induction hypothesis, Γ;F1 ` 〈E′1〉 : T and Γ, x : ψ(U);∀x.forms(x : U) (
F2, forms(x : U) ` 〈E2〉 : U .
The result follows from (EXP LET).

Case (EXP SPLIT ALG): The proof follows a similar strategy as the one for (EXP LET
ALG).
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Case (EXP MATCH ALG): The proof follows a similar strategy as the one for (EXP LET
ALG).

Case (EXP EQ ALG): The proof follows straightforwardly from (REWRITE), (DERIVE),
(IDENT), Lemma B.5, the induction hypothesis, (⊗-RIGHT), and Lemma B.9.

Case (EXP ASSUME ALG): Γ `alg (assume F1)T : T ;F1 ( F2 is proved by Γ `alg
(assume 1)_<:T : T ;F2 and fnfv(F ) ⊆ dom(Γ), where F1 6= 1. We also know that
Γ; ∆ ` F1( F2.

To show: Γ; ∆ ` 〈(assume F1)T 〉 : T . We first note that 〈(assume F1)T 〉 is equal to
assume F1.
By Lemma C.2 we know that Γ; ∆, F1 ` F2.
By applying the induction hypothesis we know that Γ; ∆, F1 ` assume 1 : T .
The result follows by an application of (EXP ASSUME) .

Case (EXP RES ALG): The proof follows a similar and slightly simplified strategy as
the one for (EXP LET ALG).

Case (EXP SEND ALG): The proof follows straightforwardly from the induction hypoth-
esis using the fact that 〈a!M〉 is equal to a!〈M〉.

Case (EXP FORK ALG): The proof follows a similar strategy as the one for (EXP LET
ALG).

(2) The proof proceeds by induction on the length of Γ; ∆ ` E : T . The base cases are
(VAL VAR), (VAL UNIT), (EXP TRUE), (EXP RECV), and (EXP ASSERT): in these
cases we choose E := E and F := 1. The statement follows by an inspection of the
typing rules and by Lemma C.4.
We show the induction cases in the following. Most cases follow a very similar struc-
ture so we show detailed examples for standard proof strategies and omit the details
for analogous cases.
For all cases the proof is split into two parts: we first show that there exists an
annotated term E and a formula F such that Γ `alg E : T ;F and 〈E〉 = E. We then
prove that Γ; ∆ ` F .

Case (VAL FUN): Γ; ∆ ` λx.D : x : T1 → T2 is proved by Γ, x : ψ(T1); !∆′, forms(x : T1) `
D : T2 and Γ; ∆ ↪→ Γ; !∆′.
By induction hypothesis, there exist D,F ′ such that 〈D〉 = D, Γ, x : ψ(T1) ` D :
T2;F ′ and Γ, x : ψ(T1); !∆′, forms(x : T1) ` F ′.

To show: Γ `alg λx : T1. D : x : T1 → T2; !∀x.(forms(x : T1)( F ′). By
Lemma B.5, fnfv(T1) ⊆ dom(Γ) ∪ {x}. The result follows from (VAL FUN
ALG). We note that 〈λx : T1. D〉 = λx.D.
To show: Γ; ∆ `!∀x.(forms(x : T1)( F ′). By ((-RIGHT), Γ, x : ψ(T1); !∆′ `
forms(x : T1)( F ′.
By Lemma B.5, Γ, x : ψ(T1) ` � and x /∈ fnfv(!∆′) ⊆ dom(Γ). By Lemma C.3,
Γ; !∆′ ` ∀x.(forms(x : T1)( F ′). By (!-RIGHT), Γ; !∆′ `!∀x.(forms(x : T1)( F ′).
The result follows from Lemma B.9.

Case (VAL PAIR): Γ; ∆ ` (M,N) : x : T1 ∗ T2 is proved by Γ; !∆1 ` M : T1 Γ; !∆2 ` N :
T2{M/x} and Γ; ∆ ↪→ Γ; !∆1, !∆2.
By applying the induction hypothesis twice we know that there exist M,N,F1, F2

such that 〈M〉 = M and 〈N〉 = N and Γ ` M : T1;F1 and Γ ` N : T2{M/x};F2 and
Γ; !∆1 ` F1 and Γ; !∆2 ` F2.

