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Abstract The prevalence of web tracking and its key

characteristics have been extensively investigated by

the research community by means of large-scale web

measurements. Most such measurements however are

limited to the choice of a specific client used for data col-

lection, which is insufficient to characterize the relative

privacy guarantees offered by the adoption of different

clients to access the Web. Recent work on comparative

privacy analyses involving multiple clients is still prelim-

inary and relies on relatively simple heuristics to detect

web tracking based on the inspection of HTTP requests,

cookies and API usage. In this paper, we propose a

more sophisticated methodology based on information

flow tracking, which is better suited for the complexity

of comparing tracking behavior observed in different

clients. After clarifying the key challenges of compar-
ative privacy analyses, we apply our methodology to

investigate web tracking practices on the top 10k web-

sites from Tranco as observed by different clients, i.e.,

Firefox and Brave, under different configuration settings.

Our analysis estimates information flow reduction to

quantify the privacy benefits offered by the filter lists

implemented in Firefox and Brave, as well as the effec-
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tiveness of their partitioned storage mechanism against

cross-site tracking.
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1 Introduction

Web tracking is prominent on the Web and a key com-

ponent of the business model of many web companies.

While web tracking is useful to provide personalized

assets like interesting news and engaging advertisement,

it also poses significant privacy concerns and for this

reason received significant attention by the research

community [13, 25]. In the last few years, this atten-

tion reached even privacy regulators, giving rise to well-

known laws like the General Data Protection Regulation

enforced in the European Union [16]. From a more tech-

nical perspective, the explosive developments in the ad

ecosystem engage the browser vendors and the tracking

industry in a competitive race [4, 5, 14]. To meet the

increasing user demand for content blocking, and make

the browsing environment more private [22], browser

vendors are continuously integrating different tracking

protection mechanisms in their browsers. Those tracking

protection mechanisms intend to target and block social

media trackers, cross-site tracking, fingerprinters, crypto

miners, and other tracking content.

The effectiveness of such technologies has been in-

vestigated by the research community, most notably by

means of web measurements [13,15,28]. Measurement

studies perform large-scale analyses over the Web by

automatically collecting data from popular websites and

detecting interactions with web trackers to reason about

privacy threats. Most of the research in the field however

is limited to the choice of a specific client used for data
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collection, e.g., Google Chrome or the popular Open-

WPM client used for privacy research. This is useful to

analyze web tracking from the point of view of a specific

client, but cannot characterize the privacy guarantees

offered by the use of different clients. Considering the

ever-increasing popularity of privacy-enhancing clients

like Brave and the introduction of recent tracking coun-

termeasures like partitioned storage, comparative analy-

ses that measure the relative privacy guarantees offered

by the use of different clients on existing websites are

desired.
Contrary to traditional privacy analyses, compara-

tive privacy analyses received just limited attention by

the research community [21, 27, 36]. Zafar and Das com-

pared the privacy guarantees offered by different mobile

browsers through a combination of static and dynamic

analysis [36]. Pradeep et al. instead conducted a large-

scale and multi-directional analysis on a large pool of

Android browsers from different app stores [27]. These

studies are useful because they might guide privacy-

savvy users in the choice of their preferred browser to

access the Web, but they rely on relatively simple heuris-

tics to detect web tracking based on the inspection of

HTTP requests, cookies, and API usage. We here call

for a more sophisticated and accurate approach, due to

the observation that comparative analyses are difficult

to carry out correctly: for example, recent work by Roth

et al. unveiled that specific client characteristics may

affect the security headers delivered by web applications,

thus affecting the correctness of web measurements [30].

Since web tracking is arguably harder to measure than

security headers, we expect similar challenges to also

arise in web privacy measurements: correctly compar-
ing the tracking behavior detected in different clients is

not straightforward, because any observed differences

are not necessarily related to better or worse privacy

controls. For example, many websites are dynamic in

nature and render differently in different clients, irre-
spective of privacy enforcement. As another, even more

concerning example, just observing the content of the

cookie jar is insufficient to draw conclusions about pri-

vacy enforcement: the mere presence of tracking cookies

in the cookie jar does not suffice to conclude that web

tracking is taking place, because privacy enforcement

might operate by preventing their communication to

known trackers rather than their client-side storage.

Contributions

In this paper, we aim to improve our understanding

of the methodological aspects of comparative privacy

analyses to support both privacy researchers who are

interested in performing similar measurements and web

users who are interested in the output of such analyses.

In particular, we make the following contributions:

1. We identify the most relevant challenges to overcome

to perform a sound measurement study comparing

the relative privacy guarantees offered by different

clients, i.e., to empirically measure the level of pri-
vacy protection they offer to web users on existing

websites in the wild (Section 3);

2. We present a methodology to perform comparative

privacy analyses that leverages information flow con-

trol [31] to deal with the identified challenges. In

particular, we propose the use of information flow

control to accurately characterize the presence of web

tracking and enable a rigorous empirical comparison

of different privacy-enhanced clients based on infor-

mation flows bearing tracking identifiers (Section 4);

3. We report on the results of a measurement study

based on our methodology, where we estimate the

prevalence of different forms of tracking on a baseline

client equipped with information flow control. We

then compare the privacy guarantees offered by the

use of different privacy-enhanced clients (Firefox and

Brave) on the same set of websites, estimating their

information flow reduction to measure the corre-

sponding impact on common web tracking practices

(Section 5).

2 Background

We here present the key necessary ingredients required

to appreciate the rest of the paper. We first introduce

details about how the web platform works, we then
discuss web tracking and we finally overview defenses

against web tracking.

2.1 Basic Web Concepts

The HTTP protocol and its secure variant HTTPS allow
browsers to access web applications based on the client-

server model. Browsers protect web applications by

means of the Same Origin Policy (SOP), which regulates

accesses by subjects (scripts) to objects (web resources)

at the origin boundary, i.e., based on their protocol,

host and port. For example, scripts running on a web

page served by www.evil.com cannot access resources

owned by www.good.com due to an origin mismatch.

Similarly, when www.good.com loads content from www.

evil.com within an iframe (sub-document), that con-

tent maintains its origin and is not entitled to access

resources owned by www.good.com. The story is differ-

ent though when a script is loaded from www.evil.com
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directly into the main document of a web page served by

www.good.com: in this case, the script inherits the origin

of its embedding web page and is allowed to access its

resources. Besides the notion of origin, it is useful here

to introduce the concept of site (or eTLD+1) of a URL,

i.e., its domain name paired with the effective top-level

domain: for example, a.good.com and b.good.com are

both sub-domains of the same site good.com. The site is

the registrable part of the domain name, which identifies

the entity who controls the domain.

SOP-protected resources are variegated, but here
we are particularly concerned about client-side storage,

i.e., storage that web browsers make available to web

applications for their needs. The most popular forms of

client-side storage are cookies and web storage, which

are both based on the key-value paradigm. Specifically,

each cookie and web storage item can be thought as

a pair (k, v), where k is the identifying key and v is

the stored value. Access to specific storage items is

performed through their key: in the case of cookies

the key is identified by parsing the string returned by

the document.cookie property, while access to the web

storage is more disciplined and can be done by directly

requesting the key through the getItem method. An

important difference between cookies and web storage

is that, while the latter can only be accessed through

JavaScript, the former are also automatically attached

by the browser to specific HTTP requests towards their

owners, i.e., web applications can access cookies through

HTTP requests even when no JavaScript is running.

