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Abstract

In the last few years, many security researchers proposed to endow the web
platform with more rigorous foundations, thus allowing for a precise reasoning
on web security issues. Given the complexity of the Web, however, research
efforts in the area are scattered around many different topics and problems, and
it is not easy to understand the import of formal methods on web security so
far. In this survey we collect, classify and review existing proposals in the area
of formal methods for web security, spanning many different topics: JavaScript
security, browser security, web application security, and web protocol analysis.
Based on the existing literature, we discuss recommendations for researchers
working in the area to ensure their proposals have the right ingredients to be
amenable for a large scale adoption.
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1. Introduction

The Web is now part of everyone’s life and it constitutes the primary means
of access to many useful services with strict security requirements. As a result,
vulnerabilities on the web platform may enable vicious attacks with catastrophic
consequences, ranging from economic losses, e.g., in the case of attacks against
payment providers like PayPal, to privacy violations, e.g., in the case of improper
disclosure of electronic health records. Security-critical services are more and
more supplied online today and this increases the need of effective defenses for
the web platform.

Unfortunately, it is well-known that protecting online services is not easy at
all, given the intrinsic complexity of the Web. The web ecosystem is variegate
and includes a large number of different components and technologies, hence the
attack surface against web applications is incredibly large: security flaws in the
web browser may expose authentication credentials and sensitive data stored in
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web pages; vulnerabilities of web protocols may break the confidentiality and
the integrity of the communication session; and errors in the web application
code may lead to the inclusion of malicious contents in otherwise trusted web
pages. Even experienced web developers and security practitioners have a hard
time at taming this complexity, leading to the proliferation of security breaches.

As it normally happens in computer science, when some kind of process is
too error-prone, formal methods come to the rescue. In the last few years, many
security researchers proposed to endow the web platform with more rigorous,
analytical foundations. Their goal is designing models which allow for a precise
reasoning on web security issues and developing effective tools to make the
Web a safer place, relieving at least part of this burden from the shoulders
of web developers and browser vendors. Given the complexity of the Web,
however, research efforts in the area are quite scattered around many different
topics and problems, and it is not easy to understand the import of formal
methods on web security so far. One natural question is whether formal methods
have been successful in this field or whether they can only be considered a
theoretical exercise as of now: practical applications are important to showcase
the effectiveness of formal methods at dealing with the problems mentioned
above and encourage the web security community to synergise efforts with the
formal methods community.

Through this survey, we make the following contributions:

1. we identify the most important, though occasionally underestimated, chal-
lenges which must be faced by researchers interested in investigating the
application of formal methods to web security (Section 3);

2. we collect, classify and review existing proposals in the area of formal me-
thods for web security, spanning many different topics: JavaScript secu-
rity, browser security, web application security, and web protocol analysis.
We underline the practical applications of the different solutions and we
identify several success stories among them (Sections 4-7);

3. we discuss recommendations for researchers working in the area of for-
mal methods for web security to ensure their proposals have the right
ingredients to be amenable for a large scale adoption (Section 8).

1.1. Scope of the Survey
In this survey, we review:

• models of common web technologies, like web browsers, and foundational
studies on the semantics of scripting languages used by web developers;

• semantics-based tools for the verification and the enforcement of security
properties on the web platform;

• alternative, provably sound designs of solutions aimed at replacing existing
web technologies to improve their security.

Instead, given our declared goals, we do not review:
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• novel security models and abstract proposals for the Web which have not
been backed-up by an implementation and an (at least preliminary) on-
field evaluation. The Web is a very heterogeneous and complex envi-
ronment, hence it is impossible to assess the adequacy of new security
mechanisms without any practical evaluation;

• tools and solutions which have not been formalized or proved correct with
respect to a precise security definition, even if these proposals are loosely
inspired by sound principles predicated in the formal methods literature,
e.g., on type-safe programming languages or information flow control.

We also exclude from the present survey the rich research line on the verification
of the TLS/SSL protocol used for secure communication on the Web. Though
formal methods boast many success stories in this area, the topic would better
fit a survey on protocol verification.

1.2. Organisation
At a high level, we observe that the proposals we survey can be divided in

two main research lines:
(RL1) security by construction: some works advocate the usage of better lan-

guages and abstractions to make the Web a safer place. They typically
recognize severe intrinsic limitations in the design of the current Web and
propose a paradigm shift to improve it. These proposals are effective at
solving the root cause of a security problem, but they typically require
profound changes to existing web technologies and applications;

(RL2) modelling, verification and enforcement : some works propose models and
algorithms to formalize and reason about the security of current web tech-
nologies. They devise solutions to make the Web a more secure place by
exploiting the existing frameworks and standards at their best. These pro-
posals may be sometimes sub-optimal in terms of effectiveness, but they
do not impact too much on current web technologies.

These two research lines are thus largely complementary and equally important.
The presentation in the next sections is based on this classification. When
a formal model found successful practical applications we discuss them in a
Security Applications paragraph.

1.3. Structure of the Survey
Section 2 provides some background information about the web platform

and web security in general. Section 3 discusses the main challenges in the ap-
plication of formal methods to web security. Sections 4 and 5 overview formal
methods for web security from the browser perspective: specifically, Section 4
focuses on JavaScript security, while Section 5 discusses other relevant work on
browser security. Section 6 presents formal methods for securing web applica-
tions. Section 7 discusses formal models for web protocols, aimed at analysing
both browsers and web applications, as well as their remote interactions. Sec-
tion 8 provides a perspective on the current state of the art and details recom-
mendations for future proposals. Section 9 concludes.
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2. Web Security in Pills

2.1. The Web Platform
Documents on the Web are provided in form of web pages, hypertext files

connected to other documents via hyperlinks. The structure of a web page and
all the elements included therein are defined by using a markup language, typi-
cally HTML, which is parsed and rendered by a web browser. Page contents can
be dynamically updated by using JavaScript, a weakly-typed scripting language
executed by the browser. JavaScript code can be included inside a web page
and manipulate it by altering the Document Object Model (DOM), a tree-like
representation of the web page. The ability to change the DOM, possibly as a
reaction to user inputs, is useful to develop rich, interactive web applications.

Web pages are requested and served over the Hyper Text Transfer Protocol
(HTTP), a request-response protocol based on the client-server paradigm. The
browser acts as the client and sends HTTP requests for resources hosted at
remote servers; the servers, in turn, provide HTTP responses containing the
requested resources if available. All the HTTP traffic flows in clear, hence the
HTTP protocol does not guarantee the confidentiality and the integrity of the
communication. To protect the exchanged data, the HTTP Secure (HTTPS)
protocol wraps plain HTTP traffic within a TLS/SSL encrypted channel.

Both HTTP and its secure variant HTTPS are stateless protocols, i.e., each
request is treated by the server as independent from all the other ones. Some
web applications, however, need to remember information about previous re-
quests, for instance to track whether a user has already performed the expected
steps of a payment procedure. HTTP cookies are the most common mecha-
nism to maintain state information about the requesting client and implement
sessions on the Web. Roughly, a cookie is a key-value pair, which is set by
the server into the client and automatically attached by it to all subsequent
requests to the server. Cookies may either directly encode state information or,
more commonly, just include a unique session identifier allowing the server to
identify the requesting client and restore the corresponding session state when
processing multiple requests by the same client.

Figure 1 represents the ingredients of the web platform introduced so far.