To show: Γ `alg (M,N) : x : T1 ∗ T2; !F1⊗!F2. The result follows immediately
from (VAL PAIR ALG). We note that 〈(M,N)〉 = (M,N).
To show: Γ; ∆ `!F1⊗!F2. We apply (!-RIGHT) to derive that Γ; !∆1 `!F1 and
Γ; !∆2 `!F2. By (⊗-RIGHT), Γ; !∆1, !∆2 `!F1⊗!F2.
The result follows from Lemma B.9.
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Case (VAL INL): Γ; ∆ ` inlM : T1 + T2 is proved by Γ; !∆′ ` M : T1 and Γ; !∆′ ` T2 and
Γ; ∆ ↪→ Γ; !∆′.
By applying the induction hypothesis we know that there exist M,F ′ such that
〈M〉 = M and Γ `M : T1;F ′ and Γ; !∆′ ` F ′.

To show: Γ `alg (inlM)_+T2
: T1 + T2; !F ′. We know that Γ; ∅ `alg T2 by

Lemma B.5 and thus Γ `alg T2 by Lemma C.4. The result follows immediately
from (VAL INL ALG). We note that 〈(inlM)_+T2〉 = inlM .
To show: Γ; ∆ `!F ′. By (!-RIGHT) we know that Γ; !∆′ `!F ′. The result follows
from Lemma B.9.

Case (VAL INR): The proof is analogous to the case of (VAL INL).
Case (VAL FOLD): Γ; ∆ ` foldM : µα. T ′ is proved by Γ; !∆′ ` M : T ′{µα. T ′/α} and

Γ; ∆ ↪→ Γ; !∆′.
By applying the induction hypothesis we know that there exist M,F ′ such that
〈M〉 = M and Γ `M : T ′{µα. T ′/α};F ′ and Γ; !∆′ ` F ′.

To show: Γ `alg foldM : µα. T ′; !F ′. We know that Γ; ∅ `alg T2 by Lemma B.5 and
thus Γ `alg T2 by Lemma C.4. The result follows immediately from (VAL INL
ALG). We note that 〈inlM〉 = inlM .
To show: Γ; ∆ `!F ′. By (!-RIGHT) we know that Γ; !∆′ `!F ′. The result follows
from Lemma B.9.

Case (VAL REFINE): Γ; ∆ ` M : {x : T ′ | F ′} is proved by Γ; ∆1 ` M : T ′, Γ; ∆2 `
F ′{M/x}, and Γ; ∆ ↪→ Γ; ∆1,∆2.
By induction hypothesis, there exist M,F ′′ such that 〈M〉 = M , Γ `alg M : T ′, and
Γ; ∆1 ` F ′′.

To show: Γ `alg M{x:_ | F ′} : {x : T | F ′};F ′′ ⊗ F ′{M/x}. By Lemma B.5,
fnfv(F ′) ⊆ dom(Γ) ∪ {x}. The result follows from (VAL REF ALG). We
note that 〈M{x:_ | F ′}〉 = M .
To show: Γ; ∆ ` F ′′ ⊗ F ′{M/x}. The result follows from (⊗-RIGHT) and
Lemma B.9.

Case (EXP SUBSUM): Γ; ∆ ` E : T is proved by Γ; ∆1 ` E : T ′ and Γ; ∆2 ` T ′ <: T and
Γ; ∆ ↪→ Γ; ∆1,∆2.
By applying the induction hypothesis we know that there exist E,F ′ such that
〈E〉 = E and Γ ` E : T ′;F ′ and Γ; ∆1 ` F ′.
Furthermore, by Lemma C.11 we know that there exist T ′, T , F ′′ such that that
T ′ = 〈T ′〉, T = 〈T 〉, and Γ `alg T ′ <: T ;F ′′ and Γ; ∆2 ` F ′′. By Lemma C.12 it
follows that there exists T ∗ such that that T = 〈T ∗〉 and Γ `alg T ′ <: T

∗
;F ′′

To show: Γ `alg E_<:T
∗ : T ;F1 ⊗ F2. The result follows immediately from (EXP

SUBSUM ALG). We note that 〈E〉 = E as stated above.
To show: Γ; ∆ `!F ′. By (!-RIGHT) we know that Γ; !∆′ `!F ′. The result follows
from Lemma B.9.

Case (EXP APPL): The proof follows straightforwardly from the induction hypothesis
using (⊗-RIGHT) and Lemma B.9.

