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Abstract—Over the years, browsers have adopted an ever-
increasing number of client-enforced security policies deployed
through HTTP headers. Such mechanisms are fundamental for
web application security, and usually deployed on a per-page basis.
This, however, enables inconsistencies, as different pages within
the same security boundaries (in form of origins or sites) can
express conflicting security requirements. In this paper, we formal-
ize inconsistencies for cookie security attributes, CSP, and HSTS,
and then quantify the magnitude and impact of inconsistencies at
scale by crawling 15,000 popular sites. We show that numerous
sites endanger their own security by omission or misconfiguration
of the aforementioned mechanisms, which lead to unnecessary
exposure to XSS, cookie theft, and HSTS deactivation. We then
use our data to analyse to which extent the recent Origin Policy
proposal can fix the problem of inconsistencies. Unfortunately, we
conclude that the current Origin Policy design suffers from major
shortcomings which limit its practical applicability to address
security inconsistencies while catering to the need of real-world
sites. Based on these insights, we propose Site Policy, designed to
overcome Origin Policy’s shortcomings and make any insecurity
explicit. We make a prototype implementation of Site Policy
publicly available, along with a supporting toolchain for initial
policy generation, security analysis, and test deployment.

I. INTRODUCTION

Web applications are the key access point to a plethora of
online services which we use daily. However, they are also
notoriously hard to secure, given the increasing amount and
complexity of involved technologies [34]. Browsers implement
an ever-increasing amount of server-specified, yet client-
enforced, security policies to support secure Web application
development. These policies are typically deployed through
HTTP headers. Prominent examples of such security policies
include cookie security attributes [21], Content Security Policy
(CSP) [40], and HTTP Strict Transport Security (HSTS) [14].
Modern Web applications cannot be deemed secure unless such
mechanisms are set up and correctly configured.

A key problem of existing client-side security policies is
that they build on top of an extremely fine-grained enforcement
model. Header-based security policies like CSP work at
the granularity of individual HTTP responses, i.e., different
pages within the security boundary of the same origin can
deploy different security policies. While such expressiveness is
sometimes useful in practice — since site operators might want

to fine-tune security policies on different pages for generic
reasons — this threatens their sites’ security by allowing for
inconsistencies.

To assess the dangers of such fine-grained configuration,
our paper starts from an intuitive definition of inconsistent
policy, a general notion formalizing the dangers coming from
the different adoption of the same security mechanism on
different pages. Based on our definition, we analyze real-world
security policies collected by crawling 15,000 popular sites
and quantify inconsistencies at scale. Our analysis highlights
several dangerous or potentially insecure practices, providing
the first experimental evidence of the need for site-wide security
policies in the wild. In particular, we show that inconsistencies
might harm the expected guarantees of cookies activating
specific security attributes, introduce CSP loopholes enabling
script injection on apparently secure sites, and entirely disable
protection on HSTS-enabled sites.

Naturally, inconsistencies leading to security issues can
be rectified by deploying an origin-wide (or even site-wide)
policy on all pages. The Origin Policy (OP) mechanism has
been recently proposed specifically for this task, towards saving
bandwidth in header communication and mitigating the risk of
deploying incorrect security policies on some pages, e.g., error
pages [10]. However, OP is not yet implemented in commercial
browsers and only received limited attention by the security
community so far [36]. Based on the insights of our real-world
measurement, we show that the identified inconsistencies can
be mitigated by OP only to a very limited extent: the “single
policy per origin” model advocated by OP does not match the
expectations of real sites, which sometimes deploy multiple
policies on the same origin. For example, we observe that
10% of the origins that we crawled deploy more than one
CSP. Even worse, we show that the origin boundary of OP
is insufficient to fix inconsistencies, e.g., 81% of the sites
deploy HSTS inconsistently, yet cannot take advantage of OP
to rectify this issue. Finally, we identify thousands of cases
where inconsistencies are introduced by the omission of security
headers. While we can only make educated guesses on whether
such omissions are intended, their amount and security impact is
concerning enough to question the header-based, opt-in security
model of OP.

Based on our analysis, we propose Site Policy (SP), which
is designed to implement robust countermeasures to the issues
we identified and overcome the limitations of Origin Policy. SP
provides support for multiple policies within the same origin
and also allows for fixing inconsistencies across the whole site,
while proposing an opt-out model for security exceptions, thus
making any insecurity explicit. At the same time, SP centralizes
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a site’s entire security concept within a single manifest, which is
amenable for automated security analysis. We make a prototype
implementation of SP publicly available [8] to experiment with,
along with a security analyzer and a policy aggregator designed
to help site operators move to SP.

Contributions: To sum up, we contribute as follows:

1) We propose a general notion of inconsistent policy and
present its practical application to a set of popular client-
side security mechanisms (Section III);

2) We crawl the Tranco top 15,000 sites to quantify inconsis-
tencies at scale. Our analysis shows that different types of
inconsistencies arise in a significant fraction of the sites,
potentially leading to major security threats (Section IV);

3) We use the collected data to question the effectiveness
of the current OP proposal in different directions. This
insight is important since OP is not yet implemented in
commercial Web browsers; hence this is the right time to
analyze and improve its design (Section V);

4) We propose Site Policy (SP) to address the shortcomings
of OP for providing consistent levels of security on Web
applications. We make a prototype implementation of SP
publicly available, along with a supporting toolchain, to
experiment with (Section VI).

II. BACKGROUND AND PROBLEM SPACE

Our work aims to analyze the inconsistent usage of security
mechanisms in the wild, particularly concerning cases where
inconsistencies cause a security issue, and propose solutions.
We use the term inconsistency to denote that a security
mechanism is configured with different security levels within
the same security boundary: Section III provides a precise
formal definition, yet here we provide intuitive examples of
inconsistencies to motivate our research.

A. Preliminaries

We start by introducing key terminology. First, we denote
as a site a registerable domain (also called eTLD+1), like
example.com or bbc.co.uk. Each site may have different
subdomains, e.g., www.example.com, which can be hosted
via HTTP or HTTPS, and on differing ports. The combination
of protocol, subdomain (or hostname), and port constitutes an
origin as defined by RFC 6454 [3]. One of the key security
mechanisms on the Web is the well-known Same-Origin Policy
(SOP), which ensures two pages with different origins are not
allowed to access each other (e.g., through JavaScript). We use
the term page when referring to an individual HTML document
hosted at some URL. We denote as security boundaries an origin
(for JavaScript and host-only cookies) as well as a site (for
domain-bound cookies and HSTS).

In this paper, we are concerned about inconsistencies in the
use of three core security mechanisms: cookie security attributes,
CSP, and HSTS. These are supposed to be uniformly used
across pages, which makes it easy to identify inconsistencies
on a large scale: this is obvious by design for cookie security
attributes and HSTS, while for CSP a recent study estimates
that 85 % of the sites deploy the same CSP of their landing page
on all pages [28]. More importantly, these mechanisms have
been designed with clear threat models in mind, which means

that one can rigorously reason about the security implications
of inconsistencies.

B. Cookie Security Attributes

The HTTP protocol is stateless and the solution to allow for
state over HTTP are cookies [2]. Cookies are small pieces of
text communicated via an HTTP header or set via JavaScript,
which map a key to a value and have optional attributes. Once
set, they are stored by the browser and sent to the server in
each request that matches the cookie’s scope. This scope is
defined by the hostname a cookie is associated with and the
request path. It is important to note that any cookie set with an
explicit Domain attribute is valid for all subdomains of that
domain. As an example, if a cookie is set as key=value;
Path=/mail; Domain=example.com, it is sent with all
requests to any subdomain of (and including) example.com,
but only if the requested path is prefixed with /mail. We
refer to cookies with the Domain attribute as domain cookies,
while the others are referred to as host-only cookies.

As cookies are the primary means of managing sessions
and other sensitive, client-side persisted information, they come
with three important security attributes. HttpOnly ensures that
cookies are not accessible from JavaScript (to disallow cookie
theft through malicious JavaScript). Cookies can be flagged
as Secure, meaning they must not be sent in unencrypted
HTTP requests. The latest addition to the set of attributes is
called SameSite, which is meant to protect against Cross-Site
Request Forgery (CSRF) attacks. If this is set to lax, cookies
are only sent on cross-site requests when the main frame is
navigated in a safe way (e.g., through a GET request, not
through POST). In case of strict, cookies are never sent
across sites.

Each of the security attributes protects cookies from a
particular type of threat (JavaScript-based cookie stealing,
network sniffing, and CSRF attacks). Hence, whenever the
same cookie is set with different security attributes on different
pages, there is an inconsistency in protection. While we cannot
ascertain if the cookie needed protection in the first place, the
developer’s intent indicates a certain level of protection, i.e., the
strictest set of security attributes found for the cookie. Note
that browsers overwrite the attributes when the same cookie
is set multiple times. As an example, if a page sets a session
cookie as both HttpOnly and Secure, but another page sets
the same cookie just as Secure, the cookie will be exposed to
JavaScript after visiting the second page, allowing an attacker
to steal it from any page which can access it. Hence, to ensure
the security of cookies against the outlined attacks, all the
cookie setting operations need to consistently use the same
security attributes. Note that, although the omission of a security
attribute might be intentional, it is nevertheless dangerous. For
example, an XSS in a page setting the HttpOnly attribute
on a cookie can be used to steal the cookie from an XSS-free
same-origin page that does not set the attribute (using frames
or popups).

