
Journal of Computer Security 0 (2022) 1–0 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Certifying Machine Learning Models
Against Evasion Attacks by Program
Analysis

Stefano Calzavara a, Pietro Ferrara a and Claudio Lucchese a

a Università Ca’ Foscari Venezia

Abstract. Machine learning has proved invaluable for a range of different tasks, yet it also proved vulnerable to evasion attacks,
i.e., maliciously crafted perturbations of inputs designed to force mispredictions. In this article we propose a novel technique
to certify the security of machine learning models against evasion attacks with respect to an expressive threat model, where the
attacker can be represented by an arbitrary imperative program. Our approach is based on a transformation of the model under
attack into an equivalent imperative program, which is then analyzed using the traditional abstract interpretation framework.
This solution is sound, efficient and general enough to be applied to a range of different models, including decision trees,
logistic regression and neural networks. Our experiments on publicly available datasets show that our technique yields only a
minimal number of false positives and scales up to cases which are intractable for a competitor approach.

Keywords: adversarial machine learning, abstract interpretation, evasion attacks, security certification

1. Introduction

Machine learning (ML) learns predictive models from data and has proved invaluable for a range of
different tasks, yet it also proved vulnerable to evasion attacks, i.e., maliciously crafted perturbations
of inputs designed to force mispredictions [1]. For example, let us assume a credit company uses a ML
model to automatically assess whether customers qualify for a loan or not. A dishonest customer who re-
alises that the model privileges unmarried people over married ones could cheat about their marital status
to improperly qualify for a loan. Similarly, an attacker could try to fool a ML model used to detect mal-
ware by performing semantics-preserving modifications of malicious software with the goal of making it
to be incorrectly classified as benign software [2]. In a different setting like image classification, even the
corruption of a single pixel may lead to dramatic performance losses by deep neural networks [3], which
hinders the effectiveness of face recognition algorithms in security-critical scenarios [4]. Unfortunately,
traditional evaluations of ML models are not designed to capture their performance under attack, which
motivates the rise of adversarial ML in the last few years [5].

In this article we are interested in the security certification of ML models deployed in an adversarial
setting, i.e., we investigate techniques to quantify their resilience against evasion attacks. Our approach
is based on a transformation of the model under attack into an equivalent imperative program, which is
then analyzed using the classic abstract interpretation framework [6, 7]. This approach enjoys a unique
blend of three desirable properties, which have never been achieved together by the state of the art:

0926-227X/$35.00 © 2022 – IOS Press. All rights reserved.



2 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(1) Soundness: abstract interpretation computes an over-approximation of the reachable program
states. Since our program encodes all the possible evasion attacks, the results of the analysis pro-
vide a conservative estimate of the performance of the model in an adversarial setting, i.e., an
automated formal proof of its resilience to evasion attacks.

(2) Efficiency: thanks to its modular approach, abstract interpretation allows one to apply different
abstractions when statically analyzing a program. This way, one can strike an optimal trade-off
between precision and efficiency by choosing appropriate abstract domains for the analysis.

(3) Generality: abstract interpretation supports arbitrary imperative programs, hence it is amenable
for the analysis of different types of ML models under different types of attacks. Verifying ML
techniques with respect to highly expressive threat models is nowadays one of the most compelling
research directions of adversarial ML [8, 9].

This is a step forward over previous work, which either proposes empirical techniques without formal
guarantees [1, 10], suffers from scalability issues [11, 12], or only focuses on specific ML models and
artificial attackers expressed as mathematical distances [13, 14]. By analyzing different types of models
under different threats and analysis configurations within a unifying framework, our work sheds light on
the relative strengths and weaknesses of off-the-shelf program analysis tools for the security certification
of ML models.

Contributions. We contribute as follows:

(1) We propose a general technique to certify the security of ML models against evasion attacks at-
tempted by an attacker expressed as an arbitrary imperative program. We instantiate the technique
to an expressive threat model based on rewriting rules [11] and we apply it to three different ML
models: decision trees, logistic regression and neural networks (Section 3).

(2) We implement our technique into a new tool called ML-Cert. Given a ML model, an attacker and
a test set of instances used to estimate prediction errors, ML-Cert outputs an over-approximation
of the error rate that the attacker can force on the input model. ML-Cert implements an analysis
computing a single over-approximation of the attacker’s behavior and reuses it in the analysis of
all the test instances, thus boosting efficiency without missing attacks (Section 4).

(3) We assess the effectiveness of ML-Cert against three public datasets. Our results show that ML-
Cert is extremely accurate, since it can compute precise over-approximations of the actual error
rate under attack, with no loss of precision in most cases. Moreover, ML-Cert is much faster than a
competitor approach for decision trees [11] and scales to intractable cases, avoiding its exponential
blow-up. Finally, we perform an in-depth evaluation of the effectiveness of ML-Cert for different
types of model under different threats and analysis configurations (Section 5).

The present article extends a prior conference publication [15]. The original paper and the compan-
ion analysis tool only focused on decision tree models, while the present article shows that the same
certification approach can be applied to two other types of ML models as well, i.e., logistic regression
and neural networks, which confirms its generality. The present article also improves the prior program
analysis by introducing the use of trace partitioning [16], which significantly increases the precision of
the results while still being efficient enough for practical usage. Importantly, all these extensions have
been implemented in the original analysis tool and experimentally validated on three public datasets,
leading to a significantly extended experimental evaluation, which now includes different types of ML
models, threats and analysis configurations.



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

2. Background

In this section we introduce the technical background required to appreciate the contributions of the
article. In particular, we first discuss the security of supervised learning in general, we then present the
specific types of ML models considered in our study, and we finally review the key ideas of the abstract
interpretation framework that we use in our security certification approach.

2.1. Security of Supervised Learning

We deal with the security of supervised learning, i.e., the task of learning a classifier from a set of
labeled data [17]. Formally, let X ⊆ Rd be a d-dimensional space of real-valued features and Y be a
finite set of class labels; a classifier is a function f : X → Y which assigns a class label to each element
of the vector space (instance). The correct label assignment for each instance is modeled by an unknown
function g : X → Y , called target function. In the rest of the article, we focus on binary classification,
i.e., we assume Y = {−1,+1} for simplicity.

Given a training set of correctly labeled data Dtrain = {(x1, g(x1)), . . . , (xn, g(xn))} and a hypothesis
space H, the goal of supervised learning is finding the classifier ĥ ∈ H which best approximates the
target function g. Specifically, we let:

ĥ = argmin
h∈H

L(h,Dtrain),

where L is a loss function which estimates the cost of the prediction errors made by h on Dtrain. Once
ĥ is found, its performance is assessed by computing L(ĥ,Dtest), where Dtest is a test set of correctly
labeled, held-out data drawn from the same distribution of Dtrain.

When dealing with security certification, one should measure the accuracy of ĥ by taking into account
all the actions that an attacker could take to fool the classifier into mispredicting, i.e., evasion attacks [5,
18]. To provide a more accurate evaluation of the performance of the classifier under attack, the loss L
can thus be replaced by the loss under attack LA [19]. Formally, the attacker can be modeled as a function
A : X → 2X mapping each instance into a set of perturbed instances which might fool the classifier.
The test set Dtest can thus be corrupted into any dataset obtained by replacing each (xi, yi) ∈ Dtest with
any (x′i, yi) such that x′i ∈ A(xi); we let A(Dtest) stand for the set of all such datasets. The loss under
attack LA is thus defined by making the pessimistic assumption that the attacker is always able to craft
the most damaging perturbations, as follows:

LA(ĥ,Dtest) = max
D′∈A(Dtest)

L(ĥ,D′). (1)

Unfortunately, computing LA by building A(Dtest) is intractable, given the huge number of perturba-
tions available to the attacker: for example, if the attacker can flip K binary features, then each instance
can be perturbed in 2K different ways, leading to 2K · |Dtest| attacks.

2.2. Model Types

In the supervised learning approach, different sets of hypotheses H give rise to different types of ML
models at training time. We discuss here the three types of models considered in the present work.



4 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

x2 6 10

x1 6 5

+1 −1

+1

Fig. 1. Example of decision tree.

2.2.1. Decision Trees
We focus on traditional binary decision trees, whose internal nodes perform thresholding over feature

values [20]. Such trees can be inductively defined as follows: a decision tree t is either a leaf λ(ŷ) for
some label ŷ ∈ Y or a non-leaf node σ( f , v, tl, tr), where f ∈ [1, d] identifies a feature, v ∈ R is the
threshold for the feature f and tl, tr are decision trees. At test time, an instance x = (x1, . . . , xd) traverses
the tree t until it reaches a leaf λ(ŷ), which returns the prediction ŷ, denoted by t(x) = ŷ. Specifically,
for each traversed tree node σ( f , v, tl, tr), x falls into the left tree tl if x f 6 v, and into the right tree tr
otherwise.

Figure 1 represents an example decision tree, which assigns the instance (6,8) with label −1 to its
correct class. In fact: (i) the first node checks whether the second feature, whose value is 8, is less than
or equal to 10 and then takes the left sub-tree, and (ii) the second node checks whether the first feature,
whose value is 6, is less than or equal to 5 and then takes the right leaf, classifying the instance with
label −1.

2.2.2. Logistic Regression
Logistic regression is a statistical model that in its standard formulation uses a logistic function to

perform binary predictions [21]. Specifically, given an instance x, the probability of x belonging to class
+1 is estimated as follows:

P(g(x) = +1) =
1

1 + e−(w·x+k)
,

where w is a vector of weights and k is a constant, both identified by supervised learning. If the computed
probability value is at least 0.5, the predicted class is +1, otherwise the predicted class is -1.

