
Behind the Curtain: A Server-Side View of Web
Session Security

Simone Bozzolan
Università Ca’ Foscari Venezia

simone.bozzolan@unive.it

Stefano Calzavara
Università Ca’ Foscari Venezia

stefano.calzavara@unive.it

Florian Hantke
CISPA Helmholtz Center
for Information Security
florian.hantke@cispa.de

Ben Stock
CISPA Helmholtz Center
for Information Security

stock@cispa.de

Abstract—Since the HTTP protocol is stateless by design, web
applications have to implement client authentication by means of
web sessions. Given the importance of client authentication, the
web security community investigated session security at length.
However, prior work in the field primarily focused on black-box
testing, which has very limited access to the server-side logic of
the web application. This curtain prevents the analysis of relevant
session security aspects, such as cryptographic key management,
and provides limited insights into why vulnerabilities arise due to
insecure programming practices. In this paper, we go through the
process of creating a representative dataset of open-source web
applications and perform the first measurement of web session
security based on static analysis of server-side code. From our
distinctive vantage point, we are able to analyze a number of se-
curity practices that cannot be assessed through black-box testing
alone. Our research analyzes around 1,200 web applications built
using the Django and Flask web development frameworks for
Python. Our study unveils a number of vulnerabilities and bad
programming practices in real-world applications, while shedding
light on how key design choices of Django and Flask impact the
security posture of web applications.

Index Terms—web security, web sessions, static analysis.

I. INTRODUCTION

Web applications routinely rely on client authentication to
restrict access to personal data, e.g., profile pages, and sensi-
tive functionality, e.g., premium services gated by a paywall.
Since the HTTP protocol is stateless by design, web appli-
cations have to implement client authentication by leveraging
the session abstractions available in popular web development
frameworks and libraries. Despite their apparent simplicity,
session implementations can suffer from a range of security
threats [1]. Prior research investigated the prevalence of a
number of vulnerabilities, like session hijacking [2], session
fixation [3], and cross-site request forgery [4]. Detection of
session vulnerabilities is normally performed using black-box
testing techniques [5] and even the OWASP Testing Guide has
a dedicated chapter on session management testing [6].

Black-box testing is great because it is simple to use,
amenable to automation, and applicable to any web application
without requiring access to its source code. Yet, not all
the relevant security aspects of session management can be
meaningfully assessed by black-box testing alone, because im-
portant security checks are often performed by opaque server-
side logic. For example, password hashing is an important
component for the security of account creation, but can only

be assessed through a server-side view of the web application
logic. As another example, sessions are often protected by
cryptographic keys, but the security of key management cannot
be analyzed without having access to the web application
backend. Another limitation of black-box testing is that it
can detect vulnerabilities, but cannot explain why vulnera-
bilities arise, because it has limited visibility of what web
developers are doing. White-box analysis of secure session
management can investigate aspects that black-box testing
normally overlooks or struggles to deal with. In addition, it
can expose insights into secure and insecure coding practices,
thus shedding light on useful design principles and relevant
limitations of web development frameworks that developers
face when writing their applications.

In this paper, we fill a significant gap in web security
research by creating a dataset of relevant open-source web
applications and performing the first measurement of web
session security based on static analysis of server-side code.
From our distinctive vantage point, we are able to analyze a
number of security practices that cannot be assessed through
black-box testing, but that can be fruitfully checked by static
analysis. Our analysis does not just identify dangerous security
practices in the wild, but it also investigates the impact of
different design choices of existing web development frame-
works in terms of the resultant security guarantees of web
applications based on real-world data. Getting access to this
novel vantage point is challenging, though, because we first
have to come up with a relevant dataset of web applications
to analyze. This is a difficult task for multiple reasons. Al-
though online repository platforms like GitHub host millions
of projects, scraping web applications to analyze requires a lot
of care because repositories making use of web development
frameworks are not necessarily web applications but could
be, e.g., web development libraries. Moreover, not all web
applications are worth analyzing: for example, deliberately
vulnerable applications created for security challenges and
insecure applications available as tutorial code should not be
taken into account within a credible security assessment. We
here propose and implement a methodology to build a solid
dataset of open-source web applications to analyze.

After solving the main challenges associated with dataset
construction, we use GitHub’s CodeQL analyzer [7] and write
queries to capture key aspects of session security measured



on the server side. Using CodeQL, we analyze the security
posture of around 1,200 web applications developed in Python
using the Django [8] and Flask [9] frameworks. The choice of
Django and Flask is motivated by the different design philoso-
phies and implementation choices of the two frameworks,
with Django being a complex framework with security built-in
and Flask espousing a minimalist approach where security is
largely delegated to web developers and external libraries.

Contributions: In essence:
• We propose a methodology to assess server-side secu-

rity issues by first constructing a large-scale dataset of
relevant applications (§III) and then analyzing it with
CodeQL (§IV). For the research community to leverage
this knowledge and enable more research on server-side
security issues, we make our code and data available [10].

• We report on session management security on the server
side, investigating cryptographic key usages, adoption of
built-in CSRF protection, and practices to better protect
against session hijacking (§V).

• We present insights into server-side implementations of
the account creation process, with a focus on the analysis
of password policies and password hashing (§VI).

We summarize the main take-away messages of our study
and report limitations in §VII.

II. BACKGROUND

The HTTP protocol is based on a request-response paradigm
involving a client (e.g., a browser) and a server. Since HTTP
is stateless, the server relies on client-side state information,
such as cookies, to keep track of previous interactions and
build a stateful session abstraction. This is the most widespread
technique for implementing client authentication on the Web.
When a user is prompted for their access credentials, e.g.,
username and password, the HTTP request triggered by form
submission transmits them to the server. After checking their
validity, the server uses the corresponding HTTP response to
set a cookie on the client, thus establishing a session. This
cookie is automatically attached to future HTTP requests to
the server. By reading the information stored in the cookie, the
server can restore the state of the session, e.g., to authenticate
the user and restore their previous interactions.

Sessions can be broadly classified into two categories. In
server-side sessions, the cookie stores just a random session
identifier, which is used to pinpoint a specific session on the
server; the session information is primarily stored at the server
side, e.g., within a database indexed by session identifiers.
In client-side sessions, the session information is set mainly
within the cookie itself, e.g., using a digitally signed JSON.

Figure 1 presents the code of a Flask application using the
popular Flask-Login library to implement client-side sessions
based on cookies signed with the secret key at line 6. It defines
two routes, i.e., the HTTP endpoints /login (lines 9-15) and
/private (lines 17-20). Once an HTTP request reaches a
route, it activates the corresponding view, i.e., the functions
auth and dashboard in our case. The first route extracts
authentication credentials from incoming HTTP requests: if

1 from f l a s k import Flask , r e n d e r t e m p l a t e ,
r e d i r e c t , u r l f o r , r e q u e s t a s r

2 from f l a s k l o g i n import LoginManager ,
3 l o g i n u s e r , l o g i n r e q u i r e d
4

5 app = F l a s k ( name )
6 app . s e c r e t k e y = ' u b e r s e c r e t '
7 l o g i n m a n a g e r = LoginManager ( app )
8

9 @app . r o u t e ( ' / l o g i n ' , methods =[ ' POST ' ] )
10 def a u t h ( ) :
11 u s e r = r . form [ ' username ' ]
12 i f v a l i d c r e d s ( use r , r . form [ ' password ' ] ) :
13 l o g i n u s e r ( User ( u s e r i d = u s e r ) )
14 re turn r e d i r e c t ( u r l f o r ( ' p r i v a t e ' ) )
15 re turn r e n d e r t e m p l a t e ( ' e r r o r . h tml ' )
16

17 @app . r o u t e ( ' / p r i v a t e ' )
18 @ l o g i n r e q u i r e d
19 def d a s h b o a r d ( ) :
20 re turn r e n d e r t e m p l a t e ( ' p r i v a t e . h tml ' )

Fig. 1: Example Flask application.

access credentials are correct, it authenticates the user by
calling Flask-Login’s login_user() function and redirects
the client to the private area. The second route renders some
HTML document, e.g., granting access to security-sensitive
functionality. Access to the second route is protected by means
of the @login_required decorator. If the client does not
send a signed cookie established by a previous invocation to
login_user(), an error page is automatically returned.

III. DATASET CONSTRUCTION

Reliable web measurements require a solid dataset that
reflects the real world as best as possible. Traditional web
security measurements are performed over lists of popular
websites, such as Tranco [11]. Unfortunately, there is no
similar standard for open-source web applications. Prior work
on server-side security [12], [13] evaluated applications from
the Bitnami catalogue [14]. However, Bitnami is small in
size and currently contains just 120 applications. Moreover,
it includes applications developed with different programming
languages, meaning that it is a challenging target for static
code analysis. As it turns out, coming up with a solid dataset
is particularly subtle. We here discuss how we automatically
create a dataset of popular open-source web applications and
how we post-process it to ensure its representativeness.