Case (EXP LET): Γ; ∆ ` let x = E1 in E2 : T is proved by E1 ;∅ [∆′ | E′1], Γ; ∆1 ` E′1 : U ,
Γ, x : ψ(U); ∆2, forms(x : U) ` E2 : T , x /∈ fv(T ), and Γ; ∆,∆′ ↪→ Γ; ∆1,∆2.
By induction hypothesis, there exists E′1, F1 such that 〈E′1〉 = E′1, Γ `alg E′1 : U ;F1,
and Γ; ∆1 ` F1. By induction hypothesis, there exists E2, F2 such that 〈E2〉 = E2,
Γ, x : ψ(U) ` E2 : T ;F2, and Γ, x : ψ(U); ∆2, forms(x : U) ` F2.
We note that by statement (2) of Proposition C.13 it holds that there exists E1 such
that E1 ;∅ [∆′ | E′1].
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To show: Γ `alg let x = E1 in E2 : T ; ∆′( (F1 ⊗ ∀x.(forms(x : U)( F2)). By
Lemma B.5, fnfv(∆1) ⊆ dom(Γ). The result follows from (EXP LET ALG). We
note that 〈let x = E1 in E2〉 is equal to let x = E1 in E2.
To show: Γ; ∆ ` ∆′( (F1 ⊗ ∀x.(forms(x : U)( F2)). By ((-RIGHT), Γ, x :
ψ(U); ∆2 ` forms(x : U) ( F2. By Lemma B.5, x /∈ fnfv(∆2) ⊆ dom(Γ).
By Lemma C.3, Γ, x : ψ(U); ∆2 ` ∀x.(forms(x : U) ( F2). By (⊗-RIGHT),
Γ; ∆1,∆2 ` F1 ⊗ ∀x.(forms(x : U) ( F2). By Lemma B.9, Γ; ∆,∆′ ` F1 ⊗
∀x.(forms(x : U)( F2). By ((-RIGHT), Γ; ∆ ` ∆′ ( (F1 ⊗ ∀x.(forms(x : U)(
F2)).

Case (EXP SPLIT): The proof follows a similar strategy as the one for (EXP LET).
Case (EXP MATCH): The proof follows a similar strategy as the one for (EXP LET).
Case (EXP EQ): The proof follows straightforwardly from applying the induction hy-

pothesis twice and using (⊗-RIGHT) and Lemma B.9.
Case (EXP ASSUME): Γ; ∆ ` assume F ′ : T is proved by Γ; ∆, F ′ ` assume 1 : T , where

F ′ 6= 1.
We first note that by Lemma C.14 it holds that Γ; ∅ ` assume 1 : unit and Γ; ∆, F ′ `
unit <: T .
By combining Lemma C.11 and Lemma C.12 we know that there exist T , F ′′ such
that that T = 〈T 〉, and Γ `alg unit <: T ;F ′′ and Γ; ∆, F ′ ` F ′′. By inspection of
the algorithmic subtyping rules it follows that T must not contain any annotations
(T = T ) and thus Γ `alg unit <: T ;F ′′.
By applying the induction hypothesis (see proof of base case (EXP TRUE)) to Γ; ∅ `
assume 1 : unit it follows that Γ `alg assume 1 : unit;1 and Γ; ∅ ` 1.

To show: Γ `alg (assume F ′)T : T ;F ′( (1⊗ F ′′). We first apply (EXP SUBSUM
ALG) to derive that Γ `alg (assume 1)_<:T : T ;1⊗ F ′′.
We know that Γ; ∅ `alg T2 by Lemma B.5 and thus Γ `alg T2 by Lemma C.4.
The result follows from (EXP ASSUME ALG). We note that 〈(assume F ′)T 〉 =
assume F ′.
To show: Γ; ∆ ` F ′( (1⊗ F ′′). As stated above we know that Γ; ∅ ` 1 and
Γ; ∆, F ′ ` F ′′. By (⊗-RIGHT) it holds that Γ; ∆, F ′ ` 1⊗ F ′′

Case (EXP RES): The proof follows a similar strategy as the one for (EXP LET).
Case (EXP SEND): The proof follows straightforwardly from the induction hypothesis.
Case (EXP FORK): The proof follows a similar strategy as the one for (EXP LET).
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