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Abstract. Since cookies act as the only proof of a user identity, web sessions are particularly vulnerable to session hijacking
attacks, where the browser run by a given user sends requests associated to the identity of another user. When n > 1 cookies
are used to implement a session, there might actually be n sub-sessions running at the same website, where each cookie is used
to retrieve part of the state information related to the session. Sub-session hijacking breaks the ideal view of the existence of
a unique user session by selectively hijacking m sub-sessions, with m < n. This may reduce the security of the session to the
security of its weakest sub-session. In this paper, we take a systematic look at the root causes of sub-session hijacking attacks
and we introduce sub-session linking as a possible defense mechanism. Out of two flavors of sub-session linking desirable
for security, which we call intra-scope and inter-scope sub-session linking respectively, only the former is relatively smooth
to implement. Luckily, we also identify programming practices to void the need for inter-scope sub-session linking. We fi-
nally present Warden, a server-side proxy which automatically enforces intra-scope sub-session linking on incoming HTTP(S)
requests, and we evaluate it in terms of protection, performances, backward compatibility and ease of deployment.
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1. Introduction

Many websites need to track a user identity across multiple requests, for instance when providing
access to their private area. Unfortunately, HTTP is a stateless protocol, in that different HTTP requests
normally look unrelated to their recipient. This means that, to implement user-authenticated sessions
over HTTP, one needs to explicitly attach to each request enough information to associate it to a user
identity. The most common way to achieve this nowadays is by means of cookies [1]. Roughly, cookies
are key-value pairs generated by a website and sent in response to browser requests; browsers then
automatically attach cookies to later requests sent to the same website. If the cookies issued upon a
successful login contain enough information to tell users apart, they can be used to collect different
browser requests under the same user identity.

The main security risks of web sessions are well-known nowadays, as discussed in a recent survey [2].
In particular, since cookies act as the only proof of a user identity, web sessions are extremely vulnerable
to session hijacking attacks, where the browser run by a given user sends requests associated to the
identity of another user. Protection against session hijacking has been studied under different threat
models, including both web attackers, who operate websites hosting malicious contents and are able
to exploit content injection vulnerabilities on trusted websites, and network attackers, who can block,
inspect and corrupt the HTTP traffic.
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Nowadays, it is possible to implement robust countermeasures against session hijacking, even against
a powerful attacker like the network attacker. Necessary (but not sufficient) ingredients include the use
of HSTS [3] to enforce ubiquitous encryption and cookie security attributes like HttpOnly and Secure [1]
to defend against cookie leakage. Unfortunately, web developers often ignore these recommended se-
curity practices, because the adoption of HSTS still lags behind [4, 5] and cookie security attributes
are often unset [6]. Protection against session hijacking should thus not be taken for granted, especially
when the attack surface is amplified by the widespread practice of using multiple cookies for session
management [7, 8].

When n > 1 cookies are used to implement a session, there might actually be n sub-sessions running
at the same website, where each cookie is used to access a different service or database and retrieve part
of the state information related to the session. Sub-session hijacking is a subtle variation of traditional
session hijacking, where the attacker breaks the ideal view of the existence of a unique user session by
selectively hijacking m sub-sessions, with m < n. This may reduce the security of the session to the
security of its weakest sub-session, e.g., the one running unencrypted and vulnerable to network attacks.
Recent research identified sub-session hijacking attacks on several major websites, like Amazon, Ebay,
Google and YouTube [5, 9]. Despite the significance and prevalence of sub-session hijacking attacks,
however, previous research did not take a systematic look at their root causes and did not propose robust
defenses against them.

1.1. Contributions

In this paper, we make the following contributions:

(1) we provide a general overview of the anatomy of sub-session hijacking attacks and we analyze
their security import under different threat models, motivating their significance (Section 3);

(2) we propose sub-session linking as a possible defense mechanism. Out of two flavors of sub-session
linking desirable for security, which we call intra-scope and inter-scope sub-session linking respec-
tively, only the former is relatively smooth to implement. Luckily, we also identify programming
practices to void the need for inter-scope sub-session linking (Section 4);

(3) we present Warden, a server-side proxy which automatically enforces intra-scope sub-session link-
ing on incoming HTTP(S) requests. Warden is entirely based on existing web technologies and
requires only minimal configuration efforts by web developers (Section 5);

(4) we positively evaluate Warden in terms of protection, performances, backward compatibility and
ease of deployment (Section 6).

2. Background

2.1. Threat Model

Session hijacking traditionally considers different threat models. The web attacker runs a set of ma-
licious websites hosting arbitrary attacker-controlled contents and can exploit content injection vulner-
abilities on trusted websites. This conservative choice is motivated by the fact that content injections
and cross-site scripting (XSS) in particular are common on the web [10]. A more powerful variant of
the web attacker, known as the related-domain attacker, can host some of the malicious websites on a
domain sharing a “sufficiently long” suffix with the domain of the target website; examples of related
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domains are foo.example.com and bar.example.com1. By using the Domain attribute of cookies, web-
sites hosted on related domains can set cookies which are visible to each other and indistinguishable
from other cookies which are set so that this sharing across domains is not desired [11]. Finally, the
network attacker is able to block, inspect and corrupt all the HTTP traffic exchanged on the network. He
can also block outgoing HTTPS connections, but he cannot read or modify the HTTPS traffic exchanged
with trusted websites, because we assume the use of signed public key certificates.

2.2. Web Sessions

Since there is no formal definition of web session, it is worth stressing two points to set the boundaries
of the present paper:

(1) we only consider sessions built on top of cookies. One could use other techniques to implement
web sessions [12], e.g., by exchanging JSON Web Tokens using AJAX, but cookie-based sessions
still cover the large majority of the web sessions;

(2) we are only interested in user-authenticated sessions established upon a successful login. In this
common type of sessions, some cookies are used to authenticate users at the server side.

The security of web sessions is thus intimately connected to session cookies, i.e., cookies which are used
to get authenticated access to security-sensitive state information at the server.

Figure 1 shows the typical establishment of a web session. A user Alice first inputs her username
and password in a page displayed by the browser B. The browser sends the credentials to the server S ,
which checks them against a database containing account information. If the check succeeds, S sends
B a session cookie sid storing a random session identifier bound to Alice’s identity. Since all the next
requests sent by B to S automatically include the cookie, S can associate them to Alice’s account.

B S
POST user=alice,pwd=4312 /login.php

+3

[Set-Cookie: sid=xY52z] HTML
ks

[Cookie: sid=xY52z] GET /profile.php
+3

Alice’s profile page
ks

Figure 1. Example web session

2.3. Session Hijacking

Though cookie-based sessions are widespread on the web, they exhibit significant shortcomings
against session hijacking, because session cookies act as the only proof of a user’s identity. When session
hijacking succeeds, the browser run by a given user sends requests associated to the identity of another
user. We thus have two flavors of session hijacking:

1The common domain suffix must not occur in a list of public suffixes available at https://publicsuffix.org/.

https://publicsuffix.org/
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(1) attacker-as-user session hijacking (A 7→ U): if the cookies identifying the user’s session are leaked
and set into the attacker’s browser, the attacker can perform security-sensitive actions on the user’s
behalf;

(2) user-as-attacker session hijacking (U 7→ A): if the cookies identifying the attacker’s session are
forced into the user’s browser, the attacker can fool the user into performing security-sensitive
actions on the attacker’s behalf.

Both scenarios may have severe practical consequences, depending on the specific website functionality.
Luckily, it is possible to prevent session hijacking using existing technologies, though this requires
significant work by web developers.

To prevent A 7→ U, one has to implement defenses against session fixation attacks [13]. In these
attacks, a cookie chosen by the attacker is set in the user’s browser and endorsed to play the role of a
session cookie after the verification of the user’s password. A simple yet effective way to defend against
session fixation is issuing fresh session cookies upon login. Moreover, to prevent A 7→ U it is critical
that the confidentiality of session cookies is ensured. This can be done by preventing cookie sharing with
untrusted related domains and by using the cookie attributes HttpOnly and Secure [1]. Cookies marked
as HttpOnly are never exposed by browsers through channels other than HTTP or HTTPS requests: this
prevents their exfiltration by malicious scripts, for instance injected via XSS. Cookies marked as Secure,
instead, are never sent in HTTP requests, but only attached over HTTPS: this ensures that they are never
exposed to attackers sniffing the HTTP traffic.