A. Initial Dataset

For our dataset and analysis, we focus on web applications
written in Python, which is one of the most popular program-
ming languages nowadays according to recent statistics [15],
[16]. Besides being widely popular, Python is an interesting
playground because it allows us to focus on two well-known
and relevant web development frameworks: Django [8] and
Flask [9]. These are the most popular frameworks in the
Python ecosystem according to prior work [17], [18] and a
preliminary analysis based on GitHub search (Django and
Flask are both used twice as often as the third most popular
framework, which is FastAPI). Moreover, Django and Flask



are interesting case studies in their own right, because they
embrace different philosophies and implement different ap-
proaches to session management. Django is monolithic and
provides native facilities for secure session management, while
Flask is minimalist and requires developers to rely on external
libraries for most tasks. In addition, Django implements ses-
sions using server-side state by default, while Flask relies on
client-side state, meaning that they cover the two traditional
ways to implement web sessions.

With the list of frameworks decided, we then go on to
collect a set of GitHub repositories that we could analyze
for session management issues. We leverage the GitHub
REST API [19] for this task. In total, we identified 296,913
repositories containing uses of Django and 110,694 repos-
itories containing uses of Flask. Given the large number
of repositories we found for each framework, analyzing all
of them would not be feasible. Moreover, this is not even
desirable for multiple reasons. One of the reasons is that not
all the identified repositories require some form of session
management, e.g., some web applications do not offer a
private area. To restrict our focus to those applications that
may implement session management, we apply an additional
filter: for Django applications, we require the inclusion of
the django.contrib.auth authentication module; for
Flask applications, we require the inclusion of the Flask-
Login library, which is the most popular authentication library
according to prior work [18]. After this step, we were left with
115,301 Django repositories and 20,007 Flask repositories
where authentication might be required.

These repositories do not necessarily include representative
applications to analyze yet, e.g., they might include toy exam-
ples with no built-in security, solutions to academic homework,
prototype software that was never released, etc. To improve the
representativeness of our dataset, we considered a number of
criteria to decide which applications to keep: (i) Number of
stars: this metric is a standard indicator of the popularity of a
repository. (ii) Number of contributors: this metric estimates
both the popularity and the complexity of the application. (iii)
Number of commits: this metric shows that the project has
been actively developed, at least for a while. (iv) Year of last
commit: this metric ensures that the project is not outdated (we
only consider commits from users, filtering out commits from
automated bots such as Dependabot). (v) Source code: we use
the size of the Python code as a proxy for the complexity of
the application and we just keep applications including some
HTML and CSS, because we are interested just in web apps.

We decided to only keep repositories whose last commit
was performed in 2020 or later. For the other metrics, we
performed a preliminary data analysis step to understand their
distribution. As it turns out, the distributions of stars and
contributors are highly skewed because a vast amount of
repositories have no stars and no contributors besides their
creator. We decided to consider as “most representative” just
those repositories for which all the four metrics fall in the
fourth quartile (top 25%). After such filtering, we were left
with 2,997 Django repositories and 692 Flask repositories.

B. Dataset Post-Processing

We performed a preliminary manual investigation of the
remaining repositories, and we observed that, despite our
efforts to improve representativeness, a significant number
of them were not web applications or were not relevant for
security analyses. For example, we identified many popular
libraries used within existing web applications that are not
web applications themselves. Moreover, we identified many
web applications that are not intended for production use,
such as tutorial code or capture-the-flag challenges. These
applications are popular and actively maintained, but their in-
clusion would downgrade the representativeness of our dataset.
Notably, some of these web applications are even deliberately
vulnerable to teach web security concepts.

To mitigate this problem, we considered two different
post-processing approaches, one NLP-based and one GPT-
based. Details of the different approaches and the final post-
processing process can be found in Appendix A. In the end, we
opted for NLP-based filtering as our post-processing module.
Our final dataset comprises 1,999 repositories: 1,620 Django
and 379 Flask. We make our dataset, GitHub crawler and
filtering routines available to other researchers to support
future work on server-side security analyses [10].

IV. WHITE-BOX ANALYSIS METHODOLOGY

We now explain how we define and systematically look for
web session vulnerabilities in our dataset.

A. Analysis Scope

Prior work on web measurements investigated relevant as-
pects of web session security, such as the insufficient adoption
of cookie security attributes [20], [21] and the insecure con-
figuration of HTTP headers [22], [23]. Moreover, prior work
on web session security also proposed black-box testing to
detect classic vulnerabilities like session fixation and session
hijacking [5], [2], [24]. These works exclusively focus on live
websites, hence have no visibility of the server-side code.

In contrast, our dataset provides access to the source code
of the web applications, allowing us to use static analysis to
detect unsafe programming practices. Given this distinctive
vantage point, we focus on vulnerabilities that are difficult or
impossible to detect via black-box testing to clarify the value
of our approach. For example, we analyze the management of
cryptographic keys at the backend and the security of password
hashing practices based on source code analysis.

B. Queries and Dataset

We developed a number of CodeQL [7] queries to detect
insecure programming practices in web session implementa-
tions. We use CodeQL because it has an expressive query
language that we can use to tailor our security analysis around
relevant issues. We may have chosen other static analysis tools,
e.g., SonarQube, but for our purposes any analysis tool with a
configurable query language would have worked. Additionally,
CodeQL provides some publicly available queries [25], but
they do not address the specific aspects considered in our



TABLE I: Number of analyzed GitHub repositories.

Purpose Django Flask Total

Session management 882 307 1,189
Account creation 294 84 378

analysis. Indeed, such queries are usually quite general and
limited to checking whether a particular security feature is
enabled. Therefore, while they represent a useful starting point,
their number is limited, and more specialized queries are
required to support our analysis. All queries are available
online [10].

Queries fall into two broad categories, i.e., session manage-
ment and account creation, and are correspondingly performed
over two subsets of applications:

• Session management: to analyze the security of session
management practices, we restrict our focus to web
applications performing invocations to the login functions
of Django or Flask-Login, and checking at least once
whether the user is logged in or not. This way, we are
sure that these applications authenticate users and restrict
access to specific functionality.

• Account creation: to analyze the security of account
creation, we start from the previous set of applica-
tions implementing session management. We further re-
strict our focus to web applications enabling the cre-
ation of new accounts. For Django applications, we
only keep repositories where we find instances of the
UserCreationForm class, which may be used for
account creation. For Flask applications, we leverage the
observation that Flask-WTF and WTForms are the most
popular libraries for handling forms in our dataset. In total
we found 202 applications using either Flask-WTF or
WTForms, and we did not find any usage of other widely
adopted form-handling libraries, such as Deform. We look
for registration forms by (i) searching for instances of the
main form classes of Flask-WTF and WTForms including
at least one password field, and (ii) filtering them only
to keep those whose name includes at least one keyword
related to account creation, such as “register” or “signup”.

Table I reports the number of repositories that we eventually
considered for our security analysis on session management
and account creation based on this methodology. For space rea-
sons, examples of vulnerable applications (confirmed through
manual investigation) are reported in Appendix B. We respon-
sibly disclosed the confirmed vulnerabilities and we report on
the received feedback in Appendix C.

V. SESSION MANAGEMENT

We analyze different aspects of session management which
are reported in the following.

A. Cryptographic Keys

Secure session management often requires the use of cryp-
tographic keys. Indeed, both Django and Flask require op-
erators to set a secret key within their web application. We

41%
18%

41%

(a) Django

20%
9%

71%

Hard-coded
in every run
Hard-coded
in some runs
Not hard-coded

(b) Flask

Fig. 2: Distribution of secret key management practices di-
vided by framework.

use CodeQL to identify hard-coded secret keys within web
applications. Using hard-coded secret keys is a dangerous
practice, because the secret key may be available to attackers
who inspect the web application code on GitHub. When
using client-side sessions in the style of Flask, the secret
key is used to digitally sign session cookies: if the secret
key is known to the attacker, such cookies may be forged
and enable impersonation attacks. In the case of Django, the
secret key is used for multiple purposes, such as protecting the
password reset functionality and any usage of cryptographic
signing [26]. Correct configuration and management of the
secret key is difficult to assess at scale for black-box testing
strategies that do not have access to the source code, but it
can be fruitfully checked by static analysis.

1) CodeQL Queries: The queries perform data flow anal-
ysis to associate each application to one of the following
security classes: (i) the secret key is hard-coded to a constant
value within the source code; (ii) the secret key may be set to
a hard-coded default value in some program runs, e.g., when
a configuration file is missing; or (iii) the secret key is never
set to a hard-coded constant value, e.g., it is read from an
environment variable or set to a new random string every time
the application is launched. Details on how the queries work
can be found in our online repository [10].