C. Content Security Policy

Content Security Policy (CSP) [33] is a security mechanism
originally aimed at mitigating the severe dangers of Cross-Site
Scripting (XSS) attacks. While CSP nowadays has numerous
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ingredients to control content inclusion, restrict framing, or
enforce TLS [40], we focus here on its original goal, namely
XSS mitigation. In essence, a CSP is meant to ensure that only
resources explicitly allowed by the developer of a page can be
included therein. This is achieved by binding directives of the
form type-src to a set of allowed sources, which can be as
specific as a full URL or as unspecific as https://*. Script
execution can also be controlled by allowing only script tags
with a valid nonce attribute or matching a given hash.

Deploying a CSP with a script-src (or alternatively a
default-src) directive implicitly disables a page’s ability
to run inline scripts, inline event handlers, and string-to-code
transformation functions like eval. These can be allowed
by specifying the 'unsafe-inline' or 'unsafe-eval'
keywords, respectively. When 'unsafe-inline' is used in
combination with nonces / hashes, it is disregarded by modern
browsers. Moreover, to support dynamic inclusion of scripts,
scripts with a valid nonce can propagate trust to included scripts
via the 'strict-dynamic' keyword. This keyword voids
any allowed hosts for script inclusion, forcing the exclusive
use of nonces / hashes to control scripts.

As CSP is a client-side defense mechanism, it needs to be
communicated to the browser. This is either done through the
Content-Security-Policy HTTP header, or in a meta
tag with the corresponding http-equiv. Since prior work
has shown that such meta tags are rarely used in practice [28],
we omit these from our inconsistency analysis.

Securely configuring CSP is not a trivial task, as evidenced
by multiple studies highlighting the insecurity of deployed
CSPs [28, 5, 38, 39]. For example, configuring an allowlist
which contains the entire HTTPS scheme or allows arbitrary
inline scripts through 'unsafe-inline' (without nonces
or hashes) is obviously unsafe, as the attacker can inject any
script content. A notable issue of CSP is that, although it is
enforced on a per-page basis, most browser assets (e.g., the
Local Storage) are protected on a per-origin basis according to
SOP: this means that even a single page with an unsafe CSP
(or without CSP) might fully undermine a Web application’s
security, since the attacker could get scripting capabilities in
the application’s origin through that single page. Hence, any
injection vulnerability on the page would grant access to same-
origin content, e.g., cookies, Web storage, and the DOM; also,
the attacker would be in the position to exfiltrate server-side
secrets using XHR. Based on this, we stipulate that inconsistent
adoption of CSP occurs when some pages deploy safe CSPs,
while other pages do not.

D. HTTP Strict Transport Security

Even though the Web further progresses towards full usage
of transport layer encryption through TLS, browsers do not yet
forcefully upgrade all connections to HTTPS to avoid breakage.
This introduces the danger of attackers who force a victim’s
browser to make a request towards the HTTP version of a site,
allowing the attacker to freely manipulate the shown content,
e.g., to attempt phishing, or to sniff cookies which are not
marked Secure.

To allow operators to force HTTPS on their sites, HTTP
Strict Transport Security (HSTS) [14] can be used. In particular,
once set for a specific HTTPS host and until the max-age

value contained in the header is reached, any connection towards
that host is automatically upgraded to HTTPS by the browser.
Optionally, HSTS can specify the includeSubDomains
option, which extends protection to all the subdomains of the
host setting the security header. This is important to defend
against attackers who could otherwise forge cookies from HTTP
subdomains and to prevent the exfiltration of domain cookies
lacking the Secure attribute.

There are two potential inconsistencies in HSTS deployment
with dangerous security implications: omitting the header or
setting it with a non-positive value of max-age on some
pages. Omitting the header is dangerous because it might mean
that HSTS is sometimes not activated, particularly when no
HSTS-protected page on the same host or a parent domain
(in case of includeSubDomains) was visited. Even worse,
setting the value of max-age to a non-positive value effectively
disables HSTS for that host. Importantly, browsers implement
this such that a potential entry for the host is dropped, rather
than storing the opt-out. Hence, if the parent domain sets
includeSubDomains, while the host itself sets max-age
to 0, HTTP connections to the host are allowed until the parent
is visited again, enforcing HTTPS for all its children.

III. FORMALIZING INCONSISTENCIES

For all of the aforementioned security mechanisms, incon-
sistencies can cause severe security problems. In this section,
we make this intuition more precise by formalizing a general
notion of inconsistent policy to capture the dangers arising
from using the same security mechanism at different security
levels. We then show how this definition can be applied to the
security mechanisms considered in our paper, which is useful
to automate security analyses at scale. In particular, the Web
measurement in Section IV utilizes the proposed inconsistency
checks on policies collected from real-world sites.

A. Inconsistent Policies

In our formal model, we represent sites via a set of objects
which require protection, e.g., cookies, and a set of authorities
which declare security restrictions, e.g., Web pages. Security
restrictions are modeled using security labels, which are a
standard tool in access control and information flow control [20].
Therefore, we define a policy as follows:

Definition 1 (Policy). A policy P = (O,A,L, {ρa}a∈A) is a
tuple comprising:

• a set of objects O requiring protection;

• a set of authorities A predicating over O;

• a set of security labels L;

• a partial function ρa : O → L for each a ∈ A, whose
domain models the set of objects controlled by a.

To exemplify the definition at work, consider a simple
access control scenario where a file f is owned by two parties
a and b. In this scenario, we have O = {f} and A = {a, b}.
Assuming that files can be either public (⊥) or private (>),
we can model their confidentiality by defining L = {⊥,>}. If
both a and b agree that f should be private, we let dom(ρa) =
dom(ρb) = {f} and ρa(f) = ρb(f) = >.
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Given our notion of policy, the definition of inconsistency
is very intuitive. Specifically, inconsistencies arise when two
authorities specify different security restrictions on the same
object. In our example, inconsistency would happen for instance
if we had ρa(f) = ⊥ and ρb(f) = >, meaning that a requires
f to be public and b requires f to be private. Accordingly, our
definition of inconsistent policy is as follows:

Definition 2 (Inconsistency). P = (O,A,L, {ρa}a∈A) is
inconsistent iff there exist an object o ∈ O and two authorities
a, b ∈ A such that o ∈ dom(ρa)∩dom(ρb) and ρa(o) 6= ρb(o).

This model is useful to reason on the secure deployment of
client-side security policies on the Web since we explained that
such policies are normally expressed through HTTP headers,
meaning that different pages might express conflicting security
requirements on the same object.

B. Applications

We now apply our formal framework to different security
mechanisms where inconsistencies actually lead to significant
security dangers. For each mechanism, we explain such dangers
and present their formalization in our framework.

1) Cookies: Cookies can be protected against various attacks
through appropriate security attributes. Unfortunately, since
multiple pages can set the same cookie on the same site,
different pages may assign different security attributes to it.
This is a problem because it means that the security guarantees
of a cookie depend on the page which set it, which might
be exploited by a clever attacker to downgrade security. For
example, a Secure cookie might be incorrectly set without
the Secure attribute in some pages, which might downgrade
confidentiality against network attackers.

We can capture these security problems by means of the
following definition:

Definition 3 (Inconsistent Cookie Security). The site s uses
cookie security attributes inconsistently if and only if the
following policy (O,A,L, {ρa}a∈A) is inconsistent:

• O includes the set of cookies ci collected at s. Each ci is
uniquely identified by a triple including its name, domain
and path in accordance with RFC 6265 [2];

• A includes all the pages at s, since any page of the site
can set a cookie for it, possibly by setting the Domain
attribute to a parent domain;

• L includes all the sets which can be built from
these elements: HttpOnly, Secure, SameSite=lax,
SameSite=strict;

• For any a ∈ A, we let dom(ρa) be the set of the cookies
set by a and, for all cookies ci ∈ dom(ρa), we let ρa(ci)
be the set of the security attributes of ci given by a.

The definition captures that inconsistencies might arise when
some security attribute is occasionally missed on a cookie or
the SameSite attribute is configured with different options
(lax vs strict) on the same cookie.

2) Content Security Policy: CSP can be configured to greatly
mitigate the dangers of XSS by forbidding the injection of
malicious JavaScript. For example, previous work proposed a
definition of safe CSP as a minimal baseline to rule out trivial
XSS attacks [5]. We update it here to account for the addition
of the 'strict-dynamic' keyword to CSP:

Definition 4 (Safe CSP). A CSP is safe if and only if it contains
a script-src directive (or a default-src directive in
its absence) bound to a value v satisfying both the following
conditions:

1) v does not contain the 'unsafe-inline' keyword,
unless nonces or hashes are also present in v;

2) v does not contain the wildcard * or any full scheme
from the following: http:, https:, data:, unless
'strict-dynamic' is also present in v.

Clause 1 rules out the injection of inline scripts and event
handlers, while clause 2 ensures that script tags are subject
to meaningful restrictions on what they can load. To properly
protect an origin against XSS, all pages therein should be
protected with safe CSPs. Otherwise, the protection offered by
the SOP could be voided by attacking an unprotected page.

We thus capture the threats occurring from the use of safe
CSPs on some pages, but not others, as follows:

Definition 5 (Inconsistent CSP). The origin o uses CSP incon-
sistently if and only if the following policy (O,A,L, {ρa}a∈A)
is inconsistent:

• O includes a single object, i.e., the origin o itself. This
uniformly models all the browser assets protected by the
SOP, like the local storage and the DOM;

• A includes all the pages at o, since any such page can
provide a different CSP;

• L = {⊥,>} discriminates unsafe and safe CSPs;

• For any a ∈ A, we let dom(ρa) = {o}. We then have
ρa(o) = > when a enforces a safe CSP, while ρa(o) = ⊥
otherwise. Note that the latter also covers the case where
a does not enforce any CSP.