Client-side storage can be made persistent, i.e., pre-

served even when the browser is closed. In the case

of cookies this is done by specifying an appropriately
high value of the Expires attribute, while web storage

is partitioned between the persistent local storage and

the ephemeral session storage (which is purged when

the browser is closed). Persistent client-side storage con-

stitutes the foundations of traditional web tracking, as
discussed below. We use the term client-side storage item

(CSSI for short) to uniformly refer to both cookies and

local storage items when the distinction is immaterial.

2.2 Web Tracking

The term web tracking identifies a wide set of practices

whereby a tracker embedded within a web page collects

information about the requesting client for analytics

and advertisement purposes. Web tracking can be state-

ful or stateless: the former uses persistent client-side

storage, i.e., cookies and local storage, to store unique

identifiers used to pinpoint the client; the latter, in-

stead, uses specific client characteristics, e.g., operating

system, language, fonts, to construct a fingerprint of

the client without relying on client-side storage. In this

work, we focus on stateful tracking alone and we leave

the investigation of stateless tracking to future work.

Web tracking is also normally categorized as cross-

site tracking or same-site tracking, based on whether the

tracker has the ability to correlate visits performed by

the same client across different websites [23]. When

stateful tracking is used, cross-site tracking is typi-

cally done by means of third-party storage, i.e., stor-

age set within an iframe served from a different ori-

gin. The intuition here is that, if site1.com opens an
iframe towards tracker.com, SOP requires scripts run-

ning in the iframe to set CSSIs which are owned by

tracker.com. These items are then visible to the tracker

when site2.com opens an iframe towards tracker.com,

thus allowing the tracker to detect that the same client

accessed both site1.com and site2.com. Same-site

tracking, instead, uses first-party storage, i.e., storage set

within the same origin of the main document. In particu-

lar, if both site1.com and site2.com load a script from

tracker.com, then any CSSIs set by the script cannot

be accessed on the other website due to SOP, hence the

tracker cannot determine that the same client accessed

both websites, thus limiting privacy concerns. In line

with recent work [25], we further categorize same-site

tracking as pure or cross-domain: pure same-site track-

ing shares client identifiers with trackers which were

directly loaded by the web page, while cross-domain

same-site tracking exposes client identifiers to different

trackers. Cross-domain same-site tracking has more del-

icate privacy implications than pure same-site tracking,

because client identifiers are shared with third-parties

which might even be completely unknown to the web
page.

2.3 Countermeasures Against Web Tracking

The rapid proliferation of online tracking promoted con-

cerns about user privacy, the invasiveness of ads, and

the potential misuse of personal data. To address these

concerns, different countermeasures have been initiated

in order to offer additional privacy controls. The main

ingredients are filter lists, i.e., blocklists of known track-
ers, and partitioned storage, which provides improved

isolation for third-party storage. In our discussion, we

primarily focus on Firefox and Brave, which are the two

browsers considered in our experimental evaluation.

2.3.1 Partitioned Storage

For over a decade, browsers allowed advertisers to per-

form cross-site tracking functions with third-party stor-

age. Because this capability presents a threat to privacy,
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several popular browsers including Mozilla Firefox and

Brave have implemented partitioned storage [28,35] to

isolate third-party storage so it cannot be used for cross-

site tracking. The intuition of partitioned storage is that

third-party storage is partitioned based on the embed-

ding document, e.g., if both site1.com and site2.com

open an iframe towards tracker.com, scripts running

in these iframes may set CSSIs which are associated

to separate instances of tracker.com. This means that

a client identifier set in the iframe at site1.com will

be different from a client identifier set in iframe at
site2.com, thus preventing tracker.com from under-

standing that the same client accessed both sites, i.e.,

thwarting cross-site tracking.

2.3.2 Firefox

Firefox started its journey towards users’ privacy by

experimenting with third-party cookie blocking in 2013,
but did not ship default-on third-party blocking at

that time [6, 7]. In October 2018, Firefox introduced

Enhanced Tracking Protection (ETP) [26] as an ex-

periment in the Nightly version of Firefox, providing
default-on third-party cookie blocking. This move was

to provide users with more control over their online

data and improve performance. ETP utilized a list from

Disconnect [12], a privacy-focused company. This list

categorized trackers and enabled Firefox to decide which

ones to block. The primary goal was to prevent third-

party trackers from harvesting user data across websites,

a process that creates detailed user profiles for targeted

advertising and other purposes. Firefox now enforces

ETP with partitioned storage activated by default, thus

blocking cross-site tracking through third-party storage,
but its privacy settings allow one to deactivate some

privacy controls.

2.3.3 Brave

To address the growing concerns related to online ad-

vertisement and web tracking, Brendan Eich and Brian

Bondy co-founded Brave [8] in 2016, a privacy-oriented

browser based on Chromium. Since its inception, Brave

has a built-in ad blocker that not only blocks intrusive

and annoying ads, but also enhances users’ privacy by

preventing different tracking behaviors. Brave took a

number of steps to secure the browsing environment

by incorporating filter lists within its privacy mecha-

nism Shields [5] and activating partitioned storage by

default [4]. This approach blocks more trackers than Fire-

fox and similarly prevents cross-site tracking through

third-party storage. Brave can also be configured in Ag-

gressive mode, which enforces further protection against

first-party trackers, at the risk of additional compatibil-

ity issues with existing websites.

3 Challenges of Comparative Privacy Analyses

We here present the main challenges that a sound com-

parative privacy analysis should deal with. In particular,

we discuss how differences in web tracking behavior can

be observed across browsers and why it is difficult to

attribute them to actual changes in privacy enforcement.

3.1 Motivating Example

To explain why performing sound comparative privacy

analyses is challenging, we present a simple motivat-

ing example. Assume that a privacy researcher uses
Firefox to automatically access the website https://

www.publisher.com. The web page loads a script from

https://www.tracker.com, which sets a cookie trk

with value Firefox|a677bdee89|1700643590, where

a677bdee89 is a client identifier and 1700643590 is a

timestamp. The client identifier is then read from the

cookie jar and communicated to https://adv.tracker.

com using a GET request. The privacy researcher then

uses a different client, e.g., Brave, to access https:

//www.publisher.com again. We discuss two possible

scenarios that the researcher might observe in practice

and some of the challenges they have to solve to draw

meaningful conclusions.

3.1.1 First Scenario

Assume that the researcher does not detect any commu-

nication towards https://adv.tracker.com from the

web page. It might be tempting to conclude that the

privacy controls of Brave prevented a possible privacy

leak, however this is not necessarily the case. There

might be multiple reasons why communication towards

https://adv.tracker.com did not take place besides
privacy enforcement. For example:

1. Loading of https://www.tracker.com failed or did

not complete due to network errors, hence no request

to https://adv.tracker.com was sent;

2. Brave was redirected to a different web page when

trying to access https://www.publisher.com, e.g.,

the browser accessed a localized version of the web-
site embedding different trackers;

3. The same web page of the original Firefox visit was

correctly accessed and rendered, yet the page is dy-

namic in nature and loads different scripts in different

visits, e.g., to provide personalized advertisement.
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Some of these scenarios are straightforward to detect

and researchers routinely deal with them, e.g., checking

the status code and the final URL of the collected data

might rule out the first and the second case. The third

case however cannot be ruled out in general, hence

the absence of a request to https://adv.tracker.com

cannot conclusively prove that Brave prevented the

privacy leak.

One might then choose to take a different route

and monitor whether the request is actively blocked

by Brave, which would give evidence of privacy en-
forcement taking place. Unfortunately, it is surpris-

ingly challenging to do that correctly. A possible idea

would be monitoring console errors: for example, Brave

produces a net::ERR BLOCKED BY CLIENT error when

a request is blocked for privacy reasons. Monitoring

such errors does not suffice, due to script dependencies.

