
Affine Refinement Types for
Authentication and Authorization

M. Bugliesi1, S. Calzavara1, F. Eigner2, and M. Maffei2

1 Università Ca’ Foscari Venezia
{bugliesi,calzavara}@dais.unive.it

2 Saarland University
{eigner,maffei}@cs.uni-saarland.de

Abstract. Refinement type systems have proved very effective for se-
curity policy verification in distributed authorization systems. In earlier
work [12], we have proposed an extension of existing refinement typing
techniques to exploit sub-structural logics and affine typing in the analy-
sis of resource aware authorization, with policies predicating over access
counts, usage bounds and resource consumption. In the present paper,
we show that the invariants that we enforced by means of ad-hoc typing
mechanisms in our initial proposal can be internalized, and expressed
directly as proof obligations for the underlying affine logical system. The
new characterization leads to a more general, modular design of the sys-
tem, and is effective in the analysis of interesting classes of authentication
protocols and authorization systems.

1 Introduction

Authorization policies constitute an effective device for security specification in
distributed protocols and systems [3, 5]. In language-based security, such poli-
cies are specified by means of code annotations marking authorization-sensitive
program points with logical formulas that serve as assumptions and assertions:
the former express the credentials available at the clients, and track the clients’
authorization requests; the latter are employed as resource guards at the server,
and express the conditions required to accept the authorization requests. The
annotations have no semantic import, and only serve the verification process: to
show a system safe, i.e., to prove that it complies with a given policy, one must
prove that all the active (unguarded) assertions at a given execution step are
entailed by the active assumptions at that step, for every possible system run.
Proving a system robustly safe amounts to prove that the same property holds
in the presence of other, possibly malicious agents [6].

Safety (and robust safety) proofs for annotated specifications such as those
of our present interests can be carried out statically, and effectively, with re-
finement typing systems [15, 4, 6, 7]. Refinement types [16] are dependent types
of the form {x : T |F (x)}: a value M of this type is a value of type T such
that the formula F{M/x} holds. In type-based authorization systems, the re-
finement formulas are employed to capture the dynamic exchange of credentials

required for authorization: this is accomplished by encoding such credentials as
formulas that refine the payload types of the cryptographic keys involved in the
authorization protocols.

Depending on the authorization properties expected, different logical frame-
works may be appealed to for specification and verification. Our focus in the
present paper is on resource conscious policies such as those governing large
classes of modern authorization frameworks, based on consumable credentials,
access counts and/or usage bounds. For such policies, and for the strong authen-
tication protocols supporting them, one may resort to sub-structural (e.g., linear
or affine) logics [17, 25] for specification. Correspondingly, typing systems with
linear (or affine) refinements may be employed to achieve static accounts of the
desired safety proofs.

In our earlier work in [12], we made a first step towards the design of a
sound system for resource-sensitive authorization, drawing on techniques from
typing systems for authentication and an affine extension of existing refinement
typing systems. Here we make a step further, and show that the invariants that
were enforced by means of ad-hoc mechanisms in our original proposal can be
internalized into the underlying affine logical system, and expressed directly
as proof obligations for the logic. Besides shedding new light on the logical
foundations of the cryptographic patterns for authentication and distributed
authorization, the new characterization is interesting, and promising, as it leads
to a more modular and more powerful typing system.

Plan of the paper Section 2 reviews the background material. Section 3 gives an
overview of our approach. Section 4 provides a detailed description of the type
system and its main properties. Section 5 demonstrates the effectiveness of the
type system with two small, yet significant, examples. Section 6 concludes.

2 Background

We give a brief review of the relevant components of our approach: affine logics
for policy specification, applied pi-calculus for protocol description, and refine-
ment typing systems for analysis and verification.

Affine logic. We focus on the following fragment of intuitionistic affine logic [25]:

F ::= A | F ⊗ F | F (F | ∀x.F | !F

This is the multiplicative fragment of affine logic, extended with the exponential
modality to express persistent truths. We presuppose an underlying signature of
predicate symbols which includes the binary equality predicate, and a countably
infinite set of terms. Atomic formulas, noted A in the above productions, are
built around predicates applied to terms, as in p(M1, . . . ,Mn); term equality
uses infix notation, as in M = N . We assume familiarity with the resource
interpretation of linear logic, by which each formula denotes a resource which is
consumed once used in a derivation. In sequent calculus presentations of linear

logic, that is achieved by dispensing with the structural rules of weakening and
contraction, and by a careful manipulation of the environment, as exemplified
in two representative rules, below:

Γ1 ` F Γ2 ` G
Γ1, Γ2 ` F ⊗G

(⊗-Right)
Γ1 ` F Γ2, G ` H
Γ1, F (G,Γ2 ` H

((-Left)

Affine logic is a variant of linear logic which admits the weakening rule, whereby
Γ, F ` G is derivable when so is Γ ` G. As a result, proofs in affine logics must
use each formula at most once (as to opposed to exactly once as in linear logic).