2.2. Web Threats
Traditionally, web security deals with two main families of attackers: web at-

tackers and network attackers. A web attacker controls at least one server that
responds to any HTTP(S) request sent to it with arbitrary malicious contents
chosen by the attacker. Network attackers extend the capabilities of web attack-
ers with the ability of detecting and intercepting all the traffic sent between two
network endpoints. These attackers have the possibility of inspecting, forging
and corrupting all the HTTP traffic sent on the network, but they cannot break
cryptography. Though network attacks are arguably more difficult to carry out
than web attacks, they may have catastrophic consequences, since they grant
the attacker full control over web pages served over HTTP.
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Figure 1: The Web Platform

The baseline defense mechanism offered by web browsers against these at-
tackers is the same-origin policy (SOP), an access control policy enforcing a
strict separation between contents provided by different web origins. An ori-
gin is defined as a triple including a protocol (typically HTTP or HTTPS),
a host (roughly corresponding to a website) and a port number [9]. As a
result of the SOP, for instance, scripts running in a page downloaded from
http://attacker.com cannot access cookies set by http://trusted.com, which
is a prerequisite to ensure that web attackers cannot disclose cookies identifying
sessions with trusted websites and hijack them.

Unfortunately, the SOP is not enough to prevent many common attacks.
For our present endeavours, it is worth mentioning only two notable examples:

1. code injection: a missing or flawed sanitization of user inputs in a web
application may lead to the inclusion of attacker-controlled contents into
benign web pages. Since these injected contents are indistinguishable from
legitimate ones and inherit their origin, they may be entitled to access sen-
sitive data provided by the benign pages, e.g., cookies, without violating
the SOP. The injection of malicious JavaScript code is one of the most
pervasive attacks on the Web, known as cross-site scripting (XSS);

2. cross-site request forgery (CSRF): since the SOP does not constrain cross-
site requests, a page from http://attacker.com can force the browser
into sending HTTP(S) requests to http://trusted.com. Since all these
requests automatically include cookies previously set by the latter web-
site, they will be considered part of the session between the user browser
and http://trusted.com. These requests may thus be abused to trigger
dangerous side-effects on the website on the user’s behalf.
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3. Challenges for Formal Methods

There are many reasons why approaching web security with formal methods
is hard, we discuss the most important ones based on our experience. The first
reason is definitely the inherent complexity of the web platform. There is an
impressive number of different web standards and technologies nowadays, and
most of them are based only on informal RFCs. The HTML5 specification alone
spans hundreds of pages [85] and browser vendors often implement the same di-
rectives in different ways, since some subtle corner cases are underspecified [80].
This means that it is not obvious to identify which aspects of the web platform
are worth modelling and, occasionally, it is not even clear how to model them.
Testing on available implementations is sometimes the only way to understand
how to correctly model some unclear behaviour.

A second challenge for the area is the massive user base of the Web, which
has a number of subtle consequences. First, there is a continuous evolution
in the specifications, corresponding to limitations and security threats being
routinely discovered and fixed; this means that also formal models of the Web
should often be updated to be useful, but this process requires both time and
expertise. Moreover, the sheer size of the Web implies that the backward com-
patibility of new security solutions is just as important as their soundness: some
security problems of the Web, like the lack of cookie integrity against network
attackers [92], are well-known and not hard to fix in a formal model, but they
are not fixed in the real Web, since it is unclear how to do it without break-
ing existing websites. Finally, it is also difficult to put assumptions on what
may be expected from web developers, and thus reasonably assumed in a for-
mal model, since large-scale evaluations on the Web often reveal surprises and
disrupt widely believed folklore [75, 65, 24].

Besides all these problems, one of the biggest challenges into approaching
web security is that the Web is very peculiar in its own rights. Though existing
methodologies and experiences from other research areas can be ported to the
Web, it is not easy to do so, since all the interactions there are mediated by
a web browser and make use of the HTTP(S) protocol. For instance, formal
methods for protocol verification surely help in analysing web protocols like
single sign-on protocols, but they cannot be directly applied to them without
missing dangerous attacks [41]. The reason is that the browser is an unusual
protocol participant, which acts asynchronously and does not simply follow
the protocol specification, but does a number of concurrent operations in the
meanwhile. As we anticipated, this also motivates the need for different threat
models which naturally take browser-based attacks into account.

4. The Browser View: JavaScript Security

4.1. RL1: Security by Construction
The semantics of JavaScript includes many quirks and surprises. For in-

stance, the + operator performs several type coercions and is heavily overloaded,
resulting in a specification based on a 15-step algorithm using meta-functions
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spanning three pages: we refer to [44] for an interesting discussion about this
and other peculiarities of the language. Moreover, there are often inconsisten-
cies between different browser implementations of the JavaScript engine, which
lead to the same JavaScript program behaving slightly differently on different
web browsers. For these reasons, several research papers advocate the usage
of more disciplined programming languages to develop the client-side part of a
web application. To ensure backward compatibility with existing web browsers,
these languages are either securely compiled to JavaScript [37, 83, 43] or amount
to well-behaved JavaScript subsets enjoying some form of type safety [12].

4.1.1. A Fully Abstract Compilation to JavaScript [37]
Fournet et al. proposed a technique to develop secure JavaScript applications

by compilation from a more sophisticated programming language amenable to
static, type-based verification [37]. Specifically, they presented a compiler from
F ∗ [82], a dependently-typed functional language similar to F#, into JavaScript
and they prove a full abstraction result, stating that two programs are equivalent
in all F ∗ contexts if and only if their translations are equivalent in all JavaScript
contexts. Roughly, a context is defined as an arbitrary piece of code (library)
interfacing with the compiled program: the full abstraction result then means
that web application developers can reason on the security of their code in terms
of the clear, well-established F ∗ semantics, without the need to understand
the inner workings of the compiler or the semantic quirks of JavaScript. For
instance, programmers can rely on their knowledge of static scopes and types à
la F#, or leverage the type-based verification supported by F ∗ to prove security
invariants of their application code.

4.1.2. Defensive JavaScript [12]
Bhargavan et al. defined Defensive JavaScript (DJS), a strict subset of

JavaScript for developing security APIs to be embedded in potentially untrusted
web pages, in order to support a safe interaction with online service providers
like cloud storage services [12]. These APIs typically store sensitive data, like
authentication credentials or cryptographic keys, needed to access the service
provider: protecting these data despite the compromise of the embedding web
page is important for protecting the user account at the provider. DJS sup-
ports the development of JavaScript security components which protect their
secrets even when loaded into an untrusted page, possibly after other scripts
have tampered with the execution environment. These guarantees are achieved
by syntactic restrictions on the JavaScript program, enforced by a static type
system which provably guarantees a formal notion of defensiveness against the
aforementioned attacks.

Given the power of the considered threat model, the syntactic restrictions
underlying DJS are harsh: for instance, DJS programs may not access variables
or call functions that they do not define themselves, and all the used variables
must be lexically scoped. Despite these limitations, the authors successfully
applied DJS to develop three non-trivial applications, including a library for
browser-side cryptography.
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4.1.3. TS∗: Secure Gradual Typing for JavaScript [83]
Swamy et al. developed TS∗, an experimental programming language sup-

porting many of the dynamic programming idioms of JavaScript, while ensuring
type safety even in presence of an untrusted JavaScript environment [83]. A com-
piler from TS∗ into JavaScript allows the deployment of TS∗ applications into
standard web browsers. The TS∗ type system consists of a standard static core
and a dynamic fragment, so it is technically a gradual type system: dynamically
typed code and its interactions with statically typed code are instrumented for
safety by the TS∗ compiler, by means of type-directed wrapper functions.