Protecting against U 7→ A requires the implementation of defenses against login cross-site request
forgery attacks [14]. In these attacks, the attacker’s credentials are submitted to the target website from
the user’s browser, thus forcing it into the attacker’s session. This can be prevented by implementing
standard CSRF defenses on the login form. Moreover, to prevent U 7→ A the integrity of session cookies
must be ensured. Unfortunately, it is well-known that cookies do not provide strong integrity guarantees
against related-domain attackers and network attackers [1]. One has then to carefully place web contents
so as to ensure that session cookies cannot be set by untrusted related domains. Moreover, browsers must
never open an HTTP connection to the website or any of its sub-domains (even non-existing ones). This
can only be ensured by deploying HSTS on the base domain of the website, activating the includeSub-
Domains option in its configuration [5].

3. Sub-Session Hijacking

3.1. Defining Sub-Session Hijacking

The implementation of web sessions may be significantly more complex than the simple example of
Figure 1. In particular, the use of multiple session cookies at the same website is surprisingly common in
the wild [7, 8]. A few possible reasons why a website may use multiple session cookies are the following:

• the website needs to integrate together several services or databases, each identifying users in a
different way;

• the website is developed using multiple languages and web development frameworks, each imple-
menting session management differently;

• the website enforces different authorization policies upon presentation of different cookies.
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In the end, web sessions are often implemented on top of n sub-sessions, each identified by a cookie
which is used to get authenticated access to part of the state information stored at the server side; the n
sub-sessions may be eventually linked together by the implementation of appropriate server-side logic,
for instance before authorizing security-sensitive actions.

When a web session is built over n sub-sessions, sub-session hijacking attacks break the ideal view of
the existence of a unique user-authenticated session by hijacking just m sub-sessions, with m < n. If the
server-side logic for linking together sub-sessions is not robust, hijacking just m sub-sessions may fully
compromise the confidentiality or the integrity of the entire session [5, 9].

3.2. Impact of Sub-Session Hijacking

Understanding how significant is sub-session hijacking in practice is an intriguing question. Given
that defenses against session hijacking also prevent sub-session hijacking, it might seem that sub-session
hijacking is an already solved problem. Unfortunately, real-world websites rarely implement full protec-
tion against session hijacking [5, 6, 9, 15, 16] and commonly build their sessions on top of cookies with
different confidentiality or integrity guarantees, which opens the way to sub-session hijacking. Concrete
examples of reasons why this might happen in practice are the following:

• mixed content websites are developed using a combination of HTTP and HTTPS. Mixed content
website cannot mark all their session cookies as Secure, otherwise sessions would be disrupted
when navigating their HTTP portion;

• websites may need to read the value of session cookies via JavaScript for various reasons, which
prevents the adoption of the HttpOnly attribute for these cookies;

• in a multi-domain setting only a limited number of cookies may be shared among sub-domains using
the Domain attribute, because other cookies may contain confidential information which must not
be disclosed across domains.

A last point worth noticing is that there are also cases where traditional session hijacking is possible,
yet sub-session hijacking is preferred by the attacker to act more surreptitiously. For instance, a published
security analysis performed on popular websites [5] reports an attack against Gmail where the integrity
of only a subset of the session cookies is compromised, so that the visual indicators in the user’s browser
are left unchanged, but the user is effectively forced into the attacker’s session.

3.3. Sub-Session Hijacking in the Wild

Previous research already highlighted the existence of sub-session hijacking attacks on real websites,
including major security-sensitive services [5, 9]. These attacks have been found by means of a thorough
manual analysis of a small number of selected websites from the Alexa ranking, hence they provide only
a limited insight about the severity of the problem on the web. Though a large-scale analysis of this
aspect would certainly be interesting, it would also be quite complicated to carry out, because it would
require the identification of the set of the session cookies issued upon login at the individual services - a
task which already proved challenging to automate by itself [7, 8].

Luckily, a useful outcome of previous research is a publicly available dataset of cookies2 marked with
a binary label, used to tell apart session cookies from all the other cookies [7]. This dataset includes 2,546
cookies collected after a successful login on 215 popular websites from the Alexa ranking, including 332

2Available at http://bit.ly/1u8Qfiz

http://bit.ly/1u8Qfiz
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session cookies. The size of the dataset is relatively limited, because collecting session cookies requires
the possession of personal accounts at the websites and the automation of the detection process itself is
far from trivial, but this is the only publicly available dataset of session cookies we are aware of and we
find it useful at least for a preliminary investigation. Notice that larger and more up-to-date datasets of
cookies are also available [17], but they do not discriminate between session cookies and cookies used
for other purposes, which makes them inadequate to analyze the significance of sub-session hijacking.
Indeed, we are not even aware of public cookie datasets which were built after a successful authentication
at the crawled websites.

We can use the aforementioned cookie dataset to assess how many of the 215 websites included therein
are potentially susceptible to sub-session hijacking by counting how many websites issue more than one
session cookie upon login. As it turns out, this happens on 92 out of 215 websites (42.8%), which gives
an empirical evidence of the dangers of sub-session hijacking in the real world.

4. Preventing Sub-Session Hijacking

Previous research pointed out that “many web applications do not adopt mechanisms to bind sub-
sessions together” [5], thus likely suggesting that linking together sub-sessions is an effective defense
against sub-session hijacking. Unfortunately, a more careful analysis reveals that sub-session linking
may be hard to implement, e.g., due to the presence of session cookies with different scopes, hence
preventing sub-session hijacking is challenging.

4.1. Cookie Scopes

The default scope of a cookie consists of the domain and the sub-paths of the HTTP(S) endpoint
setting it. For instance, a cookie set by https://www.example.com/ will be attached to any HTTP(S)
request to example.com. There are however three mechanisms to change the scope of cookies [1]:

• the Secure attribute restricts the cookie scope to the HTTPS protocol;
• the Domain attribute enlarges the cookie scope to sibling domains. For example, foo.bar.com can set

a cookie with the Domain attribute set to .bar.com, which is visible to any sub-domain of bar.com;
• the Path attribute restricts the cookie scope to a given path. Only requests directed to its sub-paths

will include the cookie.

Browsers allow the storage of multiple cookies with the same name, provided that they differ at least in
their Domain or Path attribute. Since these cookies may have an overlapping scope, the same HTTP(S)
request may include multiple cookies with the same name, which might confuse the website about
which cookies should be taken into account when processing it. This confusion may enable sub-session
hijacking attacks via cookie shadowing [5], where the attacker sets a session cookie with the same name
of an existing one, but with different scope. Here, we assume that all the legitimate session cookies have
distinct names, which is reasonable for the very large majority of websites and simplifies the discussion,
because it makes cookie shadowing easy to detect.

4.2. Sub-Session Linking and Consistency

To understand the goals and challenges of sub-session linking, it is useful to dig a bit more into the
anatomy of session management and sub-session hijacking. A session starts when a login operation is

https://www.example.com/
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successfully performed and a set of session cookies is appointed to play the role of the user’s password
for authentication purposes. Additional session cookies can also be issued when the user is already
authenticated: for instance, a website may grant access to its private area upon login, but only release
the session cookies needed to access its mailbox service when the user later accesses it.

Assume that a website issues n0 session cookies upon login and that its services run on top of n > n0
session cookies. If u users are authenticated at some point in time, the website needs to keep track of s
session cookies with u · n0 6 s 6 u · n, hence:

(1) the session information stored at the server-side is much more fragmented than the ideal view of u
authenticated users navigating the website;

(2) the website may not always see the full set of session cookies stored in the browser sending an
authenticated request, because different session cookies issued to the same user can have different
scopes;

(3) the exact number of session cookies released to each user up to a given point in time may be easily
overlooked.

Sub-session hijacking exploits these implementation gaps by compromising the confidentiality or the
integrity of a subset of the session cookies of a target user: indeed, if only one session cookie was issued
to each user, then we would have n = n0 = 1 and s = u and no sub-session hijacking would be possible.