2) Analysis Results: Figure 2 shows how Django and Flask
applications are distributed over the three security classes.
Note that the amount of applications using hard-coded secret
keys, either in every run or under specific circumstances,
is quite significant in practice. In total, we identified 424
applications, out of the analyzed 1,189 applications, that hard-
code the secret key to some constant value in every program
run in their source code (36%). Overall, Flask applications
have fewer hard-coded secret keys in comparison to Django
applications. We detected hard-coded secret keys in 62 out of
307 Flask applications (20%), while we identified hard-coded
secret keys in 362 out of 882 Django applications (41%).
This phenomenon might be explained by the fact that Django
automatically generates a random secret key and hard-codes
it in the settings module when starting a new project.
Flask, in turn, leaves key creation entirely in charge of web
developers. Empirically, it thus seems that Django’s approach
to secret key creation is potentially dangerous in practice,
because almost half of the repositories rely on hard-coded



secret keys that the operators of their web applications are
not forced to update.

Moreover, both Django and Flask recommend a minimum
length of the secret key, with Django recommending stricter
length requirements (50 characters vs. 24 characters). These
requirements are recommended to mitigate brute-force attacks
where the attacker tries to reconstruct the correct secret key
by exhaustive enumeration. Looking at the hard-coded secret
keys, we observed that 47 out of 62 Flask applications using
hard-coded secret keys set a key that is shorter than the
recommended key length (76%), while this is the case just
for 125 out of 362 Django applications (35%). This highlights
that, when developers are required to generate secret keys
themselves, they may not comply with recommended security
practices. In the case of Flask applications, the use of short
and predictable session keys is particularly concerning because
brute-force attacks can be performed offline and may not
involve any interaction with the server. Indeed, the attacker
can acquire a valid session cookie from the web application,
inspect its content (the cookie is not encrypted) and try to
enumerate keys until a correct signature matching the cookie
is generated. Once the correct key has been found, the attacker
can forge new session cookies.

In the end, our analysis shows an intriguing duality. Django
applications are more likely to expose hard-coded secret keys
than Flask applications, while Flask applications are more
likely to use secret keys that are vulnerable to brute-forcing
than Django applications. Based on this, we conclude that
Django’s choice of automating secret key creation is useful
in practice, but the framework should be made more secure
by avoiding the inclusion of hard-coded secret keys in the
settings module, because developers are not required to
update them. We recommend modifying Django’s approach so
that the settings module does not contain any secret key
by default, thus triggering an exception (with the current im-
plementation); secret key creation, in turn, should be deferred
to a configuration script to be run before deployment, which
would populate the settings module with an automatically
generated secure secret key. Django’s exception message may
be updated to report the need to run the configuration script.

B. Cross-Site Request Forgery (CSRF)

CSRF is one of the most well-known web vulnerabil-
ities [27]. It abuses the automated attachment of session
cookies to HTTP requests to forge authenticated requests from
the victim’s browser and trigger security-sensitive actions on
their behalf. Protection against CSRF can be implemented in
different ways, such as the use of secret tokens to authenti-
cate security-sensitive requests in addition to cookies. Web
development frameworks normally offer simple declarative
techniques to mitigate CSRF built on top of established
protection mechanisms. Developers can then annotate specific
views/forms requiring CSRF protection or conversely mark
escape hatches where CSRF protection is undesired.

1) CodeQL Queries: We use CodeQL to investigate how
developers are taking advantage of built-in protection mech-

63%

28% 1%
8%

1%

63%

28%

(a) Django

10%
11%

69% 10%

Always activated
Selectively
deactivated
Selectively activated

Always deactivated

(b) Flask

Fig. 3: Distribution of CSRF protection levels per framework.

anisms against CSRF. Based on the results of our queries,
we are able to classify each application into one of four
categories: (i) CSRF protection is activated by default and
never deactivated; (ii) CSRF protection is activated by default,
but deactivated on some views; (iii) CSRF protection is
deactivated by default, but activated on some views; or (iv)
CSRF protection is deactivated by default and never activated.

We then write CodeQL queries to better understand the
security implications of the views that are not protected
against CSRF. In particular, we identify sensitive views as
those requiring authentication and writing into the underlying
database. Intuitively, sensitive views require CSRF protection
because the attacker may abuse an authenticated session by
forging HTTP requests from the victim’s browser to trigger a
side-effect on the web application. Details on how the queries
work can be found in our online repository [10].

2) Analysis Results: In total, we identified 1,048 applica-
tions (88%) that use the CSRF protection patterns supported by
our analysis: 165 of them are in our set of Flask applications,
while 883 fall in our set of Django applications. This shows
that built-in protection mechanisms against CSRF are popular
among developers and their adoption is worth additional
attention. The remaining 141 applications (12%) do not use
one of the CSRF protection patterns supported by our analysis.
As a result, no conclusions are drawn, and they are excluded
from further analysis.

Figure 3 shows how Django and Flask applications are
distributed over one of the four mentioned security classes.
Observe that the majority of Django applications (63%) miti-
gate CSRF on all views, while the majority of Flask applica-
tions (69%) just selectively activate protection. This dichotomy
can be attributed to the default settings of their respective
CSRF protection mechanisms. By default, Flask-WTF enables
CSRF protection only for forms that are created extending
FlaskForm, while Django enables CSRF protection globally
by default. Hence, there exists a compelling argument in favor
of secure-by-design frameworks, as the architectural choices
embedded within a framework significantly impact the security
posture of resultant applications. Although Flask-WTF also
supports global protection at the application level by means
of the CSRFProtect class, we observe that protection at
the individual form level is more widespread in practice.

To better understand the importance of CSRF protection (or
the lack thereof) in practice, we complement our analysis with



an investigation of the sensitivity of relevant views. We focus
on applications where CSRF protection is either activated by
default but deactivated in some views, or deactivated by default
but activated in some views. In both cases, we look for the
presence of sensitive views among those that are unprotected
against CSRF, thus estimating the potential security risks
of incomplete CSRF protection. In total, we identified 27
applications with unprotected sensitive views out of the 266
applications where CSRF protection was selectively deacti-
vated (10%) and 48 applications with unprotected sensitive
views out of the 122 applications where CSRF protection was
selectively activated (39%). This gives clear evidence of the
practical advantages of secure-by-default solutions in the style
of Django, leading to a significantly reduced risk of leaving
sensitive views unprotected. Besides the sheer quantitative
finding of our experiment, we also observe that developers
making use of decorators like @csrf_exempt are explicitly
acknowledging the lack of protection for specific views, while
approaches based on selective protection like the extension
of FlaskForm may lead to overlooking security-sensitive
functionality. To confirm this, we tokenized the name of
sensitive views missing CSRF protection in Flask applications,
observing the presence of several concerning terms, such as
“delete” (122 occ.), “add” (64 occ.) and “edit” (53 occ.).

In the end, our analysis provides insights into how de-
velopers are making use of built-in protection mechanisms
available in popular web frameworks to reduce the potential
attack surface. Moreover, it can complement existing dynamic
approaches to CSRF detection [12], [28] to improve their cov-
erage and thus mitigate one of the most significant limitations
of dynamic analysis. Indeed, we were able to identify new
confirmed CSRF vulnerabilities in existing applications just
by inspecting the unprotected sensitive views identified by our
queries (see Appendix B). Feeding such endpoints to existing
black-box testing tools would be useful to improve their cov-
erage and automatically confirm the detected vulnerabilities,
similar to what we did in our own scrutiny.

C. Session Protection

Flask-Login implements additional protection against ses-
sion hijacking by defining different levels of session pro-
tection, which determine whether sessions should be tied to
the requesting client. In particular, Flask-Login computes a
secure hash of the IP address and user agent of the requesting
client (for short, client identity in this paper) to determine
whether a session cookie was stolen and is being reused on
a different device. There are three levels of session protection
available: (i) None: the client identity is never checked, i.e., no
additional protection against session hijacking is in place; (ii)
Basic (default): the client identity is checked just for those
functionalities requiring a fresh login, i.e., annotated with
the @fresh_login_required decorator; (iii) Strong: the
client identity is checked for every request.

Of course, session protection improves security against ses-
sion hijacking at the expense of usability, since users might be

required to login more frequently due to session invalidation,
e.g., when the same device is assigned a different IP address.

1) CodeQL Queries: We run multiple CodeQL queries to
understand the use of session protection in Flask applications
and categorize the results in the following way: (i) No pro-
tection: we check whether the application lacks enforcement
of any additional protection against session hijacking; (ii)
Protection on some views: we check whether the application
enforces additional protection against session hijacking on
specific views; (iii) Complete protection: we check whether
all the views of the application enjoy additional protection
against session hijacking. Details on how the queries work
can be found in our online repository [10].