For example, let o be an origin with two pages A = {a, b},
where a deploys a safe CSP like script-src 'self',
while b does not enforce any CSP. This CSP adoption would
be inconsistent because ρa(o) = >, while ρb(o) = ⊥. Indeed,
an XSS at b would allow the attacker to access the local storage
of o, no matter what a does.

3) HTTP Strict Transport Security: Hosts can activate
HSTS protection on a per-domain basis, possibly extending
it to subdomains through the includeSubDomains option.
Defining the consistency of HSTS adoption is tricky since
inconsistencies might arise within the same origin or across
origins with the same parent domain. We thus split the analysis
into two cases.

We start by discussing the consistency of HSTS for one
origin. The key problem here is that, since HSTS is configured
at the page level, two pages hosted on the same origin can
specify conflicting policies, which can severely harm security,
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e.g., by having max-age set to 0 on one page and max-age
greater than 0 on the other one. Similarly, site operators might
just forget HSTS headers on some pages, leaving such pages
unprotected when they are accessed before HSTS is activated.
We can capture these potential security issues through the
following definition:1

Definition 6 (Origin-Inconsistent HSTS). The origin o uses
HSTS inconsistently if and only if the following policy
(O,A,L, {ρa}a∈A) is inconsistent:

• O includes a single object, i.e., the origin o itself. This
formalizes that HSTS provides protection for the entire
origin;

• A includes all the pages of o, since any such page can
provide a different HSTS policy;

• L = {⊥,>} discriminates between disabled and enabled
HSTS protection. By “enabled” we mean that HSTS is
activated with a max-age greater than 0, i.e., we abstract
from the duration of protection;

• For any a ∈ A, we let dom(ρa) = {o}. We then have
ρa(o) = > when a provides an HSTS policy with the
max-age attribute set to a positive value and ρa(da) = ⊥
otherwise.

A subtler form of inconsistency which crosses the origin
boundary occurs when the includeSubDomains option is
not appropriately used: we recommend here the best practice
of activating this option on the root domain to ensure the
confidentiality and the integrity of domain cookies, as well
as to protect new subdomains which might be created in the
future. This suffices to enforce consistent protection across the
whole site, unless a subdomain explicitly disables HSTS by
setting it with max-age set to a non-positive value. This leads
to the following more complicated definition:

Definition 7 (Site-Inconsistent HSTS). The site s uses
HSTS inconsistently if and only if the following policy
(O,A,L, {ρa}a∈A) is inconsistent:

• O is the set of all the subdomains of s plus its root domain,
since HSTS protection is enforced on a per-domain basis;

• A includes all the pages of s, since any such page can
provide a different HSTS policy;

• L = {⊥,>} discriminates between disabled and enabled
HSTS protection. By “enabled” we mean that HSTS is
activated with a max-age greater than 0, i.e., we abstract
from the duration of protection;

• For any a ∈ A, let da stand for the domain where a is
hosted: we let dom(ρa) = O when da is the root domain
of s, otherwise dom(ρa) = {da}. If da is the root domain
of s, we let ρa(di) = > for all di ∈ O when a provides
an HSTS policy with the max-age attribute set to a
positive value and the includeSubDomains option,
while ρa(di) = ⊥ otherwise. If da is not the root domain
of s, we let ρa(da) = ⊥ when a provides an HSTS policy
with the max-age attribute set to non-positive value,
while ρa(da) = > otherwise.

1For HSTS, the terms “origin” and “host” can be used interchangeably
(assuming HTTPS is served on port 443), since HSTS is only valid on HTTPS.

Observe that the two definitions are independent. HSTS
can be consistently deployed within a site which contains an
origin where HSTS is inconsistently deployed, for instance
when includeSubDomains is set on the root domain and
max-age is never set to 0, yet some pages do not use HSTS.
Conversely, HSTS can be consistently deployed within all
origins of a site, yet be inconsistently deployed at the site, e.g.,
when includeSubDomains is not set on the root domain.
However, both definitions are useful from a security perspective.
Site-inconsistent HSTS leaves some subdomains unprotected,
which might also harm the confidentiality and the integrity of
domain cookies. However, site-consistent HSTS is only secure
in practice under the assumption that the user actually visits
the root domain to activate the includeSubDomains option.
Site operators can enforce this by including explicit requests
to the root domain in all pages, which is, however, error-prone.
Using origin-consistent HSTS everywhere is thus recommended
to mitigate the risks connected to failures in contacting the root
domain during navigation.

IV. REAL-WORLD INCONSISTENCIES

After establishing a formal framework to precisely define
inconsistencies in Section III, we now want to understand
how many inconsistencies occur in the wild. For this reason,
we perform a large-scale Web measurement where we apply
the inconsistency checks defined in our formal framework to
policies collected from existing sites. We first discuss the data
collection process and then present our findings, investigating
their main security implications. We responsibly disclosed our
findings to the operators of all sites mentioned in this section.

A. Dataset Construction

We performed our data collection with the OpenWPM [11]
framework in Q1 2020 (03/24–04/15) from a single IP address
belonging to CISPA in Germany. In particular, we crawled
the top 15,000 sites that do not belong to the same entity,
i.e., different second-level domain, based on the Tranco top
1M ranking [16] generated on 02/24/2020 (ID: PWYJ).2 The
number of analyzed sites is limited compared to other Web
measurements, e.g., [11], since, due to the nature of our
experiments, we have to scale our analysis vertically, i.e., crawl
many pages of the same site. Naturally, our insights are limited
by the same problems affecting the majority of large-scale
measurements. The used browser instances are not logged
into any site, nor do they interact with any site other than by
following links. Therefore, we might miss pages of a site that
are only accessible when logged in or after the user performs a
specific state-sensitive task. Furthermore, our automated crawler
might be detected by a page, which might then show different
content than for real user visits.

We used OpenWPM to browse each site on our list, based
on the following strategy. First, we access the homepage, collect
all same-site links and group them by origin. Then we navigate
all links and recursively repeat the process until we collect
up to 300 first-party links to each identified origin or exhaust
the links to visit. Finally, we access all yet unvisited links to
collect their policies. We limit our analysis to 300 pages, as
previous work showed that this amount of pages provides a

2Available at https://tranco-list.eu/list/PWYJ.
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TABLE I: Overview of cookie security results

overall usage inconsistent usage
# cookies # sites # cookies # sites

Host-only cookies 65,601 7,329 — —
At least one attribute 27,698 5,726 880 (3%) 429 (7%)
- HttpOnly 20,915 5,116 502 (2%) 223 (4%)
- Secure 17,220 4,175 590 (3%) 225 (5%)
- SameSite 1,678 867 250 (15%) 160 (18%)

Domain cookies 27,991 5,851 — —
At least one attribute 14,888 4,740 666 (4%) 258 (5%)
- HttpOnly 10,572 4,327 154 (1%) 103 (2%)
- Secure 9,397 3,140 298 (3%) 168 (5%)
- SameSite 2,651 2,209 409 (15%) 101 (5%)

All cookies 93,592 8,883 — —
At least one attribute 42,586 7,541 1,546 (4%) 642 (9%)
- HttpOnly 31,487 7,014 656 (2%) 319 (5%)
- Secure 26,617 5,594 888 (3%) 369 (7%)
- SameSite 4,329 2,867 659 (15%) 248 (9%)

sufficient overview of a site’s behavior [35]. We drop origins
for which we identified less than five pages, as the high chance
of a lack of inconsistencies would bias our analysis.

Our data collection relies on a stateless crawler, i.e., we
load a fresh browser instance on each page visit. This allows
us to force the server to set fresh cookies on each visit, which
maximizes the ability to detect inconsistent uses of security
attributes on the same cookie. To apply our formal framework
to the collected dataset, we extract and parse the three client-
side security policies of interest: cookie security attributes,
CSP, and HSTS. We also normalize the collected policies
to ignore the order of policy elements and capitalization, as
well as to replace dynamically generated CSP nonces with
fixed placeholders. Note that while cookies can also be set via
JavaScript, we focus exclusively on mechanisms communicated
via HTTP headers.

Overall, our crawler successfully loaded URLs from 12,352
(82%) sites. We attribute this difference to the fact that some of
the sites on the top list are not meant to be visited in a browser
(e.g., APIs endpoints), some service providers exclude users
from the EU due to legal reasons (i.e., the GDPR), some sites
provided empty pages (e.g., CDNs), or could not be reached
within a timeout of 120 seconds. In total, our crawler loaded
14,094,544 URLs (both as the main page as well as frames)
spread across 149,671 origins. Removing from our dataset all
URLs that belong to an origin with less than 5 visited URLs,
we are left with 13,369,750 URLs across 39,967 origins. These
origins belong to a total of 10,878 different sites. We now
apply the formal framework from Section III to the collected
data and identify inconsistencies at scale.

B. Cookie Security Inconsistencies

Overall, we collected 93,592 first-party cookies, including
62,601 host-only cookies and 27,991 domain cookies, set from
8,883 sites. This means that 1,995 (18%) sites did not set any
first-party cookie, which might sound surprising, but can be
attributed to the presence of GDPR banners which require users
to click through. Table I presents an overview of the results of
our cookie analysis, which we discuss in the following.