Indeed, even though communication towards https:

//adv.tracker.com is not actively blocked by Brave,

the request to https://adv.tracker.com might still

not take place because the sender script is not loaded

as the result of some other script request being actively

blocked, which suffices to prevent the privacy leak in

practice.

3.1.2 Second Scenario

Assume then that the researcher detects a communica-

tion towards https://adv.tracker.com from the web

page. One might think that this suffices to conclude

that Brave does not prevent a possible privacy leak,

however this conclusion might be wrong because the

request might not contain a client identifier. For ex-

ample, it is possible that tracking protection directly
or indirectly prevented the cookie trk from being set,

leading to a request that includes just the rest of the

available information, e.g., the user agent and a times-

tamp which are available through API calls. Hence, one

should find a way to match and compare requests sent

by different clients, but this is again difficult for mul-

tiple reasons: some information in the request is going

to be inherently different, e.g., the client identifier and

other state-dependent parameters are going to change,

while some other component is not necessarily different,

but might legitimately differ as a matter of fact, e.g.,

communication might take place towards a different sub-

domain like backup.tracker.com even when visiting

the same website multiple times.

3.2 Main Challenges

Elaborating on the previous example, we identify three

main challenges that a sound comparative privacy anal-

ysis should solve.

3.2.1 Detecting Client Identifiers

Web tracking is based on the ability of the tracker to

uniquely pinpoint a specific client, hence the effective

detection of client identifiers in network requests is an

important prerequisite to any form of privacy analysis.

Unfortunately, due to the lack of access to the server-side

logic of web trackers, detection of client identifiers can

only be performed by means of heuristics [10,28]. We do

not touch on this problem in this paper, since different

heuristics have already been proposed in the past and,

in this respect, a comparative privacy analysis does not

differ from a traditional privacy analysis. We describe

our approach to the detection of client identifiers in

Section 4.1.

3.2.2 Detecting Information Flows

Stateful tracking requires the communication of client

identifiers from client-side storage to the network. Look-

ing for client identifiers in either client-side storage

alone or network communication alone would lead to an

over-approximated analysis, because identifiers saved in

client-side storage are not necessarily communicated over

the network and identifiers sent over the network are not

necessarily persisted in client-side storage. These over-

approximated approaches are limited in general, but

they are particularly concerning in the field of compara-

tive analyses, because privacy-enhancing clients might

use different techniques to enforce privacy protection.

For example, assume a client forbids communication

with a set of blocklisted domains: in that case, a known

tracker might set a client identifier in the client-side

storage, but this identifier may not be communicated

back to the tracker due to blocklisting, hence the mere

presence of the identifier might lead to the wrong con-

clusion that tracking is possible. Prior work in the field

normally used simple heuristics to match client-side stor-

age against network requests, e.g., checking whether the

same identifier stored in the client also occurs within

a network request [3, 13, 15, 29]. This approach relies

on syntactic matches and does not track through the

JavaScript logic whether the identifier actually flows

from the client-side storage to the network, which is a

fundamental requirement of stateful tracking. Moreover,

this solution is brittle, because any syntactic transforma-

tion of the client identifier before network communica-

tion might lead to failures in tracking detection, unless
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specific data transformations like Base64 are hard-coded

to account for them. As such, prior heuristics might suf-

fer from both false positives and false negatives, leading

to both over-reporting and under-reporting.

To better detect stateful tracking, we advocate the

use of information flow control, a popular technique

spreading extensive research over the last decades [31].

Information flow control tracks how information flows

from sources, e.g., cookies and local storage, to sinks, i.e.,

APIs used for network communication. A popular ap-

proach to information flow control is taint tracking [32],
which can be roughly summarized as follows: when data

is first read from a source, it becomes tainted; the taint

is then propagated through the program execution, e.g.,

concatenating tainted data to untainted data produces

tainted data, until it reaches a sink. This way, one can

precisely track information flows through the program

execution, which is particularly important in the context

of same-site tracking because cookies and local storage

are accessed and modified by JavaScript code. In our ex-

ample, taint tracking can identify a flow from the cookie

jar to a network sink after that the value of the cookie

trk is parsed to extract just its intermediate compo-

nent (the client identifier). Note that taint tracking only

identifies explicit flows, i.e., information flows based on

data dependencies, and ignores implicit flows based on

the control flow of the program; this is more efficient,

less amenable to false positives and proves sufficient in

many practical cases [34]. We present our approach to

information flow tracking in Section 4.2.

3.2.3 Performing Meaningful Comparisons

A particularly delicate aspect of a comparative privacy
analysis is that the conclusions drawn from the observa-

tions performed by different clients may be unreliable,

as discussed in our motivating example. In particular,

one has to implement safeguards against artifacts arising

from measurement errors and other side-conditions influ-

encing the empirical experiment, so that any observed

difference can be legitimately attributed to different

forms of privacy enforcement. Possible threats to validity

of a comparative privacy analysis include the choice of

different client characteristics upon measurement, tem-

poral drift across website accesses from different clients,

the dynamic behavior exhibited by modern websites

when they are rendered multiple times, etc. We dis-

cuss our comparative approach and multiple safeguards

against such threats to validity in Section 4.3.

4 Methodology

At a high level, our methodology quantifies the privacy

improvements offered by the use of a privacy-enhancing

client as follows:

1. We first use a baseline client without any form of pri-

vacy protection to detect the CSSIs which can poten-

tially be used for effective client identification, e.g.,

because they contain long and random strings that

might act as unique identifiers. This is a necessary

precondition for any form of stateful tracking and a

standard component of privacy measurements [10].

2. We characterize the privacy risks of same-site track-

ing in terms of information flows from first-party

CSSIs storing client identifiers to the network. We

similarly identify room for cross-site tracking by look-

ing for information flows originating from third-party

CSSIs storing client identifiers and ending in net-

work sinks. Moreover, we look for the presence of

client identifiers in third-party cookies, since they

are automatically shared with trackers upon network

requests and may readily enable cross-site tracking.

3. We measure the privacy improvements enabled by
the use of a privacy-enhanced client with respect

to our baseline client, in particular by estimating

their information flow reduction. This requires some

care to attribute observed improvements to privacy

enforcement rather than accidental factors or mea-

surement errors.

Our baseline client is Project Foxhound1, a web

browser with dynamic information flow tracking based

on Firefox, version 114.0.2 [19]. Project Foxhound uses

taint tracking to detect explicit information flows from

a predefined list of sources to a predefined list of sinks,

thus allowing us to readily implement step 2 of our

methodology. We run Project Foxhound with all forms

of tracking protection deactivated. In particular, we pro-

grammatically disable all features provided by Enhanced

Tracking Protection, including the blocking of tracking

content and fingerprinters, as well as state partitioning

for cookies and local storage.

4.1 Detecting Client Identifiers

By definition, web tracking can only happen when a

tracker is able to uniquely pinpoint a given client. To

detect client identifiers set in client-side storage, we use

the heuristic approach originally proposed for cookies

by Chen et al. [10] and we integrate it with a recent

improvement recommended to reduce its number of false

1 https://github.com/SAP/project-foxhound

https://github.com/SAP/project-foxhound
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positives [28]. Concretely, a CSSI (k, v) is marked as a

client identifier if and only if all the following conditions

hold:

1. The item does not get deleted when closing the

browser, i.e., it is either a cookie with a positive

value of the Expires attribute or a local storage

item;

2. The item persists with the same value when the page
is reloaded;

3. The length of the unquoted value v is at least 8

characters;

4. An item (k, v′) with the same key k is set when

visiting the same web page from a fresh browser

instance;

5. The values v and v′ are “significantly different”, i.e.,

the item allows one to readily tell apart different

browser instances.