2.2.3. Neural Networks
We focus on artificial neural networks [17] with a single layer of hidden neurons, each using a ReLU

activation function. Specifically, given an instance x, the i-th neuron computes an output oi(x) as follows:

oi(x) = max(0,wi · x + ki),

where wi is a vector of weights and ki is a constant. The vector of the outputs of the neurons, denoted as
o(x), is eventually used to estimate the probability of x belonging to class +1 as follows:

P(g(x) = +1) =
1

1 + e−(v·o(x)+k∗)
,



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

where v is a vector of weights and k∗ is a constant. If the computed probability value is at least 0.5, the
predicted class is +1, otherwise the predicted class is -1. Here, all weights and constants are automatically
identified by supervised learning.

2.3. Abstract Interpretation

Abstract interpretation is a classic, unifying approach to the static analysis of programs [6, 7]. In this
work, we show how abstract interpretation can be applied to certify the security of different types of
models trained via supervised learning. We review below the key ingredients of abstract interpretation
and we refer to the original papers for more details.

Abstract Domains. In the abstract interpretation framework, the behavior of a program is approximated
through abstract values from an abstract domain with a lattice structure, rather than concrete values.
For example, the Sign domain abstracts numbers with their sign, based on the following abstraction and
concretization functions α and γ respectively:

α(V) =



⊥ if V = ∅
+ if ∀v ∈ V : v > 0

0 if ∀v ∈ V : v = 0

− if ∀v ∈ V : v < 0

> otherwise

γ(a) =



R if a = >
{n ∈ R | n > 0} if a = +

{0} if a = 0

{n ∈ R | n < 0} if a = −
∅ if a = ⊥

Note that for all sets of concrete values V ⊆ R we have V ⊆ γ(α(V)), i.e., the abstraction function
provides an over-approximation of the concrete values.

Thanks to its modular approach, abstract interpretation allows one to define multiple abstractions
of the same concrete domain. Numerical abstractions have been widely studied and several abstrac-
tions have been proposed during the last decades. For instance, the aforementioned Sign domain tracks
whether a variable is positive, negative or equal to zero. Instead, Intervals track for each variable its
minimum and maximum value. These domains are called non-relational, since they track information
about the values but not the relations among variables. Instead, Octagons [22] and Polyhedra [23] track
different types of (linear) relations among numerical variables (±x±y 6 c and a1∗v1+ · · ·+an∗vn 6 c,
respectively), and have been fruitfully applied to different contexts. Apron [24] is a Java library of nu-
merical abstract domains comprising the main domains leveraged in this work.

Abstract Semantics. Operations over concrete values like the sum operation + are over-approximated
by abstract counterparts ⊕ over the abstract domain, which define the abstract semantics. For example,
the sum of two positive numbers is certainly positive, while the sum of a positive number and a negative
number can be positive, negative or 0; this lack of information is modeled by >. Hence, ⊕ is defined
such that + ⊕ + = + and + ⊕ − = >. A sound definition of ⊕, here omitted, must ensure that for all
V1,V2 ⊆ R:

{v1 + v2 | v1 ∈ V1 ∧ v2 ∈ V2} ⊆ γ(α(V1)⊕ α(V2)),

i.e., abstract operations must over-approximate operations over concrete values.
By simulating the program over the abstract domains, abstract interpretation ensures a fast conver-

gence to an over-approximation of all the reachable program states. In particular, the analysis consists



6 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

in computing the fixpoint of the abstract semantics over the abstract domain, making use of a widen-
ing operator, usually when the upper bound operator does not converge within a given threshold [6, 7].
Consider, for instance, the following for loop that initializes to zero all the cells of an array:

1 for( int i=0; i < arr . length; i++)
2 arr [ i ]=0;

In order to compute a sound overapproximation of the values of variable i inside the loop, abstract
interpretation computes a fixpoint. In particular, when we analyze the body of the loop for the first
time with the Sign domain, we have that i is 0. After the execution of the loop i is incremented by one,
becoming +. The fixpoint computation proceeds then by merging the two results (computing the least
upper bound of the abstract entry values of i, that is, 0t+ = >) and applying the semantics of the body
again. This second iteration immediately converges, since the abstract value of i is >.

Let us now consider the Intervals abstract domain. With such a domain, i will be [0..0] during the first
iteration, [0..1] during the second one (since [0..0] t [1..1] = [0..1]), and then [0..2], [0..3], etc. Since
the fixpoint computation does not converge, the abstract interpretation framework requires to define a
widening operator ∇, that is an upper bound operator ensuring the convergence of the analysis. A com-
mon widening operator over intervals abstracts to +∞ and −∞ the right and left bound, respectively,
if these bounds continue to expand in subsequent iterations. In the example above, the value of i will be
abstracted with [0..+∞], enforcing the convergence of the analysis.

Trace partitioning. Trace partitioning [16] is a generic analysis approach based on the abstract inter-
pretation theory that allows for tracking disjunctive information. Assume for instance to analyze the
following snippet of code with the Intervals domain:

1 if ( j>0)
2 i = 1;
3 else i = −1;

Assuming that at the beginning of the analysis we know nothing about j (that is, j = [−∞.. +∞]),
after the analysis we will infer that j = [−∞.. +∞], i = [−1.. + 1], abstracting away that i cannot be
zero, and that if j is positive then i is equal +1, and otherwise i is equal to -1.

Trace partitioning aims at improving the precision of the underneath domain in these cases. In par-
ticular, we can instruct this domain to partition the abstract state on the result of the condition at the
first line of the program. In this way, the analysis will track two states: one for j > 0, and one for
j 6 0. Therefore, at the end of the analysis we will obtain the states j = [1..+∞], i = [+1..+ 1] and
j = [−∞..0], i = [−1..− 1], thus recovering full precision.

3. Security Certification of ML Models

Here we detail the key points of our security certification technique. We first introduce our threat
model, then we explain how we translate attackers and three types of ML models to imperative programs.
We finally detail how we prove the robustness of these models under attack using static analysis and we
discuss possible extensions of our approach.



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

3.1. Threat Model

Our approach is general enough to be applied to attackers represented as arbitrary imperative pro-
grams. However, to exemplify it, we discuss how it can be applied to an expressive threat model based
on rewriting rules [11]. This relatively new threat model goes beyond traditional distance-based models,
which are plausible for perceptual tasks like image recognition, but are inappropriate for non-perceptual
tasks (e.g., loan assignment) where mathematical distances do not capture useful semantic properties of
the domain of interest. Notice that our experimental evaluation also includes a standard distance-based
attacker model for the sake of completeness, thus confirming our generality claims (see Section 5.5.2).

We model the attacker A as a pair (R,K), where R is a set of rewriting rules, defining how instances
can be corrupted, and K ∈ R+ is a budget, limiting the amount of alteration the attacker can apply to
each instance. Each rule r ∈ R has form:

[a, b]
f−→k [δl, δu],

where: (i) [a, b] and [δl, δu] are intervals on R ∪ {−∞,+∞}, with the former defining the precondition
for the application of the rule and the latter defining the magnitude of the perturbation enabled by the
rule; (ii) f ∈ [1, d] is the index of the feature to perturb; and (iii) k ∈ R+ is the cost of the rule. The
semantics of the rewriting rule can be explained as follows: if an instance x = (x1, . . . , xd) satisfies the
condition x f ∈ [a, b], then the attacker can corrupt it by adding any v ∈ [δl, δu] to x f and spending k from
the available budget. The attacker can corrupt each instance by using as many rewriting rules as desired
in any order, possibly multiple times, up to budget exhaustion. Note that, since the attacker can pick any
perturbation v ∈ [δl, δu], which is a continuous interval, hence the model readily applies to continuous
data and the number of possible attacks is unbounded.

According to this attacker model, we can define A(x), the set of the attacks against the instance x, as
follows.

Definition 1 (Attacks). Given an instance x and an attacker A = (R,K), we let A(x) be the set of the
attacks that can be obtained from x, i.e., the set of the instances x′ such that there exist a sequence of
rewriting rules r1, . . . , rn ∈ R and a sequence of instances x0, . . . , xn where:

(1) x0 = x and xn = x′;
(2) for all i ∈ [1, n], the instance xi−1 can be corrupted into the instance xi by using the rewriting rule

ri, as described above;
(3) the sum of the costs of the rewriting rules r1, . . . , rn is not greater than K.

Notice that x ∈ A(x) for any A by picking an empty sequence of rewriting rules, i.e., the attacker can
always leave the original instance unchanged.

To exemplify the threat model at work, consider the attacker A = ({r1, r2}, 10), where:

• r1 = [0, 10]
1−→5 [−1, 0] allows the attacker to corrupt the first feature by adding any value in the

interval [−1, 0], provided that the feature value is in [0, 10] and the available budget is at least 5;
• r2 = [5, 10]

2−→4 [0, 1] allows the attacker to corrupt the second feature by adding any value in the
interval [0, 1], provided that the feature value is in [5, 10] and the available budget is at least 4.

Such an attacker A would force the decision tree in Figure 1 to change its original prediction−1 on the
instance (6, 8). In particular, we can show that (5, 8) is a possible attack against (6, 8), since A can apply



8 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

r1 once by spending 5 from the budget, and (5, 8) is classified as +1 by the decision tree in Figure 1. Note
that this just a simple example of a possible attack, because the attacker can apply rules r1, r2 arbitrarily
many times up to budget exhaustion, provided that their preconditions are still satisfied after corruption.
For example, another possible attack against (6, 8) is (5.5, 8.5), where both features are corrupted by
0.5: this is possible because the cost of the attack is 9 and the attacker’s budget is 10. Further increasing
the attacker’s budget would enable more combinations of rules: for example, an attacker with budget 20
could choose to apply rule r1 four times, to apply rule r2 five times, or to apply both rules twice each.

3.2. Proving Security by Program Analysis

We now discuss the details of the proposed analysis methodology. We first explain how to convert an
attacker into an imperative program, we then discuss how different types of ML models can be similarly
converted and we finally profit by the conversion by leveraging the abstract interpretation framework.