We observe that 42,586 (46%) cookies set at least one
security attribute, leading to 7,541 sites (85% of sites using

cookies) which make use of security attributes. The most
widely used security attribute is HttpOnly on 31,487 (34%)
cookies, followed by Secure on 26,617 (28%) cookies, while
the relatively recent SameSite is only deployed on 4,329
(5%) cookies. SameSite was used in 353 (8%) cases with
the strict option, while the other 3,982 (92%) cases used
the lax option. Notably, we observed a number of cases
where cookie security attributes were used inconsistently (see
Section III-B1). In particular, focusing on the set of cookies
and sites where security attributes have sometimes been used,
we identified inconsistencies in 1,546 (4%) cookies from
642 (9%) sites. Hence, although most cookies use security
attributes consistently, the amount of sites where cookie security
attributes are set inconsistently at least once is not negligible.
Inconsistencies occurred in 880 (3%) host-only cookies from
429 (7%) sites and 666 (4%) domain cookies from 258 (5%)
sites. All three security attributes seem to be inconsistently
used in the wild: we identified 656 (2%) inconsistent uses
of HttpOnly, 888 (3%) inconsistent uses of Secure and
659 (15%) inconsistent uses of SameSite. As to the latter
attribute, 653 inconsistencies came from the omission of the
attribute, while only 6 inconsistencies were due to conflicting
options (strict vs lax). We believe that the higher number
of inconsistencies in the use of the SameSite attribute
comes from the relatively recent introduction of this defense
mechanism, whose thorough deployment on existing sites has
likely been somewhat complex. Moreover, we observe that
domain cookies are inconsistently protected slightly more often
than host-only cookies in terms of relative numbers. Notably,
recall that domain cookies might be set on different subdomains,
hence they present larger room for inconsistencies: in particular,
we observe that 379 (49%) inconsistencies on domain cookies
were introduced by different origins on 78 sites. In the following,
we present case studies for each of the attributes.

Inconsistent HttpOnly: On verizonwireless.com,
we identified an inconsistent protection of cookie
AMAuthCookie, which is used for authentication purposes.
The cookie was set with the HttpOnly attribute on 19 pages
and without the attribute in 11 pages. An attacker who identifies
an XSS vulnerability on the site might inject JavaScript code
to steal the cookie unless CSP is configured to mitigate XSS.
While the pages we crawled included a CSP, none of them
mitigates XSS attacks. We also discovered inconsistent usage
of HttpOnly for several ASP.NET_SessionId cookies,
e.g., on law.com and starbucks.com. Notably, neither of
them deploys a CSP, making cookie theft trivial to an attacker
who finds an XSS anywhere within the respective origin.

Inconsistent Secure: On asana.com, we found an incon-
sistent protection of cookie xsrf_token, which is used to
protect against CSRF attacks. In particular, the site used the
Secure flag inconsistently, meaning that the cookie might
be leaked over HTTP. This means that a network attacker
can sniff the value of the anti-CSRF token and then perform
CSRF attacks. Another interesting example is imdb.com.
Their session cookie is set to non-Secure on the start page, but
set to Secure on all pages under /videoembed. Manually
investigating this, we found that visiting /videoembed with
an existing session cookie leads to the server not setting any
cookie. However, having a Secure session cookie and visiting
the start page, we received a fresh copy of the cookie without
the Secure attribute, which would expose the cookie in clear.
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TABLE II: Number of different CSPs per origin and site

1 2 3 4 > 4

CSPs per origin 4,424 (90%) 330 (7%) 70 (1%) 29 (1%) 43 (1%)
XSS mitigation 1,566 (85%) 174 (9%) 43 (2%) 28 (2%) 35 (2%)

CSPs per site 2,022 (73%) 476 (17%) 134 (5%) 49 (2%) 77 (3%)
XSS mitigation 818 (73%) 183 (16%) 46 (4%) 27 (2%) 55 (5%)

TABLE III: Overview of CSP results

# origins across sites

Deploy CSP at least once 4,896 2,758
May use CSP for XSS mitigation 1,846 1,129
Yet only have unsafe CSPs 1,413 895

Have at least one safe CSP 433 293
Have safe CSPs on all pages 233 171

Inconsistent CSP adoption 200 141
- missing CSP header at least once 162 119
- have both safe and unsafe CSPs 60 44

- usage of 'unsafe-inline' 59 43
- allowing entire schemes 40 25

We believe this to be attributed to different applications running
within the same origin.

Inconsistent SameSite: On webteb.com, we found an
inconsistent protection of cookie ASP.NET_SessionId,
which is used for session management. The cookie was some-
times set with the SameSite=lax attribute and sometimes
without such attribute. This is concerning because the site might
be vulnerable against CSRF on some browsers. In particular,
while Google Chrome is experimenting with the automated
activation of SameSite=lax on all cookies, other browsers
like Mozilla Firefox are not doing that, meaning that the
omission must be considered a security issue. Other instances
of such inconsistencies include kitapyurdu.com, a Turkish
online book store, as well as eastdane.com, a clothing
online store, that provide inconsistent SameSite attributes.
These are of particular interest, given that they both feature
a login and features to buy items, making them prime targets
for CSRF or clickjacking attacks. Both these attacks are in the
specific threat model mitigated through SameSite cookies.

C. CSP Inconsistencies

Our analysis of CSP is exclusively based on HTML
documents, as the use of CSP for script restriction is only
meaningful for documents that can run scripts. Therefore, in the
following, we report on those URLs that returned a content type
of text/html, which amount to 13,058,387 pages on 39,255
origins from 10,852 sites. In our experiment, 4,896 (12%)
origins across 2,758 (25%) sites made use of CSP on at least
one page. Table II shows the number of different CSPs found
on individual origins and sites, including those which attempt
to mitigate XSS, i.e., those which use the script-src or the
default-src directives. It turns out that 90% of all analyzed
origins that deploy CSP just make use of a single policy, while
the same holds true for 73% of sites (a site might use different
CSPs on different origins). However, that also indicates that
around 10% of origins use multiple policies, exacerbating room
for inconsistencies.

Table III summarizes the key numbers computed for our
CSP analysis. Overall, we observe that CSP could potentially
be used for XSS mitigation on 1,846 (5%) origins from 1,129
(10%) sites. Remarkably, only 433 (1%) origins on 293 (3%)
sites deploy at least one safe CSP, which is in line with previous
work which observed that most CSPs in the wild do not properly
mitigate XSS [5, 38, 39, 28]. Out of these security-savvy cases,
only 233 (54%) origins across 171 sites make consistent use
of safe CSPs across all of their pages. In contrast, 200 (46%)
origins across 141 sites having at least one safe CSP deploy
CSP inconsistently, i.e., deploy safe CSPs only on a subset of
their pages (see Section III-B2). This is interesting, because
configuring CSP correctly is far from trivial [28], hence site
operators spend significant effort to mitigate the impact of
XSS on some pages, yet introduce potential loopholes on other
pages. Analyzing why inconsistencies arise, we observe that
162 (81%) origins deploy a safe CSP at least once, but do
not ship any CSP header in some other page. As to the other
cases, we note that 60 (30%) origins deploy safe CSPs on some
pages, yet ship unsafe CSPs on others. In all but one case,
this insecurity is caused by the 'unsafe-inline' keyword,
which was included in 59 origins. Additionally, in 40 cases
operators allowed an entire scheme (possibly via the wildcard
*). Note, given the overlapping conditions, the numbers do not
sum up to the expected totals.

Google Docs: In analyzing the dataset for origins that have
inconsistent protection, we discovered that Google Docs was
among those. Further investigation highlighted an interesting
insight: the inconsistency was caused by a missing header
for HTML-rendered spreadsheets. However, all scripts in that
spreadsheet had a randomized nonce attached. Hence, while the
page itself apparently generated the necessary nonce, no policy
was sent to the client. Overall, we found 315 pages under
https://docs.google.com/spreadsheet to suffer
from this problem. It is interesting to note, though, that our
crawler loaded an additional 12 pages from /spreadsheet
as well; these, however, were properly protected. Further-
more, 1,246 pages under the same origin, yet different paths
(e.g., forms, viewer, presentations), also were properly protected
by CSP. However, given that we could find pages without a
CSP in that origin, any protection of CSP may be completely
undermined in presence of XSS vulnerabilities.

HackerOne: A second example is HackerOne, a widely-
used platform to disclose vulnerabilities. Most of the pages we
crawled under https://hackerone.com delivered either
a CSP that restricts scripts to their own origin as well as Google
Analytics, or one that allowed certain scripts through hashes.
While the latter contains 'unsafe-inline', the option is
invalid for modern browsers in the presence of hashes. The
only exception to these rules were pages under /resources,
which carried no CSP at all. Judging from the type of content,
namely searchable eBooks and articles, these pages seem to
be running a different application underneath. Disclosing this,
however, we got feedback that the lack of CSP was out of
scope for them, and rather an issue of best practices. It must
be noted, though, that this decision puts into question having
any CSP, as the lack of a policy on any page in an origin may
undermine the security guarantees provided through CSP.
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TABLE IV: HSTS inconsistencies per origin

# origins across sites

Deploy HSTS on at least one page 14,112 5,352

Origin-inconsistent usage 2,323 1,731
non-positive max-age on at least one page 637 415
missing HSTS header on at least one page 1,810 1,465

D. HSTS Inconsistencies

Overall, we identified 14,112 (35%) origins on 5,352
(49%) sites which activated HSTS on at least one page. As
discussed in Section III-B3, we consider two types of HSTS
inconsistencies, in particular origin-inconsistent (Definition 6)
and site-inconsistent (Definition 7) HSTS. Table IV shows the
result for origin-inconsistent cases. We find that out of the
14,112 origins with HSTS on at least one page, 2,323 (16%)
have inconsistencies. On 1,810 (78%) origins, this is caused
by a missing header. While this is problematic when a URL
with missing header is visited before any HSTS-protected URL
in the origin, a more dangerous practice is exhibited by 637
(27%) origins where at least one page sets max-age to a
non-positive value, thus deactivating HSTS for the entire origin.
This means in particular that HSTS deactivation can be forced
by a network attacker.