The notion of “significantly different” values is also

taken from Chen et al. [10]. Specifically, values are

pre-processed to remove all the timestamps occurring

therein and to recursively strip their longest common

sub-sequence, until the longest common sub-sequence

includes at most two characters. The similarity score of

the residual values is then computed using the Ratcliff-

Obershelp algorithm, setting a threshold of 66%. Values

whose similarity score is below the threshold are consid-

ered significantly different. The second condition above
was proposed in [28] to ensure that ephemeral informa-

tion whose scope is limited to a single page request is

not incorrectly marked as useful for tracking.

4.2 Web Tracking Detection

After detecting possible client identifiers in CSSIs, we fil-

ter the information flows detected by Project Foxhound

to just keep those satisfying the following conditions:

1. The source is either the cookie jar or the local storage,

i.e., a source of CSSIs;

2. The sink is any JavaScript method or HTML element

that can be used for network communication, e.g.,

the fetch method or the src attribute of an image

tag;

3. The information read from the source is a client

identifier rather than a generic CSSI.

Condition 3 is straightforward to check for accesses

to the local storage, since they are performed by referenc-

ing to keys, e.g., as in localStorage.getItem("key"),

hence it is possible to know exactly which CSSI was

read from the local storage. Unfortunately, accesses to

the cookie jar are not as disciplined as local storage

accesses, since the document.cookie property returns a

string representation of the entire content of the cookie

jar and the web application has to parse the output of

document.cookie to retrieve a specific cookie out of

it. Since we are only interested in flows communicating

client identifiers, we must attribute the read cookies to

a detected flow. We do this “a posteriori” as follows:

1. We parse the output of document.cookie to extract

all the cookies in the (k, v) format;

2. We extract from taint reports the tainted value v′

reaching the network sink, which is associated with

a specific part of the HTTP request payload, such as

the request’s URL or the body of a POST request;

3. If there exist a cookie (k, v) such that the longest

common substring between v and v′ is longer than

8 characters, we associate the cookie k to the de-

tected flow. To make the attribution more precise,

we restrict the longest substring match to the part

of v′ which is within the taint bounds returned by

Project Foxhound, which define the part of v′ which

includes tainted information.

This heuristics might fail, in particular when the

cookie value v is transformed such that v′ does not

share any similarity with v. This is a limitation of our

tool chain, but we quantify in our experimental section

(Section 5) that the proposed heuristics is effective in

practice and succeeds in more than 90% of the cases.

For each website, we collect information flows twice

to account for the case where a CSSI is set in the first

visit to the website and only communicated over the
network in subsequent visits. After the second visit, we

take the union of the flows after deduplicating them

based on the following information:

1. The source (cookie jar or local storage) and the set

of read keys (cookies or local storage items);

2. The sink, e.g., the fetch method, and the site of the

network target, e.g., tracker.com;

3. The URL of the script writing to the sink, e.g.,

https://tracker.com/adv.js, without the query

string.

We finally use the labelled information flows to char-

acterize web tracking as follows: if the flow involves first-

party storage, we mark it as same-site tracking, either

pure or cross-domain depending on the script requests

sent by the web page; if instead the flow involves third-

party storage, we mark it as cross-site tracking. Note
that this is correct because we run Project Foxhound

without any form of privacy protection, i.e., without

partitioned storage in place. We use information flows

to expose web trackers by observing the target of the

network sink, which we abstract at the site granularity.

Besides the results of this information flow analysis,
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we further collect all the third-party cookies storing

client identifiers: since cookies are automatically com-

municated within HTTP requests, their presence alone

enables cross-site tracking, even when no information

flow is detected by our taint tracker. In particular, the

owner of the third-party cookies can be marked as a

web tracker in this case.

4.3 Comparative Privacy Analysis

The information computed in the previous section al-

lows one to quantify the privacy protection offered by

a privacy-enhancing client with respect to our baseline.

In particular, we can check which information flows

detected on Project Foxhound do not occur in a privacy-

enhanced client C to quantify how the observed web

tracking practices are affected by privacy protection.

As we explained, performing such a comparative pri-

vacy analysis requires some care, because we have to

ensure that any observed differences can be attributed
to specific privacy protection mechanisms implemented

by the privacy-enhanced client rather than to generic

reasons. In particular, we discuss below relevant factors

that might affect the validity of our findings and we

explain how we mitigate them:

– Client characteristics: we run all the clients on the

same machine, configuring them uniformly. In par-
ticular, we execute clients on the same operating

system (Ubuntu 22.04.3 LTS) and we configure them

to use the same language (English). This way, we

mitigate any accidental differences arising from the

use of a specific client configuration, which might,
e.g., lead websites into performing different redirects

depending on client localization [28]. We only pre-

serve analysis results for those websites ending in

the same final URL observed in Project Foxhound.

– Temporal drift : we run all the clients in parallel, so

that each website is visited (approximately) at the

same time by each client. This way, we minimize

the risk of observing differences related to websites

undergoing changes over time rather than some form

of privacy protection being enforced by the clients.

– Rate limiting : accessing a particular website within

a short time span from our unusually high number

of clients may trigger rate-limiting mechanisms, tem-

porarily locking our clients out of that website. To

mitigate this effect, we schedule our data collection

to ensure that no more than four clients can visit a

given website simultaneously.

– Dynamic behavior of websites: since tracking scripts

are often dynamically loaded by websites, different

accesses to the same web page might reveal different

information flows. Hence, the lack of an information

flow might just be attributed to non-determinism. To

mitigate the impact of non-determinism, we access

each website five times and we only consider an infor-

mation flow to be blocked by the privacy-enhanced

client if none of the visits identifies the information

flow based on the proposed techniques. We use the

same idea to check whether a client identifier set in

third-party cookies is removed by the presence of

improved privacy controls.

– Runtime errors: generic failures in the rendering of
a website might lead to missing information flows.

If we are unable to fully render the website five

times within a 60 seconds timeout, we discard the

website and we do not consider it in our comparative

analysis. A failure in just one of the five visits suffices

to discard the website, because we want a reasonable

number of observations to mitigate the impact of

non-determinism.

Since the privacy-enhanced client C that we want

to analyze does not necessarily support information

flow tracking like our baseline Project Foxhound, we

use multiple techniques to assess whether a previous

information flow does not take place there:

1. We monitor the content of the relevant sources (cookie
jar and local storage): if none of the keys read in the

information flow is present in C, we are sure that

the information flow does not occur in C;

2. We monitor the network requests: if there is no net-

work request towards the site of the sink in C, we

are sure that the information flow does not occur in

C;

3. We monitor blocked script inclusions: if the script

writing to the sink is not loaded in C, we are sure

that the information flow does not occur in C.

If all these techniques fail, we conservatively assume

that the information flow is not blocked by C. We use

this approach rather than directly looking for the infor-

mation flow within network requests, because matching

network requests performed by different clients is far

from straightforward, e.g., requests might be sent to

different sub-domains or have different paths. We thus

associate to the client C the following information:

1. If Project Foxhound identifies a same-site tracking

flow f which is not blocked by C, we mark f as a

same-site tracking flow for C;

2. If Project Foxhound identifies a cross-site tracking

flow f which is not blocked by C, we mark f as a

cross-site tracking flow for C if and only if C does

not implement partitioned storage;

3. If Project Foxhound identifies a client identifier within

a third-party cookie c which is present in C, we con-
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sider it a cross-site identifier if and only if C does

not implement partitioned storage.