2) Analysis Results: In total, we have 307 Flask applica-
tions that distribute over the three security classes as follows:
281 applications (92%) do not benefit from session protection,
3 applications (1%) activate session protection just on some
views by using the @fresh_login_required decorator,
and 23 applications (7%) enforce session protection on all
views. This shows that developers exhibit a highly polarized
behavior with respect to session protection: most applications
do not use it at all, while a few applications activate it ev-
erywhere; the number of applications using session protection
just on some specific views is negligible.

To gain deeper insights into how developers deploy ses-
sion protection, we additionally searched through the com-
mit histories of the 307 Flask applications, tracking the us-
age and changes of the default protection behavior via the
session_protection field. We utilized git grep for this
experiment, as searching through tens of thousands of commits
would be extremely resource-intensive with CodeQL. Despite
the limitations of this simple syntactic match, our grep search
identified several matching repositories. We found a total of
31 applications that overwrote the default session protection
setting at some point (10%). 11 applications moved to a
more secure session protection configuration: in all cases, this
meant activating strong session protection. On the contrary,
5 applications moved from an initially stronger protection to
a less secure configuration. All of these cases deactivated
protection due to documented login problems or code refac-
toring. The remaining 15 applications explicitly overwrote the
session_protection field in the initial commit, or the
first time user management was added, and never changed
it again. 12 of these applications implemented strong session
protection from the beginning, while only two applications
explicitly set a basic protection and one configured an insecure
protection from the initial commit.

In summary, our findings indicate that the majority of
developers do not change their initial configuration of session
protection and, when modifications are made, they are primar-
ily to enhance security rather than to reduce it. Since several
applications successfully activated strong session protection
from the very beginning and we only observed a tiny num-
ber of regressions to less secure configurations, our findings
suggest that more developers may likely be able to strengthen
session protection in their applications.



VI. ACCOUNT CREATION

Account creation is a delicate process because web applica-
tions should force their users to choose strong passwords and
implement appropriate protection mechanisms for them. Here,
we analyze the key features of the password policies enforced
in the web applications of our dataset and the password
hashing techniques they adopt during account creation.

A. Password Policies

It is well known that passwords should satisfy minimum
strength requirements to be secure against online and offline
brute-force attacks [29]. Password strength is difficult to
estimate using black-box techniques: for example, Alroomi
and Li proposed a sophisticated inference algorithm for pass-
word policies, which is computationally heavy and suffers
from possible inaccuracies [30]. Unfortunately, their analysis
revealed limited deployment of client-side password strength
checks, which would be a natural avenue to analyze password
security without having access to the web application code.
Since our methodology is based on source code analysis, we
are in a privileged position to analyze password strength based
on server-side security checks.

1) CodeQL Queries: We use CodeQL to collect insights
into the password policies enforced by the web applications
in our dataset. In particular, we implement queries to detect
registration forms using the heuristics in Section IV-B and
extract validators associated with their password fields. De-
tails on how the queries work can be found in our online
repository [10].

A relevant point to note here is that Django automatically
enforces a default password policy when the registration form
is submitted, while Flask-WTF does not implement any default
policy. Moreover, Django offers a broader variety of pass-
word validators than Flask-WTF, though it lacks the regular
expression and maximum length validators present in Flask-
WTF. While Flask-WTF encompasses validators for minimum
length, maximum length, and regular expression matches,
Django offers validators for minimum length, password-
username similarity, detection of common passwords, and
identification of passwords consisting entirely of numbers.

2) Analysis Results: In total, we identified 378 applications
(294 for Django and 84 for Flask) including a registration
form, out of which 272 perform some validation of their
password fields (72%). This shows that validators are a popular
tool, yet password validation may still be overlooked by
developers in practice, or even deliberately deactivated when
the library would have it enabled by default. Django’s choice
to enable password validation by default pays off. Indeed, we
observe a greater proportion of Django applications than Flask
applications performing some form of password validation
(78% vs. 50%). Django applications without any password
validation turned off the default password policy by removing
the default validators from the password field.

The most common use case of validators is to enforce
a minimum password length: we identified 264 applications

865 101 147 1294

0

100

200

236

15
3 21 12 112

Minimum Password Length

N
um

be
r

of
A

pp
lic

at
io

ns

Fig. 4: Distribution of minimum password lengths.

doing that, i.e., 97% of the applications making use of valida-
tors check the enforcement of a minimum password length.
Figure 4 shows the distribution of the minimum password
length enforced by the applications using validators for this
purpose. The distribution is skewed on length 8 because
this is the default length required by Django, which aligns
with the recommendation outlined by NIST [31]. The next
most prevalent choice was a minimum length of 6 characters
and there is a higher number of applications that relax the
NIST-recommended minimum length requirement, rather than
implementing a stricter requirement.

Perhaps surprisingly, most of the analyzed web applications
do not check any structural property of their passwords at
registration time besides their length. Django’s default val-
idators prevent the use of passwords that are too similar to
the username, that are common according to a preloaded list,
or that are entirely numeric, but they do not enforce any
check on password strength. A relevant observation of our
analysis is that the number of applications checking the use
of specific sets of characters like lowercase letters, uppercase
letters and symbols is quite limited. These checks may be
normally performed using regular expressions, but the number
of applications using custom validators and regular expressions
amounts to just 13 (5%). Upon manual inspection, we ob-
served that only 8 out of the 13 applications were using these
validators to test password strength. The other 5 applications
were either checking the absence of certain characters such
as spaces, or implementing length checks. As this is a very
low number, we would expect developers to use other methods
to check password strength. However, this does not seem to
be the case based on additional experiments that we carried
out. First, we looked for the presence of popular password
strength libraries like django-password-strength and zxcvbn-
python, finding just 12 imports of the libraries across all of our
dataset. Then, using CodeQL, we looked for instances where
Python’s re module was used to check password strength, by
looking at whether the registration form’s password field was
checked using one of the re module’s functions. We found
that only a negligible amount of applications were performing



such checks. Finally, we wrote CodeQL queries to identify all
the applications accessing the password field of Django’s built-
in UserCreationForm class. Since this class automatically
saves registered users in the database, developers only need
to access its fields to implement custom functionalities, such
as verifying password strength. After manual analysis of the
matching applications, we found that only a negligible amount
of them were accessing the password field to evaluate pass-
word strength. Hence, while it is conceivable that we may have
overlooked some instances, all of our experiments suggest that
developers largely neglect password strength checks. This can
possibly be attributed to the fact that neither Django nor Flask
provides built-in password strength validators.

B. Password Hashing

Passwords should not be saved in plaintext on the server to
prevent their disclosure and reuse on different services upon
data breaches; rather, a secure hash of the password should
be stored. Techniques for secure password hashing aimed at
mitigating offline brute-force attacks are well known, however,
they are implemented by means of server-side logic, which
cannot be assessed by black-box testing.

1) CodeQL Queries: We use CodeQL to verify compli-
ance with the OWASP password hashing recommendations of
April 2024 [32]. Recommended hashing algorithms include
Argon2id, scrypt, PBKDF2, and bcrypt with specific configu-
ration options. Details on how the queries work can be found
in our online repository [10].

2) Analysis Results: In total, we identified 378 applications
providing a registration form, out of which 372 applications
implement some form of password hashing (98%), meaning
that our enumeration of popular hashing libraries yields almost
complete coverage. The 6 applications that do not perform
any password hashing according to our queries have been
discontinued, are not interesting from a security perspective
or are false negatives, e.g., one application uses a hashing
library not supported by our queries.

Figure 5 shows how many applications are using a rec-
ommended hashing algorithm with a secure or an insecure
configuration. In total, 85% of the applications use a rec-
ommended hashing algorithm set in a secure configuration,
showing that the importance of performing secure password
hashing has been widely understood by developers over the
years. We observe that the most popular hashing algorithm
is PBKDF2 in a secure configuration, followed by scrypt
in an insecure configuration. This trend can be explained
by examining the popularity of the hashing libraries in our
dataset: the most popular library is Django’s built-in hashing
library, whose default configuration uses PBKDF2 with a
secure configuration, while the second most popular library is
Werkzeug [33], whose default configuration uses scrypt with
an insecure configuration. Interestingly, Werkzeug recently
modified its default hashing algorithm [34], transitioning from
PBKDF2 to scrypt, which is widely regarded as more secure.
However, they did not align with OWASP recommendations
in the default configuration of scrypt, as by default the

Argon2id scrypt bcrypt PBKDF2

0

100

200

300

15 0
24

263

1

46

1 4

N
um

be
r

of
A

pp
lic

at
io

ns

Compliant Non-compliant

Fig. 5: Distribution of hashing algorithms divided by compli-
ance with the OWASP guidelines.

CPU/memory cost parameter is set to 215 [35], while OWASP
recommends at least 217 when using Werkzeug’s default values
for the other parameters [32]. This weakens the recommended
protection level against offline brute-force attacks.