Applied pi-calculus. We specify protocols in a dialect of the applied pi-calculus [2],
in which destructors are only used in let-expressions and may not occur in ar-
bitrary terms [8]. We presuppose an underlying set of constructors and two
countable sets of names (a, b, c, k,m, n) and variables (w, x, y, z), and let u range
over names or variables uniformly. The syntax of terms M,N is as follows:

M,N ::= a | x | ek(M) | vk(M) | inl(M) | inr(M) | (M ,N)

| enc(M,N) | sign(M,N) | senc(M,N).

Unary constructors include ek and vk to form encryption/verification keys from
the corresponding decryption/signing keys, and inl and inr to construct tagged
unions (see Section 4). Binary constructors comprise pairs and senc, enc and
sign for symmetric, asymmetric encryption and digital signature, respectively.
Destructors, ranged over by g, are partial functions to decompose terms. They
include the unary casel and caser to deconstruct tagged unions, sdec, dec and
ver for symmetric, asymmetric decryption and signature verification, respec-
tively. For technical reasons, pairs are not decomposed by destructors, but with
pattern matching within a specific process form (discussed below). Destructor

evaluation may succeed and return a term, noted g(M̃) ⇓ N , or fail. The seman-
tics of destructors is as expected, e.g., we have dec(enc(M, ek(K)),K) ⇓M and
ver(sign(N,K ′), vk(K ′)) ⇓ N .

The syntax of processes P,Q is defined as follows, in terms of two syntactic
categories of actions A, and proper processes P,Q (the distinction is technically
convenient in the definition of the typing rules):

A ::= 0 | in(M,x).P | ∗in(M,x).P | out(M,N).P | A|A
| if (M = N) then P else Q | let (x, y) = M in P else Q

| let x = g(M̃) in P else Q | �F.

P,Q ::= A | P |Q | new a : T.P | �F.

The scope of names and variables is delimited by restrictions, inputs and let
expressions. The notions of free names and variables, denoted by fn and fv
respectively, arise as expected. A process P is closed when fv(P) = ∅. Processes
evolve according to the reduction relation P → Q (→∗ denotes the reflexive

and transitive closure of →). The definition of reduction is standard: 0 is the
stuck process; new a : T.P creates a fresh name a and behaves as P ; in(M,x).P
waits for a message N on channel M and then behaves as P{N/x}; ∗in(M,x).P
acts as an unbounded replication of in(M,x).P ; out(M,N).P outputs N on M ,
synchronously, and then behaves as P ; P |Q is the parallel composition of P and
Q; if (M = N) then P else Q reduces to P if M is syntactically equal to N , to
Q otherwise; let (x, y) = M in P else Q behaves as P{M1/x}{M2/y} when M

is (M1,M2), as Q otherwise; finally, let x = g(M̃) in P else Q acts as P{N/x}
if g(M̃) ⇓ N , as Q otherwise. Assumptions (�F) and assertions (�F) are inert
process forms, built around the formulas of our affine logic, that express policy
annotations.

Definition 1 (Safety). A closed process P is safe iff whenever P →∗ new ã :

T̃ .(�G1 | . . . | �Gn | Q) one has Q ≡ �F1 | . . . | �Fm | A, with A containing
no top-level assertions, and F1, . . . , Fm ` G1 ⊗ . . .⊗Gn.

Unlike most of the existing definitions of safety [15, 4, 6, 7], we take the tensor
product of all the active assertions. That is required to remain faithful to the
chosen logical framework, and enforce an affine use of each active assumption in
our safety proofs. The definition extends readily to account for the presence of
opponents. We define an opponent as a closed, Un-typed (cf. Section 4) process
that does not contain any assertion.

Definition 2 (Robust Safety). A closed process P is robustly safe iff P | O
is safe for every opponent O.

The restriction to Un-typed processes is standard and does not involve any
loss of generality; we ban assertions from opponent code, because otherwise an
opponent could trivially break the safety property we target.

Refinement typing systems for distributed authorization. We review the main
ideas and intuitions with a simple example, inspired by [15], of an on-line book-
store system governed by the following authorization policy:

A , !∀u, b. (Order(u, b)(Clear(u, b))

The policy is stated as a persistent (reusable) formula: it establishes that an
e-book order can be cleared for a user if that user has indeed ordered the e-
book (note, in particular, the use of multiplicative implication to express the
desired injective correspondence between order and clearance). The components
are described by the annotated code below3

user :: �Order(user, book) | out(net, (user, sign((user, book), kuser)))

bookstore :: ∗in(net, (xu, y)).
let (xvk, xek) = keys(xu) in let (xu, xb) = ver(y, xvk) in
�Clear(xu, xb) | out(net, enc(url(xb), xek))

3 We assume that the bookstore keeps track of the public (encryption and verification)
keys of each registered user, so that keys(user) = (vk(kuser), ek(kuser)). Also, for
readability, we abuse the notation and use pattern-matching on input.

