
Certifying Decision Trees Against Evasion
Attacks by Program Analysis

Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

Università Ca’ Foscari Venezia

Abstract. Machine learning has proved invaluable for a range of differ-
ent tasks, yet it also proved vulnerable to evasion attacks, i.e., maliciously
crafted perturbations of input data designed to force mispredictions. In
this paper we propose a novel technique to verify the security of decision
tree models against evasion attacks with respect to an expressive threat
model, where the attacker can be represented by an arbitrary imperative
program. Our approach exploits the interpretability property of decision
trees to transform them into imperative programs, which are amenable
for traditional program analysis techniques. By leveraging the abstract
interpretation framework, we are able to soundly verify the security guar-
antees of decision tree models trained over publicly available datasets.
Our experiments show that our technique is both precise and efficient,
yielding only a minimal number of false positives and scaling up to cases
which are intractable for a competitor approach.

Keywords: Adversarial machine learning · Decision trees · Security of
machine learning · Program analysis.

1 Introduction

Machine learning (ML) learns predictive models from data and has proved in-
valuable for a range of different tasks, yet it also proved vulnerable to evasion
attacks, i.e., maliciously crafted perturbations of input data designed to force
mispredictions [25]. To exemplify, let us assume a credit company decides to use
a ML model to automatically assess whether customers qualify for a loan or not.
A malicious customer who somehow realises or guesses that the model privileges
unmarried people over married people could cheat about her marital status to
improperly qualify for a loan.

The research community recently put a lot of effort in the investigation of
adversarial ML, e.g., techniques to train models which are resilient to attacks or
assess the security properties of models. In the present paper we are interested in
the security certification of a popular class of models called decision trees, i.e., we
investigate formally sound techniques to quantify the resilience of such models
against evasion attacks. Specifically, we propose the first provably sound certifi-
cation technique for decision trees with respect to an expressive threat model,
where the attacker can be represented by an arbitrary imperative program. Veri-
fying ML techniques with respect to highly expressive threat models is nowadays

2 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

one of the most compelling research directions of adversarial ML [16, 12]. This
is an important step forward over previous work, which either proposed empiri-
cal techniques without formal guarantees or only focused on artificial attackers
expressed as mathematical distances (see Section 6 for full details).

Our approach exploits the interpretability property of decision trees, i.e., their
amenability to be easily understood by human experts, which makes their trans-
lation into imperative programs a straightforward task. Once a decision tree is
translated into an imperative program, it is possible to leverage state-of-the-art
program analysis techniques to certify its resilience to evasion attacks. In partic-
ular we leverage the abstract interpretation framework [9, 10] to automatically
extract a sound abstraction of the behaviour of the decision tree under attack.
This allows us to efficiently compute an over-approximated, yet precise, estimate
of the resilience of the decision tree against evasion attacks.

Contributions. We specifically contribute as follows:

1. We propose a general technique to certify the security guarantees of deci-
sion trees against evasion attacks attempted by an attacker expressed as an
arbitrary imperative program. We exemplify the technique at work on an
expressive threat model based on rewriting rules (Section 3).

2. We implement our technique into a new tool called TreeCert. Given a de-
cision tree, an attacker and a test set of instances used to estimate predic-
tion errors, TreeCert outputs an over-approximation of the error rate that
the attacker can force on the decision tree. TreeCert implements a context-
insensitive analysis computing a single over-approximation of the attacker’s
behavior and reuses it in the analysis of all the test instances, thus boosting
efficiency without missing attacks (Section 4).

3. We experimentally prove the effectiveness of TreeCert against publicly avail-
able datasets. Our results show that TreeCert is extremely precise, since it
can compute tight over-approximations of the actual error rate under attack,
with a difference of at most 0.02 over it on cases which are small enough to
be analyzed without approximated techniques. Moreover, TreeCert is much
faster than a competitor approach [5] and scales to intractable cases, avoiding
the exponential blow-up of non-approximated techniques (Section 5).