3.2.1. Attacker Conversion
We observe that the attacker A = (R,K) can be represented by means of a non-deterministic program

which behaves as follows:

(1) Select a random rewriting rule r ∈ R.
(2) Let [a, b]

f−→k [δl, δu] be the selected rewriting rule r and let x = (x1, . . . , xd) be the instance to
perturb. If x f ∈ [a, b] and the available budget is at least k, then select a random δ ∈ [δl, δu], replace
x f with x f + δ and subtract k from the available budget.

(3) Non-deterministically go to step 1 or terminate the process. This stop condition allows the attacker
to spare part of the budget, which is needed to enforce termination when the entire budget cannot
be spent or does not need to be spent.

Figure 2 summarizes our construction, where the attacker is modeled as an imperative program, using
traditional functions for random number generation. Note that the same idea could be applied to model
distance-based attackers from the literature as well. For example, attackers based on the infinity-norm
L∞ can corrupt features by adding a maximum perturbation k ∈ R+ to them [14]. These attackers can
be encoded through a program adding a randomly sampled δ ∈ [−k, k] to each corrupted feature.

3.2.2. Model Conversion
We now show how classifiers are translated into imperative programs. In particular, we discuss how

we translate the three model types (decision trees, logistic regression, and neural networks) supported
by our approach.

Decision Trees. Translating the decision tree into an imperative program is straightforward (see Fig-
ure 3). In particular, each internal node is translated into an if-then-else statement (e.g., the root of the
tree in Figure 1 is translated into the if statement starting at line 2), while leaves are translated into a
statement that returns the value of the label in the leaf (e.g., the leaf +1 that is in the right child of the
root of the tree in Figure 1 is translated into the return statement at line 9).

Logistic Regression. As explained in Section 2.2.2, logistic regression models check whether the prob-
ability returned by the logistic function is at least 0.5. However, our encoding just checks whether the
value of the exponent of e, that is, (w · x + k), is greater than or equal to 0. It is easy to see that this
is equivalent to checking whether the probability is greater than or equal to 0.5. However, existing nu-
merical domains (and Polyhedra in particular) focus mostly on linear constraints among variables, and



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

1 float [] attack (float [] x) {
2 float K = 10;
3 boolean done = false;
4 while (!done) {
5 int rule = random_int(1,3);
6 switch (rule) {
7 case 1:
8 if (x[1] >= 0 && x[1] <= 10 && K >= 5) {
9 float delta = random_float(−1,0);

10 x[1] = x[1] + delta ;
11 K = K − 5;
12 }
13 break;
14 case 2:
15 if (x[2] >= 5 && x[2] <= 10 && K >= 4) {
16 float delta = random_float(0,1);
17 x[2] = x[2] + delta ;
18 K = K − 4;
19 }
20 break;
21 case 3:
22 // non−deterministic termination
23 done = true;
24 }
25 }
26 return x;
27 }

Fig. 2. Encoding the attacker into an imperative program.

1 int predict (float [] x) {
2 if (x[2] <= 10) {
3 if (x[1] <= 5)
4 return +1;
5 else
6 return −1;
7 }
8 else
9 return +1;

10 }

Fig. 3. Translation of the decision tree in Figure 1 into an imperative program.

therefore their direct application to the logistic function would lead to very imprecise results by the static
analyzer.

Neural Networks. The encoding of neural networks employs, for each neuron in the hidden layer, a
fresh local variable to store the linear combination of features computed to feed the ReLU activation
function, as formalized in Section 2.2.3. The values resulting from applying the ReLU activations are
then aggregated again through another linear combination and, similarly to the encoding of logistic
regression, if the computed linear combination is non-negative then the predicted class is +1, otherwise
the predicted class is −1.



10 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

1 int predict_att (float [] x) {
2 float [] z = attack(x );
3 return predict (z );
4 }

Fig. 4. Translation of a ML model under attack into an imperative program.

3.2.3. Models Under Attack
For a classifier h, an attacker A and a test set Dtest, we can compute a sound over-approximation of
LA(h,Dtest) as follows. We first translate the classifier h together with the attacker A into an imperative
program Q representing the classifier under attack, based on the conversions discussed in the previous
section. This program is shown in Figure 4.

For each instance (xi, yi) ∈ Dtest, we build an abstract state α({xi}) representing xi in the chosen
abstract domain and we analyze Q with such entry state. Then, the output of the analysis might be either
of the following:

(1) only program points returning the correct class label yi are reachable. This means that, for all
possible attacks against xi, the classifier h always returns the correct class;

(2) program points returning the wrong label are reachable as well. If h correctly classifies the instance
in the unattacked setting, this might happen either because there is indeed an attack leading to
a misprediction or for a loss of precision due to the over-approximation performed by the static
analysis.

Since our approach relies on sound static analysis engines, it is not possible to miss attacks, i.e., every
instance which can be mispredicted upon attack must fall in the second case of our analysis.

Let Q#(xi) = Yi stand for the set of labels Yi returned by the analysis of Q on the instance xi. By using
this information, we can construct an abstraction of the behaviour of h under attack on Dtest defined as
follows:

∀(xi, yi) ∈ Dtest : h#(xi) =

{
yi if Q#(xi) = {yi}
−yi otherwise

By construction, we have LA(h,Dtest) 6 L(h#,Dtest) for any loss function which depends just on
the number of mispredictions, like the error rate, i.e., the fraction of wrong predictions among all the
performed predictions. This means that h# enables an efficient approach to over-approximate the loss
under attack LA by computing just a traditional loss L, which does not require the computation of the
set of attacks.

3.3. Extensions

We discuss here possible extensions of our approach to different popular settings. We leave the imple-
mentation of these extensions to future work, since most of them are essentially an engineering effort.

3.3.1. Regression
The regression task requires one to learn a regressor rather than a classifier from the training data.

The key difference between a regressor and a classifier is that the former does not assign a class from a



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

finite set Y , but rather infers a numerical quantity from an unbounded set, e.g., estimates the salary of an
employee based on their features. Regression can be modeled by revising the abstraction h# such that it
returns an abstract value over-approximating all the values of the predictions found in the leaves which
are reachable upon attack. Formally, this means requiring h#(xi) = tyi∈P#(xi)α({yi}), where t stands
for the least upper bound operator on the abstract domain underlying the analysis.

3.3.2. Multi-Class Classification
We explained our analysis approach for binary classification tasks, however our technique is general

enough to be applied to multi-class classification as well. If the classifier already outputs a class from
a set of labels Y such that |Y| > 2, we can readily apply the approach in Section 3.2.3. Specifically,
given an instance (xi, yi) ∈ Dtest, we can change the abstraction h# such that h#(xi) returns any y′i 6= yi

whenever Q#(x) 6= {yi}. This is the most natural approach for decision trees, since they can be trained to
predict classes from an arbitrary finite sets of labels. For other models, instead, multi-class classification
can be reduced to multiple binary classifications using standard techniques, known as one-vs.-rest and
one-vs.-one [25]. Thus, the restriction to binary classification does not yield any loss of generality.

3.3.3. Ensembles
Ensemble methods train multiple classifiers and combine them to improve prediction accuracy. Tra-

ditional ensemble approaches for decision trees include random forest [26] and gradient boosting [27].
Irrespective of how an ensemble is trained, its final predictions are performed by aggregating the predic-
tions of the individual classifiers, e.g., using majority voting or averaging. This means that it is possible
to extend our analysis technique to ensembles by translating each classifier therein and by aggregating
their predictions in the generated imperative program.

3.3.4. Generalization to Other ML Models
Summing up, our approach consists of (i) encoding the attacker and the ML model as programs, and

(ii) applying existing abstract domains to approximate all possible executions of these programs to detect
evasion attacks. As already discussed, during the last decades abstract domains have been mostly focused
on tracking numerical linear constraints over variables. In such a context, several robust implementations
of these domains have been developed, and this technological ecosystem allows us to study how these
analyses perform in practice on some popular models considered in the present work.

While our methodology is general, we acknowledge that its effectiveness depends on the behavior of
the ML model and the abstract domain used to analyze it. Generally speaking, such an approach works
well for ML models that are amenable to be represented in terms of assignments and conditions of linear
expressions. For instance, tracking linear constraints is precise for any architecture of neural networks,
since each neuron is a linear combination of features or of other neurons encoded in the program as
local variables. Instead, some activation functions, such as the hyperbolic tangent, expose non-linear
behaviors, and existing numerical abstract domains might achieve little precision in these cases. For this
reason, we focused our approach on the ReLU activation function (that is amenable to reasoning on
linear constraints), leaving other functions to future work.

Extending our analysis technique to arbitrary ML models requires to formalize, prove the correctness
and develop novel abstract domains. In most cases, this would be by itself a distinct scientific contribu-
tion requiring additional research.



12 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 5. The architecture of ML-Cert.

4. Implementation: ML-Cert

Figure 5 depicts the architecture of ML-Cert, our tool for the security certification of ML models.1 Its
inputs are: (i) the attacker, encoded in a JSON file supporting the threat model of Section 3.1, (ii) an
ML model to analyse, serialized through the joblib library, and (iii) a test set in CSV format. ML-
Cert reports for each test instance whether it is correctly classified for each possible attack or it might
be incorrectly classified. The analysis is performed along three different modules, called ModelCoder,
AttackerAnalyzer and ModelAnalyzer respectively, which we detail in the following.

4.1. ModelCoder

The first step of ML-Cert is to encode the attacker and the ML model as Java programs through the
module ModelCoder, as described in Sections 3.2.1 and 3.2.2. ModelCoder is a Python script that, given
an attacker model and a decision tree, produces two distinct Java files encoding the attacker (see method
attack in Figure 2) and the machine learning algorithm (see method predict in Figure 3).

There are only two small technical differences over the previous presentation. First, given that all
instances of the same dataset share the same set of features, instances are not encoded as arrays, but rather
modeled using a distinct local variable for each feature, which simplifies the static analysis; specifically,
we let variable xi represent the initial value of the i-th feature and variable x′i represent its value after the
attack. In addition, each time a rewriting rule r is applied, we increment a counter r_counter, initially
set to 0, which allows one to capture useful analysis invariants. Clearly, these changes do not affect the
semantics of the generated program, so we did not include them in Figure 2 for simplicity.