Consider now the system �A | user | bookstore. In a system run, user authen-
ticates her order of book to the bookstore by signing the request, and corre-
spondingly assumes the formula Order(user,book) to declare her intention. The
bookstore, in turn, receives the data from its input channel, verifies the signa-
ture and asserts the formula Clear(user,book) as a guard to clear the order.
The system is safe, as the guard is entailed by the policy A and the assump-
tion Order(user,book), which is available when the assertion Clear(user,book) is
unleashed at top-level.

In a refinement type system, a safety proof can be derived by relying on the
types of cryptographic keys. Key types have the general form Key({x : T | C(x)})
representing keys with payload of (structural) type T for which the formula
(credential) C may be assumed to hold. Given k : Key({x : T |C(x)}), packaging
a valuem with k, as in enc(m, k), typechecks provided that the formula C(m) can
be proved at the source site, using the assumptions available in the typing context
associated with that site. Dually, extracting the payload from a encrypted packet,
as in dec(y, k), justifies the assumption of the formula C(y) conveyed by the key
type, hence the use of C(y) in a proof of the credentials acting as access guards.
In our example, we may use the type Key(xu : Tu, {xb : Tb | Order(xu, xb)})
for kuser to convey the credential Order(xu, xb) from the user process to the
bookstore site, and derive a static safety proof based on that.

3 Authorization, authentication and affine refinements

Continuing with our example, consider extending the system with the new com-
ponent:

dup :: ∗ in(net, x).(out(net, x) | out(net, x))

to form the composition �A |user | bookstore | dup. Unlike the original system,
the extended one is unsafe (hence the original is not robustly safe), as the pres-
ence of the dup process causes bookstore to clear each order twice. Clearly, the
problem arises from the absence of an authentication mechanism providing ade-
quate guarantees of timeliness for the orders. The effect is captured by our defini-
tion of safety. To see that, first observe that a reduction sequence exists that un-
leashes two assertions Clear(user,book) for a single assumption Order(user,book).
Then, note that Order(user, book),A 6` Clear(user,book)⊗Clear(user,book), as
the assumption Order(user,book) is consumed in the proof of either of the two
clearing assertions at the bookstore, thereby causing the derivation of the second
assertion to fail.

Strong authentication is a long studied problem in static protocol analysis
and verification. First formalized as injective agreement in [23], it has subse-
quently been approached with a variety of typing techniques, targeted at the
analysis of various low-level mechanisms (timestamps, nonce handshakes, and
session keys) [18, 19, 9, 10, 20, 11]. Though such mechanisms are fundamental
building blocks for distributed authorization frameworks, little (if any) of the
work on strong authentication has resurfaced in existing typing systems for au-
thorization [14, 15, 4, 6, 7]. Our proposal in the present paper aims at reconciling

these two streams of research, by building a unifying foundation for authentica-
tion and authorization, based on an affine refinement type system.

Just like traditional refinement typing systems, we employ key types to
capture the transfer of authorization credentials within a protocol. However,
since our refinements are affine formulas, we must control the use of keys so
as to protect against any unintended duplication of the refinements, upon de-
cryption. Specifically, when transferring a message m : T packaged with, say,
k : Key({x : T | C(x)}) we must ensure that each extraction of C(x) by the
receiver correspond to a derivation of C(m) at the source site. To accomplish
that, our type system protects the refinement C(x) with a guard, as in:

k : Key(w : U, {x : T | G(w)(C(x)})

where G(w) is a receiver-controlled formula that must be proved to derive the
credential C(x). In a nonce-handshake protocol, w represents the challenger-
generated nonce, call it n, and G(n) is the corresponding guard assumed by the
challenger. A responder willing to prove the possession of a credential C(m) for
the payload m will be able to do so, as follows. Upon receiving the nonce, the
responder transmits the pair (n,m) under the key k: that’s possible when the
responder has (or may derive) C(m), because C(m) ` G(n) (C(m) in affine
logic. At the challenger end, extracting the payload (w, x) and checking that
w = n makes it possible to derive C(x), as G(n), w = n,G(w)(C(x) ` C(x).
If we can ensure that G(n) can be proved at most once, we also ensure that C(x)
is derived at most once, as desired.

Though the details vary for the different low-level mechanisms, the core in-
tuitions we just outlined apply uniformly: data exchanged over the network is
inherently exposed to replays, hence their credentials must be protected so that
copying the data does not duplicate the credentials. In the type system, that
is accomplished by embedding the credentials into multiplicative implications
guarded by system-controlled formulas, which are built around reserved predi-
cate symbols, and are guaranteed to be assumed in at most one position in the
protocol code. As a result, key refinements become safely copyable, as the system-
controlled guards guarantee that the credentials they embed are unleashed at
most once, irrespective of any duplication the refinement may undergo.

In the next section, we provide full details of these mechanisms.

4 The type system

The syntax of types T,U, V is defined by the following grammar.

T,U, V ::= Un | Private | Ch(T) | {x : T | F} | (x : T,U) | T + U

| ηKey(x)(T) η ∈ {Enc,Dec,Sig ,Ver ,Sym}
| ηPkt(x)(T) η ∈ {Enc,Sig ,Sym}.