The most distinguishing feature of TS∗ is the presence of a special type,
Un, which is given to any JavaScript program which cannot be typed either
statically or dynamically: this represents attacker-controlled code and the type
safety theorem of TS∗ ensures that Un-typed data cannot break the invariants
provided by stronger types. The authors evaluated the effectiveness of their
proposal by migrating existing JavaScript code to TS∗ and by developing a few
utilities from scratch, like a JSON parser.

4.1.4. Verified Security for Browser Extensions [43]
Guha et al. proposed a methodology to develop provably secure browser

extensions [43]. Their core idea is to develop browser extensions using Fine, a
dependently-typed ML dialect, and to use its powerful type system to statically
prove that extensions comply with an intended security policy. After verifica-
tion, extensions are automatically compiled into JavaScript, thus allowing their
deployment in multiple browsers; this last step of the development process is not
covered by the soundness proof and its correctness is only discussed informally.
The security policies supported by the approach are quite general, since they
are written in a simple language reminiscent of Datalog, allowing the specifica-
tion of fine-grained authorization and data flow invariants on web content and
browser state accessible by extensions. The authors proved the effectiveness of
their proposal by developing 17 browser extensions using Fine.

4.1.5. The Mashic Compiler [54]
Luo et al. designed the Mashic compiler to improve mashup security [54]. A

mashup is a website loading and integrating contents (typically called gadgets)
from different web sources to create a new service. There are two ways to include
gadgets in a mashup:

• using HTML script tags: in this case, the gadget is directly embedded in
the integrating web page and inherits the origin of the latter. This implies
that the gadget runs with the same privileges of the integrator;

• using HTML iframe tags: in this case, the gadget is loaded in an isolated
environment and preserves its own origin, hence the SOP limits its capa-
bilities on the integrating web page. The interactions between the gadget
and the integrator are limited to message passing.
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Unfortunately, web developers typically sacrifice security for programming
convenience and implement mashup by making use of script tags. The Mashic
compiler takes in input an existing mashup and generates a secure mashup based
on iframe tags and message passing. The paper presents two formal results: a
correctness result, proving that the output of the Mashic compiler is equivalent
to the original mashup when the embedded gadget is “benign”; and a security
result, proving confidentiality and integrity properties for the compiled mashup.
The Mashic compiler has been implemented and tested on realistic case studies.

4.2. RL2: Modelling, Verification and Enforcement
The main contributions in this research line amount to the definition of

rigorous semantics for JavaScript. These semantics may be defined either by
providing a direct formal counterpart of the official language specification [56,
84] or by giving a semantics-preserving translation of JavaScript into a simpler
core language [44, 70]. Having a rigorous semantics for JavaScript is crucial to
retrofit the security of existing web applications.

4.2.1. An Operational Semantics for JavaScript [56]
The first operational semantics for a significant fragment of JavaScript was

proposed by Maffeis et al. [56]. It is a massive small-step semantics, spanning
around 60 pages of rules and definitions in ASCII format. The semantics was
developed by closely following the official language specification (the 3rd edition
of the ECMAScript standard) and it was complemented by hands-on testing on
existing JavaScript engines to iron out the trickiest details. Remarkably, such
testing unveiled several points where existing implementations openly deviated
from the official specification. The operational semantics was shown to enjoy
two main formal results:

• a progress theorem, proving that the execution of a program always pro-
gresses to an exception or a value of an expected form;

• a heap reachability theorem, proving that the behaviour of a program
depends only on a specific (computable) portion of the heap.

Security Applications: The JavaScript semantics in [56] found several security
applications by the same research group, most notably to reason about sound
techniques to isolate untrusted JavaScript and limit its capabilities on a trusted
embedding page [57, 59, 58]. These proposals make use of different techniques:

• filtering [57, 59]: removing certain language constructs which are hard to
tame. For instance, the eval construct evaluates and executes a string
representation of a JavaScript program. Since strings are values and can
be the result of arbitrarily complex JavaScript computations, it may be
difficult to identify what is actually executed by an invocation to eval
and it may be more convenient for security to just drop the construct;
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• rewriting [57, 59]: wrapping dangerous functions to provide reduced func-
tionalities and renaming sensitive properties (fields) to prevent access to
their original version. For instance, an array access e1[e2] could be rewrit-
ten to insert runtime checks ensuring that e2 does not evaluate to a black-
listed property name;

• object-capability models [58]: ensuring that accesses to sensitive resources
are only granted to code which is endowed with a corresponding capability.
If this is the case and a script only possesses the capabilities that it is
explicitly given by the web developer, then isolation between two scripts
may be enforced by granting them disjoint capabilities.

These techniques have not only been proposed in theory, but also successfully
applied to find bugs in popular libraries for JavaScript sandboxing, like Facebook
FBJS, Google Cajita and Yahoo! AdSafe. We refer to the original papers [57,
59, 58] for full details on the main findings.

4.2.2. λ-JS and S5: Taming JavaScript by Desugaring [44, 70]
Given the daunting complexity of the operational semantics in [56], Guha et

al. proposed a completely different approach to formally capture the behaviour
of JavaScript [44]. Their idea is to reduce JavaScript to a core, relatively stan-
dard calculus using a complex desugaring process, which translates JavaScript
constructs with a sophisticated semantics into (possibly long) sequences of core
constructs with a simpler semantics. The core calculus is called λ-JS and it is
expressive enough to encode the entire JavaScript specification, with the excep-
tion of the eval construct: its semantics is compact, spanning only 3 pages of
definitions and rules, as opposed to the 60 pages of the semantics in [56].

The definition of λ-JS comes with two software artifacts: a desugarer (com-
piler) from JavaScript to λ-JS and a λ-JS interpreter. The adequacy of desugar-
ing was empirically assessed by picking a large benchmark of existing JavaScript
programs and by comparing the λ-JS interpreter behaviour on the desugared
code against the behaviour of available JavaScript engines on the original pro-
grams. The λ-JS semantics later evolved thanks to Politz et al. into S5 [70], a
second core language defined by desugaring the 5th edition of the ECMAScript
specification. Most notably, S5 implemented support for getters and setters (not
available in JavaScript when λ-JS was defined) and for the eval construct (not
modelled in λ-JS).

Security Applications: λ-JS was adopted by Lerner et al. as a building block
for TeJaS [51], a sophisticated framework for developing static type systems for
JavaScript. TeJaS found two main applications to security: Politz et al. used it
to verify the Yahoo! AdSafe library for sandboxing untrusted JavaScript [71],
while Lerner et al. used it to check the compliance of browser extensions with
the incognito mode available in modern web browsers [50]. Both these studies
have been highly successful: in particular, the type-based analysis in [71] found
some subtle implementation bugs in Yahoo! AdSafe, while the research in [50]
identified private-browsing violations in 6 of 12 analysed browser extensions.
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A core of λ-JS was also the language chosen by Calzavara et al. [23] to
design a sound static analysis to detect privilege escalation attacks on browser
extensions, where malicious or compromised extension components abuse the
message passing interface available to them to unduly gain access to security-
sensitive functionalities. The static analysis was implemented in a prototype
analyser for Google Chrome extensions, called CHEN.