2 Background

2.1 Security of Supervised Learning

In this paper, we deal with the security of supervised learning, i.e., the task of
learning a classifier from a set of labeled data. Formally, let X ⊆ Rd be a d-
dimensional space of real-valued features and Y be a finite set of class labels; a
classifier is a function f : X → Y which assigns a class label to each element
of the vector space (also called instance). The correct label assignment for each
instance is modeled by an unknown function g : X → Y, called target function.

Certifying Decision Trees Against Evasion Attacks by Program Analysis 3

Given a training set of labeled data Dtrain = {(x1, g(x1)), . . . , (xn, g(xn))}
and a hypothesis space H, the goal of supervised learning is finding the classifier
ĥ ∈ H which best approximates the target function g. Specifically, we let ĥ =
argminh∈H L(h,Dtrain), where L is a loss function which estimates the cost of
the prediction errors made by h on Dtrain. Once ĥ is found, its performance is
assessed by computing L(ĥ,Dtest), where Dtest is a test set of labeled, held-out
data drawn from the same distribution of Dtrain.

Within the context of security certification, one should measure the accuracy
of ĥ by taking into account all the actions that an attacker could take to fool the
classifier into mispredicting, i.e., the so-called evasion attacks [1, 2]. To provide
a more accurate evaluation of the performance of the classifier under attack,
the loss L can thus be replaced by the loss under attack LA [21]. Formally, the
attacker can be modeled as a function A : X → 2X mapping each instance into a
set of perturbed instances which might fool the classifier. The test set Dtest can
thus be corrupted into any dataset obtained by replacing each (xi, yi) ∈ Dtest

with any (x′i, yi) such that x′i ∈ A(xi); we let A(Dtest) stand for the set of all
such datasets. The loss under attack LA is thus defined by making the pessimistic
assumption that the attacker is able to craft the most damaging perturbations,
as follows:

LA(ĥ,Dtest) = max
D′∈A(Dtest)

L(ĥ,D′).

Unfortunately, computing LA by enumerating A(Dtest) is intractable, given
the huge number of perturbations available to the attacker: for example, if the
attacker can flip K binary features, then each instance can be perturbed in 2K

different ways, leading to 2K · |Dtest| possible attacks.

2.2 Decision Trees

A powerful set of hypotheses H is the set of the decision trees [4]. We focus on
traditional binary decision trees, whose internal nodes perform thresholding over
feature values. Such trees can be inductively defined as follows: a decision tree t
is either a leaf λ(ŷ) for some label ŷ ∈ Y or a non-leaf node σ(f, v, tl, tr), where
f ∈ [1, d] identifies a feature, v ∈ R is the threshold for the feature f and tl, tr
are decision trees. At test time, an instance x = (x1, . . . , xd) traverses the tree t
until it reaches a leaf λ(ŷ), which returns the prediction ŷ, denoted by t(x) = ŷ.
Specifically, for each traversed tree node σ(f, v, tl, tr), x falls into the left tree tl
if xf ≤ v, and into the right tree tr otherwise.

Figure 1 represents an example decision tree, which assigns the instance (6,8)
with label −1 to its correct class. In fact, (i) the first node checks whether the
second feature (whose value is 8) is less than or equal to 10 and then takes the
left sub-tree, and (ii) the second node checks whether the first feature (whose
value is 6) is less than or equal to 5 and then takes the right leaf, classifying the
instance with label −1. However, note that an attacker who was able to corrupt
(6,8) into (5,8) could force the decision tree into changing its output, leading to
the prediction of the wrong class +1.

4 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

x2 ≤ 10

x1 ≤ 5

+1 −1

+1

Fig. 1. Example of decision tree.