The variable x is bound in {x : T | F} with scope F , in (x : T,U) with scope
U , and in ηKey(x)(T) and ηPkt (x)(T) with scope T . Un is the type of data

(Type-Base)

fnfv(T) ⊆ dom(Γ)
Γ ` � T 6= ηKey(x)(U)

Γ ` T

(Type-Key)

fnfv(T) \ {x} ⊆ dom(Γ)
Γ ` � T copyable

Γ ` ηKey(x)(T)

(Env-Empty)

ε ` �

(Env-Form)

Γ ` � fnfv(F) ⊆ dom(Γ)

Γ, F ` �

(Env-Bind)

u /∈ dom(Γ) Γ ` T
T a copyable, non-refinement type

Γ, u : T ` �

Table 1. Well-formed types and environments

coming from / flowing to the opponent (standard since [1]). Private is the type
of untainted, secret data; Ch(T) the type of channels with T payload; {x : T | F}
the type of M : T such that F{M/x} holds. A pair (M,N) has type (x : T,U) if
M has type T and N has type U{M/x}. A term of type T +U is either inl(M)
where M has type T , or inr(M) where M has type U . Finally, we devise two
new types for cryptographic material – ηKey(x)(T) and ηPkt (x)(T) – for keys

with T payload and ciphertexts with T payload, respectively4. In both cases the
binder x acts as a placeholder for the encryption key or the verification key: this
technical device, first proposed in [13], is very effective and convenient to achieve
a uniform treatment for nonce handshakes and session keys in our type system.

Typing environments and well-formed types. Typing environments, noted Γ ,
collect bindings for names and variables, as usual, and formulas occurring in
assumptions. The domain of Γ , noted dom(Γ), is the set of the values bound
to a type in Γ . forms(Γ) denotes the multiset of the formulas occurring in Γ .
bindings(Γ) is the environment obtained by erasing all the formulas from Γ . ε
is the empty environment. Well-formed types and environments are defined in
terms of the notions of copyable formulas and types, given below.

Definition 3 (Copyable Formulas and Types). A formula F is copyable
if it has either of the two forms p(M1, . . . ,Mn) (F ′ with p reserved, or !F ′.
Copyable types, then, are defined inductively as follows:

– Un,Private,Ch(T), ηKey(x)(T) and ηPkt (x)(T) are copyable;
– {x : T | F}, (x : T,U) and T + U are copyable if so are T , U and F .

The rules for types and environments are in Table 1. Notice that, by (Type-
Key), well-formed key types can only convey copyable payloads: hence, formulas
may occur as refinements of key types only if they are guarded by system-reserved
predicates, or they are prefixed by a bang modality: in the former case, the

4 When x does not occur in T we often omit the binder and write simply ηKey(T),
and ηPkt(T), to ease the notation.

guard protects them against uncontrolled replication, in the latter, replication
is harmless as the formula may be duplicated in the logic as well. A similar
mechanism is enforced in the type system for injective agreement in [21].

Type environments only include bindings for non-refinement typed names
and variables: that does not involve any loss of expressive power, as we may
simply define the environment Γ, u : {x : T |F} as Γ, u : T, F{u/x}. Also, type
bindings must introduce copyable types, to protect against the unintended dupli-
cation of affine refinements (occurring in dependent pair or disjoint union types)
upon the environment splitting distinctive of sub-structural type systems. We say
that Γ splits as Γ1 and Γ2 (Γ = Γ1 • Γ2) when bindings(Γ) = bindings(Γ1) =
bindings(Γ2) and forms(Γ) = forms(Γ1), forms(Γ2). More in general, we write
Γ = Γ1 • . . . • Γn when Γ = Γ ′ • Γn and Γ ′ = Γ1 • . . . • Γn−1. Finally, we write
Γ ` F whenever forms(Γ) ` F , provided that Γ ` � and fnfv(F) ⊆ dom(Γ).

(Term-Env)

Γ ` � u : T ∈ Γ
Γ ` u : T

(Term-EncKey)

Γ `M : DecKey(x)(T)

Γ ` ek(M) : EncKey(x)(T)

(Term-VerKey)

Γ `M : SigKey(x)(T)

Γ ` vk(M) : VerKey(x)(T)

(Term-Pair)

Γ1 `M : T Γ2 ` N : U{M/x}
Γ1 • Γ2 ` (M,N) : (x : T,U)

(Term-Refine)

Γ1 `M : T Γ2 ` F{M/x}
Γ1 • Γ2 `M : {x : T | F}

(Term-AEnc)

Γ1 `M : T{N/x} Γ2 ` N : EncKey(x)(T)

Γ1 • Γ2 ` enc(M,N) : EncPkt(x)(T)

(Term-Left)

Γ `M : T Γ ` U
Γ ` inl(M) : T + U

(Term-Sign)

Γ1 `M : T{vk(N)/x} Γ2 ` N : SigKey(x)(T)