More recently, a significant fragment of λ-JS was used by Devriese et al. [32]
to formulate and prove sound a novel approach for reasoning about object-
capability languages using logical relations. A key quality of their model is the
ability to define custom capabilities, which require semantics-based formal tools
to reason about their soundness, in contrast to standard syntactic approaches
used in the area. The paper discusses a few applications of the model to web
security, including the isolation of untrusted advertisement and mashup security.

4.2.3. SESLight [84]
Taly et al. defined SESLight, the formalization of a JavaScript fragment

inspired to the strict mode semantics of the 5th edition of the ECMAScript
specification [84]. The strict mode is more amenable to static analysis than plain
JavaScript, since it supports static scoping and closure-based encapsulation.
Compared to the standard strict mode of JavaScript, SESLight additionally
prevents by construction the malicious use of some built-in objects by making
them immutable and it only supports a limited usage of the eval construct.
These choices are important for confining malicious code and to better support
static analysis.

Security Applications: The SESLight semantics was used to carry out a
foundational study on the effectiveness of the sandboxing mechanisms available
in publicly available JavaScript APIs, like those provided in the Yahoo! AdSafe
library. The authors presented a sound static analysis based on Datalog clauses,
which can be used to analyse security-focused JavaScript libraries developed in
SESLight and determine whether they are secure against arbitrary untrusted
code written in the same language. A positive analysis result ensures that
no sequence of API calls returns a direct reference to a security-critical object,
which should not be accessed by untrusted code. Remarkably, the static analysis
was able to find a security issue in the code of the Yahoo! AdSafe library, as
well as to verify the robustness of a revised implementation.

4.2.4. Additional Related Work
Besides the work above, there are many frameworks for enforcing general

security / information flow policies on untrusted JavaScript code, and some of
them provide formal soundness guarantees [91, 69, 40, 45]. Information flow poli-
cies in particular [40, 45] are very flexible tools and they can be used for a variety
of security purposes, ranging from the enforcement of JavaScript sandboxing to
the prevention of attacks like XSS and CSRF. Though all these proposals are
notable and definitely worth mentioning here, we do not review them in detail,
since they are already covered by a recent survey by Bielova [13]. That survey
provides a good overview on what has been done in the area of security policies
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for JavaScript and it clearly highlights which formal guarantees are provided by
each of the reviewed proposals.

Also, it is important to point out that the quest for a trusted, fully accurate
JavaScript semantics is still going on. Recent work in the area comprises the
specifications of JSCert [17] and KJS [68], two major endeavours at defining
mechanised and highly accurate formal semantics for JavaScript. KJS in par-
ticular is the most recent effort in the area and its authors identified several
errors and inconsistencies in previous proposals, including JSCert and S5. The
only security application of KJS as of now is discussed in the original paper pre-
senting the semantics, where a known security vulnerability was rediscovered by
using symbolic execution. We believe that both JSCert and KJS will likely find
more important security applications in the next future.

5. The Browser View: Beyond JavaScript

5.1. RL1: Security by Construction
This research line spans two different areas. First, there are works explor-

ing novel browser designs, which are more robust than current standards and
amenable for formal verification of useful security properties [39, 78]. Then,
there are proposals aimed at filling the gap between the formal verification of
the security guarantees offered by a browser design and the actual implementa-
tion of a web browser, by synthesising the latter from a verified core [48]. This
is important, since low-level flaws in the browser code may easily void all the
security guarantees granted by formal verification.

5.1.1. The OP(2) Web Browser [39]
OP is an experimental web browser developed by Grier et al., which later

evolved into the more sophisticated OP2 [39]. The main differences between
OP and OP2 are not relevant to the present discussion, so we just note the
browser as OP(2). The OP(2) web browser shares the same design principles of
modern micro-kernels: it is made of several distinct and isolated components,
and all the interactions between them are mediated by a browser kernel. This
kernel enforces an access control policy disciplining the use of security-critical
functionalities, so that, even if a component was compromised, it would still
be isolated from the other ones and the threats it may pose to the security of
the entire browser would be limited to what the kernel allows to the component
as part of its normal (non-compromised) behaviour. This design also simplifies
formal verification, since all the browser components expose a simple API and
most of the formal reasoning can be confined to it.

The authors developed a model of the OP(2) browser in Maude [61], a frame-
work for encoding the semantics and model-checking properties of systems spec-
ified in rewriting logic. The Maude model was used to verify two useful security
properties of the web browser design:

• protection against address bar spoofing : the page content domain is the
same as the domain displayed in the address bar. This property can be
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broken by subtle attacks which have affected major web browsers in the
past, see [62] for a few examples on Internet Explorer 6;

• correct enforcement of the SOP : the implementation of the SOP in OP(2)
correctly limits the interactions between browser plugins and JavaScript.
This should not be taken for granted, see [80] for a discussion about dan-
gerous incoherences of web browser access control policies.

5.1.2. The IBOS Web Browser [78]
The IBOS web browser by Sasse et al. aims at pushing the security boun-

daries advocated by OP(2) even further [78]. In particular, IBOS extended the
modularity principles underlying OP(2) also to the operating system, to remove
almost all its traditional components and services from the browser trusted
computing base. The kernel of IBOS thus includes both browser and operating
system functionalities, and it is the only trusted component of the design.

The formal verification of the IBOS kernel was carried out in Maude [61],
the same tool used to check the security of OP(2), and the verified security
properties were also the same. The main new formal contribution was the pre-
sentation of two “small model” theorems, ensuring that the bounded verification
performed in Maude actually generalizes to the unbounded case.

5.1.3. The QUARK Web Browser [48]
QUARK is a prototype web browser developed by Jang et al. [48]. It builds

on the same design principles of OP(2) and IBOS, i.e., a modular architecture
where isolated browser components interact through a kernel mediating access
to sensitive resources. In contrast to the former proposals, however, formal
verification was not carried out on a model of QUARK, but directly on its
implementation. The QUARK kernel was developed in the Coq proof assistant
and verified using its interactive theorem proving facilities; the kernel code was
then compiled into a certified Ocaml program, using the machinery available
in the Coq tool chain. The security guarantees provided by verification only
depend on the kernel: all the other components are deemed untrusted, which
allowed the reuse in QUARK of existing state-of-the-art implementations of
complex browser components (e.g., the JavaScript engine).

The security properties verified for QUARK can be summarised as follows:

• tab non-interference: no tab can ever affect how the kernel interacts with
another tab;

• cookie confidentiality and integrity : cookies for a domain can only be
accessed by a tab which originally displayed a page on that domain;

• address bar integrity : the address bar cannot be modified by a tab without
the user being involved, and always displays the correct address.

These properties do not hold for standard web browsers: for instance, a compro-
mised tab in Google Chrome can leak all the cookies of any domain. Providing
this additional level of security comes at the cost of compatibility and prevents
some web applications from working correctly when accessed using QUARK.
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5.2. RL2: Modelling, Verification and Enforcement
The work in this research line complements formal JavaScript semantics to

embrace a wider range of web threats. Several of these proposals define web
browser models [41, 90, 19]: this is important, since JavaScript is not the only
weapon available to web attackers and subtle attacks may arise due to unex-
pected interactions between different browser components. Given the impressive
number of features covered by these models, individual browser components are
represented quite abstractly to achieve a tractable level of detail. Other papers
thus target more accurate representations of selected browser components, like
the DOM [38, 77, 60, 73]. Modelling the DOM is important for security, because
many sensitive data like passwords and credit card numbers routinely enter the
DOM when they are input in the web browser.