1We release ML-Cert as opensource software and make it available at https://github.com/pietroferrara/staticanalyzer.

https://github.com/pietroferrara/staticanalyzer


Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

4.2. AttackerAnalyzer

The encoded attacker is then passed to the AttackerAnalyzer module, a static analyzer based on ab-
stract interpretation. The analyzer interfaces with Apron, a standard library implementing many popular
abstract domains. The analyzer then computes a fixpoint over the Java program representing the attacker,
using the Polka implementation2 of the Polyhedra domain [23].

Polka tracks linear equalities and inequalities over an arbitrary number of variables. These invariants
allow AttackerAnalyzer to infer the upper and lower bounds of each attacked feature, based on how
many times a feature can be attacked using the available budget. In addition, we combine this domain
with trace partitioning [16], an abstract interpretation-based domain that allows one to track several
abstract states per program point based on specific criteria. For instance, one might collect a distinct
state for the first n iterations of a loop, or based on the value of a numerical variable (e.g., whether it is
positive or negative), or on whether a specific program point is traversed. In our setting, we partition at
each program point of the attacker that modifies the value of a feature. In this way, we distinguish the
cases where a feature can be attacked (e.g., because the concrete values of a test case satisfy the rule
precondition) or not.

To exemplify, pick the attacker in Figure 2. ML-Cert partitions the states at lines 10 and 17, that are
the two program points where the attacker modifies the values of the features. In this way, we obtain four
distinct abstract states that distinguishes when (i) both the first and second features cannot be attacked,
because their initial values were outside the bounds of the attacker (that is, between 0 and 10 for the
first feature, and between 5 and 10 for the second feature), (ii) only the first feature can be attacked,
(iii) only the second feature can be attacked, and (iv) both features can be attacked. Let us consider the
fourth case, that is, when both features can be attacked. Here, AttackerAnalyzer infers on the encoding
of the attacker that, after the attack has been performed: (i) the value of the first feature may have been
decreased by at most r1_counter (formally, x′1 ∈ [x1 − 1 ∗ r1_counter, x1]), (ii) the second feature may
have been increased by at most r2_counter (x′2 ∈ [x2, x2 + 1 ∗ r2_counter]), (iii) both the counters are
non-negative (r1_counter > 0 ∧ r2_counter > 0), and (iv) the budget spent in the application of the two
rewriting rules is less than or equal to the initial budget (5 ∗ r1_counter + 4 ∗ r2_counter 6 10). Note
that the last invariant is inferred only if the calculation of a fixpoint over the abstract semantics did not
require to apply the Polyhedra widening operator to convergence. Otherwise, the analysis would drop
such information to ensure termination.

4.3. ModelAnalyzer

The attacker invariants are then passed to the ModelAnalyzer module together with the test set. Like
AttackerAnalyzer, ModelAnalyzer performs a static analysis using the Polka implementation of the
Polyhedra abstract domain. For each test instance x, ModelAnalyzer (i) adds the initial values of the
features of x to the attacker invariants, (ii) computes the fixpoint over the program encoding the decision
tree t under attack, and (iii) uses it to return the output t#(x). Thanks to the initial values of the features,
the analysis can then prune away all the cases produced by trace partitioning that do not apply to the
current test instance, which makes the analysis efficient.

To clarify, consider again the example in Figure 1, where the test instance (6, 8) is correctly classified
as −1 by the given decision tree, but can be misclassified upon attack. First of all, ModelAnalyzer
adds the invariants x1 = 6 and x2 = 8 to the inferred attacker invariants, pruning away the first three

2http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/Polka.html

http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/Polka.html


14 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

cases inferred by trace partitioning on the attacker encoding, and keeping only the fourth one, i.e., both
features can be attacked. This leads to an initial Polyhedra state tracking that x′1 ∈ [6 − r1_counter, 6]
and x′2 ∈ [8, 8 + r2_counter] with 5 ∗ r1_counter + 4 ∗ r2_counter 6 10. Then the static analysis of the
encoded tree starts with the evaluation of the condition x′2 6 10, inferring that such condition is always
evaluated to true: indeed, x2 could become greater than 10 only if r2_counter was strictly greater than
2, but then 5 ∗ r1_counter + 4 ∗ r2_counter 6 10 could not hold since r1_counter > 0. ModelAnalyzer
then analyzes the condition x′1 6 5. In this case, it cannot definitely conclude that the condition is always
evaluated to false, since x1 can become less than or equal to 5 if r1_counter > 1, which is allowed by
the invariant 5 ∗ r1_counter + 4 ∗ r2_counter 6 10. ModelAnalyzer then concludes that the test instance
might be wrongly classified, since a branch that classifies the instance as +1 could be reached.

Let us now consider the test instance (5, 11). Such instance is classified as +1 by the decision tree
in Figure 1. The attacker cannot fool the classifier to mispredict such instance, since in our model the
second feature cannot be attacked, as it is outside the bounds of the preconditions of the attacker’s
rewriting rules and the decision tree will always classify it as +1.

If we analyze the attacker and the instance by applying trace partitioning, ModelAnalyzer is in the
position to conclude that such test instance cannot be wrongly classified, since the value of x2 will
always be 11. In fact, the bounds of the attacker are encoded as an if-then-else statement. If the value
of the feature is inside such bounds, then the attacker modifies this value. Therefore, if we partition the
abstract state w.r.t. the condition of this if-then-else statement (as we did in the example in Section 2.3),
we infer a state where the feature is modified if it is inside the attacker bounds, and another state where it
cannot be attacked if it is outside such bounds. Thank to this information, when we apply this abstraction
to the instance (5, 11) we infer that the value of the second feature cannot be modified, and therefore the
instance cannot be wrongly classified.

If instead we analyze the attacker without trace partitioning, we are not in the position to conclude
that the second feature cannot be attacked, as we symbolically track only the bounds of the attacked
features, but not the fact that they can only be attacked if their initial value was inside some given
bounds. Therefore, for such instance trace partitioning is required in order to conclude that the instance
cannot be wrongly classified.

5. Experimental Evaluation

We now report on an experimental evaluation of our approach. We first introduce our methodology
and then describe the key experimental results in terms of precision and efficiency on public datasets.

5.1. Methodology

We evaluate our proposal on three public datasets: Census, House and Wine, which are described
in Section 5.2. Our methodology includes multiple steps. We start with a preliminary threat modeling
phase, where we define the attacker’s capabilities by means of a set of rewriting rules R and a set of
possible budgets {K1, . . . ,Kn}, as explained in Section 3.1. Our attackers are primarily designed to
perform an experimental evaluation of ML-Cert, yet they are representative of plausible attack scenarios
which do not fit traditional distance-based models and are readily supported by the expressiveness of our
threat model.

Datasets are divided intoDtrain andDtest by using a 90-10 splitting with stratified sampling (though we
use an 80-20 splitting for the smaller Wine dataset). We first train a classifier on Dtrain using the popular



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 1
Details of Hyper-Parameter Tuning

Model type Hyper-parameters
Decision tree Number of leaves: {21, 22, . . . , 210}
Logistic regression Regularization: {10−3, 10−2, . . . , 103}
Neural network Number of hidden neurons: {4, 8, 12}

scikit-learn library, performing hyper-parameter tuning through cross-validation onDtrain. We use
the error rate, i.e., the fraction of wrong predictions among all the performed predictions, as the loss
function L used to estimate the performance of the models. Minimizing the error rate is thus equivalent
to maximizing the accuracy of the models, a standard measure amounting to the fraction of correct
predictions out of all predictions, i.e., accuracy can be computed by subtracting the error rate L from
1. Table 1 shows the tested hyper-parameters for the different trained models. Only the best-performing
models for each dataset according to cross-validation are included in our experimental evaluation.

We then evaluate the model resilience to attacks against each attacker A = (R,Ki) on Dtest. Ideally,
we would like to compute the actual value of LA (Equation 1) for each model, so as to assess the quality
of its over-approximation computed by ML-Cert. Unfortunately, computing LA by enumerating all the
possible attacks is intractable, which is the key motivation of our work. To work around this problem,
we reuse the certification technique for decision trees given in [11], which is the only available solution
for attackers expressed using rewriting rules. In particular, the algorithm exploits the possible thresholds
of the decision tree to compute A(xi), the set of representative attacks against the decision tree, for each
instance xi in Dtest. This is a comparatively small subset of the attacks A(xi), which suffices to detect the
successful evasions attacks without losing soundness or precision. We observe and we experimentally
confirm that computing even the representative attacks does not scale in general, which motivates the
need for approximated analyses like ours. For simplicity, we reuse the same set of representative attacks
also in the evaluation of logistic regression and neural networks. Note that this might just penalize the
evaluation of ML-Cert, since A(xi) may only represent a subset of A(xi) for logistic regression and
neural networks, yielding an estimate of LA which is lower than its actual value (and we would like the
over-approximation computed by ML-Cert to be as close as possible to LA).

In the end, we evaluate the performance of ML-Cert by classifying each (xi, yi) ∈ Dtest as follows:

• True Positive (TP): ML-Cert states that the instance xi can be misclassified upon attack and this
conclusion is correct.

• False Positive (FP): ML-Cert states that the instance xi can be misclassified upon attack, but this
conclusion is wrong.

• True Negative (TN): ML-Cert states that the instance xi cannot be misclassified upon attack and this
conclusion is correct.

• False Negative (FN): ML-Cert states that the instance xi cannot be misclassified upon attack, but
this conclusion is wrong.

Since our analysis is sound, we cannot have FN. We then assess the quality of ML-Cert by computing
its False Positive Rate FPR and False Discovery Rate FDR:

FPR =
FP

FP + TN
, FDR =

FP
FP + TP

.