To understand how sub-session linking should work to be effective, we define a notion of consistency
for sets of session cookies. Intuitively, a set of session cookies C is consistent when each c ∈ C identifies
a sub-session which contributes to implement the same user-authenticated session. More constructively,
the set of session cookies released upon login is always consistent and, if C is a consistent set of session
cookies and C′ is a new set of session cookies released upon presentation of C, then also C∪C′ is consis-
tent. The goal of sub-session linking is ensuring that, every time an authenticated request is processed,
then the browser sending that request stores the most updated consistent set of session cookies released
to the authenticated user, which is enough to fix (1), (2) and (3).

4.3. Implementing Sub-Session Linking

4.3.1. Intra-Scope Sub-Session Linking
If all the session cookies of a website have the same scope, each authenticated request sent to the web-

site includes the full set of session cookies stored in the browser, which can be checked for consistency.
This means that the website always receives enough information to link together all the sub-sessions
and prevent sub-session hijacking. Figure 2 exemplifies how intra-scope sub-session linking can be per-
formed: in the figure, the attacker corrupted the integrity of the session cookie sessid stored in the user’s
browser to force it in the attacker’s sub-session. However, since the user’s browser stores a mixture of
session cookies issued to the user and session cookies issued to the attacker, the HTTP(S) requests sent
from it will attach an inconsistent set of session cookies and should be rejected.

Notice that the idea of checking consistency only works as long as session cookies are not modified
at the browser side, but this is a reasonable assumption for most websites, because session cookies are
typically used just to authenticate users. Observe that, if session cookies need to be modified at the
browser side for generic reasons, they cannot be protected using the HttpOnly attribute, which makes
them potentially vulnerable to exfiltration via XSS.
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userid = Xy35k

sessid = Fh56A

User’s Session
userid = QboER
sessid = Zy90A

Attacker’s Session

userid = Xy35k

sessid = Zy90A

User’s Browser
userid = Xy35k

sessid = Zy90A

HTTP Request

Figure 2. Intra-scope session linking

4.3.2. Inter-Scope Sub-Session Linking
If the session cookies of a website have different scopes, there might be legitimate authenticated re-

quests to the website which do not include the full set of session cookies stored in the browser, hence the
website might not have enough information to detect sub-session hijacking attacks. This is exemplified
in Figure 3, where we use a light gray background to denote Secure cookies: in the figure, the attacker
compromised the confidentiality of the session cookie userid stored in the user’s browser and tries to
hijack the user’s sub-session by setting it in her own browser. Although the attacker’s browser stores an
inconsistent set of session cookies, the website cannot detect this just by inspecting the HTTP traffic,
because Secure cookies are not sent in clear. Similar observations apply when a website uses multiple
session cookies, but only some of them have the Domain or the Path attribute set.

Inter-scope sub-session linking is much more complicated to implement than intra-scope sub-session
linking, because it calls for the implementation of a custom protocol, whose practicality is unclear.
Luckily, as we discuss in the next sub-section (Section 4.4), it is typically possible to design the website
so that inter-scope sub-session linking is not required for security.

4.4. Avoiding Inter-Scope Sub-Session Linking

We call scope fragmentation the presence of legitimate authenticated HTTP(S) requests to a service
which do not include the full set of session cookies stored for it in the browser. If there is no scope
fragmentation, then inter-scope session linking is not needed to prevent sub-session hijacking.

userid = Xy35k

sessid = pd4GG

User’s Session

userid = QboER
sessid = kXs1L

Attacker’s Session

userid = Xy35k

sessid = kXs1L

Attacker’s Browser

userid = Xy35k

HTTP Request

Figure 3. The problem of inter-scope session linking
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4.4.1. The Secure Attribute
The use of the Secure attribute may lead to scope fragmentation only on mixed content websites,

because websites which are entirely deployed over HTTPS will always receive both the Secure and the
non-Secure cookies. However, the security properties of mixed content websites are dubious at the very
least [9, 18] and it is likely that more and more websites will soon perform a full transition to HTTPS,
due to the choice of major web browsers to mark HTTP as insecure [19].

If a website marks at least one session cookie as Secure, it should perform a full transition to HTTPS
and mark all its session cookies as Secure. Even better, HSTS could be used to ensure that the website
can only be contacted over HTTPS by modern web browsers, which would make the application of the
Secure attribute redundant as long as the Domain attribute is not used or the includeSubDomains option
of HSTS is activated [4]. Though this refactoring might require some work by web developers, it would
significantly improve session security against network attackers and remove one of the causes of scope
fragmentation.

4.4.2. The Path Attribute
The key insight to avoid scope fragmentation due to the use of the Path attribute is that the Path at-

tribute is not a security feature [1, 20]. Cookies do not provide isolation by path, because web browsers
can ignore path restrictions when exposing cookies to non-HTTP APIs such as document.cookie. More-
over, websites can set cookies with arbitrary paths by using the Set-Cookie header, so the use of the Path
attribute does not really improve the security guarantees of cookies.

Under the assumption that all the session cookies have different names to prevent cookie shadow-
ing, just setting the Path attribute of session cookies to the root directory would not break the website
functionality and it would not weaken its security, while fixing a cause of scope fragmentation.

4.4.3. The Domain Attribute
In a multi-domain setting, only a limited set of session cookies may be shared among sub-domains via

the Domain attribute and enlarging the scope of the other session cookies to the full domain to prevent
scope fragmentation might be dangerous, because it may allow a related-domain attacker to disclose
sensitive information or perform session hijacking. A more careful analysis is thus needed, depending
on the trust assumptions between related-domain services.

If related-domain services are mutually distrusting, it is reasonable to assume that their back-ends are
isolated and built on top of independent sessions, hence enlarging the scope of their session cookies is
not actually needed to prevent sub-session hijacking. To exemplify, consider a scenario where a user
has established a session at www.example.com, getting a cookie rsid intended to provide some session
information to both a mail service at mail.example.com and an e-shop at shop.example.com; this cookie
would have the Domain attribute set to .example.com to support this use case. The two services, in
turn, release individual session cookies m and s respectively when accessed to implement their internal
functionalities. Although in this setting not all the session cookies have the same scope, we observe there
are actually two independent sessions running rather than a single session and no scope fragmentation
occurs: both the email service and the e-shop have full visibility of their session cookies and can thwart
sub-session hijacking attacks just by performing intra-scope sub-session linking.

If instead related-domains services trust each other, it is possible to uniformly enlarge the scope of
their session cookies to the full domain, so that scope fragmentation is avoided and intra-scope session
linking becomes again an effective countermeasure against sub-session hijacking.
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4.4.4. Discussion
By using programming practices which prevent scope fragmentation, robust protection against sub-

session hijacking can be entirely enforced by using intra-scope sub-session linking. We thus see protec-
tion against sub-session hijacking as a two step process, where scope fragmentation is first eliminated
and then intra-scope sub-session linking is enforced.

Intra-scope sub-session linking is a systematic process to implement, which can be carried out au-
tomatically without requiring a deep understanding of the website to protect, while removing scope
fragmentation is a much more delicate task, which may require a careful threat analysis and a website
refactoring which may be hard to fully automate. In Section 5, we propose a server-side proxy which
automatically implements intra-scope sub-session linking without requiring website changes, so as to
enforce protection against sub-session hijacking as long as the website avoids scope fragmentation.

4.5. Sub-Session Linking in the Wild

We reconsidered the 92 websites which we identified as potentially vulnerable to sub-session hijacking
based on the analysis in Section 3.3. For these websites, we computed the number of scopes for their
session cookies, as shown in Table 1, and we observed that only the session cookies of 20 out of 92
websites span more than one scope (21.7%). The differentiation of scopes for the session cookies is only
due to the use of the Secure and Domain attributes, because all the session cookies in the dataset have
the Path attribute set to the root directory.