5.2.1. The B Brower Model [41]
The B browser model by Gross et al. was the first core browser model pro-

posed in the literature [41]. The goal of the model was providing a foundation
for reasoning about the security of browser-based protocols, e.g., identity fede-
ration protocols like SAML [66] and Shibboleth [25]. The model only represents
the input/output behaviour of the web browser and it does not include cookies,
nor any scripting language.1 The model is based on a formalism reminiscent of
I/O automata [55] and it supports a concise graphical representation analogous
to UML state diagrams. A peculiar feature of the model is an explicit repre-
sentation of the user behaviour, which plays an important role in the security
analysis of browser-based protocols.

Security Applications: The original paper [41] applied the browser model to
establish a security result for password-based authentication, a basic building
block of most browser-based protocols. The model was also used to formally
prove the security of a specific identity federation protocol called WSFPI [42].

5.2.2. Yoshihama’s Browser Model [90]
Yoshihama et al. proposed a fairly sophisticated browser model [90]. The

model formalizes the browser using a big-step operational semantics, covering
the evaluation of client-side scripts, the presence of multiple browser windows,
the DOM, cookies and HTTP requests. The model includes several non-trivial
features of real web browsers, like document content that may reference external
resources (such as <img> and <script> tags), DOM mutation operations, an
eval construct for dynamic code evaluation, first-class functions, and event
handlers. Unfortunately, the formalism was only explained by a few inference
rules demonstrating how one might give a big-step semantics for a web browser,
but it is not rigorous or complete enough to be usable in formal proofs.

Security Applications: The browser model in [90] uses information flow labels
for fine-grained access control on websites, focusing on the secure integration
of contents from different, mutually distrusting websites (mashup security). In

1The authors assume these features are turned off, which is unrealistic for the current Web.
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this view, websites define sets of labels with access control properties and at-
tach these labels to portions of their HTML documents. The labels are then
automatically propagated by the web browser and tracked on individual DOM
nodes and script variables to enforce access control checks. Implicit information
flows where secrets are leaked by the execution of conditional program branches
depending on private data are not covered by this proposal.

5.2.3. Featherweight Firefox [19, 18]
Featherweight Firefox is a core formal model of a web browser, originally

developed in Ocaml by Bohannon and Pierce [19] and later rewritten in Coq by
Bohannon [18] to allow for the development of mechanized proofs about browser
behaviours. The model is a reactive system, i.e., an event-driven state machine
which consumes inputs and produces outputs in response. Featherweight Firefox
is primarily intended to be a “blank slate” for security researchers interested
in developing new browser-side security policies and mechanisms amenable for
formal verification. The formalization covers the basic aspects of windows, DOM
trees, cookies, HTTP requests and responses, user inputs, and a simple scripting
language including the most significant features of JavaScript, like first-class
functions, dynamic evaluation of strings into code, and AJAX requests.

Security Applications: Featherweight Firefox found quite a number of ap-
plication as of now. The original Ocaml model was extended by Bielova et
al. [14] with secure multi-execution, a provably sound runtime technique for
enforcing non-interference policies, based on multiple executions of the web
browser and the application of a specific input/output policy to each execution
to ensure that secret inputs do not flow to public outputs [33]. The extended
browser model was shown to enforce non-interference for arbitrary information
flow policies. The Coq model, instead, was enriched by Bohannon [18] with a
number of runtime checks not performed by standard web browsers, so as to
dynamically enforce a strong, precise confidentiality policy preventing cross-site
requests. The correctness of the enforcement was established by leveraging the
interactive theorem proving facilities of Coq.

The Coq model was also used by Bugliesi et al. to develop a mechanized
proof of non-interference, assessing the effectiveness of the HttpOnly and Secure
cookie attributes available in modern web browsers to prevent the unintended
disclosure of cookies identifying web sessions [21]. Specifically, [21] proved that
the value of the HttpOnly cookies set by trusted web applications has no visible
import for a web attacker on a different domain; and, if these cookies are also
Secure, their confidentiality is also guaranteed against network attackers. The
same research group used a pen-and-paper subset of the Featherweight Firefox
model to define a formal notion of web session integrity and study its browser-
side enforcement [22]. Web session integrity ensures that an attacker can never
force the browser into introducing unintended messages in sessions established
with trusted websites, or into leaking the authentication credentials (cookies and
passwords) associated to these sessions. The paper presents a security-enhanced
browser semantics, which provably enforces session integrity for any web session.
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5.2.4. Bauer’s Browser Model [10]
Bauer et al. presented a detailed model of a web browser in terms of a

labelled transition system [10]. The model formalises the browser using a small-
step operational semantics, including tabs, a core of the DOM, event handling,
cookies, bookmarks, history, user actions and an accurate model of browser
extensions. The scripting language is quite simplified and it does not cover all
the subtleties of JavaScript. The model uses standard mathematical notation
and it has not been mechanized.

Security Applications: The browser model in [10] includes a lightweight,
coarse-grained form of taint tracking, which is proved to enforce non-interference.
The model includes a number of features which are useful for a practical de-
ployment, including declassification and endorsement mechanisms to downgrade
confidentiality and integrity respectively. Indeed, the taint tracking mechanism
was implemented in Chromium and tested on existing websites, with promising
preliminary results. The authors give evidence that their proposal is expressive
enough to encompass standard security policies currently implemented in web
browsers, including the SOP.

5.2.5. Modelling and Reasoning About the DOM
The first attempt at formalizing a significant portion of the DOM specifica-

tion is due to Gardner et al. [38]. They presented a core imperative language
with a simple operational semantics, called Minimal DOM, which allows for rep-
resenting tree updates in DOM. They also developed a logic to capture structural
properties of DOM trees and they used it to verify properties of Minimal DOM
programs by means of Hoare triples. Though the paper does not mention se-
curity applications, later work used similar formalizations of the DOM to track
information flows and protect sensitive data.

Security Applications: Russo et al. presented a number of DOM-based at-
tacks, where DOM navigation and updates are abused by a malicious script to
leak confidential information to the attacker [77]. They advocated the usage of
information flow control as an effective tool to thwart these attacks and they
developed a sound runtime monitor for an imperative language extended with
primitives for manipulating DOM-like trees. More recently, Almeida Matos et
al. generalized the approach in [77] to include references and live collections,
a special kind of data structure available in the DOM API that automatically
reflects the changes occurring in a HTML document [60].

Rajani et al. also studied the interplay between DOM updates and infor-
mation flow control [73]. Their work covers an even larger fraction of the DOM
specification and provides a better treatment of live collections, by dropping
the programmer-provided annotations (information flow labels) required in [60].
The authors released their DOM model as an Ocaml program, which is of in-
dependent interest and may be reused by other security researchers. They also
implemented their information flow monitor in WebKit, a popular opensource
web browser engine.
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6. The Server View

6.1. RL1: Security by Construction
Complex web applications need to interface and integrate many different

technologies, e.g., JavaScript code running in the user browser, server-side code
implementing the application logic, and a database back-end hosting the appli-
cation data. This integration process is error-prone and it often introduces secu-
rity vulnerabilities. To overcome these problems, researchers proposedmulti-tier
programming languages, i.e., high-level languages for web applications which
transparently handle the complexity of integrating different technologies by pro-
viding a unified layer of abstraction. These languages typically offer strong static
typing guarantees, which ensure that many security issues like code injection
attacks are prevented by construction; examples of multi-tier languages include
Links [29], Hop [20], Ur/Web [28] and ML5 [64]. Security-enhancements for
existing multi-tier languages have also been proposed in the literature and we
focus on them in this section [30, 6, 27, 79].