16 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 2
Properties of datasets used in the experiments

Dataset #Instances #Features Maj. class
Census 29169 51 0.75
House 21613 19 0.51
Wine 6497 12 0.63

Finally, we evaluate the efficiency of ML-Cert, in particular focusing on a comparison against the time
required for the computation of the set of the representative attacks discussed above. This yields a fair
comparison in the case of decision trees, since the set of representative attacks covers all the possible
evasion attacks. For logistic regression and neural networks we just focus on the running times of ML-
Cert and assess whether they are appropriate for practical use, since we lack a sound analysis baseline
for attackers expressed using rewriting rules.

5.2. Datasets and Attackers

We perform our experiments on three publicly available datasets, whose key statistics are shown in
Table 2. The preconditions of the rewriting rules and the magnitude of the perturbations have been
set after a preliminary data exploration step, based on the observed data distribution in the dataset. A
real-world application of our analysis technique would require input from domain experts to define
the relevant threats, which is beyond the scope of our evaluation. We consider different values of the
attacker’s budget: 10, 20, 30, 40, 50, 60. For the House dataset, we stop the evaluation at 40, since the
computation of the set of the representative attacks (our ground truth) becomes intractable after that.

5.2.1. Census
The Census3 dataset includes demographic information about American citizens. The prediction task

is estimating whether the income of a citizen is above 50,000$ per year. For this dataset, we define four
rewriting rules:

• cost 5: if the capital gain is in [0,100000], it can be raised by 200;
• cost 5: if the capital loss is in [0,100000], it can be lowered by 200;
• cost 10: if the number of work hours is in [0,40], it can be raised by 1;
• cost 10: if the age is in [0,40], it can be raised by 1.

5.2.2. House
The House4 dataset contains house sale prices for the King County area. The prediction task is infer-

ring whether a house costs at least as the median house price. For this dataset, we define four rewriting
rules:

• cost 5: if the square footage of the living space of the house is in [0,3000], it can be increased by
50;

• cost 5: if the square footage of the land space is in [0,2000], it can be increased by 50;
• cost 5: if the average square footage of the living space of the 15 closest houses is in [0,2000], it

can be increased by 50;
• cost 5: if the construction year is in [1900,1970], it can be increased by 10.

3http://archive.ics.uci.edu/ml/machine-learning-databases/adult
4https://www.kaggle.com/harlfoxem/housesalesprediction

http://archive.ics.uci.edu/ml/machine-learning-databases/adult
https://www.kaggle.com/harlfoxem/housesalesprediction


Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 3
Accuracy results for decision trees (a star marks approximated results)

Dataset Budget L LA ML-Cert FPR FDR

Census

10 0.14 0.16 0.16 0.00 0.00
20 0.14 0.17 0.17 0.00 0.00
30 0.14 0.17 0.17 0.00 0.00
40 0.14 0.17 0.17 0.00∗ 0.00∗

50 0.14 0.18 0.18 0.00 0.00
60 0.14 0.18 0.18 0.00∗ 0.00∗

House

10 0.10 0.11 0.11 0.00 0.00
20 0.10 0.13 0.13 0.00∗ 0.00∗

30 0.10 0.14 0.14 0.00 0.00
40 0.10 0.16 0.16 0.00∗ 0.00∗

Wine

10 0.23 0.27 0.27 0.00∗ 0.00∗

20 0.23 0.30 0.30 0.00∗ 0.00∗

30 0.23 0.34 0.34 0.00∗ 0.00∗

40 0.23 0.36 0.36 0.00∗ 0.00∗

50 0.23 0.37 0.37 0.00∗ 0.00∗

60 0.23 0.38 0.38 0.00∗ 0.00∗

5.2.3. Wine
The Wine5 dataset represents different types of wines. The prediction task is detecting whether a wine

has quality score at least 6 on a scale 0–10. For this dataset, we define four rewriting rules:

• cost 2: if the residual sugar is in [2,4], it can be lowered by 0.01;
• cost 5: if the alcohol level is in [0,11], it can be increased by 0.01;
• cost 5: if the volatile acidity is in [0,1], it can be lowered by 0.01;
• cost 5: if the free sulfur dioxide is in [20,40], it can be lowered by 0.1.

5.3. Quality of the Analysis

We start by presenting the results for decision trees in Table 3. For these models we are able to compute
the actual value of LA by means of the representative attack approach, hence we have a ground truth
and we can perform a fully reliable assessment. The experimental evaluation yields virtually no false
positives: we only identified 9 false positives across all datasets and budgets, i.e., the average number of
false positives across all the experiments is less than 1. This implies that both FPR and FDR are always
very close to 0 (and actually 0 in several cases).

We now focus on the analysis of logistic regression and neural networks. For these models, the set of
representative attacks computed over decision trees might not cover all the possible attacks, which means
that the value of LA might be under-estimated. Though this might penalize ML-Cert by over-estimating
the number of false positives, we show that this is not a problem in practice, because ML-Cert achieves
excellent results despite this penalization. We start by presenting the results for the logistic regression
models in Table 4. Two observations are noteworthy on this experiment. First, the quality of the analysis
performed by ML-Cert is even better than for the decision tree models, because just one false positive
was reported across all datasets and budgets: this explains why both FPR and FDR are always very close
to 0. Moreover, we note that the accuracy of logistic regression is worse than that of the decision tree

5https://www.openml.org/data/get_csv/49817/wine_quality.arff

https://www.openml.org/data/get_csv/49817/wine_quality.arff


18 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 4
Accuracy results for logistic regression (a star marks approximated results)

Dataset Budget L LA ML-Cert FPR FDR

Census

10 0.15 0.17 0.17 0.00 0.00
20 0.15 0.19 0.19 0.00 0.00
30 0.15 0.20 0.20 0.00∗ 0.00∗

40 0.15 0.21 0.21 0.00 0.00
50 0.15 0.22 0.22 0.00 0.00
60 0.15 0.23 0.23 0.00 0.00

House

10 0.15 0.15 0.15 0.00 0.00
20 0.15 0.16 0.16 0.00 0.00
30 0.15 0.17 0.17 0.00 0.00
40 0.15 0.17 0.17 0.00 0.00

Wine

10 0.27 0.28 0.28 0.00 0.00
20 0.27 0.29 0.29 0.00 0.00
30 0.27 0.30 0.30 0.00 0.00
40 0.27 0.31 0.31 0.00 0.00
50 0.27 0.32 0.32 0.00 0.00
60 0.27 0.33 0.33 0.00 0.00

models on all datasets, yet logistic regression fares better under attack on the Wine dataset. We believe
the reason for this is the simplicity of logistic regression, which yields more regular decision boundaries
which are harder to evade.

Finally, Table 5 shows the results for the neural network models. Here we observe again near-perfect
analysis precision on the House and Wine datasets: only one false positive was reported overall. The
picture is a bit different on the Census dataset, which turned out to be more challenging to analyze;
however, FPR is at most 0.02 and FDR is at most 0.05. In particular, we remark that a FPR of 0.10 is
considered a state-of-the-art reference for static analysis techniques [28]. Though FDR is slightly higher
than FPR, this is not a major problem in our application setting: contrary to what happens in traditional
program analysis, where users are forced to investigate all false alarms to identify possible bugs, here
we are rather interested in the aggregated analysis results, i.e., the final over-approximation of LA. The
table shows that the difference between LA and its over-approximation computed by ML-Cert is at most
0.01, which is negligible in practice.

5.4. Efficiency of the Analysis

To show the efficiency of our approach, we compare in Figure 6 the running times of ML-Cert on
the decision tree models against the time taken to compute the full set of the representative attacks. It is
possible to observe that the two curves exhibit completely different trends. The time taken to construct
the representative attacks shows an exponential trend: the approach is efficient and feasible when the
attacker’s budget is low, but blows up to intractability very quickly. For example, each increase in the
attacker’s budget multiplies the execution time of a 2x-3x factor in the case of the Census dataset and
2.4 hours of computation are needed for budget 60. Conversely, the execution time of ML-Cert is not
largely affected by the attacker’s budget and only 46 minutes of computation are needed for budget 60,
with virtually no false positive. In the case of the House dataset, computing the set of the representative
attacks is basically infeasible: even for small budgets, the running time is remarkably high, due to the fact
that the trained decision tree uses many different thresholds, which makes the number of representative



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 5
Accuracy results for neural networks (a star marks approximated results)

Dataset Budget L LA ML-Cert FPR FDR

Census

10 0.15 0.17 0.17 0.00∗ 0.02∗

20 0.15 0.18 0.18 0.00∗ 0.01∗

30 0.15 0.19 0.19 0.00∗ 0.01∗

40 0.15 0.21 0.21 0.00∗ 0.01∗

50 0.15 0.22 0.23 0.01∗ 0.02∗

60 0.15 0.24 0.25 0.02∗ 0.05∗

House

10 0.10 0.10 0.10 0.00 0.00
20 0.10 0.11 0.11 0.00 0.00
30 0.10 0.11 0.11 0.00 0.00
40 0.10 0.12 0.12 0.00 0.00

Wine

10 0.25 0.26 0.26 0.00 0.00
20 0.25 0.27 0.27 0.00 0.00
30 0.25 0.28 0.28 0.00 0.00
40 0.25 0.30 0.30 0.00 0.00
50 0.25 0.31 0.31 0.00 0.00
60 0.25 0.32 0.32 0.00∗ 0.00∗

20 40 60
Budget

0

50

100

150

Ti
m

e 
(m

in
ut

es
)

Census

10 20 30 40
Budget

0

50

100

150

200

Ti
m

e 
(m

in
ut

es
)

House

20 40 60
Budget

0

5

10

15

20

Ti
m

e 
(m

in
ut

es
)

Wine
Representative Attacks ML-Cert

Fig. 6. Running time of ML-Cert against the enumeration of representative attacks for the decision tree model.

attacks blow up. Computing the representative attacks for budget 40 takes almost 4 hours, while ML-Cert
can perform the same analysis in around 6 minutes. Also the Wine dataset shows similar figures, though
the running times there are lower due to its smaller size. This confirms that brute-force approaches based
on the exhaustive enumeration of the representative attacks do not scale, yet luckily they can be replaced
by more efficient abstraction techniques with near-perfect precision.