Our analysis also found 21 applications (6%) that apparently
do not use any of the four hashing algorithms covered by our
queries. We manually inspected all of them, corresponding to
7 Flask applications and 14 Django applications. As it turns
out, all the Flask applications were using some version of
the SHA algorithm, which does not offer robust protection
against offline brute-force attacks. Luckily, most of these Flask
applications make use of invocations to Werkzeug that would
lead to runtime errors in modern versions of the library,
e.g., SHA256 is now unsupported for password hashing. This
means that these applications would be vulnerable only if they
were run with an old version of Werkzeug. The Django appli-
cations, instead, were all false positives due to the presence of
test configurations using MD5 for performance reasons, while
the production configurations used stronger algorithms for
password hashing, e.g., the default PBKDF2 algorithm. This
shows again that the secure-by-default approach of Django
is useful in practice, because potentially insecure hashing
algorithms are confined to Flask applications alone.

VII. DISCUSSION

With the results in mind, we now summarize the main
findings of our study and acknowledge limitations.

A. Main Take-Aways

From a methodological point of view, we observe that
constructing a meaningful dataset of web applications is
a challenging task that requires careful filtering, as naive
approaches like scraping GitHub for framework imports yield
many irrelevant results. However, once the dataset is con-
structed, CodeQL proves to be an effective and reliable tool for
analyzing session security, with very few timeouts or failures
in practice. A careful manual analysis of the findings revealed
that the number of false positives was generally low, thanks
to the focus on syntactic code patterns that are well-suited to
static analysis. Most of the false positives stemmed from ap-
plications with multiple configurations (e.g., separate settings



for development and testing) or those using custom security
mechanisms. In such cases, the false positives were due to
conflicting configurations, e.g., enabling password strength
validators on some password fields but not others, or replacing
built-in CSRF protection with custom mechanisms. Although
assessing whether these applications are actually secure or not
would require careful scrutiny, such practices are generally
considered dangerous, therefore these cases were manually
reviewed or conservatively classified as insecure. Nonetheless,
they were rare and did not impact the overall trends. In
general, false positives were very limited and manageable
through manual inspection, as most applications used a single
configuration and adhered to the default settings of their
respective libraries.

Our work shows that, with the right approach and method-
ology, analyzing the server-side logic of web applications at
scale is possible. Hence, we are confident that future research
can build up on our methodology and dataset to extend the
scope of the security analysis to additional frameworks, pro-
gramming languages and other facets of server-side security,
such as database flaws, authorization issues, single sign-on and
multi-factor authentication configurations.

From the point of view of session security, our analysis
reveals several interesting insights. First, security-by-default
pays off in practice. There are a number of areas where Django
applications are more protected than Flask applications. For
example, CSRF protection is always activated in 63% of the
Django applications, while global protection against CSRF
is enforced in just 10% of the Flask applications. Our em-
pirical analysis also shows that automated CSRF protection
is positively correlated with a reduced risk of leaving sen-
sitive views unprotected against attack attempts. Moreover,
the distribution of the minimum password lengths enforced
by the analyzed web applications is highly skewed towards 8,
which is the default password length for Django applications.
Also for password hashing we observe a very important role
of security-by-default: most of the invocations to password
hashing functions are made with the default parameters set
in the chosen cryptographic library, meaning that most of
the practical uses can be classified as secure or not just
based on the default choices of library developers. To further
corroborate the importance of security-by-default, we observed
that opt-in defensive measures like the session protection
feature of Flask-Login have limited practical adoption: just 8%
of the analyzed Flask applications take advantage of session
protection, although our analysis of commit histories suggests
that a larger adoption might actually be feasible.

On the negative side, our analysis also shows that security-
by-default is not always properly designed. Django’s choice
of automatically generating secret keys is great for enforcing
a reasonable key length, but the choice of hard-coding the
generated keys within a Python file might unduly expose web
applications to the risk of being deployed on the Internet with
a known cryptographic key. We observed hard-coded secret
keys in 41% of the Django applications, while this practice
affected just 20% of the Flask applications. To improve the

security of Django applications, we suggest demanding the
creation of secret keys to an installation script, thus mirroring
the automated facilities offered to Django developers to end
users as well. In general, we recommend the inclusion of secret
keys within specific configuration files rather than in source
files that can easily enter version control systems. Also, the
use of default validators for password strength implemented
in Django is undoubtedly useful, but the toolbox of password
validators offered to web developers is lackluster. In general, it
seems that validation of password complexity is uncommon in
our dataset, with less than 5% of the applications performing
such checks according to our analysis. Password strength
can certainly be improved by enforcing stricter password
complexity guidelines by default. We observed similar issues
with security-by-default when analyzing password hashing
practices: the scrypt implementation of Werkzeug runs by
default with a configuration that is deemed insufficient against
offline brute-force attacks by the OWASP guidelines, meaning
that the Werkzeug developers failed at implementing security-
by-default according to current best practices.

B. Limitations

The primary limitation of our study is its focus on the
Python programming language, which, although popular, is
just one specific language for web application development.
This limitation is motivated by the fact that static analysis
is inherently language-based, hence generalization to multiple
languages requires significant engineering effort. Thanks to
CodeQL’s multi-language support, this effort mainly involves
adapting the existing queries to account for framework-
specific and language-specific features, and constructing suit-
able datasets of web applications. Although labor-intensive,
this work does not demand novel design. That said, our
coverage of two different web development frameworks with
different design choices already pays off in terms of collected
insights about security-by-default and support for secure web
development. Another limitation of our study revolves around
its focus on specific and widely used session management
libraries. This targeted approach is motivated by the inherent
challenges in analyzing custom session management imple-
mentations at scale. In custom scenarios, developers may inte-
grate authentication atop their unique session cookies, making
it challenging to distinguish them from other cookies serving
different purposes. Consequently, our analysis excludes a
detailed examination of custom session management prac-
tices, potentially overlooking pertinent security vulnerabilities.
While dynamic analysis could overcome this limitation, this
gap also presents an opportunity. By concentrating on well-
established libraries widely adopted in numerous web applica-
tions, our findings shed light on best programming practices of
broad significance with clear, practical implications. Compared
to dynamic analysis, static analysis is prone to false positives,
as previously discussed, and requires access to the source code,
which is not always available. Nevertheless, we have shown
that the number of false positives was limited and therefore had
a negligible impact on the observed trends. Moreover, static



analysis allowed us to assess security aspects, like password
hashing, that dynamic analysis cannot deal with.

VIII. RELATED WORK

We categorize existing work we compare with in two major
research lines: dataset construction and web session security.

A. Dataset Construction

Numerous researchers have asked the question of how
to create comprehensive datasets from software repositories.
Cosentino et al. [36] published a meta-paper analyzing 93 aca-
demic papers to understand the empirical methods and datasets
researchers use to conduct their studies. They identified vari-
ous databases used in these studies, including GHTorrent [37],
which served as an offline mirror of data from GitHub tailored
towards academic studies, but stopped publishing new datasets
in 2021. A similar project is GHArchive [38], yet it only
provides status updates and activities of repositories and not
the actual content itself. Another contribution with which
researchers tried to find a solution for software datasets is
the Boa paper [39]. In their paper, the authors propose a new
domain-specific language and infrastructure designed to query
large datasets of software repositories collected from platforms
like GitHub or SourceForge. With their platform, they provide
a service that enables fast prototyping of tests and analysis
reproducibility. However, for our study, we were not interested
in a dataset of general applications, but a sample set of Flask
and Django web applications.

Besides the mentioned papers that try to provide general
datasets, researchers also analyzed how to best investigate
GitHub repositories, e.g., the PyDrill project [40], or how
to find similar repositories for later analysis [41]. Koch et
al. [42] analyzed various metrics of software repositories to
understand the relationship between, for example, GitHub stars
and download numbers, finding only a weak correlation, but
noting the limitation of their study to client-side projects,
suggesting different dynamics for server-side projects. While
this field is still very unexplored, metrics like GitHub’s stars
are the only indicators we can use to find relevant projects.
Due to the weak correlation, we decided to take a combination
of various metrics. In terms of practical applications of the
GitHub API, Wittern et al. [43] utilized the API to collect all
available GraphQL schemes they could find.

B. Web Session Security

Prior work investigated different security threats against web
sessions, see [1], [44] for a survey of this important research
area. Protection against session hijacking was primarily as-
sessed by checking the appropriate adoption of cookie security
attributes, such as HttpOnly and Secure [20], [21]. CSRF
protection was first analyzed in the classic paper by Barth
et al. [27] and multiple defenses have been proposed [45],
[46]. The dangers of CSRF have also been evaluated at scale
in the wild by Sudhodanan et al., finding significant room for
abuses [4]. More recently, Khodayari and Pellegrino measured
the effectiveness of the SameSite cookie attribute for CSRF

protection, quantifying its benefits and limitations [47]. Black-
box testing strategies for secure session management were
also systematized and presented by Calzavara et al. [5]. Later
work used similar testing strategies to perform large-scale
measurements of web session security in the wild [2], [24].