6.1.1. SELinks [30]
Corcoran et al. proposed SELinks [30], a security-enhanced variant of the

Links [29] programming language. Similarly to Links, SELinks provides a uni-
form server-database programming model, but it also allows programmers to
define security meta-data attached to data types, called labels, and specify en-
forcement policy functions that mediate access to labelled data. To ensure that
calls to enforcement functions are never forgotten by programmers, SELinks
makes values with a labelled type opaque to programs: to use a labelled object,
a program is forced to pass it to an enforcement policy function, which performs
a label-based security check and strips the label from the object type, in case
the check was successful.

Label stripping is performed using a special language construct, unlabel,
which is confined to enforcement policy functions identified by the policy key-
word. This allows one to conveniently identify the functions that must be trusted
to perform security enforcement, greatly simplifying code review. It is also pos-
sible to certify the correct semantics of these functions by using the dependent
types available in SELinks. The SELinks language was used to develop two
sizeable web applications: SEWiki, a security-oriented blog/wiki, and SESpine,
a secure online medical health record management system.

6.1.2. Secure Compilation of Links [6]
Baltopoulos and Gordon observed that one cannot reason on the security

of Links programs just by focusing on their abstract, high-level programming
model [6]. This worsens the effectiveness of the multi-tier abstraction, since
security reviews may not be conducted just by inspecting the Links source code
alone. In particular, the authors noticed that Links places too much trust in the
browser tier, since it models session state by embedding continuations in HTML
pages. Malicious clients can then learn secret data stored in a continuation or
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compromise the intended control flow of the web application just by tampering
with the HTML page.

The authors proposed to solve this problem by applying authenticated en-
cryption to continuations and provided a formal security proof of their design.
Specifically, they introduced TinyLinks, a calculus modelling a core fragment
of Links, and they developed a type-and-effect system for it, to statically check
correctness properties (e.g., data integrity) based on assertions included in the
TinyLinks code. They then proposed a secure translation from TinyLinks into
F7 [11], a functional language similar to F# extended with dependent types
and amenable for type-based security verification. This translation formalizes
in F7 the proposed extension of Links with authenticated encryption. The main
formal result in [6] states that well-typed TinyLinks programs are compiled into
well-typed F7 programs preserving the code-level assertions, which ensures by
type safety that no assertion may ever be falsified in the revised Links design
as implemented in F7, despite the best efforts of a malicious client tampering
with the HTML pages of the Links program.

6.1.3. UrFlow [27]
Chlipala developed UrFlow [27], an extension of the multi-tier programming

language Ur/Web [28] with support for enforcing access control and information
flow policies. Since Ur/Web extends a standard functional language with native
support for SQL queries, UrFlow advocates the usage of SQL as a natural way to
express the desired security policies for the Ur/Web application. For instance,
SQL queries can express confidentiality properties by explicitly selecting which
information may be disclosed to users; the entitled users are then identified by
a predicate known embedded in the query syntax, restricting disclosure only to
those users who are aware of some information specified in the predicate, e.g.,
a password.

UrFlow statically verifies that such a kind of policy queries are respected by
the Ur/Web application by resorting to symbolic execution, a form of abstract
interpretation where unknown input values are modelled symbolically. If the
verification fails, UrFlow returns a first-order logic characterization of a program
state which may violate the security query. UrFlow was tested on a small set
of Ur/Web applications, showing good performance.

6.1.4. SeLINQ [79]
Schoepe et al. proposed SeLINQ, a framework to enforce information flow

properties preserved across the boundaries between an F# application and a
SQL database, thus ensuring end-to-end security [79]. The framework assumes
the adoption of LINQ [63], a technology adding native query support to .NET
languages, including F#. Since LINQ extends F# with the addition of query
expressions, it is possible to revise standard information flow type systems for
functional languages to uniformly deal also with database queries.

The authors devised a security type system for a core functional language
including LINQ-style constructs for database accesses and proved that their type
system enforces non-interference. The paper also describes an implementation
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of the type-checker and a translator from the typed core language considered by
the authors into executable F# code. The framework was applied to develop a
realistic web application interfacing with a movie rental database.

Recently, SELinq evolved into JSLINQ [5]. This extended framework covers
the entire end-to-end loop of the web application, not only looking at the server
and its SQL database, but also at the browser, in particular by securely gene-
rating JavaScript and HTML. The paper presents several case studies assessing
the practicality of the framework.

6.2. RL2: Modelling, Verification and Enforcement
While the client-side part of a modern web application is typically develo-

ped in JavaScript, a plethora of programming languages can be used to write
the server-side logic. General-purposes programming languages like C or Java
can be fruitfully applied to the task and program verification techniques for
these languages can thus be used for web security. However, given the scope
of the present survey, we only focus on research efforts aimed at formalizing
and reasoning about scripting languages traditionally associated to the Web.
Of these languages, only PHP [36] and Python [72] have a formal semantics as
of now. Besides these language-specific studies, it is also worth mentioning a
few research works which abstract from specific web technologies and rather fo-
cus on security problems which affect the large majority of server-side scripting
languages, most notably code injection attacks [81, 15, 74].

6.2.1. KPHP: A Formal Semantics for PHP [36]
KPHP is an operational semantics for a substantial core of PHP, defined by

Filaretti and Maffeis [36] and mechanised using the popular K framework [76]
for expressing programming language semantics. It is a huge formal semantics,
providing a very faithful representation of the language it models, and it spans
around 8500 lines of code. KPHP was validated by testing it against the official
test suite distributed with the Zend engine, the reference implementation of
PHP. Though there is still significant room for improvement, especially in the
number of supported features, none of the failed tests was due to language
constructs being modelled incorrectly by KPHP. The authors gave preliminary
example applications of KPHP by model-checking a few expected invariants on
some publicly available code snippets.

Security Applications: The original paper on KPHP [36] does not develop
any security analysis based on the semantics, but it mentions provably sound
static analyses based on abstract interpretation, type systems and taint-checking
as an important avenue for future work. Indeed, one of the motivations behind
KPHP was exactly the lack of sound support for particularly complicated PHP
features in existing static analysers like Pixy [49] and WebSSARI [46].

6.2.2. λπ: Taming Python by Desugaring [72]
Politz et al. proposed to capture all the subtleties of Python by means of a

compilation into a simpler core language [72]. The idea behind the approach is
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the same of λ-JS and S5, presented in Section 4.2.2: the authors first define the
core language λπ, which is roughly a traditional stateful λ-calculus, and then
give the semantics of Python constructs by compiling them into λπ. Since the
semantics of λπ is standard and well-understood, it is more amenable for formal
reasoning than Python. The compilation (desugaring) was defined for a signi-
ficant core of Python and its effectiveness was established by extensive testing
against the standard CPython implementation of the programming language.