Notice that partitioned storage effectively prevents

cross-site tracking, because client identifiers set in a

third-party position cannot be shared in different web-

sites. We finally use the collected information to charac-
terize web tracking practices on C, thus quantifying web

privacy improvements with respect to same-site tracking

and cross-site tracking.

4.4 Motivating Example Revisited

Back to our motivating example, assume that a privacy

researcher accesses the website https://www.publisher.

com using Project Foxhound. The web page loads a script

from https://www.tracker.com, setting a cookie trk

with value Firefox|a677bdee89|1700643590, where

a677bdee89 is a client identifier and 1700643590 is a
timestamp. The client identifier is then read from the

cookie jar and communicated to https://adv.tracker.

com using a GET request, leading to an information flow.
The privacy researcher now wants to understand whether

the same tracking behavior would be blocked by Brave.

Our methodology requires Brave to be configured in

the same way as Project Foxhound, so that, e.g., lan-

guage configuration does not redirect Brave to a different

localized version of the website where the flow is not
present (by accident). This is also confirmed by inspect-

ing the final URL accessed by Brave and comparing it

against the one accessed by Project Foxhound. Access

to the website would happen at the same time of Project

Foxhound, so that the flow is unlikely to disappear due
to website changes. The website is accessed five times to

mitigate the effect of non-determinism: only if it renders

correctly all the times, we assume to have enough ob-

servations to draw meaningful conclusions and we check

whether the flow appears also in Brave or not. This is

done by monitoring the cookie jar, network requests

and script inclusions of Brave: only if the cookie trk is

absent, communication towards tracker.com does not

take place or the script is not loaded all the five times,

we assume to have enough evidence that Brave performs

active blocking.

4.5 Limitations

We highlight and motivate a limitation of our analysis.

Our comparative approach starts from a baseline client

and quantifies privacy improvements enabled by the use

of a privacy-enhanced client. Conversely, it does not

look for new information flows which only arise in the

privacy-enhanced client, e.g., because a sophisticated

tracker adapts its behavior to bypass the privacy pro-

tection mechanisms put in place by the client. Although

we do not expect these practices to be (yet) prevalent in

the wild, it would be interesting to observe them. The

reason why we do not generalize our methodology to

also cover those cases is that performing dynamic infor-

mation flow control within the browser is challenging. In

particular, information flow control can be implemented

with or without browser modifications, e.g., based on

JavaScript rewriting [18]. The latter approach has the
distinctive advantage of working on any browser, hence

it can also be used to detect information flows in arbi-

trary privacy-enhanced clients, however it suffers from

poor performance and is not amenable to large-scale

analyses like the one we perform in this paper. Infor-

mation flow control through browser modifications à la

Project Foxhound is necessarily tied to a specific client,

but is very efficient and only incurs a limited overhead

compared to traditional browser accesses. This explains

why we use a solution like Project Foxhound in our

analysis.

A second limitation of our analysis is that we assume

that first-party storage is always used for same-site

tracking, which is the standard use case considering

how SOP works. However, recent work showed that the

blockage of third-party storage by different protection

mechanisms in web browsers pushed trackers to abuse

first-party storage for cross-site tracking as well [15, 25,

28]. Such abuses are not widespread though: for example,

Randall et al. estimated the presence of UID smuggling

in just 8% of the analyzed websites [28]. Moreover, cross-

site tracking through first-party storage often requires
the presence of a static identifier like an email address,

which is not going to be present in all web pages. We

thus stick to the standard assumption that first-party

storage is primarily used for same-site tracking and we

leave the investigation of possible abuses to future work.

5 Web Privacy Measurement

We now report the results of our large-scale privacy

measurement performed on the top 10k websites from

Tranco. We first discuss our experimental setup, we then

present results for our baseline client Project Foxhound

and we finally investigate the relative privacy guarantees

offered by the adoption of different privacy-enhancing

clients.
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5.1 Experimental Setup

In our web measurement, we assess the privacy guaran-

tees offered by different clients in terms of information

flow reduction against our baseline client Project Fox-

hound, which is run with all forms of privacy protection

deactivated (no partitioned storage, no ad-blocking in

place). In particular, we consider the following clients:

– Firefox (Standard): an instance of Mozilla Firefox in

its default configuration, i.e., cross-site tracking is

blocked.

– Firefox (xPS): an instance of Mozilla Firefox with

partitioned storage deactivated, i.e., cross-site track-

ing is allowed.

– Brave (Standard): an instance of Brave in its de-

fault configuration, i.e., all cross-site tracking and a

significant amount of same-site tracking are blocked.

– Brave (Aggressive): an instance of Brave with aggres-

sive privacy protection, which prevents additional

forms of same-site tracking with respect to standard

mode.

We motivate our choice of clients as follows. Project

Foxhound is representative of a browser without any

privacy controls, similar to Google Chrome in its de-

fault configuration. Firefox (Standard) is an example

of a traditional browser with some additional privacy

guarantees, but which does not pursue privacy as ag-

gressively as Brave (Standard), which in turn represents

the reference for privacy-savvy users. Firefox (xPS) does

not really capture a typical choice of web users, but it is

instructive to have because it allows us to measure the

importance of partitioned storage alone. Finally, Brave

(Aggressive) represents a browser with strict privacy

controls, which might deliberately break compatibility

with websites to prevent tracking. It is thus interesting

to measure whether the improved privacy guarantees of-

fered by Brave (Aggressive) are justified by its potential

compatibility cost. Adding more clients to the picture

would just be a matter of engineering effort, because our

methodology is based on lightweight instrumentation of

the tested clients to monitor the cookie jar, the local

storage, network requests and script inclusions. Indeed,

our methodology only assumes the implementation of

information flow control, which is arguably the most

complicated component, just in the baseline client.

Our automated crawler ran 22 browser instances in

parallel, comprising two instances of Project Foxhound

and five instances of both Firefox and Brave under two

different privacy settings, as explained above. To simu-

late a setup which is closer to what real web users would

observe, we ran all clients in headful mode, emulating

a display with Xvfb.2 This is particularly important

for Brave, because a preliminary experiment on a small

set of websites revealed that the headless version of

Brave does not enforce privacy protection as strictly as

the headful version. Our measurement was performed

from a European IP address without interacting with

websites in any ways, e.g., our crawler did not click

over cookie banners. Note that automatically detecting

and clicking over cookie banners is not a straightfor-

ward task [20]. Our crawl was stateless, i.e., it always

spawned fresh browser instances, which is sufficient for
our methodology and has the advantage of making re-

sults less dependent on the order of visits to the different

websites. We performed our measurement on the Tranco

Top 10k list downloaded on November 28, 2023.3

5.2 Baseline Client Results

Overall, we were able to successfully access 8,025 out

of 10k websites (80%) using our baseline client Project
Foxhound. Failures include generic errors due to domains

being inaccessible, timeouts and other types of network

errors which cannot be attributed to our tool chain.

Taint tracking was then successfully performed on 6,817

out of 8,025 accessed websites, leading to a reasonably

high success rate of 84%.