All these works clarified the practical relevance of different
session security vulnerabilities, but did not investigate web
session security from the eyes of web developers, i.e., in terms
of programming practices detectable through source code
analysis. The distinctive feature of this paper compared to prior
work is its unique vantage point on server-side code, which
is assessed by means of static analysis. This point of view
allows us to investigate aspects that prior work based on black-
box testing was unable to cover, such as cryptographic key
management, which is only visible within the web application
backend. Moreover, our diverse dataset of Django and Flask
applications allows us to understand how different design
choices of web development frameworks affect the security
features eventually implemented by web developers.

IX. CONCLUSION

This study examined server-side web session security at
scale by developing a methodology to build and analyze
a dataset of open-source web applications, which we have
publicly released together with the developed tools [10].
Our analysis of session management features and account
creation configurations revealed how key design choices in
popular frameworks like Django and Flask affect security.
While security-by-default pays off in practice, it is not always
optimally implemented. Based on our findings, we identified
areas for improvement and provided specific recommendations
for frameworks, libraries, and development practices.

In future work, we plan to expand our analysis to more pro-
gramming languages and frameworks, broadening the studied
security aspects to include database vulnerabilities, authoriza-
tion, single sign-on, and multi-factor authentication. We also
aim to advance static analysis techniques for web security by
developing new methods better suited to the complexity of
server-side code.

ACKNOWLEDGMENTS

We thank the reviewers for their feedback. This research was
supported by project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan funded by the Euro-
pean Union - Next-GenerationEU CUP N.H73C22000890001
and by Agenzia per la cybersicurezza nazionale under the
2024-2025 funding programme for promotion of XL cycle
PhD research in cybersecurity – CUP N.H71J24001710005.
The views expressed are those of the authors and do not
necessarily represent the funding institutions.

Use of AI-based tools: During the preparation of this
work, the authors used ChatGPT in order to improve the
readability and language of the manuscript. After using this
tool/service, the authors reviewed and edited the content as
needed and take full responsibility for the content of the
published article.



REFERENCES

[1] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving
the web: A journey into web session security,” ACM Comput.
Surv., vol. 50, no. 1, pp. 13:1–13:34, 2017. [Online]. Available:
https://doi.org/10.1145/3038923

[2] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter:
Automated black-box auditing for web authentication and authorization
flaws,” in CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020,
J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM, 2020, pp. 1953–
1970. [Online]. Available: https://doi.org/10.1145/3372297.3417869

[3] M. Johns, B. Braun, M. Schrank, and J. Posegga, “Reliable protection
against session fixation attacks,” in Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC), TaiChung, Taiwan, March
21 - 24, 2011, W. C. Chu, W. E. Wong, M. J. Palakal, and
C. Hung, Eds. ACM, 2011, pp. 1531–1537. [Online]. Available:
https://doi.org/10.1145/1982185.1982511

[4] A. Sudhodanan, R. Carbone, L. Compagna, N. Dolgin, A. Armando,
and U. Morelli, “Large-scale analysis & detection of authentication
cross-site request forgeries,” in 2017 IEEE European Symposium
on Security and Privacy, EuroS&P 2017, Paris, France, April
26-28, 2017. IEEE, 2017, pp. 350–365. [Online]. Available:
https://doi.org/10.1109/EuroSP.2017.45

[5] S. Calzavara, A. Rabitti, A. Ragazzo, and M. Bugliesi, “Testing for
integrity flaws in web sessions,” in Computer Security - ESORICS
2019 - 24th European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part II, ser. Lecture
Notes in Computer Science, K. Sako, S. A. Schneider, and P. Y. A.
Ryan, Eds., vol. 11736. Springer, 2019, pp. 606–624. [Online].
Available: https://doi.org/10.1007/978-3-030-29962-0 29

[6] OWASP, “Session management testing,” https : / / owasp.org / www -
project-web-security-testing-guide/latest/4-Web Application Security
Testing/06-Session Management Testing/README, 2025.

[7] GitHub, “CodeQL,” https://codeql.github.com/, 2025.
[8] Django Software Foundation, “Django,” https : / /

www.djangoproject.com/, 2005.
[9] Armin Ronacher, “Flask,” https://flask.palletsprojects.com/, 2010.

[10] S. Bozzolan, S. Calzavara, F. Hantke, and B. Stock, “Artifacts,” https://
github.com/Asterius27/BTC-paper-artifacts, 2025, repository containing
all of the artifacts related to this paper.

[11] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Korczynski, and
W. Joosen, “Tranco: A Research-Oriented Top Sites Ranking Hardened
against Manipulation,” in Network and Distributed Systems Security
(NDSS) Symposium 2019. Internet Society, 2019.

[12] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting CSRF with dynamic analysis and property
graphs,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, B. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 1757–1771. [Online].
Available: https://doi.org/10.1145/3133956.3133959

[13] S. Khodayari and G. Pellegrino, “JAW: studying client-side CSRF with
hybrid property graphs and declarative traversals,” in 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021,
M. D. Bailey and R. Greenstadt, Eds. USENIX Association, 2021, pp.
2525–2542. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/khodayari

[14] Broadcom Inc., “Bitnami,” https://bitnami.com/, 2025.
[15] GitHub, “The top programming languages,”

https://octoverse.github.com/2022/top-programming-languages, 2022.
[16] Stack Overflow, “Stack Overflow Developer Survey 2023,”

https://survey.stackoverflow.co/2023/?utm source=social-
share&utm medium=social&utm campaign=dev-survey-2023, 2023.

[17] X. Likaj, S. Khodayari, and G. Pellegrino, “Where We Stand (or Fall):
An Analysis of CSRF Defenses in Web Frameworks,” in Proceedings
of the 24th International Symposium on Research in Attacks, Intrusions
and Defenses, ser. RAID ’21. New York, NY, USA: Association for
Computing Machinery, Oct. 2021, pp. 370–385.

[18] M. Squarcina, P. Adão, L. Veronese, and M. Maffei, “Cookie
crumbles: Breaking and fixing web session integrity,” in 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA,
USA, August 9-11, 2023, J. A. Calandrino and C. Troncoso, Eds.

USENIX Association, 2023, pp. 5539–5556. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/squarcina

[19] GitHub, “GitHub REST API documentation,” https://docs.github.com/
en/rest, 2025.

[20] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen,
“Sessionshield: Lightweight protection against session hijacking,” in
Engineering Secure Software and Systems - Third International
Symposium, ESSoS 2011, Madrid, Spain, February 9-10, 2011.
Proceedings, ser. Lecture Notes in Computer Science, Ú. Erlingsson,
R. J. Wieringa, and N. Zannone, Eds., vol. 6542. Springer, 2011, pp. 87–
100. [Online]. Available: https://doi.org/10.1007/978-3-642-19125-1 7

[21] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan, “Cookiext:
Patching the browser against session hijacking attacks,” J. Comput.
Secur., vol. 23, no. 4, pp. 509–537, 2015. [Online]. Available:
https://doi.org/10.3233/JCS-150529

[22] M. J. Kranch and J. Bonneau, “Upgrading HTTPS in mid-
air: An empirical study of strict transport security and key
pinning,” in 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015. The Internet Society, 2015. [Online]. Available:
https://www.ndss- symposium.org/ndss2015/upgrading-https-mid-air-
empirical-study-strict-transport-security-and-key-pinning

[23] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP is dead,
long live csp! on the insecurity of whitelists and the future of content
security policy,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, Eds. ACM, 2016, pp. 1376–1387. [Online]. Available:
https://doi.org/10.1145/2976749.2978363

[24] S. Calzavara, H. Jonker, B. Krumnow, and A. Rabitti, “Measuring web
session security at scale,” Comput. Secur., vol. 111, p. 102472, 2021.
[Online]. Available: https://doi.org/10.1016/j.cose.2021.102472

[25] CodeQL, “CodeQL built-in query for CSRF protection weakened or
disabled,” https://codeql.github.com/codeql-query-help/python/py-csrf-
protection-disabled/, 2025.

[26] Django Software Foundation, “Django Secret Key,” https :
//docs.djangoproject.com/en/5.0/ref/settings/#secret-key, 2005.