Security Applications: None we are aware of at the time of writing.

6.2.3. Defining Code Injection Attacks
The first formal perspective on code injection attacks is due to Su and

Wassermann [81]. Their paper presented a definition of code injection attacks
in the context of SQL-based web applications: roughly, their definition detects
an injection attack on a web application if an input string provided by the user
changes the expected syntactic structure (parse tree) of a query performed by
the web application. Later work by Bisht et al. espoused the main intuition
underlying the definition of code injection in [81], but it presented a different
proposal which generalizes to more realistic programs [15]. The idea behind
the generalisation is to map each possible input v to a corresponding benign in-
put IR(v), exercising the same program branches of the web application; then,
rather than having a fixed expected syntactic structure for each query, which
is restrictive, one can associate different query structures to different program
branches, and detect a code injection if the query structure generated from an
input v differs from the query structure generated from the benign input IR(v).

Unfortunately, this definition is flawed, since it contains a circularity spotted
by Ray and Ligatti [74]. The problem is that attacks are defined by means of
the IR function, which in turn requires one to identify benign inputs (which are
not attacks). Ray and Ligatti also observed that the idea of checking alterations
of the expected syntactic structure of a SQL query is not good enough, since it
may both miss attacks and incorrectly rule out legitimate queries. They thus
proposed an alternative definition, based on a formal partitioning of inputs into
code and non-code: an injection attack is then detected if at least one input
entering a query is used as code. Remarkably, parsing is necessary to determine
whether an input is code or not: for example, an integer literal is code when used
to specify the size of an array, but it is non-code when used as an expression.

Security Applications: The authors of [81] proposed a sound and complete
algorithm for detecting code injection attacks based on parsing and implemented
it in SQLCHECK, a tool to detect code injection attacks in PHP and JSP appli-
cations. The tool in [15], called CANDID, is based on a syntactic transformation
of the source program, used to deduce at runtime the query structure intended
by the programmer, and a SQL parse tree checker operating on the transformed
program to detect any mismatch with respect to the inferred intentions. Luo
et al. extended the compiler of the HOP multi-tier programming language to
automatically prevent code injection attacks [53], following the technique pro-
posed in [81]. Unlike [81], the expected syntactic structure of the dynamically
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generated code is not provided by the programmer, but it is apparent from the
syntax of the HOP program.

7. Formal Models for the Web Platform

All of the works described in this section belong to the research line RL2.
They amount to formal models of the Web as a whole, typically including
browsers, servers and communication protocols. These models are particularly
well-suited to the security analysis of web protocols, for which all the aforemen-
tioned entities play a prominent role.

7.1. A First Formal Foundation for Web Security [2]
The first paper which proposed an abstract model of the web platform is due

to Akhawe et al. [2]. Motivated by the observation that even security experts
are likely to miss simple vulnerabilities of web security mechanisms, given the
complexity of the web platform, the authors developed a mechanized model of
the Web in Alloy [47]. Alloy is a declarative language based on a relational
extension of first-order logic. An Alloy specification can be analysed by Alloy
Analyser, a tool to automatically find satisfying models or counter-examples for
given assertions, i.e., properties of interest which are expected to hold for the
underlying specification. Though the bounded verification performed by Alloy
Analyser cannot prove that a given assertion will always hold true for a model
of unbounded size, like the one developed in [2], it is still very useful for finding
counter-examples (security problems).

The authors included in their model a number of ingredients:

• web concepts: the core elements of a web browser, web servers and the
most relevant aspects of the HTTP protocol;

• threat models: the capabilities available to web attackers and network
attackers. Also, the model includes a formalization of the user behaviour,
which is often important when reasoning about security;

• security goals: several web security invariants, modelling constraints which
should be respected to avoid breaking the functionality of existing web
applications, and a session integrity property, which ensures protection
against CSRF attacks.

Security Applications: In the original paper [2], the model was applied to ana-
lyse five case studies and find violations of the security goals in all of them.
Interestingly, later research work extended and reused the Alloy model to assess
the design of novel web security mechanisms. Chen et al. applied the model to
validate the effectiveness of App Isolation, an experimental web browser pro-
viding stronger isolation guarantees for web applications [26]. De Ryck et al.,
instead, used the model to formally evaluate the design of CsFire, a browser-side
protection mechanism against CSRF attacks [31].
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7.2. WebSpi: Using ProVerif for Web Security [8, 7]
WebSpi is a library developed by Bansal et al. [8, 7], defining the basic in-

gredients (users, browsers, web servers, etc.) needed to model web applications,
web protocols and their security properties in ProVerif. ProVerif [16] is an auto-
matic state-of-the-art protocol verification tool: protocols are specified using a
dialect of the applied pi-calculus [1] and then analysed using an abstract repre-
sentation of their possible executions in presence of an active adversary (based
on Horn clauses). ProVerif is a fairly mature tool nowadays and it can be used
to automatically check both secrecy and authenticity properties of security pro-
tocols. It can prove security for an unbounded number of protocol executions,
though the analysis it implements is not guaranteed to terminate in general.

Since the threat models considered in the web security literature typically
depart from the standard Dolev-Yao model used for the analysis of security
protocols and implemented in ProVerif, WebSpi also defines a web attacker
model in terms of an applied pi-calculus process and provides facilities for fine-
tuning the security analysis by enabling or disabling different classes of attacks,
e.g., code injection attacks against trusted web applications.

Security Applications: WebSpi was used by its authors to perform a security
analysis of the OAuth 2.0 authorization protocol, discovering many previously
unknown vulnerabilities in major websites such as Yahoo! and WordPress when
they connect to social networks such as Twitter and Facebook [8]. More recently,
WebSpi was employed by the same research group to analyse the security of
several cloud-based storage services, including popular services like Dropbox,
SpiderOak and 1Password [7].

7.3. An Expressive Model for the Web [34]
The most expressive model for the Web to date has been proposed by Fett et

al. [34]. It is based on a generic process algebra in which processes have addresses
and messages are modelled as first-order terms with equational theories defining
the behaviour of cryptographic primitives. Though abstract enough to allow for
formal reasoning, this pen-and-paper model tries to follow as closely as possible
the existing web standards and it spans several pages of the technical report
accompanying the original paper. The model includes:

• basic web concepts: including web servers, web browsers, DNS servers,
HTTP(S) requests and responses, and several HTTP(S) headers;

• threat models: defining the capabilities of web attackers and network at-
tackers in terms of the process algebra;

• a detailed browser representation: capturing in great detail the concepts
of windows, documents, and iframes, as well as new technologies, such as
web storage and cross-document messaging. JavaScript is not modelled in
its entirety, but the core of a scripting language is included.

The model proposed in [34] is not directly amenable for automation, due to
several features which are admittedly useful, but also challenging for automated

22



tools. For instance, the set of first-order terms (messages) is infinite and the
treatment of state information in the model is non-monotonic, e.g., cookies can
be deleted from the browser cookie jar and not only added.

Security Applications: The model in [34] was employed by the authors to
analyse BrowserID, a complex single sign-on system by Mozilla allowing web-
sites to delegate user authentication to email providers. The security analysis
unveiled several attacks, including a critical one which allowed an attacker to
hijack the sessions of any user owning a GMail or Yahoo! address. In the same
paper, the model was also used to prove the security of a revised variant of the
BrowserID system. The analysis of BrowserID was extended to deal with pri-
vacy aspects in later work by the same authors [35], revealing additional pitfalls
suggesting the need for a major overhaul of the system.