#scopes #websites
1 72
2 18
3 2

Table 1
Session cookie scopes in the wild

By using these numbers, we can get a picture of the presence of scope fragmentation in the wild. There
is only one subtlety worth noticing: if the scopes of the session cookies of a website differ only due to
the use of the Secure attribute, but the website makes use of HSTS, then there is no scope fragmentation,
because the session is guaranteed to entirely take place over HTTPS. We only found 2 such cases in our
dataset, hence scope fragmentation affects only 18 out of 92 websites (19.6%). This suggests that scope
fragmentation is present in the wild, but not pervasive, though we notice that the considered dataset
only includes cookies collected upon the login process and does not account for the case of session
cookies which are later added during user browsing. Though this limitation may partially affect the
picture, these numbers suggest that intra-scope sub-session linking is already a robust defense against
sub-session hijacking for many existing websites.

5. Warden

Warden is a server-side proxy which automatically enforces intra-scope sub-session linking on in-
coming HTTP(S) requests3. As explained in the previous section, this is sufficient to entirely prevent

3We make Warden publicly available at https://github.com/alviser/warden

https://github.com/alviser/warden
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sub-session hijacking in absence of scope fragmentation. Warden operates by creating cryptographic
consistency proofs for session cookies based on HMACs, which are stored themselves into cookies.
By operating as a server-side proxy, Warden can only protect session cookies which are set via HTTP
headers and never modified at the client side: we discuss the import of such design choice for existing
websites in Section 6.3.

5.1. Design Goals

The first design goal of Warden is ease of deployment. Warden aims at improving protection against
sub-session hijacking without requiring changes to the server-side logic of the website to protect. This is
important for the practical adoption of the tool, because even web developers who are more concerned
about session security may have troubles at retrofitting new defenses into existing, complex code bases,
possibly developed using multiple programming languages and frameworks.

A second design goal of Warden is backward compatibility. Warden should be usable off-the-shelf
by existing websites without breaking their functionality and without requiring browser changes, so
it should be entirely based on existing web technologies. Finally, Warden should only have a limited
impact on the performances of the website to protect to encourage its adoption.

5.2. Challenges

The main challenge in the design of Warden is that the implementation of web sessions on existing
websites is complex and variegate. On real websites, session cookies are often issued before login and
just refreshed after a successful password-based authentication, hence the presence of session cookies in
an HTTP(S) request does not necessarily mean that the request is authenticated. Detecting which session
cookies do not yet identify authenticated sub-sessions is useful to make Warden more permissive and
efficient, because those cookies cannot be used for sub-session hijacking. Moreover, it is possible that
some session cookies are only issued after login, rather than upon login. For instance, a website may
grant access to its private area upon login, but only release the session cookies needed to access its
mailbox service when users actually access their inbox. This means that, if an HTTP(S) request does not
include the full set of session cookies, it is not necessarily a sub-session hijacking attempt, but rather it
is possible that some session cookies have not been released yet by the website.

In the end, Warden needs to reliably keep track of which cookies are used to identify authenticated
sub-sessions and which ones are not, even though it runs as a server-side proxy unaware of the session
management logic. This is the subtlest point of its design, which requires some ingenuity.

5.3. Design Description

5.3.1. Cookie Scopes
To clarify how Warden works, we need to be a bit more precise about cookie scopes4. We represent

scopes as triples s = (prot, host, path), where:

prot ::= http | https | any
host ::= str1. · · · .strn | .str1. · · · .strn

path ::= / | /str1/ · · · /strn/

4The following definitions are based on RFC 6265 [1]. For the sake of clarity, they simplify a few uninspiring, complicated
details of the real web, e.g., no specific restriction is enforced on the syntax of valid hostnames.
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Here, each stri stands for an arbitrary string not including dot and slash. Notice that s can represent
any combination of the use of the Secure, Domain and Path attributes: for instance, a Secure cookie
set by www.example.com for its root directory would have scope (https,www.example.com, /), while a
non-Secure variant of such cookie would have scope (any,www.example.com, /). In real browsers, no
combination of attributes can set a cookie scope to (http, host, path) for some host and path, but it is
technically convenient to introduce http in the syntax of scopes for later use.

Cookie scopes can be ordered by defining a binary relation v with the following meaning: if a cookie
c1 has scope s1 and a cookie c2 has scope s2 with s1 v s2, then every HTTP(S) request which includes
c1 must also include c2.

Definition 1 (Order v). Let s1 = (prot1, host1, path1) and s2 = (prot2, host2, path2), we say that s1 is
no larger than s2, written s1 v s2 iff all the following clauses hold:

• prot1 = prot2 or prot2 = any;
• host1 = host2 or host2 is a suffix of host1 starting with a dot;
• path1 = path2 or path2 is a prefix of path1.

Observe that the v relation is a partial order, i.e., it is reflexive, antisymmetric and transitive.

5.3.2. Configuration
The configuration of Warden requires the following parameters:

(1) the URL ul where user credentials are submitted upon login, i.e., the action of the login form;
(2) the names k1, . . . , kn and scopes s1, . . . , sn of all the session cookies used by the website.

It is required that the names ki are pairwise distinct. Observe that, when the names of the session cookies
are known, finding their scope is trivial by using a standard web browser. Upon installation, Warden
generates a fresh symmetric key K, whose role is described below.

5.3.3. Overview and Key Ideas
We provide a high-level description of how Warden works before formalizing the full details in the

next sub-section. As explained in Section 4.2, sub-session hijacking can be prevented by ensuring that,
every time an authenticated request is processed, then the browser sending that request stores the most
updated consistent set of session cookies released to the authenticated user. Recall that a set of session
cookies is consistent if and only if each cookie identifies a sub-session which contributes to implement
the same user-authenticated session, so consistency can be proved by showing that all the session cookies
were issued to the same user. To check consistency, Warden relies on standard cryptography: when a
first set of session cookies is issued together upon login, they are bound together by an HMAC, which
proves their consistency and must be presented along with the subsequent authenticated requests. Warden
verifies the HMAC every time an authenticated request is received by the website: if the attacker steals
or corrupts only a subset of the session cookies, the HMAC verification fails and Warden ensures that
the request is not processed in an authenticated context by stripping the session cookies from it. When a
legitimate set of session cookies needs to be extended, e.g., because the user accesses a different service
on the same website, the HMAC is updated to include the new session cookies. Warden uses increasing
sequence numbers to keep track of which is the most updated set of session cookies released to each
user, so that the attacker cannot force the reuse of outdated HMACs which bind together only a subset
of the session cookies implementing the current session. The security policy of Warden is implemented
on top of cookies as well and deserves a careful explanation.
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We use the notation (k, v) to denote a cookie named k having value v. When a login operation is
performed, Warden generates a symmetric key KS to protect the new authenticated session by crypto-
graphically enforcing intra-scope sub-session linking by means of an HMAC. The key KS is sent to the
browser in a key cookie of the form (wkey, enc(KS ,K)), where enc stands for symmetric key encryption.
Warden stores for KS a set of bindings between session cookie scopes si and sequence numbers, ini-
tially set to 0. The sequence number for scope si is incremented every time KS is used to create a linking
cookie for si. Intuitively, a linking cookie for si cryptographically proves that the set of session cookies
with scope s j w si which identify authenticated sub-sessions is the most updated consistent set of ses-
sion cookies which are visible at si. A linking cookie for si has the form (lnksi ,HMAC((si,N,~v),KS )),
where N is the sequence number bound to si for KS and ~v is the concatenation of the values of the
session cookies with scope s j w si which already identify authenticated sub-sessions. Observe that, in
absence of scope fragmentation, only one linking cookie needs to be released: in this case, since the
session cookies attached to each HTTP(S) request coincide with the full set of session cookies stored in
the browser, the consistency proof granted by the linking cookie is sufficient to entirely stop sub-session
hijacking. This is the intended use case, where Warden provides maximum benefits. Still, the design of
Warden supports the presence of multiple scopes, because sub-session hijacking can still be mitigated
by its security policy: we discuss examples of such cases in Section 6.1.3.