2.3 Abstract Interpretation

In the abstract interpretation framework, the behavior of a program is approxi-
mated through abstract values of a given abstract domain with a lattice structure,
rather than concrete values. For example, the Sign domain abstracts numbers
just with their sign, as formalized by the following abstraction and concretization
functions (α and γ respectively):

α(V) =

⊥ if V = ∅
+ if ∀v ∈ V : v > 0
0 if ∀v ∈ V : v = 0
− if ∀v ∈ V : v < 0
> otherwise

γ(a) =

R if a = >
{n ∈ R | n > 0} if a = +
{0} if a = 0
{n ∈ R | n < 0} if a = −
∅ if a = ⊥

Notice that for all sets of concrete values V ⊆ R we have V ⊆ γ(α(V)), i.e.,
the abstraction function provides an over-approximation of the concrete values.
Operations over concrete values like the sum operation + are over-approximated
by abstract counterparts ⊕ over the abstract domain, which define the abstract
semantics. For example, the sum of two positive numbers is certainly positive,
while the sum of a positive number and a negative number can be positive,
negative or 0; this lack of information is modeled by >. Hence, ⊕ is defined such
that + ⊕ + = + and + ⊕ − = >. A sound definition of ⊕, here omitted, must
ensure that ∀V1, V2 ⊆ R : {v1 + v2 | v1 ∈ V1 ∧ v2 ∈ V2} ⊆ γ(α(V1)⊕ α(V2)), i.e.,
abstract operations must over-approximate operations over concrete values. By
simulating the program over the abstract domain, abstract interpretation ensures
a fast convergence to an over-approximation of all the reachable program states.
In particular, the analysis consists in computing the fixpoint of the abstract
semantics over the abstract domain, making use of a widening operator – usually
if the upper bound operator does not converge within a given threshold [9, 10].

Thanks to its modular approach, abstract interpretation allows one to define
multiple abstractions of the same concrete domain. Therefore, several abstract
domains approximating numerical values have been proposed in the literature.

Certifying Decision Trees Against Evasion Attacks by Program Analysis 5

For instance Octagons [22] and Polyhedra [11] track different types of (linear)
relations among numerical variables, and have been fruitfully applied to different
contexts. Apron [18] is a library of numerical abstract domains comprising the
main domains leveraged in this work.

3 Security Verification of Decision Trees

3.1 Threat Model

Our approach is general enough to be applied to attackers represented as arbi-
trary imperative programs. To exemplify it, we show how it can be applied to an
expressive threat model based on rewriting rules [5]. This relatively new threat
model goes beyond traditional distance-based models, which are plausible for
perceptual tasks like image recognition, but are inappropriate for non-perceptual
tasks (e.g., loan assignment) where mathematical distances do not capture useful
semantic properties of the domain of interest.

We model the attacker A as a pair (R,K), where R is a set of rewriting rules,
defining how instances can be corrupted, and K ∈ R+ is a budget, limiting the
amount of alteration the attacker can apply to each instance. Each rule r ∈ R
has form:

[a, b] f−→k [δl, δu],
where: (i) [a, b] and [δl, δu] are intervals on R ∪ {−∞,+∞}, with the former
defining the precondition for the application of the rule and the latter defining
the magnitude of the perturbation enabled by the rule; (ii) f ∈ [1, d] is the index
of the feature to perturb; and (iii) k ∈ R+ is the cost of the rule. The semantics
of the rewriting rule can be explained as follows: if an instance x = (x1, . . . , xd)
satisfies the condition xf ∈ [a, b], then the attacker can corrupt it by adding any
v ∈ [δl, δu] to xf and spending k from the available budget. The attacker can
corrupt each instance by using as many rewriting rules as desired in any order,
possibly multiple times, up to budget exhaustion.

According to this attacker model, we can define A(x), the set of the attacks
against the instance x, as follows.

Definition 1 (Attacks). Given an instance x and an attacker A = (R,K), we
let A(x) be the set of the attacks that can be obtained from x, i.e., the set of the
instances x′ such that there exists a sequence of rewriting rules r1, . . . , rn ∈ R
and a sequence of instances x0, . . . ,xn where:

1. x0 = x and xn = x′;
2. for all i ∈ [1, n], the instance xi−1 can be corrupted into the instance xi by

using the rewriting rule ri, as described above;
3. the sum of the costs of r1, . . . , rn is not greater than K.

Notice that x ∈ A(x) for any A by picking an empty sequence of rewriting rules,
i.e., the attacker can always leave the instance uncorrupted.