[27] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, P. Ning, P. F. Syverson,
and S. Jha, Eds. ACM, 2008, pp. 75–88. [Online]. Available:
https://doi.org/10.1145/1455770.1455782

[28] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei,
“Mitch: A machine learning approach to the black-box detection
of CSRF vulnerabilities,” in IEEE European Symposium on Security
and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019.
IEEE, 2019, pp. 528–543. [Online]. Available: https://doi.org/10.1109/
EuroSP.2019.00045

[29] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas,
L. Bauer, N. Christin, L. F. Cranor, and J. C. López, “Guess again
(and again and again): Measuring password strength by simulating
password-cracking algorithms,” in IEEE Symposium on Security and
Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA.
IEEE Computer Society, 2012, pp. 523–537. [Online]. Available:
https://doi.org/10.1109/SP.2012.38

[30] S. Alroomi and F. Li, “Measuring website password creation policies
at scale,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen,
Denmark, November 26-30, 2023, W. Meng, C. D. Jensen, C. Cremers,
and E. Kirda, Eds. ACM, 2023, pp. 3108–3122. [Online]. Available:
https://doi.org/10.1145/3576915.3623156

[31] NIST, “Digital Identity Guidelines,” https://pages.nist.gov/800-63-3/
sp800-63b.html, 2023.

[32] OWASP, “Password Storage - OWASP Cheat Sheet Series,”
cheatsheetseries.owasp.org / cheatsheets / Password Storage Cheat
Sheet.html, 2025.

[33] Werkzeug, “Werkzeug,” https://werkzeug.palletsprojects.com/en/3.0.x/,
2007.

[34] ——, “Werkzeug changed default password hasher,” https : / /
werkzeug.palletsprojects.com/en/3.0.x/changes/#version-3-0-0, 2023.

[35] ——, “Werkzeug default password hasher settings,”
https : / / werkzeug.palletsprojects.com / en / 3.0.x / utils /
#werkzeug.security.generate password hash, 2023.

https://doi.org/10.1145/3038923
https://doi.org/10.1145/3372297.3417869
https://doi.org/10.1145/1982185.1982511
https://doi.org/10.1109/EuroSP.2017.45
https://doi.org/10.1007/978-3-030-29962-0_29
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/README
https://codeql.github.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://github.com/Asterius27/BTC-paper-artifacts
https://github.com/Asterius27/BTC-paper-artifacts
https://doi.org/10.1145/3133956.3133959
https://www.usenix.org/conference/usenixsecurity21/presentation/khodayari
https://www.usenix.org/conference/usenixsecurity21/presentation/khodayari
https://bitnami.com/
https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina
https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://doi.org/10.1007/978-3-642-19125-1_7
https://doi.org/10.3233/JCS-150529
https://www.ndss-symposium.org/ndss2015/upgrading-https-mid-air-empirical-study-strict-transport-security-and-key-pinning
https://www.ndss-symposium.org/ndss2015/upgrading-https-mid-air-empirical-study-strict-transport-security-and-key-pinning
https://doi.org/10.1145/2976749.2978363
https://doi.org/10.1016/j.cose.2021.102472
https://codeql.github.com/codeql-query-help/python/py-csrf-protection-disabled/
https://codeql.github.com/codeql-query-help/python/py-csrf-protection-disabled/
https://docs.djangoproject.com/en/5.0/ref/settings/#secret-key
https://docs.djangoproject.com/en/5.0/ref/settings/#secret-key
https://doi.org/10.1145/1455770.1455782
https://doi.org/10.1109/EuroSP.2019.00045
https://doi.org/10.1109/EuroSP.2019.00045
https://doi.org/10.1109/SP.2012.38
https://doi.org/10.1145/3576915.3623156
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://werkzeug.palletsprojects.com/en/3.0.x/
https://werkzeug.palletsprojects.com/en/3.0.x/changes/#version-3-0-0
https://werkzeug.palletsprojects.com/en/3.0.x/changes/#version-3-0-0
https://werkzeug.palletsprojects.com/en/3.0.x/utils/#werkzeug.security.generate_password_hash
https://werkzeug.palletsprojects.com/en/3.0.x/utils/#werkzeug.security.generate_password_hash


[36] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from
github: methods, datasets and limitations,” in Proceedings of the
13th International Conference on Mining Software Repositories, MSR
2016, Austin, TX, USA, May 14-22, 2016, M. Kim, R. Robbes,
and C. Bird, Eds. ACM, 2016, pp. 137–141. [Online]. Available:
https://doi.org/10.1145/2901739.2901776

[37] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in 9th IEEE Working Conference of Mining Software Repositories, MSR
2012, June 2-3, 2012, Zurich, Switzerland, M. Lanza, M. D. Penta,
and T. Xie, Eds. IEEE Computer Society, 2012, pp. 12–21. [Online].
Available: https://doi.org/10.1109/MSR.2012.6224294

[38] Ilya Grigorik, “GH Archive,” https://www.gharchive.org/, 2022.
[39] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: a language

and infrastructure for analyzing ultra-large-scale software repositories,”
in 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C.
Cheng, and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 422–431.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606588

[40] D. Spadini, M. F. Aniche, and A. Bacchelli, “Pydriller: Python
framework for mining software repositories,” in Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, G. T. Leavens, A. Garcia, and C. S. Pasareanu, Eds.
ACM, 2018, pp. 908–911. [Online]. Available: https://doi.org/10.1145/
3236024.3264598

[41] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on github,” in IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering, SANER 2017,
Klagenfurt, Austria, February 20-24, 2017, M. Pinzger, G. Bavota, and
A. Marcus, Eds. IEEE Computer Society, 2017, pp. 13–23. [Online].
Available: https://doi.org/10.1109/SANER.2017.7884605

[42] Simon Koch, David Klein, and Martin Johns, “The Fault in Our Stars:
An Analysis of GitHub Stars as an Importance Metric for Web Source
Code,” in Workshop on Measurements, Attacks, and Defenses for the
Web (MADWeb) 2024, 2024.

[43] E. Wittern, A. Cha, J. C. Davis, G. Baudart, and L. Mandel, “An Empir-
ical Study of GraphQL Schemas,” in Service-Oriented Computing, ser.
Lecture Notes in Computer Science, S. Yangui, I. Bouassida Rodriguez,
K. Drira, and Z. Tari, Eds. Springer International Publishing, 2019, pp.
3–19.

[44] X. Li and Y. Xue, “A survey on server-side approaches to securing
web applications,” ACM Comput. Surv., vol. 46, no. 4, pp. 54:1–54:29,
2014. [Online]. Available: https://doi.org/10.1145/2541315

[45] A. Czeskis, A. Moshchuk, T. Kohno, and H. J. Wang, “Lightweight
server support for browser-based CSRF protection,” in 22nd
International World Wide Web Conference, WWW ’13, Rio de
Janeiro, Brazil, May 13-17, 2013, D. Schwabe, V. A. F. Almeida,
H. Glaser, R. Baeza-Yates, and S. B. Moon, Eds. International
World Wide Web Conferences Steering Committee / ACM, 2013, pp.
273–284. [Online]. Available: https://doi.org/10.1145/2488388.2488413

[46] P. D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen, “Csfire:
Transparent client-side mitigation of malicious cross-domain requests,”
in Engineering Secure Software and Systems, Second International
Symposium, ESSoS 2010, Pisa, Italy, February 3-4, 2010. Proceedings,
ser. Lecture Notes in Computer Science, F. Massacci, D. S. Wallach,
and N. Zannone, Eds., vol. 5965. Springer, 2010, pp. 18–34. [Online].
Available: https://doi.org/10.1007/978-3-642-11747-3 2

[47] Soheil Khodayari and Giancarlo Pellegrino, “The state of the samesite:
Studying the usage, effectiveness, and adequacy of samesite cookies,”
in 43rd IEEE Symposium on Security and Privacy, SP 2022, San
Francisco, CA, USA, May 22-26, 2022. IEEE, 2022, pp. 1590–1607.
[Online]. Available: https://doi.org/10.1109/SP46214.2022.9833637

[48] NLTK Team, “Natural Language Toolkit,” https://www.nltk.org/, 2024.
[49] Luxembourg House of Cybersecurity, “MOSP,” https://github.com/NC3-

LU/MOSP, 2024.
[50] Obico Team, “Obico Server,” https://github.com/TheSpaghettiDetective/

obico-server, 2025.
[51] Samuel Clay, “NewsBlur,” https://github.com/samuelclay/NewsBlur,

2025.
[52] Cédric Bonhomme, “Freshermeat,” https://github.com/cedricbonhomme/

freshermeat, 2025.
[53] princenyeche, “BOP,” https://github.com/princenyeche/BOP, 2024.

[54] S. Bozzolan, S. Calzavara, F. Hantke, and B. Stock, “Obico Server
GitHub issue,” https://github.com/TheSpaghettiDetective/obico-server/
issues/990, 2024.

[55] ——, “Freshermeat GitHub Issue,” https://github.com/cedricbonhomme/
freshermeat/issues/48, 2024.