Warden ensures that requests are processed in an authenticated context only when they include a valid
linking cookie. However, observe that when Warden receives a linking cookie, it does not know which
session cookies should be considered to verify the HMAC stored therein. Warden cannot simply use all
the session cookies attached to the request, because not all of them necessarily identify authenticated
sub-sessions at that point in time. To solve this issue, Warden relies on shadow cookies, which identify
the session cookies which are not yet used for authentication: all the other session cookies must be used
in the HMAC computation. Given a session cookie (ki, vi) with scope si, its shadow cookie is a cookie
(k•i ,HMAC(vi,K)) with scope si which acts as a cryptographic proof that (ki, vi) does not yet identify an
authenticated sub-session. Shadow cookies are initially set along with their corresponding session cook-
ies before login, when there is no authenticated sub-session: when the login is performed, the shadow
cookies whose name matches the name of any of the session cookies set in the login response are deleted
and a new linking cookie binding the freshly released session cookies is created for each of their scopes.
The linking cookies can then be updated throughout the session whenever new session cookies are is-
sued in response to an HTTP(S) request which includes them. In fact, the fresh session cookies can be
immediately identified as bound to authenticated sub-sessions, because the linking cookies prove that
the login was already performed, hence no shadow cookie is released and the linking cookies can be
directly updated to track the existence of new authenticated sub-sessions.

The process is summarized in Figure 4, which shows how the interaction between a browser B and a
server S is mediated by Warden (noted by W). We use the signs + and - in the Set-Cookie headers to
represent that cookies are set or deleted respectively. We assume that the session cookie sid is set before
login for user tracking, but it gets refreshed upon login and returned along with a new session cookie sec.
For readability, the figure omits the values of the cookies and uses the notation lnk(sid, sec) to refer to
the linking cookie binding together sid and sec. Every time a request is sent to the server, Warden blocks
it and partitions its set of session cookies into two sets of sensitive and insensitive cookies respectively.
A session cookie is considered insensitive if and only if it comes with its corresponding shadow cookie,
which proves that the cookie does not yet identify an authenticated sub-session. All the other (sensitive)
cookies must be bound together correctly by the HMAC stored in the linking cookie retrieved from the
request. The HMAC is verified with the symmetric key KS stored in the key cookie attached to the
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request, which can be retrieved via a successful decryption with the key K generated upon installation
of Warden; the sequence number used to compute the HMAC is the one bound to KS for the scope
of the linking cookie. If the verification of the HMAC succeeds, the request is forwarded to the server,
otherwise all the sensitive cookies are stripped before forwarding to ensure the request is treated as
unauthenticated.

B W S

GET /index.html
+3

GET /index.html
+3

[Set-Cookie: +sid] Homepage
ks

Create shadow cookie sid•

[Set-Cookie: +sid,+sid•] Homepage
ks

[Cookie: sid, sid•] POST user=alice,pwd=4312 /login.php
+3

No sensitive cookie found: forward
[Cookie: sid] POST user=alice,pwd=4312 /login.php

+3

[Set-Cookie: +sid,+sec] Profile page
ks

Create cookies wkey and lnk(sid, sec), delete shadow cookie sid•

[Set-Cookie: +sid,+sec,+wkey,+lnk(sid, sec),−sid•] Profile page
ks

[Cookie: sid, sec,wkey, lnk(sid, sec)] GET /inbox.php
+3

Decrypt wkey and verify the HMAC in lnk(sid, sec): forward

[Cookie: sid, sec] GET /inbox.php
+3

Figure 4. Warden exemplified (cookie values are elided for readability)

5.4. Formalization

We now formalize how Warden works so as to clarify the details of its security policy. We first define a
convention to build the concatenation of session cookie values: let (k1, v1), . . . , (kn, vn) be a list of session
cookies where all the ki’s are pairwise distinct, the concatenation of their values vi’s is built following the
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lexicographic order of the ki’s. We then focus on defining the conditions used to check request validity,
i.e., to deem when a request can be safely forwarded to the website with all its session cookies attached.
Given an HTTP(S) request r, we let Cr be the list of the cookies attached to r and Sr be the list of the
session cookies in Cr. We let r be the HTTP(S) response generated after processing r, Cr be the list of
the cookies attached to r and Sr be the list of the session cookies in Cr. In the following, we assume
that Cr never contains two different cookies with the same name: if this does not hold, the request r is
considered invalid and gets rejected by Warden. This condition is needed to ensure that Warden is not
confused about which cookies must be used in the application of its security policy and, incidentally, it
also thwarts potential cookie shadowing attempts by the attacker, thus providing better cookie integrity
guarantees [5].

As anticipated in the previous overview, a session cookie is considered sensitive if and only if it does
not come with a corresponding (valid) shadow cookie. A request is sensitive if and only if it contains
at least one sensitive cookie: intuitively, insensitive requests are always safe with respect to sub-session
hijacking, because none of their session cookies identifies an authenticated sub-session. Formally:

Definition 2 (Sensitive Cookie and Sensitive Request). Given a request r, a session cookie (ki, vi) ∈ Sr
is sensitive if and only if (k•i ,HMAC(vi,K)) 6∈ Cr. We say that r is sensitive if and only if Sr contains at
least one sensitive cookie.

We now describe how a linking cookie is extracted from a request when multiple linking cookies are
attached to it. In fact, observe that if there exist two distinct session cookie scopes si, s j such that si v s j,
there may exist legitimate requests including a linking cookie for both si and s j (notice that these linking
cookies have different names, because the scope is part of the name). The intuition is that we want to pick
the linking cookie corresponding to the narrowest scope matching the request, because it binds together
the largest number of sensitive session cookies: we call this cookie the candidate linking cookie.

To formalize this intuition, we need to introduce a few additional ingredients. Given an HTTP(S)
request r directed at the URL u, we let scope(r) stand for the scope matching exactly the protocol, the
hostname and the path of u. We assume that Warden keeps track of the sequence numbers used for the
construction of the linking cookies inside a data structure µ such that µ(KS , si) = N when N is the last
sequence number bound to the scope si for the key KS .

Definition 3 (Candidate Linking Cookie). Given a request r such that (wkey, enc(KS ,K)) ∈ Cr, its
candidate linking cookie is the cookie (lnksi , vi) ∈ Cr such that scope(r) v si and, for all the session
cookie scopes s j w scope(r) such that µ(KS , s j) > 0, we have si v s j.

A candidate linking cookie is not guaranteed to exist, but if it exists, then it is unique by the anti-
symmetry ofv. The side-condition on µ in the previous definition ensures that Warden picks a candidate
linking cookie with scope si only if, for all the scopes s j matching the request for which a linking cookie
was previously issued, we have si v s j: this ensures that the candidate linking cookie always binds
together the largest possible set of sensitive session cookies for the scope.

By using the candidate linking cookie, we can finally define request validity. Intuitively, a request is
valid when it includes a candidate linking cookie with a valid HMAC. This is formalized as follows:

Definition 4 (Valid Request). A request r is valid iff, whenever ~v is the concatenation of the vi’s such
that (ki, vi) ∈ Sr is sensitive, there exist a key cookie (wkey, enc(KS ,K)) ∈ Cr and a candidate linking
cookie (lnks, v) ∈ Cr such that v = HMAC((s, µ(KS , s),~v),KS ).
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Having introduced the main definitions needed to explain how Warden processes a request, we focus
on the process used to create the linking cookies to be attached to a response. This is done by creating
a linking cookie for each of the scopes of the session cookies included in the response, taking care that
a linking cookie with scope si binds together all the session cookies with scope s j w si. The process is
formalized by the following definition:

Definition 5 (Generated Linking Cookies). Let S = (k1, v1), . . . , (kn, vn) be a list of session cookies and
let s1, . . . , sn be their scopes. The generated linking cookies for S using the key KS include, for each
distinct cookie scope si, a cookie (lnksi ,HMAC((si, µ(KS , si),~v),KS )), where ~v is the concatenation of
the v j’s bound to a k j such that s j w si.