Γ1 • Γ2 ` sign(M,N) : SigPkt(x)(T)

(Term-Right)

Γ `M : U Γ ` T
Γ ` inr(M) : T + U

(Term-SEnc)

Γ1 `M : T{N/x} Γ2 ` N : SymKey(x)(T)

Γ1 • Γ2 ` senc(M,N) : SymPkt(x)(T)

Table 2. Typing rules for terms

Typing rules for terms. Table 2 details the typing rules for terms. We omit the
rules that define the subtype relation as well as the kinding rules for tainted
and public types: all details can be found in [12]. The novel rules for cryp-
tographic packets (Term-AEnc), (Term-Sign) and (Term-SEnc) exploit a
form of dependent typing to track the shared information between encryption
and decryption keys (respectively, signing and verification keys) [13].

(Proc-Out)

Γ1 `M : Ch(T) Γ2 ` N : T Γ3 ` P
Γ1 • Γ2 • Γ3 ` out(M,N).P

(Proc-In)

Γ1 `M : Ch(T) Γ2, x : T ` P
Γ1 • Γ2 ` in(M,x).P

(Proc-Repl)

Γ1 `M : Ch(T) Γ2, x : T ` P Γ2 copyable

Γ1 • Γ2 ` ∗in(M,x).P

(Proc-Stop)

Γ ` �
Γ ` 0

(Proc-Cond)

Γ1 `M : T Γ2 ` N : T
Γ3, !(M = N) ` P Γ3 ` Q

Γ1 • Γ2 • Γ3 ` if (M = N) then P else Q

(Proc-Split)

Γ1 `M : (x : T,U)
Γ2, x : T, y : U ` P Γ2 ` Q

Γ1 • Γ2 ` let (x, y) = M in P else Q

(Proc-Case-Left)

Γ1 `M : T + U Γ2, x : T ` P Γ2 ` Q
Γ1 • Γ2 ` let x = casel(M) in P else Q

(Proc-Case-Right)

Γ1 `M : T + U Γ2, x : U ` P Γ2 ` Q
Γ1 • Γ2 ` let x = caser(M) in P else Q

(Proc-ADec)

Γ1 `M : EncPkt(y)(T)
Γ2 ` N : DecKey(y)(T) Γ3, x : T{ek(N)/y} ` P Γ3 ` Q

Γ1 • Γ2 • Γ3 ` let x = dec(M,N) in P else Q

(Proc-Ver)

Γ1 `M : SigPkt(y)(T) Γ2 ` N : VerKey(y)(T) Γ3, x : T{N/y} ` P Γ3 ` Q
Γ1 • Γ2 • Γ3 ` let x = ver(M,N) in P else Q

(Proc-SDec)

Γ1 `M : SymPkt(y)(T)

Γ2 ` N : SymKey(y)(T) Γ3, x : T{N/y} ` P Γ3 ` Q
Γ1 • Γ2 • Γ3 ` let x = sdec(M,N) in P else Q

(Proc-Assert)

Γ ` F
Γ ` �F

(Proc-Par)

Γ1 ` A1 Γ2 ` A2

Γ1 • Γ2 ` A1 | A2

(Proc-Extr)

P [Γ ′ ‖ A] Γ, Γ ′ ` A fnfv(P) ⊆ dom(Γ)

Γ ` P

(Weak)

Γ1, Γ2 ` P Γ1, F, Γ2 ` �
Γ1, F, Γ2 ` P

(Contr)

Γ1, !F, !F, Γ2 ` P
Γ1, !F, Γ2 ` P

(⊗-Left)
Γ1, F,G, Γ2 ` P
Γ1, F ⊗G,Γ2 ` P

((-Left)

Γ ′
1 ` F Γ ′

2, G ` P Γ1, Γ2 = Γ ′
1 • Γ ′

2

Γ1, F (G,Γ2 ` P

(∀-Left)
Γ1, F (M), Γ2 ` P
Γ1, ∀x.F (x), Γ2 ` P

(!-Left)

Γ1, F, Γ2 ` P
Γ1, !F, Γ2 ` P

Table 3. Typing rules for actions and processes

(Extr-New)

P [Γ ‖ A]
T ∈ {Un,Private,Ch(U),SigKey(x)(U),DecKey(x)(U),SymKey(x)(U)}

new a : T.P [a : T, Γ ‖ A]

(Extr-Assume)

�F [F ‖ 0]

(Extr-Empty)

A [ε ‖ A]

(Extr-Par)

P [ΓP ‖ AP] Q [ΓQ ‖ AQ]

P | Q [ΓP , ΓQ ‖ AP | AQ]

Table 4. The extraction relation P [Γ ‖ A]

Typing rules for processes. Table 3 presents the typing rules for actions and
processes: we only discuss the most interesting points. The side-condition to
(Proc-Repl-In), requiring that the continuation typechecks in a copyable en-
vironment, is needed for subject reduction as replicated processes may spawn
an unbounded number of copies of their continuation [22]. (Proc-Cond) keeps
track of the equality between two terms in the successful branch of a condi-
tional check: since this information can be used an arbitrary number of times, it
is made exponential. The rules for cryptography (Proc-ADec), (Proc-Ver)
and (Proc-SDec) mirror the idea of the corresponding rules for cryptographic
packets in Table 2. (Proc-Extr) is the only rule for proper processes, which are
typechecked by first extracting the top-level restrictions and assumptions into a
typing environment, and then using that environment to typecheck the residual
action process. Extracting the assumptions is needed to protect against using
them more than once in the same type derivation; extracting the restrictions
keeps all names in scope (cf. Table 4).