To assess cases of site-inconsistency, we need to conduct
two additional steps. As per Definition 7, to be consistent, a
site must set HSTS with includeSubDomains for its root,
and no subdomain of the site must have a page that disables
HSTS. Since most of the sites we visited during crawling
redirected us to a subdomain (mostly to www.site.com),
our crawl data does not necessarily contain HSTS headers for
the root domains. To alleviate that, for all domains for which
we had not visited the start page in the root domain, we instead
visited https://site.com and collected the HSTS header
for that request. If the request failed, we marked that site as not
having HSTS on the root. Also, since HSTS is known to be a
trust-on-first-use mechanism, browsers come equipped with the
so-called HSTS preload list [13]. We downloaded the list from
the Chromium Github repository [9], parsed it, and flagged
those sites which were listed with includeSubDomains. By
combining these two sources of information, we get reliable
evidence about the adoption of HSTS on the root domains.

Table V shows an overview of our results. We find that of
the 5,352 sites which deploy HSTS somewhere, 4,351 (81%) do
so inconsistently. For all but 31 cases this is due to the absence
of the includeSubDomains option on the root domain (as
discussed above). In addition, 415 (10%) sites are susceptible
to HSTS deactivation on at least one subdomain, due to the use
of a non-positive value of max-age somewhere. We further

TABLE V: HSTS inconsistencies per site

# sites with HSTS
# sites on all subdomains

Deploy HSTS on at least one page 5,352 1,028

Site-inconsistent usage 4,351 718
non-positive max-age on at least one page 415 84
no includeSubDomains on the root 4,320 706

wanted to understand if this could be an explicit choice, i.e., site
operators only wanted to use HTTPS on certain subdomains, but
not all. To that end, we filtered the results by those sites which
have more than one subdomain, and where all subdomains
set HSTS on at least one page, giving a set of sites run by
operators committed to full HTTPS deployment. Overall, these
amount to 1,028 sites. Unfortunately, even out of those more
vigilant sites, 718 (70%) did not deploy HSTS consistently,
again primarily caused by the lack of includeSubDomains
in their root.

Wired: One of the vulnerable cases we discovered was
wired.com, which had a max-age set to 0 on certain pages.
We disclosed this issue and the feedback from the developers
was initially of surprise. Working with them, we discovered
that only URLs under /coupons had set this max-age value.
Based on both the layout and content of the page, we again
believe this to be a separate application under the same origin
as the rest of wired.com. As we show in the following, this
not only had implications on the connection security, but could
also lead to cookie leakage through lacking Secure attributes.

Cookie Leakage Through HSTS Inconsistencies: To further
understand the security implications of inconsistent HSTS
adoption, we performed an analysis to estimate the number
of cookies which can be exposed in the clear against network
attackers. We thus focus on non-Secure cookies, which
however are set on pages that have deployed HSTS, i.e., that
rely on HSTS to protect their cookies rather than the Secure
attribute. Specifically, we identify three categories of cookies
at danger on HSTS-enabled sites:

1) Host-only cookies set by a page that correctly deploys
HSTS, yet another page on the same origin has configured
max-age to a non-positive value. The attacker can
exfiltrate these cookies after forcing HSTS deactivation.

2) Domain cookies bound to domains such that HSTS is not
activated with includeSubDomains for the domain
itself, nor at least one of its parents. The attacker can steal
these cookies by forcing HTTP requests to a non-existing
subdomain (of the set Domain value). Since during our
analysis we might not have visited all existing parents,
we resort to live checking of the unseen parents.

3) Domain cookies bound to domains such that any of their
subdomains deactivates HSTS through a non-positive value
of max-age. After HSTS deactivation, these cookies
can be leaked by forcing the victim to visit the now
downgraded HTTP subdomain.

For the first case, we find 17 affected origins on 17 sites.
Among these cases, two prime examples are the cookies _-
session_id on wired.com and cookie_session1 on
bankmellat.ir. Both cookies seem to be related to session
management and are thus security-sensitive.

As to the second category, we find that a number of pages
across 1,712 sites set domain cookies without Secure, while
deploying HSTS with a positive max-age. There, we iden-
tify 1,254 sites affected by lacking includeSubDomains
on the cookie’s domain or any of its parents. Examples
include audible.com (for which the session-token
cookie can be leaked), rentalcars.com (JSESSIONID),
and alipay.com (ALIPAYJSESSIONID). In addition, we
found 19 sites which leak a CSRF token in this fashion.
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Finally, for the third category, we discover that 54 sites
are affected. One example is taobao.com, which sets the
cookie _tb_token_ as a domain cookie for .taobao.com.
However, several pages under world.taobao.com set
max-age=0, thereby enabling leakage of the cookie.

Overall, we conclude that 1,783 sites risk exposing cookies
in the clear due to inconsistencies in their HSTS configuration.
This is 33% of all the sites that activate HSTS on at least one
page, highlighting the significance of the presented threats in
the wild.

E. Summary

Our Web measurement showed that inconsistencies in the
configuration of client-side security mechanisms frequently
occur in the wild. This is caused by the fact that client-side
security mechanisms are normally set by individual pages, but
affect entire origins or even sites. Inconsistencies in the use
of cookie security attributes are limited in terms of absolute
numbers (4% of all cookies), yet the amount of sites where we
can find at least one such inconsistency is not negligible (9%).
In particular, the amount of inconsistent uses of the relatively
recent SameSite attribute is quite frequent (15%), which
suggests that keeping cookie security attributes consistent across
the whole site is not straightforward in general. The picture is
even worse when looking at more complex security mechanisms
like CSP and HSTS. We observed that 46% of the origins
which use CSP for XSS mitigation do it inconsistently, thus
voiding or severely harming the benefits of protection. HSTS
is inconsistently deployed on 16% of origins (see Definition 6)
and on 81% of sites (see Definition 7). This might lead to
security issues like lack of HSTS activation, forceful HSTS
deactivation by network attackers, and cookie leakage, as we
could highlight through our empirical analysis. In particular,
we showed that 33% of all the sites that activate HSTS might
leak cookies in clear due to its inconsistent use.

V. ORIGIN POLICY TO THE RESCUE?

As our measurement has shown, many sites on the Web
deploy security mechanisms inconsistently. Considering cookies,
we find that 642 sites have conflicting security attributes for
the same cookie. Moreover, while CSP is known to be hard to
securely deploy in practice, 200 out of 433 origins deploying
at least one safe CSP have inconsistencies, with the majority
(162) being caused by omitted headers. We find omissions to
be the major contributor to HSTS inconsistencies as well (on
1,810 out of 2,323 inconsistent origins). All of these issues
are caused by the fact that security mechanisms are deployed
on a per-page basis. One approach to enforce security policies
on a per-origin basis rather than on a per-page basis is the
W3C proposal of an Origin Policy (OP) [10], formerly known
as Origin Manifest. This proposal attempts to address two
main issues caused by the need to repeat the same policy on
all pages within an origin: waste of bandwidth and potential
security flaws introduced by missing headers, typos, and other
issues coming from the need to explicitly enforce security on
every page. While we do not discuss the impact of conserving
bandwidth here, we nevertheless aim to determine if OP can
address the inconsistency issues we discovered in the wild.

1 {
2 "ids": ["policy-1"],
3 "content_security": {
4 "policies": ["script-src 'self'

https://cdn.example.com"]↪→

5 }
6 }

Fig. 1: Example of an Origin Policy defining an origin-wide CSP.

A. Specification of an Origin Policy

OP enables the definition of an origin-wide security policy
stored at a well-known location.3 This policy is roughly a
dictionary binding a set of client-side security policies to an
identifier. Clients download the origin policy manifest, cache
it, and enforce the (cached) security policies bound to the
identifier set in the Origin-Policy header of individual
pages. Figure 1 shows an example of such a manifest. It
defines the policy called policy-1, which includes an
origin-wide CSP; such policy is uniformly applied to all
pages which set the Origin-Policy header to the value
allowed=("policy-1"). Since real-world CSPs can be
much longer and complex than the one in our example, this
is useful to save bandwidth and reduce room for errors. If the
policy ever needs to be updated, the site operator can change its
content, update its identifier (e.g., to policy-2) and set the
header to the new identifier. It is important to note that while
the identifier seemingly indicates it might be used as a selector
for some specific policy, it is just a serial number. That is, the
browser can check whether, for a given header, the policy with
that key is cached. If some policy with a different identifier
is cached, this is dropped and replaced with the new origin
policy. In the current specification, Origin Policy supports CSP
and Feature Policy, although support for HSTS is discussed in
its Github issue tracker [25].