Example 1. Consider the attacker A = ({r1, r2}, 10), where:

6 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

1 int predict (float[] x) {
2 if (x[2] <= 10) {
3 if (x[1] <= 5)
4 return +1;
5 else
6 return -1;
7 }
8 else
9 return +1;

10 }

Fig. 2. Translation of the decision tree in Figure 1 into an imperative program.

– r1 = [0, 10] 1−→5 [−1, 0] allows the attacker to corrupt the first feature by
adding any value in [−1, 0], provided that the feature value is in [0, 10] and
the available budget is at least 5;

– r2 = [5, 10] 2−→4 [0, 1] allows the attacker to corrupt the second feature by
adding any value in [0, 1], provided that the feature value is in [5, 10] and
the available budget is at least 4.

The attacker A can force the decision tree in Figure 1 to change its original
prediction (−1) on the instance (6, 8). In particular, we can show that (5, 8) is a
possible attack against (6, 8), since A can apply r1 once by spending 5 from the
budget, and (5, 8) is classified as +1 by the decision tree.

3.2 Conversion to Imperative Program

Our analysis technique exploits the interpretability property of decision trees,
i.e., their amenability to be easily understood by human experts. In particular,
it is straightforward to convert any decision tree into an equivalent, loop-free
imperative program. To exemplify, Figure 2 shows the translation of the decision
tree in Figure 1 into an equivalent function.

We can then model the attacker as an imperative program which has access to
the function representing the decision tree to analyse. In particular, we observe
that the attacker A = (R,K) can be represented by means of a non-deterministic
program which behaves as follows:

1. Select a random rewriting rule r ∈ R.
2. Let [a, b] f−→k [δl, δu] be the selected rule r and let x = (x1, . . . , xd) be the

instance to perturb. If xf ∈ [a, b] and the available budget is at least k, then
select a random δ ∈ [δl, δu], replace xf with xf + δ and subtract k from the
available budget.

3. Non-deterministically go to step 1 or terminate the process. This stop con-
dition allows the attacker to spare part of the budget, which is needed to
enforce termination when the entire budget cannot be spent (or does not
need to be spent).

Certifying Decision Trees Against Evasion Attacks by Program Analysis 7

1 float[] attack (float[] x) {
2 float K = 10;
3 boolean done = false;
4 while (!done) {
5 int rule = random_int(1,3);
6 switch (rule) {
7 case 1:
8 if (x[1] >= 0 && x[1] <= 10 && K >= 5) {
9 float delta = random_float(-1,0);

10 x[1] = x[1] + delta;
11 K = K - 5;
12 }
13 break;
14 case 2:
15 if (x[2] >= 5 && x[2] <= 10 && K >= 4) {
16 float delta = random_float(0,1);
17 x[2] = x[2] + delta;
18 K = K - 4;
19 }
20 break;
21 case 3:
22 // this models non-deterministic termination
23 done = true;
24 }
25 }
26 return x;
27 }
28

29 int predict_under_attack (float[] x) {
30 float[] x’ = attack(x);
31 return predict(x’);
32 }

Fig. 3. Encoding predictions under attack into an imperative program.

This encoding is exemplified in Figure 3, where lines 1-27 show how the
attacker of Example 1 can be modeled as an imperative program, using standard
functions for random number generation. Once the attacker has been modeled,
we can finally encode the behavior of the decision tree under attack: this is shown
in lines 29-32, where we let the attacker corrupt the input instance before it is
fed to the decision tree for prediction.

3.3 Proving Security by Program Analysis

Given a decision tree t, an attacker A and a test set Dtest, we can compute an
over-approximation of LA(t,Dtest) as follows.

8 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

We first translate the decision tree t together with the attacker A into an
imperative program P modeling the decision tree under attack, as discussed in
Section 3.2. For each instance (xi, yi) ∈ Dtest, we build an abstract state α({xi})
representing xi in the chosen abstract domain and we analyze P with such entry
state. Then, the output of the analysis might be either of the following:

1. only leaves of the decision tree with the correct class label yi are reachable.
This means that, for all possible attacks against xi, the decision tree always
classifies the instance correctly;

2. leaves with the wrong label are reachable as well. If t correctly classifies the
instance in the unattacked setting, this might happen either because there
is indeed an attack leading to a misprediction or for a loss of precision due
to the over-approximation performed by the static analysis.