The type system is completed by a set of structural rules to enable weakening
and contraction, as well as the manipulation of the logical connectives in typing
derivations. Since proofs in sub-structural logics require careful management of
the environment, like in [24] these rules are needed to improve the expressiveness
of our framework.

Theorem 1 (Robust Safety). Let P be a closed process such that fn(P) =
{a1, . . . , an} and let a1 : Un, . . . , an : Un ` P , then P is robustly safe.

5 Case study: cryptographic sessions

We show the type system at work on two small, but realistic case studies that
demonstrate the flexibility and effectiveness of our framework.

We start introducing additional notation for the system-controlled guards.
First, we presuppose two system predicates key(·) and nonce(·), to serve as
guards in the refinements associated with session keys, and (long-term) keys
in nonce-based protocols, respectively. As discussed earlier, nonce(·) guards are
used with keys such as k : ηKey (w : U, {x : T | nonce(w)(C(x)}) to exchange

a nonce n : U , packaged with a payload M : T such that C(M). The underlying
verification pattern presupposes that (at most one occurrence of) the formula
nonce(n) be available at the receiver to obtain a proof that the sender possesses
the credential C(M). The pattern for session keys has the same rationale. In that
case, it is built around keys such as k : SymKey(y)({x : T | key(y) (C(x)})
intended for the exchange of payloadsM : T such that C(M), with key(k) acting
as the controlling guard, predicating on the key k itself through the binder y.

Both patterns can be generalized to enable multiple checks of the same nonce
and multiple uses of the same key within a session. That is achieved with key
types of the form ηKey(y)(

∑`
i=1(w : U, {x : Ti | nonce(w,Mi) (Ci(x)}) and

similarly SymKey(y)(
∑`

i=1{x : Ti | key(y,Mi) (Ci(x)}), used in conjunction
with assumptions of the form nonce(n,Mi) and key(k,Mi), respectively. The
Mi’s are closed, pairwise distinct terms that serve as tags to mark the ` different
program points where the same nonce may be checked (the same key used)5.
The following notation helps structure our specification patterns:

def k = SessionKey[
∑`

i=1(Mi, Ti, Ci(x))] in P ,

new(k : SymKey(y)(
∑`

i=1{x : Ti | key(y,Mi)(Ci(x)})).
(�key(k,M1) | · · · | �key(k,M`) | P)

def n = nonce[U,
∑`

i=1Mi] in P , new(n : U).
(�nonce(n,M1) | . . . | �nonce(n,M`) | P)

Bounded sessions. Our first example is a protocol that implements a bounded
session, built around a finite, and fixed, flow of messages. It involves two agents
that perform a nonce-handshake to exchange a symmetric key k and then use the
key in a session that exchanges two messages, as shown in the diagram below:

A B

noo
{[(n,k)]kA

}ek(kB) //

�Msg1 (a)

{msg1(a)}k //

�Msg1 (a) | �Msg2 (b)

{msg2(b)}koo

�Msg2 (b)

There is no global policy defined here, and the assumptions and assertions of the
specification are only meant to track the session steps, ensuring the timeliness
of the messages exchanged. The interesting part of the encoding in our applied
pi-calculus is in the choice of key types. We start with the type Tk of the shared
session key k. Assuming a and b may be given type Un, we define:

Tk = SymKey(y)(
∑2

i=1{x : Un | key(y, i)(Msgi(x)})
5 When ` ≤ 1, and we need no tag, we simply omit them from the notation.

Tk presupposes two uses of k, to extract the two different types of messages
conveying the affine formulas Msg1(a) and Msg2(b). In the applied pi-calculus
specification below, this type is introduced together with the two assumptions
for the guard predicates key(k, 1) and key(k, 2) (we use natural numbers as the
closed terms serving as tags). Based on Tk we may then construct the type TkA

of A’s signing key: TkA
= SigKey(y : Un, {x : Tk | nonce(y) (key(x, 1)}).

Notice that the credential protected by the nonce is the system guard key(k, 1)
that will allow B to use the shared k and extract the credential Msg1 (a) marking
the completion of the first exchange. The other guard, key(k, 2) remains with
A itself, to enable A’s own use of the key at the completion of the protocol.