To complete our analysis, we show in Figure 7 the analysis times of ML-Cert on all models, for
all datasets and budgets. The figure confirms that it is possible to efficiently certify the security of
ML models using program analysis, in particular in the case of decision trees and logistic regression
models: in the worst case, verification takes around 67 minutes for those models. Neural networks are
significantly harder to analyze than decision trees and logistic regression, yet their verification on the
House and Wine dataset can be performed in less than 35 minutes in the worst case, which is perfectly



20 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

20 40 60
Budget

0

100

200

300

400

Ti
m

e 
(m

in
ut

es
)

Census

10 20 30 40
Budget

0

10

20

30

Ti
m

e 
(m

in
ut

es
)

House

20 40 60
Budget

0

5

10

15

Ti
m

e 
(m

in
ut

es
)

Wine
Decision Trees Logistic Regression Neural Networks

Fig. 7. Running time of ML-Cert for all datasets, budgets and models.

Table 6
Average analysis time in seconds for a single instance of the dataset

Dataset Budget Decision Tree Logistic Regression Neural Network

Census

10 0.66 0.11 3.90
20 1.11 0.25 5.00
30 1.37 0.46 4.37
40 1.24 0.62 4.80
50 1.34 0.51 6.05
60 0.95 0.40 8.63

House

10 0.10 0.04 0.71
20 0.13 0.06 0.76
30 0.15 0.06 0.80
40 0.17 0.07 0.93

Wine

10 0.13 0.03 0.29
20 0.17 0.06 0.35
30 0.22 0.08 0.47
40 0.23 0.09 0.62
50 0.26 0.11 0.66
60 0.30 0.13 0.75

appropriate for practical use. The Census dataset is more computationally expensive to deal with, since
verification takes around 7 hours for budget 60. Nevertheless, the analysis only needs to be performed
once, leading to an acceptable price to pay for a certified security proof.

Table 6 reports the average analysis time per instance in the different settings. The table shows that the
average analysis time per instance is consistently less than one second for all models and datasets, with
the notable exception of the neural network model trained over Census, where the analysis still runs in
the order of a few seconds per instance.

5.5. Additional Experiments

The previous experiments showed that ML-Cert can efficiently compute a precise over-approximation
of the loss under attack LA in a wide range of settings. However, they do not provide insights on several



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 7
Effects of trace partitioning on average analysis time (in seconds) and number of attacks reported by ML-Cert. Best results in

boldface.

Dataset Budget Trace Partitioning Decision Tree Logistic Regression Neural Network
Time Attacks Time Attacks Time Attacks

Census
10 yes 0.24 462 0.09 516 2.41 510

no 0.21 462 0.05 516 2.53 510

60 yes 0.73 636 0.29 684 8.27 644
no 0.29 636 0.06 852 8.55 722

House
10 yes 0.13 246 0.08 335 0.50 202

no 0.17 263 0.05 457 1.29 254

40 yes 0.26 364 0.13 374 0.85 257
no 0.39 419 0.11 846 9.50 736

Wine
10 yes 0.11 361 0.04 363 0.36 321

no 0.10 370 0.02 364 0.55 324

60 yes 0.26 500 0.15 429 0.57 399
no 0.20 523 0.03 443 0.71 414

important aspects that we investigate in the present section. We focus on the impact of trace partitioning,
the generality with respect to different attacker models and the scalability of the analysis.

5.5.1. Impact of Trace Partitioning
Trace partitioning is expected to have a positive impact on the quality of the analysis, however it

might negatively affect its efficiency. To quantify the actual impact of trace partitioning, we compare
the number of instances marked as susceptible to evasion attacks, as well as the analysis times when
trace partitioning is activated or not. Since trace partitioning does not affect soundness, an increase in
the number of instances susceptible to evasion attacks can only be attributed to false positives, hence
reporting a lower number of possible attacks is preferable. The results of our experiments are shown in
Table 7. The considered models include a decision tree with 256 leaves, a logistic regression model and
a neural network with 8 neurons; for each model we perform two experiments, using the minimum and
maximum attacker’s budget respectively.

The results show that trace partitioning is very effective at reducing the number of false positives
of the analysis, in some cases dramatically: for example, activating trace partitioning for the decision
tree analysis on the House dataset removes 55 false positives (for budget 40) and the improvement is
even higher for logistic regression and neural network models, where hundreds of false positives are
pruned away. In most cases, the benefits of trace partitioning on the quality of the analysis are more
apparent for higher budgets, likely because the single approximation computed for the attacker without
trace partitioning becomes more imprecise due to the higher number of possible attacks. As to efficiency,
we observe an interesting phenomenon, i.e., trace partitioning also reduces the analysis time in several
cases, thus leading to a win-win situation where the analysis is both more precise and more efficient -
this happened for all the neural network models. We are not the first to observe such a fact: also the
original authors of trace partitioning experimentally observed that disabling trace partitioning may lead
to a much higher number of fixpoint iterations, leading to larger analysis times [29]. In our setting, we
observe that the average analysis time per instance for the neural network model trained on the House
dataset drops from 9.50 seconds to 0.85 seconds when trace partitioning is activated (for budget 40).
Remarkably, even when trace partitioning has a negative impact on efficiency, we observe that it is mild:
we never observed cases where trace partitioning turned an efficient analysis into an intractable one.



22 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

5.5.2. Distance-based Attackers
Our experimental analysis focused on an expressive threat model based on rewriting rules [11], how-

ever prior work mostly focused on distance-based attackers [13, 14]. Since our approach is based on
an encoding as a traditional imperative program, we can readily analyze distance-based attackers, e.g.,
based on the infinity-norm L∞, which expresses a maximum perturbation for each attacked feature. We
now measure the quality and the efficiency of our analysis for such attackers. We use the same datasets
and attacked features as before, considering as maximum perturbation the same perturbation assumed
for a single application of the rewriting rules, e.g., if the attacker can add 0.5 to feature 1 according to a
rewriting rule, we assume feature 1 can be perturbed by ±0.5.

A first observation we make is that the L∞-attacker discussed above is intuitively simpler to analyze
than attackers expressed by means of rewriting rules, because they can be approximated by means of
interval-based abstractions, rather than requiring the use of complex domains like Polyhedra. In partic-
ular, the Box implementation of the Interval domain provided by Apron sounds appropriate to support
a precise yet efficient analysis. Table 8 reports the analysis times per instance for all datasets under
the L∞-attacker model, using both the Box and Polka domains. The table also includes the number of
instances marked as susceptible to evasion attacks: since both domains are sound, an increase in the
number of such instances can only be attributed to false positives, hence reporting a lower number of
possible attacks is preferable. The considered models include a decision tree with 256 leaves, a logistic
regression model and a neural network with 8 neurons.

As we can see, the analysis times are dramatically lower for the Box domain, since the average analysis
time per instance is always way less than 0.1 seconds. This means that the model performance on a test
set with 1000 instances can be assessed in less than 2 minutes. In terms of the quality of the analysis,
we observe that Box behaves comparably to Polka in most cases. This happens for all decision trees
and logistic regression models, as well as for the neural network trained on Wine. There are two cases
though where the quality of the analysis considerably downgrades when using Box, i.e., the neural
networks trained on Census and House. For example, the number of reported attacks for the neural
network trained on House increases from 277 to 392 when using the Box domain. Two observations are
in order here: first, the approximation of the loss under attack LA just increases from 0.13 to 0.18, which
is still a useful conservative approximation of the performance of the model under attack. Second, one
is not forced to rely on a single abstract domain for the analysis. Indeed, an appealing analysis strategy
could be based on a two-step approach, where instances are first analyzed using Box, and only those
instances which are marked as potentially susceptible to evasion attacks are additionally analyzed using
Polka. This would lead to a significant speedup in the analysis times, e.g., in the case of the neural
network model trained on House we would be required to run the expensive Polka analysis only on 392
instances, rather than on the 2161 instances in the full test set. This would reduce the analysis time of
the test set tfrom roughly one hour to approximately 12 minutes.

5.5.3. Scalability of the Analysis
The last experiment that we carry out is designed to better understand the scalability of our analysis

technique, i.e., we measure how the average analysis time per instance changes when increasing the
model size. In particular, we analyze decision trees with different number of leaves (27, 28, 29, 210) and
neural networks with different number of hidden neurons (4, 8, 16, 32). For each dataset, we carry out
different analyses, setting a timeout of 30 seconds per instance. In particular we consider both attackers
based on rewriting rules, with minimum and maximum budget respectively, and distance-based attackers,
which we analyze using both Polka and Box. The results are shown in the plot of Figure 8.



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 8
Effects of abstract domain on average analysis time (in seconds) and number of attacks reported by ML-Cert. Best results in

boldface.

Dataset Abstract Domain Decision Tree Logistic Regression Neural Network
Time Attacks Time Attacks Time Attacks

Census Polka 0.27 492 0.07 543 3.56 552
Box 0.02 492 0.01 543 0.02 642

House Polka 0.23 266 0.06 461 1.74 277
Box 0.03 267 0.01 461 0.02 392

Wine Polka 0.13 372 0.03 372 0.61 326
Box 0.02 372 0.01 372 0.01 329

Our experiment shows that the analysis of decision tree models is very scalable, since increasing the
number of leaves has only a limited impact on performance. Even for the Census dataset, which is the
most challenging in terms of analysis times, we observe that the analysis time increases sub-linearly
with respect to the number of leaves: instances are analyzed in 0.21 seconds on average for a decision
tree with 256 leaves and the analysis time increases to 0.31 seconds for a decision tree with 1024 leaves,
for the minimum budget. A similar figure applies to the maximum budget, where the average analysis
time increases from 0.64 to 1.01 seconds. Neural networks, instead, are harder to analyze and pose
bigger threats to scalability when considering attackers based on rewriting rules with a large budget. In
particular, when considering the maximum budget, we observe that neural networks with 32 neurons are
challenging to analyze for all datasets, and even more so for Census. However, the analysis complexity
seems more related to the attacker rather than to the ML model itself, because traditional L∞-attackers
can be efficiently analyzed using the Box domain even for neural network models. For such cases,
instances can always be analyzed in less than 0.1 seconds on average: the hardest setting is the Census
dataset, where instances can be analyzed in 0.07 seconds on average in the case of a neural network
with 32 neurons, meaning that the model performance on a test set with thousands of instances can be
assessed in a matter of minutes. Also the trend with respect to the number of neurons is reassuring.