When a request r is sent to the website, Warden blocks it and checks its validity. If r is not valid, all
the sensitive session cookies are stripped from it, so that the request is not processed in an authenticated
context. Moreover, irrespective of the outcome of this check, all the cookies generated to implement the
security policy of Warden are stripped from r, which is then forwarded to the website. Finally, Warden
intercepts and extends the corresponding response r as follows:

(1) if r was directed at the login URL ul, Warden creates a fresh symmetric key KS . For each session
cookie scope si, Warden sets µ(KS , si) = 1 if si is the scope of any of the cookies in Sr, otherwise
µ(KS , si) = 0. The response r is extended to set the linking cookies generated for Sr using KS
and to include the key cookie (wkey, enc(KS ,K)). Moreover, r is extended so that all the shadow
cookies whose name has the form k•i for some ki such that (ki, vi) ∈ Sr are deleted;

(2) if r was not directed at the login URL ul and it passed the validity check, Warden checks for the
presence of new session cookies in Sr. In that case, Warden extracts the key KS from the key
cookie (wkey, enc(KS ,K)) and, for each session cookie scope si, it increments µ(KS , si) by 1 iff
si is the scope of any of the cookies in Sr∗ , Sr, where Sr∗ is the sub-list of the sensitive cookies in
Sr. The response r is extended to set the linking cookies generated for Sr∗ , Sr using KS . Moreover,
r is extended so that all the shadow cookies whose name has the form k•i for some ki such that
(ki, vi) ∈ Sr are deleted;

(3) if r was not directed at the login URL ul and it did not pass the validity check, the response r is
extended to set a shadow cookie (k•i ,HMAC(vi,K)) for each (ki, vi) ∈ Sr.

5.5. Implementation Details

We implemented Warden as an Apache module, so that it has direct access to both the HTTP and
the HTTPS traffic towards and from the website, thus simplifying its deployment. Of course, this choice
restricts the effectiveness of Warden to websites which are hosted on a single web server running Apache,
but it would certainly be possible to implement Warden as an external proxy for production use at the
cost of giving it access to the HTTPS certificate. As to cryptography, we used the AES-128 and HMAC
implementations available in OpenSSL, choosing SHA-1 as the underlying hashing algorithm used in
the HMAC construction.

We also implemented a Google Chrome extension which simulates the behavior of Warden entirely
at the browser side, so that it is possible to test how well Warden fares on existing websites in terms of
backward compatibility, i.e., to assess whether its security policy breaks the website functionality (Sec-
tion 6.3). This browser extension is not intended to be a defense mechanism and is not part of Warden: it
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is just used in the evaluation of this important aspect. Since the Google Chrome APIs for extension devel-
opment provide facilities to intercept HTTP(S) requests and change the headers of incoming HTTP(S)
responses, it allows for a very direct implementation of the behavior of Warden.

6. Warden Evaluation

We thoroughly evaluate the design and the implementation of Warden along four different axes: pro-
tection, performances, backward compatibility and ease of deployment.

6.1. Protection

6.1.1. Security Analysis
We consider a general threat model where the attacker is able to compromise the confidentiality and

the integrity of the cookies stored in the user’s browser. The lack of confidentiality or integrity of the
session cookies is the key enabler of sub-session hijacking, because leaked session cookies can be used
to put the attacker’s browser into a user’s sub-session, while tainted session cookies can force the user’s
browser into an attacker’s sub-session. We abstract from how the leaking and the tainting of the cookies
is performed: it can happen in the browser, e.g., due to the presence of XSS, or on the network, e.g., due
to active tampering of the HTTP traffic.

Our security analysis proceeds in three steps:

(1) we show that all the authenticated requests forwarded to the protected website are sensitive, as long
as the website refreshes the value of the session cookies when they are endorsed to authenticate
the user upon login5. This ensures that stripping the sensitive cookies before forwarding a request
is enough to prevent sub-session hijacking, hence the security policy applied by Warden to invalid
requests is sound;

(2) we show that the set of sensitive session cookies which are attached to a valid request is always the
most updated consistent set of session cookies issued to the authenticated user, as long as scope
fragmentation is prevented;

(3) we use these results to prove that sub-session hijacking attacks are prevented by Warden under the
above assumptions.

To understand why point (1) holds true, notice that cookies used for authentication purposes can only
be released upon login or after processing an already authenticated request. However, shadow cookies are
never released for fresh session cookies set upon login, which means that the first authenticated request
to the protected website must be sensitive (see Definition 2). The corresponding response may refresh
the session cookies in the request or set additional fresh cookies used for authentication, but no shadow
cookie will be issued for them, because the request was sensitive, hence also the next authenticated
request will be sensitive. By iterating this reasoning, we establish point (1).

Assume then that a valid request is forwarded to the protected website by Warden. This implies that the
request includes a candidate linking cookie storing a valid HMAC which binds together all its sensitive
cookies (see Definition 4). The absence of scope fragmentation ensures that this is the full set of session
cookies which may be used for authentication, while the use of a sequence number in the HMAC ensures
that this is the most updated set of such cookies. We then observe that the set of session cookies bound

5This is a recommended security practice, which is needed to prevent session fixation attacks [13].
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by the linking cookie of a valid request must be consistent, because the first HMAC is issued for the
session cookies set upon login, which are consistent. The response which sets the next HMAC, possibly
with some additional session cookies, can only be produced after processing a valid request; this, in
turn, implies that the request contained a consistent set of session cookies, so all the cookies used for
authentication which are bound by the new HMAC must also be consistent. By iterating this reasoning,
we establish point (2).

We can finally use this result to show that Warden prevents sub-session hijacking attacks under the two
assumptions given above, thus establishing point (3). Assume that a request r is forwarded by Warden to
the protected website. If r is invalid, Warden will strip all the sensitive cookies from it before forwarding,
hence the resulting request will be unauthenticated by point (1) and it cannot be used for sub-session
hijacking. If instead r is valid, we know by point (2) that the set of n sensitive session cookies which are
attached to it is the most updated consistent set of session cookies issued to the authenticated user. This
implies that an attacker who is able to disclose or corrupt only m < n of these cookies will not be able to
present a valid HMAC for them, either because no session was ever built over the m cookies or because
that session is outdated (it includes less session cookies than the currently running session).

6.1.2. Red Teaming
To get further on-field evidence of the accuracy of our security analysis and the degree of protection

offered by Warden, we set up a challenge with a red team of three web security experts who regularly
attend international hacking competitions. The challenge was based on a toy web application developed
in PHP, called Disney Playground (DP). DP has just two registered users, Mickey Mouse and Donald
Duck respectively, who are authenticated by means of the following three session cookies:

• the identity cookie is used to retrieve the profile picture of the user, representing the corresponding
Disney character;

• the city cookie is used to fetch a picture of the city where the user lives (Mouseton or Duckburg);
• the partner cookie is used to get a picture of the partner of the user (Minnie or Daisy Duck).

The first two session cookies are set before login and refreshed upon authentication, while the last one is
set later on when browsing the private area of the web application: if the partner cookie is still missing,
DP displays a question mark in place of the partner. All the session cookies are set without any security
attribute and have the same scope; they store an unpredictable session identifier, which is used to index an
internal data structure storing the images. In this setting, sub-session hijacking is successfully performed
when DP displays a combination of images which mixes elements of two different comics.

We deployed Warden on top of DP to prevent sub-session hijacking. We configured DP so that all
the communication happened over HTTP via a network controlled by the red team, thus modeling a
scenario where there is no cookie confidentiality, no cookie integrity and the network traffic cannot be
trusted. The red team was also instructed about the inner workings of Warden and given access to the
credentials of the two users of DP. Finally, the red team was asked to perform a sub-session hijacking
attack by reproducing one of the attack configurations in a web browser (of course, without modifying
the response bodies to directly force these configurations). Despite the best efforts of the red team, all the
sub-session hijacking attempts were prevented by Warden. Examples of attacks which were thwarted by
Warden based on the server logs include the reuse of outdated HMACs, the forgery of (invalid) shadow
cookies and a number of tampering attempts against the session cookies.

6.1.3. Scope Fragmentation
Both our security analysis and our on-field evaluation assumed the absence of scope fragmentation.

If scope fragmentation is not prevented, sub-session hijacking may still be possible despite the security
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policy applied by Warden, because Warden would not always be able to see the full set of session cookies
stored in the browser sending an authenticated request. An example of such sub-session hijacking attack
is shown in Figure 3.