We are ready to define the protocol code: to ease the notation, we coalesce
subsequent destructor applications in a single let statement:

A , in(net, xn).
def k = SessionKey[(1,Un,Msg1 (x)) + (2,Un,Msg2 (x))] in
out(net , enc(sign((xn, k), kA), ek(kB))).
�Msg1 (a)
| out(net , senc(inl(a), k)).
in(net , x).let y = caser(sdec(x, k)) in �Msg2 (y)

B , def n = nonce[Un] in out(net , n).
in(net , x).
let (yn, yk) = ver(dec(x, kB), vk(kA)) in
if (yn = n) then
in(net , z).
let w = casel(sdec(z, yk)) in �Msg1 (w)
| �Msg2 (b) | out(net , senc(inr(b), yk))

Typechecking the code goes as follows: we only comment on the most important
steps, looking at the code of A and B separately.

At A’s side, introducing the shared key k extends the typing environment
with the assumptions key(k, 1) and key(k, 2). Then, to sign k with kA, one
derives (xn, k) : (y:Un, {x:Tk | nonce(y) (key(x, 1)}) by (Term-Pair),
(Term-Refine), and a proof of key(k, 1),key(k, 2) ` nonce(xn)(key(k, 1).
Similarly, to send the first message encrypted under k, an application of (Term-
SEnc) requires one to show a : {x : Un | key(k, 1)(Msg1(x)}, which in turn
derives by (Term-Refine) based on a proof of Msg1 (a) ` key(k, 1)(Msg1(a).

At B’s side, creating the fresh nonce n extends the environment with the
guard nonce(n). When B gets a response, she decrypts it and verifies the sig-
nature to extract the pair (yn, yk) and the formula nonce(yn)(key(yk, 1) by
(Proc-Ver). Then, checking yn against n extends the typing environment with
the equality !(y2 = n), and the analysis of B proceeds breaking the implication
as follows:

· · · ,nonce(n), !(yn = n) ` nonce(yn) · · · ,key(yk, 1) ` in(net, z). · · ·
· · · ,nonce(n), !(yn = n),nonce(yn)(key(yk, 1) ` in(net, z). · · ·

((-Left)

The left premise is derived directly in the affine logical system. The right premise,
in turn, leaves the guard key(yk, 1) for B to use yk (the session key) in the

continuation. Indeed, when the packet z reaches B, it is decrypted as w using
key yk (and the sum left destructor). By applying (Proc-SDec) (and subse-
quently (Proc-Case-Left)), the environment is extended with the informa-
tion w : Un,key(yk, 1) (Msg1(w). Note that the actual parameter yk in the
code replaces the formal parameter y in type Tk upon decryption, as dictated
by (Proc-SDec). Now, consuming the guard key(yk, 1), we may derive the
assertion Msg1(w) as desired.

Unbounded sessions. Though effective, the use of session keys illustrated in the
previous example only applies to sessions in which the key is used a predefined
(and finite) number of times. The next protocol, proposed in [18], shows how to
account for unbounded sessions, exchanging an arbitrarily long stream of timely
messages.

A B
n1 //

�Auth(m1)

senc((m1,n1,n2),k)oo

�Auth(m1)

...

�Auth(mr)

senc((mr,nr,nr+1),k)oo

�Auth(mr)

...

Unlike the previous protocol, here the message flow is always in the same direc-
tion, from B to A, and the message exchanged at step i conveys a payload mi,
which is authenticated by consuming nonce ni, and a fresh nonce ni+1, which is
used to authenticate the next exchange. Again, the assumptions and assertions
of the specification only serve for verifying the timeliness of each exchange. In
this case, the timeliness proof relies on the following type for the shared key:

k : SymKey(y)(x1 : Un, (x2 : Un, {x3 : Un | nonce(x2)((Auth(x1)⊗ nonce(x3))})).

At each use of k for decryption, A consumes the guard on the current nonce to
obtain a proof of the expected authorization credential, and the nonce to repeat
the process at the subsequent iteration.

The applied pi-calculus code for the protocol is as follows.

A = new a : Ch({x : Un | nonce(x)}).
def n = nonce[Un] in
out(net , n).(out(a, n) | A∗)

A∗ = ∗in(a, x).in(net , y).
let (z1, z2, z3) = sdec(y, k) in
if (z2 = x) then
�Auth(z1) | out(a, z3)

B = new b : Ch(Un).
in(net , x).(out(b, x) | B∗)

B∗ = ∗in(b, x).new m : Un.
�Auth(m)
| def n = nonce[Un] in
out(net , senc((m,x, n), k)).
out(b, n)

Both agents include replicated sub-processes whose iterations are controlled via
synchronization over private channels. While this is a standard practice in the
pi-calculus, a remark is in order on the type chosen for channel a: this type
is needed to provide nonce capabilities to the replicated process A∗, since rule
(Proc-Repl-In) requires to typecheck this process in a copyable environment.
The guard formula nonce(n) is used to typecheck the output of n on a, so that
the associated capability can be recovered upon an input from the channel.

6 Conclusion

Authentication and authorization have been studied extensively in the literature
on protocol verification, yet mostly as independent problems. We have proposed a
unifying technique based on a novel affine refinement type system. The approach
appears promising, as it supports a modular design of the framework, and is
effective in the analysis of interesting classes of authentication protocols and
authorization systems.