6. Related Work

Adversarial machine learning is a hot topic nowadays and several papers studied the problem of the
security certification of ML models. As explained in the introduction, no existing proposal is at the same
time sound, efficient and general enough to cover different types of ML models and attackers. ML-Cert
shows that soundness, efficiency and high generality can be achieved together by leveraging state-of-the-
art program analysis techniques, at least for relatively simple ML models and datasets. Here we review
relevant related work on the verification of decision trees, logistic regression and neural networks.

6.1. Decision Trees

Ranzato and Zanella proposed a technique to analyze the security of decision trees and decision tree
ensembles against evasion attacks using abstract interpretation, which is close to our proposal [14].
However, their approach assumes attackers who admit a simple mathematical characterization as a set
of perturbations, e.g., based on distances. In particular, their soundness theorem relies on the hypothesis
that, for each test instance x, one has A(x) ⊆ γ(α({x})), i.e., the abstraction of x must cover all the



24 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

250 500 750 1000
Leaves

0.0

0.1

0.2

0.3

Ti
m

e 
(s

ec
)

Wine DT

250 500 750 1000
Leaves

0.1

0.2

0.3

0.4

Ti
m

e 
(s

ec
)

House DT

250 500 750 1000
Leaves

0.00

0.25

0.50

0.75

1.00

Ti
m

e 
(s

ec
)

Census DT

10 20 30
Neurons

0.0

2.5

5.0

7.5

Ti
m

e 
(s

ec
)

Wine NN

10 20 30
Neurons

0

5

10

15

20

Ti
m

e 
(s

ec
)

House NN

10 20 30
Neurons

0

10

20

Ti
m

e 
(s

ec
)

Census NN

Rule-based attacker (min)
Rule-based attacker (max)

Distance-based attacker (Polka)
Distance-based attacker (Box)

Fig. 8. Scalability analysis of ML-Cert

possible attacks. Checking this condition for distance-based attackers is straightforward, yet this is com-
putationally infeasible in general. For example, in the case of the rewriting rules we considered, A(x) is
unknown a priori, but it is induced by the application of the rules. Indeed, their tool silva only supports
attackers based on the infinity-norm L∞, which generally falls short of representing realistic threats,
while our approach is sufficiently general to be applied to attackers modeled as arbitrary imperative pro-
grams. On the other hand, contrary to ML-Cert, their tool can handle ensembles of decision trees, which
are important for real-world practical applications, and implements a complete analysis technique, i.e.,
no false positive can be produced. This is certainly a desirable property, although it is enabled by the re-
striction to L∞-attackers, who can be precisely abstracted by means of hyper-rectangles using intervals.
As a matter of fact, the vast majority of static analyses lack completeness.

Other approaches to the verification of decision trees are not based on abstract interpretation. Einzinger
et al. use SMT solving to verify the robustness of gradient-boosted models [12]. Their approach requires
to explicitly encode the set of attacks A(x) in closed form, which is only easily doable for artificial
distance-based attackers. Moreover, SMT solving suffers from scalability issues, which required the
authors to develop custom optimizations to make their approach practical. It is unclear whether this
line of work can be adapted and scale to more expressive attackers or not, also because their tool is
not publicly available. Other notable work includes the robustness verification algorithm by Chen et
al. [13], which only works for attackers based on the infinity-norm L∞, and the abstraction-refinement
approach by Törnblom and Nadjm-Tehrani [10], which is not proved sound, yet was applied to decision
tree ensembles as well. The experimental evaluation by Ranzato and Zanella showed that this proposal



Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

is less effective than theirs, that we discussed above, with respect to both the quality and the efficiency
of the analysis.

Finally, it is worth mentioning adversarial learning algorithms which train decision trees more resilient
to evasion attacks by construction [11, 30–32]. This line of work is orthogonal to the security verification
of decision trees, i.e., our approach can be applied to estimate the robustness guarantees of trees trained
using such algorithms.

6.2. Logistic Regression

We are not aware of papers which studied the security verification of logistic regression models. How-
ever, logistic regression is a (generalized) linear model, which is a class of models which received atten-
tion by the adversarial ML community. In particular, Lowd and Meek first coined the term “adversarial
learning” in the context of linear classifiers [33]. The security of linear classifiers has been specifically
studied in an experimental evaluation by Demontis et al. [34] and in a theoretical analysis by Fawzi,
Fawzi and Frossard [35]. However, none of these papers proposed certification techniques, in contrast to
our work.

6.3. Neural Networks

Many papers proposed techniques to verify the security of deep neural networks: representative ex-
amples include a number of papers recently published at reputable conferences [36–40]. These papers
showed that neural networks can be soundly and efficiently analyzed, also using program analysis tech-
niques like ours, however they only focused on simple distance-based attackers as those arising in image
recognition, which we confirmed to be very easy to analyze even with off-the-shelf program analysis
libraries - instances can be analyzed on average on less than 0.1 seconds in all cases, using intervals.
Remarkably, ML-Cert shows that existing program analysis techniques can be readily applied to a wide
range of ML models and attacks, while keeping the traditional soundness and efficiency properties of
abstract interpretation. We acknowledge that the neural network architecture considered in the present
work is simple and did not require aggressive optimizations for scalability, however our key goal was
showing the generality of our approach, which can be straightforwardly applied to arbitrary network ar-
chitectures and different attackers. We expect more work and tailored optimizations, e.g., novel abstract
domains, are needed to make the analysis scale to more complex network architectures and different
activation functions.

7. Conclusion

We proposed a technique to certify the security of ML models against evasion attacks by leveraging the
abstract interpretation framework and we implemented it in a new tool called ML-Cert. ML-Cert is the
first solution which is at the same time sound, efficient and general enough to deal with different types of
ML models and sophisticated attackers represented as arbitrary imperative programs. Our experimental
evaluation on public datasets showed that our technique is also very precise, yielding a negligible number
of false positives on most cases that can be fully analyzed using a competitor approach [11], which
quickly blows to intractability.

We foresee several avenues for future work. First, we plan to extend our approach to the analysis of re-
gression tasks and tree ensembles: though this sounds straightforward from an engineering perspective,



26 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

we want to analyze the precision and the efficiency of the proposed solution in such settings. More-
over, we plan to investigate techniques to automatically infer the minimal attacker’s budget required to
induce a given error rate on the test set, so as to efficiently provide security analysts with this useful
information. Finally, we plan to further extend ML-Cert with support for different abstract domains, so
as to provide security analysts with the ability to fine-tune the trade-off between analysis precision and
analysis efficiency on their datasets.

References

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.J. Goodfellow and R. Fergus, Intriguing properties of neural
networks, in: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, eds, 2014. http://arxiv.org/abs/1312.6199.

[2] L. Demetrio, S.E. Coull, B. Biggio, G. Lagorio, A. Armando and F. Roli, Adversarial EXEmples: A Survey and Experi-
mental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection, ACM Trans. Priv. Secur.
24(4) (2021), 27:1–27:31. doi:10.1145/3473039.

[3] J. Su, D.V. Vargas and K. Sakurai, One Pixel Attack for Fooling Deep Neural Networks, IEEE Trans. Evol. Comput. 23(5)
(2019), 828–841. doi:10.1109/TEVC.2019.2890858.

[4] M. Sharif, S. Bhagavatula, L. Bauer and M.K. Reiter, Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-
Art Face Recognition, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, E.R. Weippl, S. Katzenbeisser, C. Kruegel, A.C. Myers and S. Halevi, eds, ACM,
2016, pp. 1528–1540. doi:10.1145/2976749.2978392.

[5] B. Biggio and F. Roli, Wild patterns: Ten years after the rise of adversarial machine learning, Pattern Recognit. 84 (2018),
317–331. doi:10.1016/j.patcog.2018.07.023.

[6] P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints, in: Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, R.M. Graham, M.A. Harrison and R. Sethi, eds, ACM, 1977,
pp. 238–252. doi:10.1145/512950.512973.

[7] P. Cousot and R. Cousot, Systematic Design of Program Analysis Frameworks, in: Conference Record of the Sixth An-
nual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA, January 1979, A.V. Aho,
S.N. Zilles and B.K. Rosen, eds, ACM Press, 1979, pp. 269–282. doi:10.1145/567752.567778.

[8] T. Dreossi, S. Jha and S.A. Seshia, Semantic Adversarial Deep Learning, in: Computer Aided Verification - 30th Interna-
tional Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I, H. Chockler and G. Weissenbacher, eds, Lecture Notes in Computer Science, Vol. 10981, Springer,
2018, pp. 3–26. doi:10.1007/978-3-319-96145-3_1.

[9] I.J. Goodfellow, P.D. McDaniel and N. Papernot, Making machine learning robust against adversarial inputs, Commun.
ACM 61(7) (2018), 56–66. doi:10.1145/3134599.

[10] J. Törnblom and S. Nadjm-Tehrani, An Abstraction-Refinement Approach to Formal Verification of Tree Ensembles, in:
Computer Safety, Reliability, and Security - SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and
WAISE, Turku, Finland, September 10, 2019, Proceedings, A.B. Romanovsky, E. Troubitsyna, I. Gashi, E. Schoitsch and
F. Bitsch, eds, Lecture Notes in Computer Science, Vol. 11699, Springer, 2019, pp. 301–313. doi:10.1007/978-3-030-
26250-1_24.