Warden was not designed to automatically prevent scope fragmentation, because this would be very
hard to do without affecting the website functionality (see Section 4.4) and we wanted to preserve back-
ward compatibility with existing websites. Ideally, we expect web developers to manually prevent scope
fragmentation by following the recipes we detailed and then close the remaining space for sub-session
hijacking by installing Warden. It is worth recalling that scope fragmentation does not seem pervasive
in the wild: Section 4.5 shows that out of 92 websites which are potentially vulnerable to sub-session
hijacking, only 18 websites (19.6%) present scope fragmentation, hence the other 74 websites (80.4%)
could entirely prevent sub-session hijacking just by installing Warden. Moreover, we empirically observe
that Warden can still prevent a number of sub-session hijacking attacks even when scope fragmentation
is present, because intra-scope sub-session linking is enforced anyway. We discuss next two examples of
real-world attacks which can be prevented by Warden on existing websites which do not prevent scope
fragmentation.

Gmail Chat Gadget Hijacking [5]. The web interface of Gmail includes a chat gadget on its left side.
If an attacker hijacks the sub-session of the chat gadget without affecting the main content of the inbox,
he can fake the victim’s friend list and chat with her to initiate advanced phishing attempts, while sig-
nificantly reducing the visibility of the attack. In particular, the attacker can inject his Google session
cookies so that they shadow the victim’s ones only at the chat-related URLs by using the Path attribute:
this would put the attacker’s chat gadget on the victim’s screen without disturbing the victim.

This attack is prevented by Warden because only valid requests are forwarded to the protected website
and no request containing multiple session cookies with the same name is valid. Indeed, one of the
main benefits of the security policy applied by Warden is exactly the prevention of cookie shadowing
attempts, which are not straightforward to detect at the web application layer, because web development
frameworks typically provide access to cookies in the form of a key-value dictionary.

Purchase Hijacking on Amazon [5]. Amazon uses two long-term cookies to keep track of a user’s
browsing history and ongoing purchases. Unfortunately, the corresponding state information is not
bound to the user’s session cookie, but rather stored in a session-independent data structure. If an at-
tacker is able to replace these two cookies with his own cookies, he can track in real-time what the
victim has viewed on Amazon and inject unwanted items into the browsing history, thus affecting the
Amazon recommender system.

This attack is prevented by Warden if the two cookies above are included in the list of session cookies
to protect. The reason is that the user’s session and the attacker’s session would be built on top of
different values of such cookies, hence replacing the user’s cookies with the attacker’s cookies would
break the check of the HMAC stored in the linking cookie used by Warden.

6.1.4. Discussion
The security analysis of Warden is precise, but informal. It establishes that sub-session hijacking at-

tacks due to the violation of cookie confidentiality or integrity are prevented, provided that session cook-
ies are refreshed when they are endorsed for authentication and scope fragmentation is prevented. As
future work, we would like to recast our analysis in a formal model and generalize it to provide better and
more accurate security guarantees. It would be intriguing to identify conditions under which scope frag-
mentation does not enable sub-session hijacking attacks, although only intra-scope sub-session linking
is enforced. The main obstacle to this kind of analysis is that, unfortunately, browser models proposed in
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the literature are still somewhat underwhelming, being either too abstract or too detailed to support the
development of security proofs which are both realistic and manageable in terms of complexity [21].

An interesting pragmatic observation is that the HMAC computation performed by Warden can be
useful beyond the prevention of sub-session hijacking. Since HMACs provide integrity proofs, they can
be used to ensure that some session cookies are never modified at the browser side. This can be useful
in particular when these cookies cannot be marked with the HttpOnly attribute, because they need to be
read by JavaScript for generic reasons.

6.2. Performances

6.2.1. Network Latency
The security policy implemented by Warden may have a negative impact of the perceived perfor-

mances of the protected website. To assess this important aspect, we used Tsung6, a state-of-the-art tool
for the performance analysis of client/server applications. Tsung allows one to simulate the arrival of new
clients at the server in terms of a Poisson process, with a configurable arrival rate λ. Clients are put into
a queue and served under a FIFO policy until they complete their navigation. We analyzed the impact of
Warden on network latency on a fresh Wordpress installation by measuring the mean response times and
the number of pages served in presence and in absence of Warden. We configured Tsung so that each
client accesses the Wordpress homepage, performs a login operation and visits a number of pages of the
backend before moving back to the frontend. We tested five different arrival rates λ ∈ {1, 2, 3, 4, 5} for
clients, performing 10 runs of 20 minutes for each of them and taking the average of the results.

Table 2 shows the mean response times for page requests, as well as the number of pages served. The
latency introduced by Warden is less than 10 ms in the worst case, which is negligible in practice for end
users. We found that at λ = 6 our machine was not able to deal with the generated workload, both with
and without Warden, which shows that Warden was not the bottleneck when serving page requests.

Arrival Rate λ (1/s) Basic (ms) Warden (ms) Pages served
1 41.42 42.79 ∼ 6,000
2 42.51 43.65 ∼ 11,900
3 45.00 46.58 ∼ 18,100
4 46.67 51.96 ∼ 23,900
5 52.17 60.78 ∼ 29,800

Table 2
Mean response time for page requests

We think that the results of our performance evaluation are positive and encouraging for a practical
adoption of Warden, though we also acknowledge that major real-world websites may have tight con-
straints on the acceptable network delays. Making a more realistic evaluation of the latency overhead
introduced by Warden on such commercial services would be impossible without having access to spe-
cific information about their configuration, given that major websites are hosted on multiple machines
served through a load balancer. However, we do not see any significant problem at deploying Warden at
individual edge servers to support this kind of architectures.

6http://tsung.erlang-projects.org/

http://tsung.erlang-projects.org/
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6.2.2. Traffic Overhead
In the worst case, Warden generates one linking cookie for each identified session cookie scope, one

shadow cookie for each session cookie, and one key cookie. To understand the impact of this on real-
world websites, we inspected the publicly available cookie dataset on which we based the analysis of
Section 3.3. Websites in the dataset build their sessions on top of at most 6 session cookies spanning 3
different scopes, which means that Warden would need to generate at most 10 cookies to protect them.
This is a worst case analysis, because the large majority of the websites (using multiple session cookies)
in the dataset issue only 2 session cookies spanning at most 2 scopes, which means that only 5 cookies
would suffice to protect them. Also, notice that these cookies will not actually be all present at the
same time: if a session cookie is included in a linking cookie, no shadow cookie will be available for it
anymore. Observe that non-session cookies do not affect the performance of Warden, because they do
not play any role in the creation of linking cookies and shadow cookies.

Each linking cookie and shadow cookie generated by Warden contains an HMAC of 20 bytes, while
key cookies contain the encryption of a 128 bit key, which requires 32 bytes. The name of each of these
cookies requires 16 bytes in our implementation. This means that Warden may introduce a overhead of
at most 372 bytes on the HTTP(S) requests to the websites in our dataset. The same analysis on the most
common case discussed above yields a overhead of 192 bytes. These numbers are already acceptable
for a practical adoption, especially because they are pessimistic, since not all the cookies generated
by Warden are present at the same time and linking cookies may have different scopes, so not all the
requests to the website need to attach all the linking cookies. In our fresh installation of Wordpress we
observed an average overhead of just 57 bytes per HTTP(S) request, which is definitely a small price
to pay. We also plan to improve our implementation of Warden to make cookie names shorter, which
would make this overhead even lower.

6.3. Backward Compatibility

6.3.1. Session Cookies and JavaScript
The main potential compatibility issue coming from the design of Warden derives from the assump-

tion that the content of session cookies is never modified at the browser side: if this is not the case,
the check of the HMAC performed by Warden would fail even in absence of sub-session hijacking at-
tacks. We believe that this assumption is reasonable for most websites, because session cookies are used
to authenticate users at the server side and accessing them at the browser side is generally a bad se-
curity practice; indeed, these cookies are often protected using the HttpOnly attribute, which prevents
JavaScript accesses altogether.