B. Applicability of Origin Policy in the Wild

OP supports the definition of a single origin-wide security
policy. Exceptions to such policy can be implemented in two
ways: (i) omitting the Origin-Policy header in specific
pages, so as to (possibly) replace the origin policy with new
custom policies, or (ii) keeping the Origin-Policy header
and combining it with additional security headers, so as to refine
its baseline guarantees. For example, when a page uses multiple
CSPs, all of them are simultaneously enforced according to
the OP specification [10].

Next, we evaluate the applicability and potential security
benefits of OP in the wild based on real-world data collected
in Section IV. Since OP does not support HSTS and cookie
security attributes at the time being, we generalize its design
to these mechanisms in the expected way. In particular, we
assume that OP is extended to enforce a single origin-wide
HSTS policy and a single origin-wide set of security attributes
for individual cookies.

1) Cookie Security Attributes: Our measurement identified
1,546 cookies on 642 sites with inconsistent security attributes.
We cannot ascertain for sure whether these inconsistencies
are intended or not, but we expect the large majority of

3/.well-known/origin-policy
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them to be oversights since site operators plausibly put a
given attribute on a cookie for good reasons. These security
issues would be fixed if site operators used OP to enforce
the union of their attributes on these cookies, privileging
SameSite=strict over SameSite=lax in the presence
of conflicting configurations. While this approach would likely
work for host-only cookies, it might not generalize to domain
cookies, since the same domain cookie can be set by different
subdomains, hence crossing the origin boundary advocated by
OP. In particular, we identified 379 domain cookies on 78 sites
where two distinct origins introduced inconsistencies. These
inconsistencies would not be fixed by OP unless all origins
that set the same cookie agreed on its security attributes within
the respective origin policies, which is error-prone and requires
careful vetting of the Web application.

2) CSP: Our measurement identified 472 origins that deploy
more than one single CSP and, hence, cannot take immediate
advantage of OP. In particular, site operators might deploy
the most frequently used policy as a single origin-wide CSP,
but would be forced to explicitly code exceptions on several
pages, e.g., by dropping the Origin-Policy header and by
supplying appropriate CSPs where needed. This would force
site operators to repeat the same CSPs unerringly on a subset
of pages, which does not solve the key security issue which OP
tries to address. On a related note, we also identified 162 origins
which deploy safe CSPs on some pages, but do not use CSP on
other pages. These constitute a significant fraction of the 433
origins that try to deploy a safe CSP at least once (37%). While
OP supports this practice by omitting the Origin-Policy
header, this is dangerous and it is worth noting that header
omissions might be intended or unintended. We cannot ascertain
whether missing CSP headers in our dataset are intended or
not. Nevertheless, it is fair to assume that site operators might
accidentally forget security headers somewhere, including the
Origin-Policy header. Given how widespread this practice
is, we argue that OP does not provide sufficient countermeasures
against this threat.

3) HSTS: Recall our analysis builds on two notions of
inconsistency for HSTS, i.e., origin-inconsistency and site-
inconsistency. Our measurement identified inconsistent HSTS
adoption on 2,323 origins. Inconsistencies have been introduced
by missing headers in 1,810 cases, which are very likely
oversights, considered that even a single page with HSTS
could already activate the security mechanism on the entire
origin. These security issues would be fixed if site operators
used OP to enforce a single HSTS with the maximum value
of max-age collected across all pages on the origin, possibly
coding explicit exceptions whenever needed. However, we
also observed that 4,351 sites deploy HSTS inconsistently,
which amounts to 81% of the sites which use HSTS. Most
notably, these issues are due to the lack of adoption of the
includeSubDomains option on the root domain (4,320
cases). These inconsistencies would not be fixed by OP, since
they cross the origin boundary: in particular, we have already
discussed that using HSTS consistently within all origins does
not suffice to deploy HSTS consistently within a site.

C. Limitations of Origin Policy

Based on the results of our analysis, we argue that the
current OP design has three main limitations:

1) Single Policy Support: OP only supports a single policy
per origin, excluding outdated cached policies. Though
exceptions can be implemented as explained, extensive
adoption of exceptions essentially voids the benefits of OP.
Specifically, our data show that a non-negligible amount
of origins do not enforce a single policy with few well-
defined exceptions, but rather deploy a small set of policies
reused on different sets of pages. OP does not support
this design.

2) Cross-Origin Inconsistencies: OP does not include tools
to fix cross-origin inconsistencies. Though this is not yet
a problem for the current OP proposal, this issue would
become important if OP evolved to be a collector of client-
side policies beyond CSP and Feature Policy, as it seems
to be [25, 36]. In particular, our data indicate that many
inconsistencies in the use of HSTS and cookie security
attributes are indeed cross-origin, which suggests that the
origin boundary is not appropriate to fix them.

3) Implicit Security Exceptions: simply omitting the
Origin-Policy header in specific pages is useful to
implement exceptions to the origin policy, yet this practice
is a dangerous way to relax security since it comes with the
implicit assumption that the header omission is deliberate.
Clearly, we have no rigorous way to assess whether the
many header omissions we found in the wild were intended
or not. However, mechanisms such as HSTS, which are
meant to be enforced origin/site-wide, require explicit opt-
out; hence not having the header has differing effects, as it
depends on what URLs on the same origin/site the browser
visited before. Hence, we believe it to be likely that the
lack of the header is an unintended omissio and we think it
is fair to assume that unintended header omissions would
also occur for the Origin-Policy header. On a related
note, new subdomains created on a site are insecure by
default until their OP is specified and enforced.

VI. PROPOSAL: SITE POLICY

As our measurement has shown, Web sites often suffer
from inconsistencies in their security mechanisms. Based on
our observations, we believe that in several cases, different
applications operate under the same origin or site. Hence, the
Web server merely acts as a reverse proxy, and each application
sends its own (in)secure headers. As we have shown before,
Origin Policy by itself cannot address this, especially the
omission of headers. To solve the limitations of OP described
in Section V, we propose a novel solution to address OP’s
shortcomings. We call this proposal Site Policy (SP), and we
detail it in the following. We also discuss the security benefits
of SP and report on a prototype implementation, which we
make publicly available to experiment with [8].

A. Overview

Similarly to OP, SP relies on a centralized manifest
for policy specification (stored at https://site.com/
.well-known/site-policy). SP is designed to help site
operators ensure that security policies are consistently used site-
wide and enjoy appropriate security guarantees. In particular,
SP has three key differences compared to OP:

1) Multiple Policy Support: SP acts as a centralized col-
lector of multiple policies. Each page can individually
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pick one of these policies by naming its corresponding
identifier in the Site-Policy header, similar to what
a page would do to pick a specific OP version using the
Origin-Policy header. Note the important difference
here: while OP includes multiple versions of the same
policy, applied origin-wide, SP offers a choice between
several available policies for different pages. This way, one
can enforce multiple policies from a fixed set on the same
origin without falling back to the traditional approach of
configuring security headers on individual pages, which
is too fine-grained and error-prone.

2) Site-Wide Policy Support: the SP manifest is located on the
root domain and can contain site-wide security policies,
which also cover subdomains. This means that SP goes
beyond the origin boundary: by defining site-wide security
policies, one can easily fix cross-origin inconsistencies like
those occurring for HSTS and cookie security attributes.

3) Explicit Security Exceptions: requests lacking a valid
Site-Policy header fall back to a default policy
applied on a per-domain basis, defining the intended
security guarantees. Hence, security exceptions must be
explicitly coded by choosing a policy that sacrifices
security. The key benefit is that site operators have tools
to opt-out from security where necessary, rather than
having to opt-in for security everywhere. Since the SP
manifest operates site-wide and mandates secure defaults,
new subdomains are automatically protected.

The combination of these features makes SP a framework
where all security inconsistencies on a site can be fixed by
design, while making insecurity explicit and easy to detect. We
now present SP in more detail and further elaborate on this.

B. Specification Details

Figure 2 shows the structure of an SP manifest. It contains
top-level entries for policy specification, which allow site opera-
tors to bind policies to identifiers. In particular, the policies
section (lines 53–69) defines three policies available on the site,
all of which include entries for CSP, HSTS and host-only cook-
ies. These entries can be filled with identifiers bound to policies
in sections csp-policies (lines 3–6), hsts-policies
(lines 7–17) and hostcookie-policies (lines 18–38),
respectively. Policies for domain cookies are defined in the
domaincookie-policies section (lines 39–52), while
default policies for different subdomains are given in the
default-policies section (lines 70–75).