7.4. Model-Checking Web Protocols
We anticipated in Section 3 that formal methods for security protocols can-

not be directly applied to web protocols without the risk of missing attacks
which are specific to the web platform [41]. Nevertheless, automated tools for
protocol verification can be successfully applied for finding attacks against web
protocols [4, 3, 86, 87]. These tools are quite appealing to mechanise the attack
finding process, because they are relatively easy to use and web protocols often
target (at least) a few secrecy and authenticity properties common to standard
security protocols.

Notable examples in this area focused on the formal analysis of identity fe-
deration protocols such as SAML [66] and OpenID [67]. Armando et al. studied
the security of the SAML protocol, as well as of a simplified variant of the proto-
col implemented by Google [4]. They performed a mechanised security analysis
of the simplified protocol using the SATMC model-checker, which found an at-
tack breaking the intended authentication goals. Remarkably, even though the
original SAML protocol was deemed secure against the identified attack, follow-
up work by the same research group used a more refined formal model to find an
authentication flaw also in the SAML specification [3]. The same problem also
affected the OpenID protocol. Other relevant work by Tobarra et al. [86, 87]
is in the area of web service security. They used model-checking techniques to
find attacks against the WS-Security protocol [89].

8. Perspective and Recommendations

We reviewed many applications of formal methods to web security, including
several success stories. We discuss here the most important ingredients and
directions we think future researchers in the area should keep in mind to design
practical and useful proposals, fostering a large scale adoption of web security
solutions backed-up by formal verification.
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8.1. Designing the Right Model
In this survey, we mentioned many formal models of existing web technolo-

gies, including operational semantics for JavaScript (Section 4.2), browser mo-
dels (Section 5.2) and models of the web platform (Section 7). Based on existing
work, we identify two main desiderata for future proposals:

1. comprehensiveness: understanding what is relevant for security and what
is not is extremely hard for the Web, given its size and complexity. In par-
ticular, while models are useful for attack finding even when incomplete,
security proofs of defensive mechanisms need a good understanding and
a faithful representation of the entire web platform to be trusted. Formal
models should thus provide very accurate descriptions of the web tech-
nologies they target: apparently irrelevant aspects should be abstracted
by the adoption of suitable formal techniques, e.g., abstract interpretation,
rather than just dropped altogether from the model;

2. mechanization and tool support : pen-and-papers models are certainly use-
ful as a starting point for the formal analysis of web security mechanisms,
but they should eventually be replaced by mechanized models expressed
in some programming language, for at least two reasons. First, web stan-
dards are dynamic and subject to frequent changes, and it is important to
keep formal models in sync with them; structuring these models in a pro-
gramming language simplifies maintainability. Second, given the size of
accurate web models, tool support is crucial to give trust in the correctness
of formal proofs and helpful to automatically find attacks.

At the time of writing, it seems these two requirements are particularly followed
by researchers working on JavaScript semantics. Browser models and models of
the web platform, instead, typically sacrifice at least one of these two points.

8.2. Modular Reasoning
The web platform includes different interacting components, such as browsers

and servers, each of which can be further split into smaller sub-components. For
instance, browsers include a JavaScript engine, an HTML parser and a cookie
jar; servers, instead, include databases and web pages developed using different
programming languages. Unfortunately, end-to-end security guarantees for the
web platform often require all the sub-components to behave correctly and each
sub-component is already a very complex system to verify on its own. Also, end-
to-end security requires the presence of secure communication channels between
secure communicating components.

It is unrealistic to believe that only one formal model can fully accommodate
all the complexity of the web platform and its interactions, while being tractable
for formal proofs. Indeed, security researchers have split their efforts along the
many research lines discussed in this work to get an in-depth understanding of
individual web components and tackle their problems in isolation. Combining
these efforts is a major challenge and requires modular reasoning techniques.
Modular reasoning is common in language-based security, most notably security
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type systems, and it allows one to prove the security of a system by building
security proofs of its sub-components. Bringing modular reasoning to the Web
is an important research direction.

8.3. Proposing the Right Abstractions
There is often a tension between what security researchers propose and what

security practitioners desire. For instance, a fully abstract compiler from the
ML-like language F ∗ to JavaScript (Section 4.1.1) is definitely an interesting
idea and an impressive research effort. However, follow-up work by the same
research group recognized that “this is an attractive design, but the sad truth
is that millions of JavaScript programmers are unlikely to switch to ML” [83].
The follow-up paper thus proposes the TS∗ language (Section 4.1.3), featuring
a programming paradigm much nearer to the customs of JavaScript users.

In general, we observe that even proposals which embrace a “security by con-
struction” approach should be very careful in their design. It is true that these
proposals are ultimately targeted at the development of new web applications
and technologies, without being necessarily easy to retrofit on the existing Web.
However, as a matter of fact, one can change a programming pattern, but not
the technological background and the mindset of millions of web developers. To
enable a large scale adoption, novel abstractions for secure web programming
should speak the same language of web developers (and browser vendors, if any
change to current web browsers was needed for their deployment).

8.4. The Importance of Compatibility
Given the massive user base of the Web and the existence of millions of

websites, backward compatibility may even be more important than protection
(soundness) for new web security solutions. This may be discouraging at first
for researchers interested in proposing provably sound web defenses, since it
partially limits the design space for clear-cut and innovative solutions tackling
the root cause of a security vulnerability. However, the quest for backward
compatibility is inherently part of web security and it poses interesting formal
problems on its own rights. Indeed, although backward compatibility is typically
assessed by testing new proposals against the real Web, we argue that also formal
models can be useful to evaluate this important aspect. The point is that, like
any form of testing, practical evaluations on the Web are inherently limited and
they are better complemented by formal analysis.

For instance, web models can be used to identify sufficient conditions under
which a sound enforcement mechanism does not alter the semantics of a web
application. Notice that different definitions of “alter” may be plausible here and
possibly adapted from other research areas, for instance they could be based on
existing observational equivalences defined for process algebras. A good example
of a provably sound defense mechanism with a formal compatibility result is the
secure multi-execution approach to non-interference (Section 5.2.3). This tech-
nique enjoys a transparency result, stating that the semantics of already secure
programs (web applications) is not affected by secure multi-execution [33].
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9. Conclusion

We provided a comprehensive review of research work proposing formal me-
thods as an effective tool to design and validate web security solutions. We
observed that formal methods have been successfully applied to many different
areas of web security: JavaScript security, browser security, web application se-
curity, and web protocol analysis. We discussed the most important challenges
which must be tackled when approaching web security from the formal me-
thods perspective and we identified recommendations for researchers interested
in investigating this fascinating field.

All in all, we observe that formal methods for web security are quite a well-
established reality as of now, but they still represent a very small fraction of
the entire literature on web security. Given the critical importance of the web
platform in everyone’s life, we hope that future web security solutions will only
be considered adequate after a careful formal verification. Though this may
seem overly ambitious and wishful, we observe that something similar already
happened in the protocol community: in that area, formal methods proved ex-
tremely effective at detecting attacks even against carefully engineered protocols
proposed by security experts and published at prestigious venues [52, 88]. As a
result of all these attacks, we are not aware of new protocols published at major
security conferences in the last few years without a rigorous security analysis.
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