Since our approach relies on sound static analysis engines, it is not possible
to miss attacks, i.e., every instance which can be mispredicted upon attack must
fall in the second case of our analysis. Let P#(xi) = Yi stand for the set of labels
Yi returned by the analysis of P on the instance xi.

By using this information, we can construct an abstraction of the behaviour
of t under attack on Dtest defined as follows:

∀(xi, yi) ∈ Dtest : t#(xi) =
{
yi if P#(xi) = {yi}
y 6= yi otherwise

By construction, we have that LA(t,Dtest) ≤ L(t#,Dtest) for any loss func-
tion which depends just on the number of mispredictions, like the error rate,
i.e., the fraction of wrong predictions among all the performed predictions. This
means that after building t# we have an efficient way to over-approximate the
loss under attack LA by computing just a traditional loss L, which does not
require the computation of the set of attacks.

3.4 Extensions

We discuss here possible extensions of our approach to different popular settings.
We leave the implementation of these extensions to future work, since they are
essentially an engineering effort.

Regression. The regression task requires one to learn a regressor rather than
a classifier from the training data. The key difference between a regressor and a
classifier is that the former does not assign a class from a finite set Y, but rather
infers a numerical quantity from an unbound set, e.g., estimates the salary of
an employee based on her features. Regression can be modeled by revising the
abstraction t# such that it returns an abstract value over-approximating all the
values of the predictions found in the leaves which are reachable upon attack.
Formally, this means requiring t#(xi) = tyi∈P #(xi)α({yi}), where t stands for
the upper bound operator on the abstract domain.

Certifying Decision Trees Against Evasion Attacks by Program Analysis 9

Fig. 4. The architecture of TreeCert.

Tree Ensembles. Ensemble methods train multiple decision trees and combine
them to improve prediction accuracy. Traditional ensemble approaches include
random forest [3] and gradient boosting [14]. Irrespective of how an ensemble is
trained, its final predictions are performed just by aggregating the predictions
of the individual trees, e.g., using majority voting or averaging. This means that
it is possible to readily generalize our analysis technique to ensembles by trans-
lating each tree therein and by aggregating their predictions in the generated
imperative program.

4 Implementation

Figure 4 depicts the architecture of TreeCert. The inputs are: (i) the attacker,
expressed in the threat model of Section 3.1 using a JSON file, (ii) a decision
tree to analyse, serialized through the joblib library, and (iii) a test set in CSV
format. TreeCert reports for each test instance whether it is correctly classified
for each possible attack or it might be wrongly classified. The analysis is per-
formed along three different modules, called TreeCoder, AttackerAnalyzer and
TreeAnalyzer respectively, which we detail in the following.

4.1 TreeCoder

The first step of TreeCert is to encode the attacker and the decision tree as Java
programs through the module TreeCoder, as described in Section 3.2. TreeCoder
is a Python script that, given an attacker model and a decision tree, produces
two distinct Java files encoding the attacker (see method attack in Figure 3)
and the decision tree (see method predict in Figure 2).

There are only two small technical differences over the previous presentation.
First, given that all instances of the same dataset share the same set of features,

10 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

instances are not encoded as arrays, but rather modeled using a distinct local
variable for each feature, which simplifies the static analysis; specifically, we let
variable xi represent the initial value of the i-th feature and variable x′i represent
its value after the attack. In addition, each time a rewriting rule r is applied,
we increment a counter r counter, initially set to 0, which allows one to capture
useful analysis invariants. Clearly, these changes do not affect the semantics of
the generated program, so we did not include them in Figure 3 for simplicity.

4.2 AttackerAnalyzer

The encoded attacker is then passed to the AttackerAnalyzer module, a static
analyzer based on abstract interpretation. The analyzer interfaces with Apron,
a standard library implementing many popular abstract domains. The analyzer
then computes a fixpoint over the Java program representing the attacker, using
the Polka implementation1 of the Polyhedra domain [11].