The enforcement model of SP works as follows. Be-
fore making any request to a URL on a given site, the
browser determines if an SP manifest is available and, if so,
downloads and caches it. If a page sets the Site-Policy
header to a valid policy identifier from the policies
section, say policy_default, that policy is applied on
the page. If instead the header is omitted or contains an
invalid policy identifier, the matching algorithm iterates over
all the elements of default_policies, finds the policy
bound to the longest common suffix of the domain of the
page, and finally applies it. For example, if a page on
https://bar.foo.domain.com does not specify the
Site-Policy header, policy_default is applied to it,
since the longest common domain suffix is domain.com.
Each manifest must have a default policy for the root domain

1 {
2 "max-age": 3600,
3 "csp-policies": {
4 "empty": "",
5 "secure_csp": "script-src 'self'"
6 },
7 "hsts-policies": {
8 "empty": "",
9 "hsts1": {

10 "max-age": 63072000,
11 "includeSubDomains": false
12 },
13 "secure_hsts": {
14 "max-age": 31536000,
15 "includeSubDomains": true
16 }
17 },
18 "hostcookie-policies": {
19 "secure_hostcookies": {
20 "<default>": {
21 "secure": true,
22 "httponly": true,
23 "samesite": "lax"
24 }
25 },
26 "optout_session_cookie": {
27 "<default>": {
28 "secure": true,
29 "httponly": true,
30 "samesite": "lax"
31 },
32 "session": {
33 "secure": true,
34 "httponly": true,
35 "samesite": "None"
36 }
37 }
38 },
39 "domaincookie-policies": {
40 "domain.com": {
41 "<default>": {
42 "secure": true,
43 "httponly": true,
44 "samesite": "lax"
45 },
46 "CID": {
47 "secure": true,
48 "httponly": false,
49 "samesite": "lax"
50 }
51 }
52 },
53 "policies": {
54 "policy_default": {
55 "csp": "secure_csp",
56 "hsts": "secure_hsts",
57 "hostcookie": "secure_hostcookies"
58 },
59 "policy_optout": {
60 "csp": "empty",
61 "hsts": "empty",
62 "hostcookie": "secure_hostcookies"
63 },
64 "policy1": {
65 "csp": "secure_csp",
66 "hsts": "hsts1",
67 "hostcookie": "optout_session_cookie"
68 }
69 },
70 "default_policies": {
71 "domain.com": "policy_default",
72 "www.domain.com": "policy1",
73 "optout.domain.com": "policy_optout"
74 }
75 }

Fig. 2: Example of a Site Policy manifest
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where it is deployed, e.g., domain.com in the example, to
ensure a baseline security policy everywhere.

We now discuss additional details for the specific security
mechanisms which we consider in the paper. If SP was extended
to additional mechanisms, one would need to perform similar
considerations, yet the nature of SP would stay the same.

1) CSP: For CSP, the enforcement algorithm is aligned
with the Origin Policy proposal. In particular, this means that
any CSP chosen via the Site-Policy header is always
enforced, yet individual pages might also supply their own
CSPs using CSP headers or meta tags. When this happens,
all CSPs are simultaneously enforced as required by the CSP
specification [40]. CSP enforcement comes with a caveat with
respect to the usage of nonces, also shared with OP. As the
name suggests, a nonce should be used only once. Therefore,
we cannot specify a nonce in the SP manifest, as this would
be static. To alleviate this, we pick up on a proposal from
Google [19] for modified handling of nonces. In particular,
instead of having the server generate the nonce, which is
delivered to the client and enforced there, we propose that
the client generates a random nonce for each request and sends
it to the server via a request header (e.g., CSP-Nonce). The
server then adds this nonce to all inline scripts, and in its CSP
sets the ’nonce’ option, without mentioning the value of the
nonce. The CSP enforcement on the client then works as usual
but, instead of relying on a server-generated nonce, it uses the
one associated with the outgoing request. In this way, both SP
and OP can support nonces.

2) HSTS: When the HSTS header set on a page conflicts
with the HSTS settings chosen via the Site-Policy header,
SP enforces the HSTS policy with the longest max-age
among them, activating the includeSubDomains option
when at least one policy includes it. It is also worth noting
that SP may actually subsume the includeSubDomains
option, since its manifest file naturally supports the specification
of policies which apply to a set of subdomains. In our
example, all the subdomains of domain.com without an
explicit entry inherit the HSTS policy secure_hsts. This
is useful to simplify HSTS deployment, since activating the
includeSubDomains option correctly is far from straight-
forward: developers have to explicitly include a request to
the root domain in each page to appropriately ensure that the
option always covers all the subdomains of the site. Moreover,
embedding HSTS within SP also supports the ability of a
site to activate HSTS on all but one tree of subdomains,
which could be dangerous from a security perspective, yet
still desired by site operators to prevent breakage. For regular
HSTS, once includeSubDomains is set, all subdomains
will be accessible only via HTTPS. If the option is omitted,
instead, all subdomains without the header can be loaded over
HTTP. In our design, assuming optout.foo.domain.com
(and all of its children) are supposed to not have HSTS, we
simply add a default policy entry in the manifest for that domain
prefix and set its HSTS entry to the empty string.

3) Cookies: Regarding cookies, we generally distinguish
between host-only cookies and domain cookies. The former
are governed by entries from hostcookie-policies, as
selected by the policy specified in the Site-Policy header or
via a fallback to default policies in its absence, and the latter are
governed according to the longest suffix match of the Domain

attribute within entries of domaincookie-policies. In
the respective selected entry, we choose the attributes that
match the name of the cookies that should be set and resort
to the attributes of <default> if the name is not explicitly
mentioned. Note that when setting cookies, the application
can set other attributes in the Set-Cookie header as well.
In that case, SP enforces the union of the security attributes
in the manifest and the header. If the SameSite attribute is
set with conflicting options, the most restrictive one is taken.
Note that we exclude path matching from the policy selection
for simplicity and based on the observation that in the wild,
differing security policies for cookies on the same origin with
the same name, yet different paths, are rare. In particular, we
only found 36 such cases on 93,592 collected cookies.

To exemplify, assume https://www.domain.com/
sets a cookie called session with the Domain attribute set
to domain.com. Following our algorithm, we first pick the
entry for domain.com in the domaincookie-policies
entry. Since session is not explicitly mentioned, we resort
to the default specified in line 41 and apply the maximum
protection to this cookie. If, instead, this would be a host-only
cookie, we would first choose the default policy policy1
according to our policy matching algorithm and use the host
cookie policy defined in line 32. This would enforce that the
cookie is set with HttpOnly and Secure enabled, while
opting-out from the use of SameSite.

In line with our goal of making insecure deployments
explicit, we mandate that domain-cookie policies always have
an entry for the root domain as a fallback. Additionally,
all cookie policies must specify a <default> entry. By
construction, domain-cookie policies are not bound to single
policies, as their security considerations should be uniform
across the site.

4) Caching and Policy Updates: Similar to OP, the SP
manifest is not fetched on each HTTP request, but rather cached
in the browser. To support policy updates, we use a mandatory
max-age attribute in the SP manifest (see line 2 of Figure 2)
to express cache duration, rather than using a versioning system
like OP. We opt for this since SP enforces default policies on
pages lacking the Site-Policy header, meaning we cannot
rely on communicating versions as OP does.

We suggest site operators keep the value of max-age
relatively short, e.g., one hour. This ensures that policy updates
are propagated to all pages within a short time frame while
having only a very limited impact on performance, since the
SP manifest only needs to be fetched once per hour. If the
cache ever needs to be explicitly flushed before its expiration
for generic reasons, we propose introducing an option in the
Clear-Site-Data header [22] to clear the cached manifest.

C. Security Analysis

We designed SP to overcome the key limitations of OP,
based on our analysis of real-world sites. In particular, recall
that we identified: (i) 379 cookies on 78 sites which suffer
from cross-origin inconsistencies in the use of cookie attributes,
(ii) 472 origins which deploy different CSPs in different pages;
(iii) 4,351 sites which present cross-origin inconsistencies in
their HSTS deployment. All these cases are out of scope for OP,
yet the SP design supports them. We also identified thousands
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Fig. 3: Overview of our prototype toolchain

of inconsistencies due to missing security headers: in general,
we cannot tell whether these omissions are intended or not, yet
we can state with certainty that they are dangerous. SP forces
site operators to make deliberate omissions explicit by choosing
an insecure policy in the Site-Policy header. Unintended
omissions, instead, would fall back to explicit defaults, which
can provide useful security guarantees.

There is an important point to note. SP supports more use
cases than OP and can be leveraged to fix all the inconsistencies
within the same site, thus providing holistic protection over
it. However, fixing inconsistencies might lead to breaking
functionality, e.g., when a safe CSP is deployed on a page which
requires inline scripts. To support functionality, SP still supports
dangerous practices like using CSP inconsistently within the
same origin, which might be required when site operators
need to support unsafe inline scripts on a subset of the pages.
Nevertheless, SP has the distinctive advantage of centralizing
all security policies within the same manifest, which means
that one can draw meaningful security conclusions by statically
analyzing the manifest. We discuss examples below.

1) CSP: For CSP, one can conclude that XSS mitigation
is correctly put in place simply by checking that all CSPs
within the SP manifest are safe (Definition 4), which prevents
inconsistencies by definition. If some unsafe CSPs are found,
it is still possible to instruct site operators about the dangers
of using them on origins that enforce a safe CSP by default.
Checking this information in the manifest is straightforward.

2) HSTS: The SP manifest immediately clarifies the protec-
tion offered by HSTS across the site. In particular, it is possible
to detect whether HSTS is activated for any subdomain of the
site just by inspecting the SP manifest. If any policy does not
activate HSTS or sets max-age to a non-positive value, it is
possible to warn operators about the security risks of using
it on an origin which otherwise activates HSTS. SP makes it
straightforward to activate origin-consistent and site-consistent
HSTS. For the former, it suffices to activate HSTS in the default
policy of the origin to be protected, while for the latter, it is
enough to set HSTS in the default policy of the root domain.

3) Cookies: The SP manifest prevents inconsistencies in
the security attributes of domain cookies by design, since each
domain cookie matches exactly one entry of the SP manifest
(possibly a default one). SP is more liberal for host-only
cookies since a single entity owns those cookies, yet detecting
an insecure use of security attributes is straightforward. In
particular, it is possible to find the baseline security guarantees
of cookies by finding the intersection of their attributes for
all matches found in the available policies (picking lax over
strict when the SameSite attribute is set with conflicting
options). Note that, when the intersection is different from the
individual entries, an inconsistency might occur.