[56] ——, “MOSP GitHub Issue,” https : / /github.com/NC3- LU/MOSP/
issues/79, 2024.

APPENDIX

A. Post-Processing Details

We randomly sampled 100 repositories and manually la-
beled them as web applications or not. Two independent
researchers performed the labeling and resolved disagreements
by consensus, identifying only 42 web applications, highlight-
ing the initial dataset’s low quality. To reduce false positives
and improve representativeness, we evaluated two approaches:

• NLP with filtering: we translate repository descrip-
tions and metadata into English, tokenize them with
NLTK [48], and apply manually curated allowlists and
blocklists to identify web applications. These lists, avail-
able online [10], were built through manual analysis of
previously studied repositories.

• GPT-based labeling: we instruct ChatGPT about our
definition of a web application, and ask it to classify
repositories based on their README files, using the
following prompt: “You are my web application checker.
A web application is something one could host on their
server. It is not the application framework itself, not a
library, not a CTF challenge, not a tutorial code and not
a cheatsheet. You are given a README file. Return a
JSON containing the answer yes if it belongs to a web
application or no if not. The JSON must also contain a
textual justification of your answer”.

In both cases, if the README file and the repository’s tex-
tual description are not present, then we assign that repository
to the negative class.

We evaluated both approaches on a manually curated ground
truth of 100 repositories, randomly sampled outside the NLP
model’s training set. The confusion matrices are shown in
Table II and Table III. The NLP-based method misses more
web applications (27) but achieves higher precision (77% vs.
66%) with fewer false positives (10 vs. 30). ChatGPT, instead,
tends to overpredict the positive class, sometimes failing to
classify repositories due to input limits, hence entries in the
table do not add up to 100. In addition, it requires costly API
access for large-scale labeling. Given our goal of building a
reliable dataset with minimal false positives, we opted for the
NLP-based approach.

B. Case Studies

1) Cryptographic Keys: MOSP [49] is a Flask-based plat-
form for creating, editing and sharing validated JSON objects
of any type. The application has 74 stars on GitHub, four
contributors and is actively maintained. MOSP can be self-
hosted or deployed on Heroku, includes documentation on
how to install it and runs with a hard-coded secret key. We
verified that this hard-coded secret key allows attackers to

https://doi.org/10.1145/2901739.2901776
https://doi.org/10.1109/MSR.2012.6224294
https://www.gharchive.org/
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1109/SANER.2017.7884605
https://doi.org/10.1145/2541315
https://doi.org/10.1145/2488388.2488413
https://doi.org/10.1007/978-3-642-11747-3_2
https://doi.org/10.1109/SP46214.2022.9833637
https://www.nltk.org/
https://github.com/NC3-LU/MOSP
https://github.com/NC3-LU/MOSP
https://github.com/TheSpaghettiDetective/obico-server
https://github.com/TheSpaghettiDetective/obico-server
https://github.com/samuelclay/NewsBlur
https://github.com/cedricbonhomme/freshermeat
https://github.com/cedricbonhomme/freshermeat
https://github.com/princenyeche/BOP
https://github.com/TheSpaghettiDetective/obico-server/issues/990
https://github.com/TheSpaghettiDetective/obico-server/issues/990
https://github.com/cedricbonhomme/freshermeat/issues/48
https://github.com/cedricbonhomme/freshermeat/issues/48
https://github.com/NC3-LU/MOSP/issues/79
https://github.com/NC3-LU/MOSP/issues/79


TABLE II: Confusion matrix of the NLP approach.

Predicted Class
Positive Negative

Actual Class Positive 33 27
Negative 10 30

TABLE III: Confusion matrix of ChatGPT.

Predicted Class
Positive Negative

Actual Class Positive 57 3
Negative 30 8

forge valid user sessions in our local instance. Notably, the
MOSP documentation does not contain any information on
how to update the secret key, nor warn the users of potential
security risks, irrespective of the chosen deployment option.
Hence, users of MOSP will not be aware of the severe security
issues associated with secret key reuse, unless they are Flask
developers themselves and check the source code of the web
application.

Obico Server [50] is a community-driven 3D printing plat-
form developed with Django. It has 1.4k stars on GitHub, more
than 70 contributors, and is actively maintained and hosted
online. If no DJANGO_SECRET_KEY environment variable
is set, the server falls back to the default secret key, which
is hard-coded in the settings.py file. The documentation
mentions changing the secret key via the environment variable,
yet the step is optional and only hinted at on the configurations
page, not the installation guide itself. Based on a manual
analysis of Obico, we identified several points in the source
code where the secret key is used, including the generation of
hashes to protect uploaded media files. This hash, calculated
from the file’s URL path and the secret key, is used as an
access control mechanism for the uploaded media item by
validating the hash for every item. However, if an attacker
were able to obtain the secret key, they could generate hashes
granting access to media files that were supposed to be private.

2) Cross-Site Request Forgery (CSRF): NewsBlur [51]
is a news reader with social elements implemented in
Django. It has 6.8k stars on GitHub, 90 collaborators
and is actively maintained. NewsBlur deactivates Django’s
CsrfViewMiddleware component and resorts to CSRF
protection on individual forms. Our analysis identified a few
sensitive views requiring authentication and writing into the
database without being protected against CSRF. For example,
the add_site_authed view subscribes the user to a given
URL. By mounting a CSRF attack against this view, the
attacker may force a target user of NewsBlur to automatically
subscribe to a feed chosen by the attacker. The attack works
despite the adoption of lax same-site cookies in Django,
because it is implemented on top of a GET request, hence
protection is bypassed upon form submission.

Freshermeat [52] is an open-source software directory and
release tracker written in Flask. The application uses the
FlaskForm class to protect specific functionality against
CSRF, but does not implement protection on all the sensitive

views. For example, the delete_user view is extremely
dangerous, because it allows users with admin privileges to
delete any user of the application, yet it is not protected against
CSRF. The reason for this lack of protection is that the HTTP
request asking for account deletion is not triggered by a form
submission, but it is a simple GET request where the user to
be deleted is passed in the query string.

As another example, BOP [53] is a bulk operation app
for Jira written in Flask and with more than 1,700 installs
according to the Atlassian marketplace. It suffers from a
similar security issue as the previous application. Indeed,
we verified in our own Jira instance that the sensitive view
account_delete is not protected against CSRF. Triggering
this functionality requires a POST request, but BOP does
not activate same-site cookies, meaning that the CSRF attack
would work on any browser without automated CSRF mitiga-
tion such as Firefox.

C. Responsible Disclosure

Our analysis mostly identifies potentially insecure program-
ming practices that might enable concrete and dangerous
attacks, but require additional investigation to be confirmed
as vulnerabilities. For example, a hard-coded secret key may
be updated by site operators before installation and sensitive
views lacking CSRF protection might actually be intended
due to specific use cases of the web applications, such as
the implementation of REST APIs. The examples reported in
Appendix B show that exploitation is certainly possible, but
understanding the actual security implications of our findings
would require a careful case-by-case analysis, which would be
difficult to carry out at scale.

In the end, we decided to notify developers of our findings
when we explicitly mentioned their applications in the paper,
and for all the cases of hard-coded secret keys in Flask
applications, as these can easily lead to impersonation attacks.
Below is a summary of the responses we have received from
the developers at the time of writing, along with references to
the corresponding GitHub issues, where available:

• Obico Server [50], [54]: Upon reporting this issue, de-
velopers admitted the problem but argued their tool is a
local-only server, which means the user is responsible for
ensuring security on their own.

• Freshermeat [52], [55]: The developers of this application
admitted the issue stating that they relied on the default
Flask-WTF security against CSRF (which did not help in
this case). They plan to adjust the code according to our
recommendations and extend the patch to other projects
they develop.

• BOP [53]: For this application as well, the developers
acknowledged the issue upon reporting. However, they
stated this issue only occurs in the free version of their
application, and they have decided to accept the risk.

• For the reported hard-coded secret keys, we also saw a
number of positive comments and fixes in the code [56].


	Introduction
	Background
	Dataset Construction
	Initial Dataset
	Dataset Post-Processing

	White-Box Analysis Methodology
	Analysis Scope
	Queries and Dataset

	Session Management
	Cryptographic Keys
	CodeQL Queries
	Analysis Results

	Cross-Site Request Forgery (CSRF)
	CodeQL Queries
	Analysis Results

	Session Protection
	CodeQL Queries
	Analysis Results


	Account Creation
	Password Policies
	CodeQL Queries
	Analysis Results

	Password Hashing
	CodeQL Queries
	Analysis Results


	Discussion
	Main Take-Aways
	Limitations

	Related Work
	Dataset Construction
	Web Session Security

	Conclusion
	References
	Appendix
	Post-Processing Details
	Case Studies
	Cryptographic Keys
	Cross-Site Request Forgery (CSRF)

	Responsible Disclosure