Polka tracks linear equalities and inequalities over an arbitrary number of
variables. These invariants allow AttackerAnalyzer to infer the upper and lower
bounds of each attacked feature, based on how many times a feature can be
attacked using the available budget. To exemplify, pick the attacker in Figure 3.
AttackerAnalyzer infers on such program that, after the attack has been per-
formed: (i) the value of the first feature may have been decreased by at most
r1 counter (formally, x′1 ∈ [x1 − 1 ∗ r1 counter, x1]), (ii) the second feature may
have been increased by at most r2 counter (x′2 ∈ [x2, x2 + 1 ∗ r2 counter]), (iii)
both the counters are non-negative (r1 counter ≥ 0 ∧ r2 counter ≥ 0), and (iv)
the budget spent in the application of the two rewriting rules is less than or equal
to the initial budget (5 ∗ r1 counter + 4 ∗ r2 counter ≤ 10). Note that the last
invariant is inferred only if the calculation of a fixpoint over the abstract seman-
tics did not require to apply the Polyhedra widening operator to convergence.
Otherwise, the analysis would drop such information to ensure termination.

4.3 TreeAnalyzer

The attacker invariants are then passed to the TreeAnalyzer module together
with the test set. Like AttackerAnalyzer, TreeAnalyzer performs a static analysis
using the Polka implementation of the Polyhedra abstract domain. For each test
instance x, TreeAnalyzer (i) adds the initial values of the features of x to the
attacker invariants, (ii) computes the fixpoint over the program encoding the
decision tree t under attack, and (iii) uses it to return the output t#(x).

To clarify, consider again Example 1, where the test instance (6, 8) is correctly
classified as −1 by the decision tree in Figure 1, but can be misclassified upon
attack. First of all, TreeAnalyzer adds the invariants x1 = 6 and x2 = 8 to
the inferred attacker invariants, leading to an initial Polyhedra state tracking
that x′1 ∈ [6 − r1 counter, 6] and x′2 ∈ [8, 8 + r2 counter] with 5 ∗ r1 counter +
4 ∗ r2 counter ≤ 10. Then the static analysis of the encoded tree starts with
1 http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/Polka.html

Certifying Decision Trees Against Evasion Attacks by Program Analysis 11

the evaluation of the condition x′2 ≤ 10, inferring that such condition is always
evaluated to true: indeed, x2 could become greater than 10 only if r2 counter
was strictly greater than 2, but then 5 ∗ r1 counter + 4 ∗ r2 counter ≤ 10 could
not hold since r1 counter ≥ 0. TreeAnalyzer then analyzes the condition x′1 ≤ 5.
In this case, it cannot definitely conclude that the condition is always evaluated
to false, since x1 can become less than or equal to 5 if r1 counter ≥ 1, which is
allowed by the invariant 5 ∗ r1 counter + 4 ∗ r2 counter ≤ 10. TreeAnalyzer then
concludes that the test instance might be wrongly classified, since a branch that
classifies it as +1 could be reached.

5 Experimental Evaluation

5.1 Methodology

We evaluate our proposal on three public datasets: Census, House and Wine,
which are described in Section 5.2. Our methodology includes multiple steps. We
start with a preliminary threat modeling phase, where we define the attacker’s
capabilities by means of a set of rewriting rules R and a set of possible budgets
{K1, . . . ,Kn}, as explained in Section 3.1. Our attackers are primarily designed
to perform an experimental evaluation of TreeCert, yet they are representative
of plausible attack scenarios which do not fit traditional distance-based models
and are instead readily supported by the expressiveness of our threat model.