We are currently investigating the applications of our technique to further au-
thentication mechanisms commonly employed in practice, e.g., timestamps and
session identifiers, and to further protocols where the same nonce is checked by
different principals. From our initial results, our approach appears to generalize
smoothly to all such cases. We are also porting our framework from the applied
pi-calculus to RCF [6], a concurrent functional programming language strongly
related to F#. By recasting our technique to this new setting, we will be able to
conduct our type-based analysis directly on application code.

Acknowledgments. Work partially supported by MIUR Project IPODS “Inter-
acting Processes in Open-ended Distributed Systems”.

References

1. Abadi, M.: Secrecy by typing in security protocols. Journal of the ACM 46(5),
749–786 (1999)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th Symposium on Principles of Programming Languages (POPL). pp.
104–115. ACM Press (2001)

3. Abadi, M.: Logic in access control. In: Proc. 18th Annual IEEE Symposium on
Logic in Computer Science (LICS). pp. 228–233. IEEE Computer Society Press
(2003)

4. Backes, M., Hriţcu, C., Maffei, M.: Type-checking zero-knowledge. In: 15th ACM
Conference on Computer and Communications Security (CCS 2008). pp. 357–370.
ACM Press (2008)

5. Bauer, L., Jia, L., Sharma, D.: Constraining credential usage in logic-based ac-
cess control. In: Proc. 23rd IEEE Symposium on Computer Security Foundations
(CSF). pp. 154–168. IEEE Computer Society Press (2010)

6. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: Proc. 21th IEEE Symposium on Computer
Security Foundations (CSF). pp. 17–32. IEEE Computer Society Press (2008)

7. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security pro-
tocol code by typing. In: Proc. 37th Symposium on Principles of Programming
Languages (POPL). pp. 445–456. ACM (2010)

8. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In:
Hermenegildo, M., Puebla, G. (eds.) 9th International Static Analysis Symposium
(SAS’02). Lecture Notes on Computer Science, vol. 2477, pp. 342–359. Springer
Verlag, Madrid, Spain (Sep 2002)

9. Bugliesi, M., Focardi, R., Maffei, M.: Compositional analysis of authentication
protocols. In: Proc. 13th European Symposium on Programming (ESOP). Lecture
Notes in Computer Science, vol. 2986, pp. 140–154. Springer-Verlag (2004)

10. Bugliesi, M., Focardi, R., Maffei, M.: Analysis of typed-based analyses of authen-
tication protocols. In: Proc. 18th IEEE Computer Security Foundations Workshop
(CSFW). pp. 112–125. IEEE Computer Society Press (2005)

11. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic types for authentication. Journal
of Computer Security 15(6), 563–617 (2007)

12. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Resource-aware authorization
policies for statically typed cryptographic protocols. In: Proc. 24th IEEE Computer
Security Foundations Symposium (CSF). pp. 83–98 (2011)

13. Focardi, R., Maffei, M.: Types for security protocols. In: Formal Models and Tech-
niques for Analyzing Security Protocols, Cryptology and Information Security Se-
ries, vol. 5, chap. 7, pp. 143–181. IOS Press (2011)

14. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization poli-
cies. In: Proc. 14th European Symposium on Programming (ESOP). pp. 141–156.
Lecture Notes in Computer Science, Springer-Verlag (2005)

15. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization in dis-
tributed systems. In: Proc. 20th IEEE Symposium on Computer Security Founda-
tions (CSF). pp. 31–45. IEEE Computer Society Press (2007)

16. Freeman, T., Pfenning, F.: Refinement types for ml. In: Wise, D.S. (ed.) PLDI.
pp. 268–277. ACM (1991)

17. Girard, J.Y.: Linear logic: its syntax and semantics. In: Advances in Linear Logic.
London Mathematical Society Lecture Note Series, vol. 22, pp. 3–42 (1995)

18. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. Journal
of Computer Security 11(4), 451–519 (2003)

19. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security 12(3), 435–484 (2004)

20. Haack, C., Jeffrey, A.: Timed spi-calculus with types for secrecy and authenticity.
In: Proc. 16th International Conference on Concurrency Theory (CONCUR). vol.
3653, pp. 202–216. Springer-Verlag (2005)

21. Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Information and Computa-
tion 204(8), 1195–1263 (2006)

22. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21(5), 914–947 (1999)

23. Lowe, G.: A Hierarchy of Authentication Specifications. In: Proc. 10th IEEE Com-
puter Security Foundations Workshop (CSFW). pp. 31–44. IEEE Computer Soci-
ety Press (1997)

24. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements.
In: Proc. of the 8th ACM SIGPLAN international conference on Functional pro-
gramming (ICFP). pp. 213–225. ACM Press (2003)

25. Troelstra, A.S.: Lectures on linear logic. CSLI Stanford, Lecture Notes Series nr.
29 (1992)