5.2.1 Client-Side Storage

Table 1 presents statistics about the collected CSSIs on

Project Foxhound, broken down by type. In total, we

identified the use of first-party cookies in 5,911 websites

(86%) and the use of first-party local storage in 4,579

websites (67%). Client identifiers were detected in 35,767

out of 94,955 first-party CSSIs, i.e., around 38% of the
first-party CSSIs have potential for same-site tracking;

such identifiers were detected in 5,461 websites (80%).

We also detected the use of third-party cookies in 2,319

websites (34%) and the use of third-party local storage in

1,378 websites (20%). In particular, we identified client

identifiers in 11,634 out of 23,812 third-party CSSIs,

i.e., roughly 48% of the third-party CSSIs might enable

cross-site tracking; such identifiers were detected in 2,189

websites (32%).

This picture shows that there are way more web-

sites potentially implementing some form of same-site

tracking through first-party CSSIs than websites en-

abling cross-site tracking through third-party CSSIs

nowadays, nevertheless room for cross-site tracking is

2 https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.

1.xhtml
3 https://tranco-list.eu/list/PZ46J

https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://tranco-list.eu/list/PZ46J
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Table 1 Client-side storage items set in the baseline client (Project Foxhound)

Total First Party Third Party

#Occurrences #Websites #Occurrences #Websites #Occurrences #Websites

Cookies 75,224 5,983 58,548 5,911 16,676 2,319
- including client identifiers 35,855 5,322 27,105 5,235 8,750 1,751

Local Storage Items 43,543 4,755 36,407 4,579 7,136 1,378
- including client identifiers 11,546 3,449 8,662 3,021 2,884 1,169

Client-Side Storage Items (CSSI) 118,767 6,079 94,955 6,025 23,812 2,445
- including client identifiers 47,401 5,569 35,767 5,461 11,634 2,189

still widespread despite the increasing popularity of par-

titioned storage among browser vendors. It is instruc-

tive that the frequency of client identifiers was higher

in third-party CSSIs than in first-party CSSIs, likely

suggesting that third-party storage is primarily used for

web tracking, while first-party storage is also dedicated

to other important tasks like session management.

5.2.2 Same-Site Tracking

Table 2 reports the number of information flows detected

in a first-party position, which might enable same-site

tracking. In total, we identified 52,995 flows from first-

party CSSIs to the network on 4,565 websites (66%). Out

of these, we were able to detect the exchange of client
identifiers in 44,421 flows on 4,305 websites (63%). These

cases are detected as instances of same-site tracking. It

is instructive to remark that the use of information flow

control pays off in our measurement: indeed, observe

from Table 1 that we detected client identifiers in first-

party CSSIs on 5,461 websites (80%). However, not all

these client identifiers are eventually communicated over

the network, i.e., the mere presence of client identifiers

may over-approximate the prevalence of same-site track-

ing of around 19%. Indeed, recent work estimated the

prevalence of Google Analytics on around 53-62% of

the websites based on a simple inspection of HTTP

requests [25], while our information flow analysis de-

tected same-site flows towards Google Analytics in just

29% of the websites. Just checking the mere presence

of the cookies ga and gid in a first-party context,

we observed the presence of Google Analytics on 3,227

websites (47%), which is more in line with prior re-

search [25] and confirms that simple heuristics based on

syntactic matching might over-approximate the actual

prevalence of web tracking. Later on, we also show that

such heuristics may also suffer from false negatives and

miss tracking flows in practice.

As to the privacy implications of same-site tracking,

we observe that 16,374 out of 44,421 same-site tracking

flows (37%) are marked as cross-domain, i.e., communi-

cation of client identifiers often involves trackers which

were not explicitly loaded in the web page by means of

script inclusion. Finally, the table also shows that cookie-

based tracking is still more prevalent than storage-based

tracking: we detected same-site tracking flows from the

cookie jar to the network on 4,136 websites (60%), while

same-site tracking flows from the local storage to the

network were detected on just 1,366 websites (20%).

In the end, our information flow analysis discovered

1,157 distinct same-site trackers on 4,305 websites. The

most popular same-site trackers are reported in Table 3.
Despite this abundance of trackers, we identified just 17

trackers embedded in at least 100 websites, i.e., there

are just a limited number of trackers dominating the

tracking ecosystem. The table also shows for the most

popular same-site trackers their category, based on the

Disconnect list [12].

5.2.3 Cross-Site Tracking

Table 4 reports the number of information flows de-

tected in a third-party position, which might enable

cross-site tracking. In total, we identified 1,030 flows

from third-party CSSIs to the network on 287 websites

(4%). Out of these, we were able to detect the exchange

of client identifiers in 860 flows on 256 websites (4%).

These cases are detected as instances of cross-site track-

ing. These numbers show that cross-site tracking is less

prevalent than same-site tracking nowadays, however

they suffer from a somewhat opposite problem than

what we observed for same-site tracking. As the mere

presence of a client identifier in first-party CSSIs does

not imply same-site tracking, the absence of information

flows from third-party CSSIs to the network does not

mean that cross-site tracking is not possible, in par-

ticular because third-party cookies are automatically

attached to network requests. In other words, the simple

presence of client identifiers within third-party cookies

trivially enables cross-site tracking even though no infor-

mation flow was detected by our taint tracker. Observe

from Table 1 that this practice was detected on 1,751

websites (25%). If we add these websites to the set of

those performing cross-site tracking based on the de-

tected information flows while removing duplicates, we

conclude that cross-site tracking was identified on 1,766
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Table 2 Same-site tracking practices observed on the baseline client (Project Foxhound)

Same-Site Tracking #Occurrences #Websites

Detected information flows from first-party cookies to the network 46,990 4,371
- Information flows with at least one cookie associated 43,696 4,284
- Information flows communicating client identifiers 41,451 4,136

Detected information flows from first-party local storage to the network 6,005 2,211
- Information flows communicating client identifiers 2,970 1,366

Detected information flows from first-party CSSIs to the network 52,995 4,565
- Information flows communicating client identifiers 44,421 4,305
- Detected as pure same-site tracking 28,047 3,465
- Detected as cross-domain same-site tracking 16,374 3,381
- Number of different trackers based on the detected flows 1,157 4,305

Table 3 Most popular same-site trackers detected through
information flows on the baseline client (Project Foxhound)

Same-Site Trackers #Websites Categories (Disconnect)

google-analytics.com 2,628 Analytics, Email
doubleclick.net 2,073 Advertising, Email
google.com 1,687 Content
google.de 1,280 Content
facebook.com 831 Social
bing.com 382 Advertising, Content
yandex.com 294 Content
nr-data.net 252 Analytics
clarity.ms 252 Analytics
tiktok.com 193 Advertising, Social
criteo.com 184 Advertising
chartbeat.net 159 Analytics

websites (25%). This shows that the use of information

flow control only provides limited benefits when mea-

suring cross-site tracking: our information flow analysis

detected cross-site tracking in just 15 more websites

than a simple analysis based on the inspection of third-

party cookies alone, which is common in prior work.

The new websites identified by information flow control

all set client identifiers in third-party local storage and

communicate them over the network.