Furthermore, since the SP manifest includes information
about HSTS, we can also use it to reason about the necessity
of using the Secure attribute on cookies. In particular, the
Secure attribute is redundant in two cases: (i) for host-only
cookies, when HSTS is activated on the host; (ii) for domain
cookies, when the domain set in their Domain attribute and
all its children are protected with HSTS. This information is
readily available from the SP manifest, as explained above.

D. Prototype Implementation

We implemented a prototype toolchain to support a future
adoption of SP. Figure 3 shows an overview of the main com-
ponents. A site operator willing to adopt SP installs a Chrome
extension (SPCollector) and a Flask service (SPAggregator) on
their machine. When browsing the site, the extension monitors
responses for all relevant headers (currently: cookie, CSP, and
HSTS headers) and sends the collected information to the Flask
backend (1). Once the site has been navigated to the extent the
operator wants, they query SPAggregator to request the site
policy manifest (2). This manifest serves as the (potentially
insecure) starting point for their site policy, containing entries
for all observed security decisions, a list of URLs for which the
generated policies have to be deployed, and optionally warnings
about policy insecurity (3). Subsequently, the developer adapts
the policy, verifying it for security with the SPAnalyzer (4). In
parallel, the improved site policy is tested using the SPEnforcer
extension, allowing the developer to detect breakage (5). We
make our entire toolchain available for download [8].

1) SPCollector & SPAggregator: SPCollector is a simple
Chrome extension that records all the observed security headers
in HTTP responses and sends them to the SPAggregator. In
this component, we store all URLs and the observed headers
in a database. Once the user is done browsing the site, they
invoke the policy aggregation step, which combines all observed
policies into a single manifest. The aggregation acts as follows:

• For CSP, we first normalize all policies, i.e., rewrite nonces
to a fixed value (as our proposal operates on a modified
CSP implementation). Also, we parse and normalize all
HSTS policies, ignoring non-existent options.

• For cookies, we check which cookies violate our default se-
cure policy (HttpOnly; Secure; SameSite=lax)
and generate an entry in the policy for them. Recall that
we identify cookies disregarding the path for simplicity.
For conflicting sets of attributes for a cookie, we choose
the least restrictive one to avoid breakage and to expose
the possible insecurity directly in the manifest.

• Considering the observed headers, we generate combined
policies (CSP, HSTS, and cookie) as needed by the page.
So, assuming that we only ever observed the combination
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of CSP1/HSTS1 and CSP2/HSTS2, we would not generate
a policy for CSP1/HSTS2 (and vice-versa).

• If there are just one policy for CSP and one policy for
HSTS, we add an entry to the default-policies,
setting the default policy for the origin to the single
combination of the CSP, HSTS, and cookie policies.

• Besides, we generate a default policy for CSP, HSTS,
and cookies. Specifically, we set CSP to script-src
’none’, we activate HSTS with max-age=31536000
and includeSubDomains, and set all cookies to
HttpOnly; Secure; SameSite=lax. We set the
default policy for the entire domain to this strict combina-
tion. Assuming the developer deploys the correct selection
of Site-Policy headers where needed and navigated
enough pages to generate their default policies, this policy
will never be selected. Hence, it just serves as a secure
default to fall back to in case of forgotten headers.

• Apart from the JSON manifest, the aggregator also reports
a mapping from policies to URLs. This allows the site
operator to deploy appropriate Site-Policy headers
in their Web server without any breakage.

2) SPAnalyzer & SPEnforcer: SPAnalyzer is a Python script
implementing the security analyses described in Section VI-C.
Given an input SP manifest, SPAnalyzer provides a security
report about the state of XSS mitigation granted by CSP, the
extent of the HSTS deployment, and the security guarantees
of individual cookies. SPEnforcer is a Chrome extension using
the webRequest API to implement the SP specification in
Section VI-B. This is straightforward, since webRequest allows
one to intercept network traffic and modify security headers.

VII. RELATED WORK

All security mechanisms considered in the present paper
received attention from the security community. However,
as far as we know, no prior work studied the problem of
inconsistencies that we investigate.

Inconsistencies in Web Security: The study of incon-
sistencies in Web security has primarily focused on analyzing
bugs leading to different levels of protection across browsers.
Notably, previous work focused on incoherent implementations
of the SOP [30, 29], broken support for security mechanisms in
mobile browsers [17], and differing guarantees in clickjacking
protection [7]. Other papers also studied the inconsistent de-
ployment of HTTP headers between the desktop and the mobile
version of the same site [18, 37]. These works differ from the
present paper since we are not concerned about inconsistent
security across different browsers or across different variants of
the same site. Instead, we study the inconsistent adoption of the
same security mechanism across different pages of the same
site. This aspect is an orthogonal issue with major security
implications, yet so far overlooked by prior work.

CSP: The insecurity of the current CSP ecosystem has been
studied in several research papers, though mostly focusing on
CSPs collected from landing pages [5, 38, 6, 28]. A paper by
Somé et al. [32], which has interesting connections with our
work, discusses CSP violations due to the SOP. The authors
discuss the dangers of using iframes on CSP-enabled sites,
particularly when the framing document and the framed content
share the same origin, but one of them lacks CSP. This is a

specific kind of inconsistency in the use of CSP. They proposed
to fix this issue by deploying an origin-wide CSP. In comparison,
our analysis is more general since it detects inconsistencies
when some pages use a safe CSP, but some others in the same
origin do not. Under this condition, the presented attack can
still be performed when the attacker finds an injection on a
page lacking a safe CSP.

In addition to measuring CSP adoption and bypasses, Pan
et al. [26] proposed to automatically curate CSPs from observed
scripts. Similarly, Roth et al. [27] relied on automated CSP
generation through observed scripts to assess the dangers
of gadget-enabling libraries that are co-hosted with benign,
required JavaScript. Eriksson and Sabelfeld [12] proposed Au-
toNav, a tool capable of automatically curating navigate-to
directives for CSP. We rely on similar ideas to collect policies
observed in the wild to curate the initial version of a site policy
manifest for review by site operators.

HSTS: The first paper dealing with the deployment of
HSTS is from 2015 [15]. The authors empirically investigated
how widespread the HSTS adoption was back then and analyzed
its security implications, but did not discuss inconsistencies. A
more recent measurement study from 2017 looked at HTTPS
security enhancements, also discussing HSTS [1]. The authors
found a significant increase in HSTS adoption and also analyzed
inconsistent deployment practices. However, their definition
of inconsistency is different from ours: they do not consider
different configurations of HSTS within the same site, but
rather whether HSTS is uniformly used on all associated IP
addresses. They also discuss inconsistencies in the headers
identified across accesses from different geographic positions,
which again is unrelated to our study.

Cookie Security Attributes: Previous research studied the
adoption of the HttpOnly attribute [41] and of the Secure
attribute [31], discussing the dangers from misuse in the wild.
Other work also proposed client-side defenses designed to
selectively activate security attributes on session cookies [23, 4].
None of these papers, however, studied the inconsistent adoption
of security attributes on the same cookie.

Origin Policy: Since OP is still a working draft lacking
support in browsers, it did not attract major attention from
the security community so far. Van Acker et al. [36] were
the only ones who studied OP. In their work, the authors
performed an analysis of OP from different angles: (1) a formal
investigation of open problems in the OP draft, (2) a prototype
implementation of OP, (3) a prototype manifest generator, and
(4) a Web measurement. The main goal of their measurement
was checking the stability of HTTP headers, i.e., for how long
they are left unchanged, and the bandwidth saving enabled
by OP. This information is valuable and suggested that OP
is promising, yet it is insufficient to provide definite answers
on the practicality of OP. Our work highlights that OP is ill-
equipped to rectify inconsistencies discovered in the wild. We
also use our data to discuss major limitations in the OP design,
which we propose to fix through a new solution (SP). Finally,
it is also worth mentioning the Site-Wide HTTP Headers
proposal [24]. Despite its name, this proposal is very similar
to OP, since security headers are still applied origin-wide, and,
to the best of our knowledge, it is not currently discussed for
implementation in real browsers.
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VIII. CONCLUSION

The overly fine-grained enforcement model of existing
client-side security mechanisms makes them prone to the risk
of inconsistencies. In this paper, we formalized inconsistencies
for three prominent security mechanisms and showed their
security dangers on 15,000 popular sites. We also showed that
Origin Policy, the only available tool to fix inconsistencies by
design, cannot be successfully applied to solve these issues
in the wild. We thus proposed Site Policy (SP), a security
mechanism explicitly designed to overcome OP’s drawbacks in
light of our real-world findings. SP provides the tools to fix all
the inconsistencies that we defined and encountered in the wild.
SP naturally supports secure Web application development,
centralizes security, and supports safe defaults, while being
backward compatible with existing sites which (temporarily)
need to support specific inconsistencies. A key point to note
is that any potential room for inconsistency must be made
explicit in the SP manifest, which simplifies future researchers’
measurements interested in the effectiveness of SP and, more
importantly, allows operators to understand their worst-case
security guarantees. We hope that our work will be useful to
browser vendors, especially at this stage, where support for OP
in commercial browsers is still in the making.

Future work should carry out a user study with a pool of
site operators to collect their feedback about the prototype
toolchain put forward in the present work and further refine the
Site Policy proposal through interaction with major browser
vendors and standards bodies like the W3C.
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