[11] S. Calzavara, C. Lucchese and G. Tolomei, Adversarial Training of Gradient-Boosted Decision Trees, in: Proceedings
of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China,
November 3-7, 2019, W. Zhu, D. Tao, X. Cheng, P. Cui, E.A. Rundensteiner, D. Carmel, Q. He and J.X. Yu, eds, ACM,
2019, pp. 2429–2432. doi:10.1145/3357384.3358149.

[12] G. Einziger, M. Goldstein, Y. Sa’ar and I. Segall, Verifying Robustness of Gradient Boosted Models, in: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, AAAI Press, 2019, pp. 2446–2453.
doi:10.1609/aaai.v33i01.33012446.

[13] H. Chen, H. Zhang, S. Si, Y. Li, D.S. Boning and C. Hsieh, Robustness Verification of Tree-based Models, in: Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H.M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E.B. Fox and R. Garnett, eds, 2019, pp. 12317–12328. https://proceedings.neurips.cc/paper/2019/hash/
cd9508fdaa5c1390e9cc329001cf1459-Abstract.html.

http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html


Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[14] F. Ranzato and M. Zanella, Abstract Interpretation of Decision Tree Ensemble Classifiers, in: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 5478–5486. https://ojs.aaai.org/index.php/AAAI/article/
view/5998.

[15] S. Calzavara, P. Ferrara and C. Lucchese, Certifying Decision Trees Against Evasion Attacks by Program Analysis, in:
Computer Security - ESORICS 2020 - 25th European Symposium on Research in Computer Security, ESORICS 2020,
Guildford, UK, September 14-18, 2020, Proceedings, Part II, L. Chen, N. Li, K. Liang and S.A. Schneider, eds, Lecture
Notes in Computer Science, Vol. 12309, Springer, 2020, pp. 421–438. doi:10.1007/978-3-030-59013-0_21.

[16] X. Rival and L. Mauborgne, The trace partitioning abstract domain, ACM Trans. Program. Lang. Syst. 29(5) (2007), 26.
doi:10.1145/1275497.1275501.

[17] P. Tan, M.S. Steinbach and V. Kumar, Introduction to Data Mining, Addison-Wesley, 2005. ISBN 0-321-32136-7. http:
//www-users.cs.umn.edu/%7Ekumar/dmbook/.

[18] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto and F. Roli, Evasion Attacks against
Machine Learning at Test Time, in: Machine Learning and Knowledge Discovery in Databases - European Confer-
ence, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III, H. Blockeel, K. Ker-
sting, S. Nijssen and F. Zelezný, eds, Lecture Notes in Computer Science, Vol. 8190, Springer, 2013, pp. 387–402.
doi:10.1007/978-3-642-40994-3_25.

[19] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, Towards Deep Learning Models Resistant to Adversarial
Attacks, in: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018. https://openreview.net/forum?id=rJzIBfZAb.

[20] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression Trees, Wadsworth, 1984. ISBN
0-534-98053-8.

[21] D. Jurafsky and J.H. Martin, Speech and language processing: an introduction to natural language processing, computa-
tional linguistics, and speech recognition, 2nd Edition, Prentice Hall series in artificial intelligence, Prentice Hall, Pearson
Education International, 2009. ISBN 9780135041963. https://www.worldcat.org/oclc/315913020.

[22] A. Miné, The octagon abstract domain, High. Order Symb. Comput. 19(1) (2006), 31–100. doi:10.1007/s10990-006-8609-
1.

[23] P. Cousot and N. Halbwachs, Automatic Discovery of Linear Restraints Among Variables of a Program, in: Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona, USA, January
1978, A.V. Aho, S.N. Zilles and T.G. Szymanski, eds, ACM Press, 1978, pp. 84–96. doi:10.1145/512760.512770.

[24] B. Jeannet and A. Miné, Apron: A Library of Numerical Abstract Domains for Static Analysis, in: Computer Aided Veri-
fication, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, A. Bouajjani
and O. Maler, eds, Lecture Notes in Computer Science, Vol. 5643, Springer, 2009, pp. 661–667. doi:10.1007/978-3-642-
02658-4_52.

[25] C.M. Bishop, Pattern recognition and machine learning, 5th Edition, Information science and statistics, Springer, 2007.
ISBN 9780387310732. https://www.worldcat.org/oclc/71008143.

[26] L. Breiman, Random Forests, Mach. Learn. 45(1) (2001), 5–32. doi:10.1023/A:1010933404324.
[27] J.H. Friedman, Greedy function approximation: a gradient boosting machine, Annals of statistics (2001), 1189–1232.
[28] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon and C. Jaspan, Lessons from building static analysis tools at

Google, Commun. ACM 61(4) (2018), 58–66. doi:10.1145/3188720.
[29] L. Mauborgne and X. Rival, Trace Partitioning in Abstract Interpretation Based Static Analyzers, in: Programming Lan-

guages and Systems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, S. Sagiv, ed.,
Lecture Notes in Computer Science, Vol. 3444, Springer, 2005, pp. 5–20. doi:10.1007/978-3-540-31987-0_2.

[30] A. Kantchelian, J.D. Tygar and A.D. Joseph, Evasion and Hardening of Tree Ensemble Classifiers, in: Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, M. Balcan
and K.Q. Weinberger, eds, JMLR Workshop and Conference Proceedings, Vol. 48, JMLR.org, 2016, pp. 2387–2396.
http://proceedings.mlr.press/v48/kantchelian16.html.

[31] H. Chen, H. Zhang, D.S. Boning and C. Hsieh, Robust Decision Trees Against Adversarial Examples, in: Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
K. Chaudhuri and R. Salakhutdinov, eds, Proceedings of Machine Learning Research, Vol. 97, PMLR, 2019, pp. 1122–
1131. http://proceedings.mlr.press/v97/chen19m.html.

[32] S. Calzavara, C. Lucchese, G. Tolomei, S.A. Abebe and S. Orlando, Treant: training evasion-aware decision trees, Data
Min. Knowl. Discov. 34(5) (2020), 1390–1420. doi:10.1007/s10618-020-00694-9.

[33] D. Lowd and C. Meek, Adversarial learning, in: Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, R. Grossman, R.J. Bayardo and
K.P. Bennett, eds, ACM, 2005, pp. 641–647. doi:10.1145/1081870.1081950.

https://ojs.aaai.org/index.php/AAAI/article/view/5998
https://ojs.aaai.org/index.php/AAAI/article/view/5998
http://www-users.cs.umn.edu/%7Ekumar/dmbook/
http://www-users.cs.umn.edu/%7Ekumar/dmbook/
https://openreview.net/forum?id=rJzIBfZAb
https://www.worldcat.org/oclc/315913020
https://www.worldcat.org/oclc/71008143
http://proceedings.mlr.press/v48/kantchelian16.html
http://proceedings.mlr.press/v97/chen19m.html


28 Calzavara et al. / Certifying ML Models Against Evasion Attacks by Program Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[34] A. Demontis, P. Russu, B. Biggio, G. Fumera and F. Roli, On Security and Sparsity of Linear Classifiers for Adversarial
Settings, in: Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2016,
Mérida, Mexico, November 29 - December 2, 2016, Proceedings, A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano and
R.C. Wilson, eds, Lecture Notes in Computer Science, Vol. 10029, 2016, pp. 322–332. doi:10.1007/978-3-319-49055-
7_29.

[35] A. Fawzi, O. Fawzi and P. Frossard, Analysis of classifiers’ robustness to adversarial perturbations, Mach. Learn. 107(3)
(2018), 481–508. doi:10.1007/s10994-017-5663-3.

[36] S. Wang, K. Pei, J. Whitehouse, J. Yang and S. Jana, Formal Security Analysis of Neural Networks using Symbolic Inter-
vals, in: 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, W. Enck
and A.P. Felt, eds, USENIX Association, 2018, pp. 1599–1614. https://www.usenix.org/conference/usenixsecurity18/
presentation/wang-shiqi.

[37] S. Wang, K. Pei, J. Whitehouse, J. Yang and S. Jana, Efficient Formal Safety Analysis of Neural Networks, in: Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio, H.M. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi and R. Garnett, eds, 2018, pp. 6369–6379. https://proceedings.neurips.cc/paper/2018/hash/
2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html.

[38] X. Huang, M. Kwiatkowska, S. Wang and M. Wu, Safety Verification of Deep Neural Networks, in: Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, R. Ma-
jumdar and V. Kuncak, eds, Lecture Notes in Computer Science, Vol. 10426, Springer, 2017, pp. 3–29. doi:10.1007/978-
3-319-63387-9_1.

[39] G. Katz, C.W. Barrett, D.L. Dill, K. Julian and M.J. Kochenderfer, Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks, CoRR abs/1702.01135 (2017). http://arxiv.org/abs/1702.01135.

[40] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri and M.T. Vechev, AI2: Safety and Robustness
Certification of Neural Networks with Abstract Interpretation, in: 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA, IEEE Computer Society, 2018, pp. 3–18.
doi:10.1109/SP.2018.00058.

https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
http://arxiv.org/abs/1702.01135

	Introduction
	Background
	Security of Supervised Learning
	Model Types
	Decision Trees
	Logistic Regression
	Neural Networks

	Abstract Interpretation

	Security Certification of ML Models
	Threat Model
	Proving Security by Program Analysis
	Attacker Conversion
	Model Conversion
	Models Under Attack

	Extensions
	Regression
	Multi-Class Classification
	Ensembles
	Generalization to Other ML Models


	Implementation: ML-Cert
	ModelCoder
	AttackerAnalyzer
	ModelAnalyzer

	Experimental Evaluation
	Methodology
	Datasets and Attackers
	Census
	House
	Wine

	Quality of the Analysis
	Efficiency of the Analysis
	Additional Experiments
	Impact of Trace Partitioning
	Distance-based Attackers
	Scalability of the Analysis


	Related Work
	Decision Trees
	Logistic Regression
	Neural Networks

	Conclusion
	References