In the end, our analysis discovered 597 distinct cross-

site trackers on 1,766 websites. The most popular cross-

site trackers are reported in Table 5, along with their

category from Disconnect. In general, it seems that

cross-site tracking is declining in popularity nowadays,

at least from the vantage point of Project Foxhound. Yet,

third-party cookies are still primarily used for cross-site

tracking: out of 2,319 websites making use of third-party

cookies, there are 1,751 websites using them to store

some client identifier according to Table 1

5.2.4 Effectiveness of Cookie Heuristics

In our previous results, we implicitly relied on our heuris-

tic attribution of read cookies keys to the detected infor-

mation flows from the cookie jar to the network. This

is important because it allows us to detect which cook-

ies have been actually communicated over the network,

which in turn is required to detect whether client identi-

fiers are exchanged for web tracking purposes. We here

measure the effectiveness of our heuristics: out of 46,990

flows from first-party cookies to the network, we were

able to attribute at least one cookie to the flow in 43,696

cases (93%). Moreover, out of 909 flows from third-party

cookies to the network, we were able to attribute at least

one cookie to the flow in 861 cases (95%). This shows

that, although our heuristics is sub-optimal in theory, it
is practically effective in the very large majority of the

cases.

5.2.5 Benefits of Information Flow Control

To better understand the benefits of information flow

control, we performed a few additional experiments.

The blue line in Figure 1 shows the number of trackers

detected by our methodology for different values of

minimum required popularity, i.e., the minimum number

of websites communicating with the tracker. The orange

line in the figure shows how many such trackers are

included in Disconnect, hence the gray area between the

two lines estimates how many potential new trackers

can be discovered through information flow control. The

figure shows that Disconnect offers an excellent coverage

of the most popular trackers in the wild, in particular

it includes all trackers found in at least 39 websites.

However, there are many smaller trackers, such as Adobe

Marketo Measure (formerly Bizible) and Mutiny, that

are not included in the filter list and can be successfully

detected through information flow control.

Moreover, we compared the effectiveness of infor-

mation flow control against simpler syntactic heuristics

for tracking flow detection. In this experiment, we con-

sider all the tracking flows detected by our methodology

and we count how often the client identifiers set in the

client-side storage are communicated verbatim over the

network. To do this, we count how many times a client

identifier appears as a substring (of length at least 8)

within any URL parameter of a network request, or vice-

versa. This matching technique is reminiscent of that

proposed by Fouad et al. [15], except that we do not hard-

code known transformations of client identifiers, e.g.,

the specific communication pattern of Google Analytics

google-analytics.com
doubleclick.net
google.com
google.de
facebook.com
bing.com
yandex.com
nr-data.net
clarity.ms
tiktok.com
criteo.com
chartbeat.net


Information Flow Control for Comparative Privacy Analyses 13

Table 4 Cross-site tracking practices observed on the baseline client (Project Foxhound)

Cross-Site Tracking #Occurrences #Websites

Detected information flows from third-party cookies to the network 909 240
- Information flows with at least one cookie associated 861 233
- Information flows communicating client identifiers 784 220

Detected information flows from third-party local storage to the network 121 77
- Information flows communicating client identifiers 76 52

Detected information flows from third-party CSSIs to the network 1,030 287
- Information flows communicating client identifiers 860 256
- Number of different trackers based on the detected flows 103 256
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Fig. 1 Comparison between trackers identified using our methodology (blue line with circle markers) and those among them
included in Disconnect (orange line with X markers), as the minimum required popularity changes.

Table 5 Most popular cross-site trackers detected through
information flows on the baseline client (Project Foxhound)

Cross-Site Trackers #Websites Categories (Disconnect)

doubleclick.net 599 Advertising, Email
criteo.com 172 Advertising
adsrvr.org 100 Advertising
twitter.com 93 Advertising, Social
snapchat.com 87 Social
googlesyndication.com 69 Advertising
optimizely.com 66 Advertising
creativecdn.com 60 Advertising
gemius.pl 56 Advertising
google-analytics.com 54 Analytics, Email
google.com 47 Content
vimeo.com 45 Content

and the encryption scheme deployed by DoubleClick.

Hence, this experiment estimated a coverage of 83%, i.e.,

17% of the detected flows involve complex string trans-

formations that cannot be detected by simple syntactic

matches. This number is non-negligible and shows that

simple string matching approaches may suffer from false

negatives in practice. These could be recovered by means

of more sophisticated techniques for syntactic matching

or through a lightweight information-flow analysis, but

the latter guarantees the effective dependency of a net-

work request on a client identifier even in presence of

non-trivial transformations.

5.3 Comparative Privacy Analysis

We are finally ready to measure how the use of different

privacy-enhanced clients would protect web users based

on our dataset.

doubleclick.net
criteo.com
adsrvr.org
twitter.com
snapchat.com
googlesyndication.com
optimizely.com
creativecdn.com
gemius.pl
google-analytics.com
google.com
vimeo.com
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Fig. 2 Number of sites with at least one tracker across different clients

5.3.1 Tracking Reduction

Figure 2 shows the number of websites performing same-
site tracking (both pure and cross-domain) and cross-site

tracking observed on different clients. The figure sup-

ports several interesting observations. First, the privacy

controls of Firefox have virtually no impact on pure

same-site tracking, which is the least invasive form of

web tracking. This is in line with Firefox’s philosophy of
integrating moderate privacy controls that do not harm

the user experience. Cross-domain same-site tracking

instead shows a significant reduction: we identified 3,381

websites showing cross-domain same-site practices on

Project Foxhound, while we found just 3,065 and 3,055

such websites on Firefox and Firefox (xPS), i.e., we esti-
mate a reduction of around 10% in cross-domains same-

site tracking when ETP is activated. We also note that

the adoption of ETP significantly mitigates cross-site

tracking even when partitioned storage is deactivated:

we detected cross-site trackers on 816 websites on Fire-

fox (xPS) as opposed to the 1,766 websites detected on

Project Foxhound, which is a reduction of 54%. We thus

conclude that the use of partitioned storage removes

cross-site tracking from the remaining 674 websites, i.e.,

around 10% of the websites in our dataset.

As for Brave, its privacy controls turned out to be
extremely effective in practice. Pure same-site tracking

was detected on 535 websites and cross-domain same-site

tracking was detected on 274 websites. The reduction

with respect to Project Foxhound is around 85% and

92% respectively. Remarkably, we do not observe any sig-

nificant difference with respect to web tracking between

the standard settings of Brave and its aggressive mode.

The reduction in tracking behavior is tiny, around 6% for

pure same-site tracking and around 2% for cross-domain

same-site tracking. This suggests that the compatibility

risks introduced by the use of aggressive mode do not

seem outweighed by the privacy benefits, at least in

terms of stateful tracking.

5.3.2 Tracker Ecosystems

Figure 3 shows a heatmap of the most popular trackers

observed on different clients. To populate the rows, we

first identify the five most popular trackers in each client

and we compute their union after removing duplicates.

The number in cell (x, y) reports how many times client

x detected tracker y on some website; the color of the

cell is determined by the ratio between its content and

the sum of the content of cells in the same column, which

estimates the relative popularity of y observed on x. This

explains why similar numbers may be associated with

different colors on different clients, hence the heatmap is
better read column by column to understand the relative

popularity of each tracker on the different clients.

As the heatmap shows, Brave is effective at blocking

the top five trackers virtually in their entirety, yet it

is less successful in blocking the bottom five trackers.

Because of this, the relative frequency of the bottom five

trackers appears significantly higher compared to our
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Fig. 3 Presence of same-site tracking domains across different clients

baseline client and Firefox. For example, Google Analyt-

ics and DoubleClick show high popularity in the baseline

client and Firefox, but are completely blocked when us-

ing Brave. Instead, less popular trackers like TrustArc

and Adobe (omtrdc.net) turn out to be the most fre-
quently encountered trackers in Brave. It is worth notic-

ing that Brave does not entirely block these trackers, as

it does for Google Analytics and DoubleClick, but still

the presence of such trackers is significantly attenuated

in Brave. There might be two possible reasons for this.
Either Brave is blocking just specific sub-domains and

paths of trustarc.com and omtrdc.net, or these track-

ers are unrestricted, yet they are not loaded because

Brave blocked some other script in charge of loading

tracking content from these domains.