We performed a small-scale experiment to understand whether Warden breaks the functionality of
existing websites because session cookies need to be changed via JavaScript. In particular, we selected
30 popular websites where we own personal accounts and we navigated them as deep as possible, while
using the Google Chrome extension which simulates the behavior of Warden at the browser. We identi-
fied the set of the session cookies for the tested services using a previously proposed algorithm [7]. We
observed that 29 out of 30 websites worked flawlessly, including Alibaba, Amazon, Facebook, Ikea and
Reddit. We only encountered compatibility problems with Ebay, where a session cookie is modified at
the browser side to include a random suffix in its value. The reason why this is done is obscure to us, be-
cause deleting the suffix does not seem to affect the website functionality and is enough to make Warden
work correctly. Nevertheless, we were able to recover backward compatibility in this case by excluding
the troublesome session cookie from the list of cookies protected by Warden, which is a general way to
deal with such kind of compatibility problems at the cost of having reduced security guarantees.
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6.3.2. Session Handling Operations
Since Warden operates as a server-side proxy oblivious to the session management logic, one may

wonder how well it deals with common session handling operations. We discuss here two notable cases:
failed login attempts and logouts.

If a user inserts wrong credentials in the login form, there are two possible implementation practices
at the server side. The first possibility is that the website does not issue the expected session cookies: if
this is the case, Warden will do nothing and no compatibility issue may arise. Alternatively, the website
may still send the session cookies without associating them to a valid session at the server side. In this
case, Warden will create its fresh cookies and use them to apply its security policy, although no session
was actually established. This is useless from a security perspective, yet it will not affect the website
functionality. Moreover, the user can still provide the correct credentials after the failed login attempt to
get her session cookies, which would be protected by Warden.

In the case of logouts, we still distinguish two cases depending on the server-side implementation. If
the logout is implemented by making some of the session cookies in the browser expire, all the subse-
quent requests sent by the browser will be invalid and their remaining session cookies will be stripped
away by Warden. Since no session is established anymore, we think that the only functionality which
may be broken by this behavior is user tracking: for instance, social network websites may leave some
session cookies unexpired to track the navigation history of users [22]. These cases may be supported
by not marking the tracking cookies as session cookies, though a careful scrutiny of the session manage-
ment logic is recommended to ensure this does not leave space for sub-session hijacking. If instead the
logout is implemented by making the session expire at the server side, Warden may still receive valid
requests and apply its security policy, which is useless for security yet harmless for compatibility.

Besides these considerations, we empirically tested both failed login attempts and logouts on all the 30
websites selected to test compatibility: none of them broke due to these session management operations.

6.4. Ease of Deployment

Warden requires only limited configuration efforts by web developers. The only parameters which
must be provided upon its configuration are the URL used to submit the user credentials for login, the
names of the session cookies issued by the website and their corresponding scopes. Finding all the
session cookies to protect can be relatively complex, because it might require a good understanding of
the session management logic, but we pragmatically observed that finding sets of session cookies to
protect was not too hard for us, even without any access to the source code of the services we tested.
In particular, we found useful the automated techniques described in previous work [7, 8] to reliably
identify the set of session cookies used by a website, which may be used to identify a candidate set of
cookies to protect.

Although implemented as an Apache module for programming convenience, Warden is designed to
act as a server-side proxy. This means that it can enforce protection independently from the language
used to implement the server-side logic and without requiring code changes. This is a major advantage of
its design, given the heterogeneity and the complexity of the web. Given all these considerations and our
own experience at testing Warden on 30 existing websites (see Section 6.3), we conclude that Warden is
relatively easy to deploy in practice. Since Warden is publicly available, we will collect feedback from
other web developers to get further evidence about this claim.
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7. Related Work

Sub-session hijacking attacks were first reported in two research papers [5, 9]. The first paper studied
the practical implications of the lack of cookie integrity on popular services, while the second one
analyzed the risks of session management in mixed content websites. Both papers present empirical
studies which highlight the dangers of sub-session hijacking in the wild, but they do not discuss the
problem of sub-session hijacking more in general, nor propose robust defense mechanisms against it.

The design of Warden bears similarities to some defenses against session hijacking proposed in the
past. SessionLock [23] is a protocol which exploits a secret established over HTTPS to protect an HTTP
session against hijacking. The main idea is to use the shared secret to compute an HMAC of the HTTP
requests, so that an attacker cannot produce valid HTTP requests on behalf of another user. One-time
cookies [24] generate a unique token per request based on a session key; each token is tied to a particular
request via an HMAC to prevent its reuse in session hijacking attempts. GlassTube [25] guarantees the
integrity of HTTP traffic at application level by computing an HMAC of both the HTTP requests and the
HTTP responses; session hijacking is detected by a mismatch between the presented session cookies and
the key used to authenticate the request including them. There are two notable differences between the
papers in this research line and the present one. From the theoretical side, none of the previous papers
specifically discusses sub-session hijacking, whose dangers only emerged recently. From the practical
side, all the proposed solutions are much harder to deploy than Warden.

SessionLock requires the registration of appropriate event handlers for all the links and forms in the
protected pages, which is particularly complex to do for existing web applications. One-time cookies are
even more complex to deploy, because they require changes to both server-side code and web browsers.
GlassTube requires to embed all the resources not loaded by JavaScript via data URIs, which requires
a major code refactoring at the server side; this limitation can be overcome by deploying GlassTube as
a browser extension, but this would make its adoption much more complicated, because all the website
users would need to install the extension. A limitation of Warden with respect to these solutions is that
only protection against sub-session hijacking is provided: modifications of the data stream aimed at cor-
rupting, e.g., HTTP request parameters, are not detected. Overcoming this limitation requires browsers
to produce HMACs (or other proofs of integrity) for each outgoing request, which is difficult to do
without breaking compatibility or changing browsers.

Origin Bound Certificates [26] are a TLS extension designed to bind session cookies to HTTPS chan-
nels. The main idea is to generate in the browser a different certificate for each website upon an HTTPS
connection, which is then used to cryptographically bind session cookies to the encrypted channel es-
tablished between the browser and the website. This way, leaked session cookies cannot be reused by an
attacker to authenticate as the victim at the website, because the victim’s certificate is never disclosed to
him. Origin Bound Certificates are an effective solution against sub-session hijacking, but they are not
available in standard web browsers.

Other solutions against session hijacking improve the confidentiality guarantees of session cookies.
SessionShield [15], Zan [16] and CookiExt [6] all modify browsers to automatically detect session cook-
ies and better protect them. The effectiveness of these browser-side solutions is limited by the accuracy
of the heuristic used to detect the session cookies; moreover, the integrity problems of session cookies are
not addressed, which leaves space for sub-session hijacking. Origin cookies [11] improve the integrity
of cookies against network attackers and web attackers controlling related domains, which is useful to
prevent sub-session hijacking, but unfortunately they are not available in standard web browsers. Ses-
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sion hijacking can also be prevented by holistic solutions for web session security based on browser-side
monitoring and enforcement [27, 28].

Secure cookie schemes like those proposed in previous research papers [29, 30] store HMACs inside
cookies, so they share some similarities with what Warden does. The goal of these schemes, however,
is ensuring protection against guessing attacks on session cookie values and guarantee the integrity of
browser-side state.

8. Conclusion

We performed a systematic analysis of the root causes of sub-session hijacking attacks and we ex-
plored the use of sub-session linking as an effective technique to protect web sessions against them. We
showed that sub-session linking is not trivial to implement: in particular, inter-scope sub-session linking
is complex and it better be avoided by using programming practices which prevent scope fragmentation.
We then introduced Warden, a server-side proxy which automatically enforces intra-scope sub-session
linking and requires only minimal configuration efforts by web developers. We performed a thorough
evaluation of Warden and we experimentally showed that only a small price has to be paid to enjoy the
additional protection offered by the tool.

There are several avenues for future work. First, we would like to study best programming practices
which can be applied at the server side to prevent sub-session hijacking, even in presence of scope
fragmentation. Moreover, we plan to provide a formal characterization of sub-session hijacking attacks
and establish under which conditions Warden enforces a semantic security property which rules them
out. Finally, we would like to carry out a large-scale analysis of the vulnerability of existing websites to
sub-session hijacking attacks, to improve the scope of existing studies [5, 9] and understand this security
issue more in depth.
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