6 Related Work

Several studies have been conducted to analyze and in-

vestigate the tracking behavior in different web browsers

and the effectiveness of the tracking protection mech-

anisms in them. We categorize them in three classes:

traditional privacy analyses based on simple heuristics,

more sophisticated privacy analyses based on informa-

tion flow control and comparative privacy analyses.

6.1 Traditional Privacy Analyses

Traditional web privacy measurements are based on sim-

ple heuristics to detect client identifiers in client-side

storage and check for their occurrences within HTTP

requests, sometimes requiring that their targets are in-

cluded in a known list of web trackers [3, 13,29]. These

approaches are helpful and popular, however they are

quite coarse-grained because they do not track actual

data flows, but just rely on simple syntactic matches.
As such, they suffer from more false positives and false

negatives than dynamic information flow control, which

is specifically designed to track data flows through pro-

gram logic. Moreover, filter lists are well known to suffer

from limitations [15]. Also, most of the prior work in the
field focused on the perspective of a single client. En-

glehardt et al. used OpenWPM to record observations

(response metadata, cookies, behavior of scripts, etc.),

and performed large scale analysis to understand the

prevalence of stateful and stateless tracking [13]. Acar

et al. proposed novel techniques by extracting pseudony-

mous identifiers from traditional storage vectors, such

as cookies, as well as other vectors such as Flash storage.

They track such identifiers as they spread to multiple

domains to study three advanced web tracking mecha-

nisms — canvas fingerprinting, evercookies, and the use

of “cookie syncing” in conjunction with evercookies [1].

6.2 Information Flow Control for Privacy Analysis

Information flow control was not extensively applied

to the web privacy setting, most probably because in-

formation flow tracking on JavaScript is particularly

challenging to perform. Nevertheless, Chen and Kaprav-

elos presented a taint tracking engine called Mystique

and used it to track information leakage from browser ex-

tensions [11]. Mystique was applied to a total of 181,683

browser extensions, detecting 3,686 extensions leaking

omtrdc.net
trustarc.com
omtrdc.net
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private information. In later work, Mystique was also

used to investigate the use of first-party cookies for web

tracking [10]. In particular, the authors estimated that

around 57% of the sites in the Alexa top 10k include

at least one cookie containing a unique user identifier

which is exchanged with multiple third parties. Their

analysis is based on a single client (Chromium) and does

not consider tracking through the local storage.

In more recent work, Ahmad et al. proposed the

use of taint tracking to detect privacy threats posed

by web storage items [2]. They used information flow
control to detect communication of client identifiers to

the local storage to network sinks, however their analysis

is only based on the Chrome browser. Our analysis

instead is comparative and allows one to capture the

relative privacy guarantees offered by different browsers.

Moreover, our analysis also covers cookies and is not

just limited to the web storage.

Sjosten et al. proposed EssentialFP, a principled

approach to the dynamic detection of browser finger-

printing [33]. EssentialFP is based on dynamic analysis

and in particular on an extension of JSFlow [17]. To

capture the essence of fingerprinting, EssentialFP relies

on an extensive list of browser-specific sources and looks

for information flows ending in known network sinks.

The efficacy of EssentialFP was illustrated through an

empirical study based on two classes of web pages: fin-

gerprinting pages (authentication, bot detection and

more) and non-fingerprinting pages (analytics, polyfills,

advertisement). Our work instead uses information flow

control to detect stateful tracking through client-side

storage.

6.3 Comparative Privacy Analyses

Zafar and Das performed a large-scale comparative anal-

ysis by collecting data from 10k sites on different mobile

browsers using real mobile devices. The authors high-

lighted the tracking threat fingerprinting by analyzing

the run-time execution traces and source codes and

found that different contents are being rendered on dif-

ferent browsers [36]. By considering well-known filter

lists as ground truth, Brave performed better by block-

ing the highest number of tracking content, Focus per-

formed better against social trackers, and Duck Duck Go

restricts third-party trackers that perform email-based

tracking. Although the idea of performing a comparative

analysis is similar to ours, there are important differ-

ences with respect to our work. First, they use simple

heuristics to analyze cookies and HTTP requests, with-

out checking actual information flows, which leads to

coarse-grained observations. Second, they do not discuss

how to mitigate the challenges of comparative analy-

ses that we discussed in this work, e.g., arising from

the dynamic nature of websites and non-determinism,

which further affects the accuracy of the analysis. Fi-

nally, they focus on the mobile browser ecosystem, while

we consider traditional desktop browsers.

Merzdovnik et al. performed a large-scale two-part

measurement study to analyze the effectiveness of browser

extensions in blocking third-party stateful and stateless

trackers [24]. The authors discovered that rule-based

extensions perform better than learning-based ones and
none of the extensions are effective in blocking all the

stateful and stateless trackers. A large-scale comparative

web tracking measurement study of mobile and desktop

non-emulated browsers using the tool OmniCrawl has

been conducted by Cassel et al [9]. Pradeep et al. stud-

ied the privacy-harming behavior [27] by conducting

a large-scale and multi-directional analysis on a large

pool of Android browsers from different app stores. In

order to analyze the current privacy-enhancing setups

and privacy-harming settings, the authors developed a

novel tool that combines static and dynamic analysis

methods. The authors found privacy-harming behaviors

in various apps, including browsers that claim to have

enhanced privacy protection mechanisms.

Finally, a technical analysis [21] has been conducted

by Knockel et al. in three Chinese browsers: UC Browser,

QQ Browser, and Baidu Browser to investigate the

security and privacy vulnerabilities. The authors found

that code execution vulnerabilities and leaking sensitive

data occur consistently in these browsers, leading to

privacy breaches among users in China. UC Browser

is quite concerning as it transmits sensitive user data
insecurely to the intelligence community to perform

surveillance.

7 Conclusion

In this work, we discussed relevant challenges to over-

come when performing comparative privacy analyses

estimating the amount of web privacy protection of-

fered by different clients. In particular, we explained

how the dynamic nature of the Web makes it difficult to

effectively attribute observed differences in web tracking

behavior to different privacy controls, concluding that

simple heuristics based on the inspection of client-side

storage and HTTP requests likely lead to unreliable

conclusions. We thus advocated the use of information

flow control as a precise tool to measure such differences

in terms of actual communications of client identifiers

from client-side storage to network sinks. In combina-

tion with other safeguards against possible measurement

pitfalls, information flow control pays off and allows one
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to uniformly detect different forms of (stateful) tracking,

thus enabling a principled comparison of the privacy

guarantees offered by different clients.

As future work, we would like to improve our compar-

ative privacy analysis by moving away from the specific

choice of a baseline client as the privacy reference. Al-

though we do not see major conceptual challenges in

extending our methodology, this would require a sig-

nificant engineering effort to efficiently support taint

tracking across multiple browsers. On the other hand,

this would allow us to detect sophisticated adaptive be-
havior where some information flows are introduced in a

privacy-enhanced client to bypass its active privacy con-

trols. Moreover, we plan to extend other methodology

to also account for stateless tracking, i.e., fingerprinting,

which can also be modeled and detected by using infor-

mation flow control [33]. Integration with the new Topics

API would also be an interesting avenue for future work.

Finally, we would like to investigate the prevalence of re-

cent abuses of first-party storage to implement cross-site

tracking, e.g., through UID smuggling [28].
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