Datasets are divided into Dtrain and Dtest by using a 90-10 splitting with
stratified sampling (80-20 splitting is used for the smaller Wine dataset). We
first train a decision tree t on Dtrain using the popular scikit-learn library,
tuning the maximum number of leaves in the set {21, 22, . . . , 210} through cross
validation on Dtrain. We then evaluate the tree resilience to attacks against each
attacker A = (R,Ki) on Dtest, using a non-approximated technique. Given the
expressiveness of our threat model, the only available solution for this is the
algorithm in [5]. In particular, the algorithm computes A(xi), the set of repre-
sentative attacks against t, for each instance xi in Dtest. This is a comparatively
small subset of the attacks A(xi), which suffices to detect the successful evasions
attacks without any loss of soundness or precision. We refer to this method as
Representative Attacks. We observe and we experimentally confirm that com-
puting even the representative attacks is intractable in general, which motivates
the need for approximated analyses like ours; yet, being able to deal with this in
a few cases is useful to assess the precision of TreeCert against a ground truth.

Finally, we compute the abstraction t# on Dtest for each attacker A = (R,Ki)
by using TreeCert. This allows us to classify each (xi, yi) ∈ Dtest as follows:

– True Positive (TP): TreeCert states that the instance xi can be misclassified
upon attack and this conclusion is correct. Formally, t#(xi) 6= yi ∧ ∃x′i ∈
A(xi) : t(x′i) 6= yi.

– False Positive (FP): TreeCert states that the instance xi can be misclassified
upon attack, but this conclusion is wrong. Formally, t#(xi) 6= yi ∧ ∀x′i ∈
A(xi) : t(x′i) = yi.

12 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

– True Negative (TN): TreeCert states that the instance xi cannot be mis-
classified upon attack and this conclusion is correct. Formally, t#(xi) =
yi ∧ ∀x′i ∈ A(xi) : t(x′i) = yi.

– False Negative (FN): TreeCert states that the instance xi cannot be misclas-
sified upon attack, but this conclusion is wrong. Formally, t#(xi) = yi∧∃x′i ∈
A(xi) : t(x′i) 6= yi.

Since our analysis is sound, we cannot have FN . We then assess the quality
of TreeCert by computing its False Positive Rate FPR and False Discovery Rate
FDR as follows:

FPR = FP
FP + TN , FDR = FP

FP + TP .

We also compare the value of the loss under attack LA(t,Dtest) against its
over-approximation L(t#,Dtest), focusing on the error rate, i.e., the fraction of
wrong predictions. Finally, we compare the execution time of TreeCert against
the time spent in the computation of the set of the representative attacks.

5.2 Datasets

We perform our experiments on three publicly available datasets, whose key
statistics are shown in Table 1. The preconditions of the rewriting rules and the
magnitude of the perturbations have been set after a preliminary data explo-
ration step, based on the observed data distribution in the dataset. A real-world
application of our analysis technique would require input from domain experts
to define the relevant threats, which is beyond the scope of our evaluation.

Census. The Census2 dataset includes demographic information about Amer-
ican citizens. The prediction task is estimating whether the income of a citizen
is above 50,000$ per year. For this dataset, we define four rewriting rules:

– cost 5: if the capital gain is in [0,100000], a citizen can raise it by 200;
– cost 5: if the capital loss is in [0,100000], a citizen can lower it by 200;
– cost 10: if the number of work hours is in [0,40], a citizen can raise it by 1;
– cost 10: if the age is in [0,40], a citizen can raise it by 1.

We consider 20, 40, 60, 80 as possible values of the attacker’s budget.

House. The House3 dataset contains house sale prices for the King County area.
The prediction task is inferring whether a house costs at least as the median
house price. For this dataset, we define four rewriting rules:

– cost 5: if the square footage of the living space of the house is in [0,3000], it
can be increased by 50;

2 http://archive.ics.uci.edu/ml/machine-learning-databases/adult
3 https://www.kaggle.com/harlfoxem/housesalesprediction

Certifying Decision Trees Against Evasion Attacks by Program Analysis 13

Table 1. Properties of datasets used in the experiments.

Dataset #Instances #Features Maj. class
Census 29169 51 0.75
House 21613 19 0.51
Wine 6497 12 0.63

– cost 5: if the square footage of the land space is in [0,2000], it can be increased
by 50;

– cost 5: if the average square footage of the living space of the 15 closest
houses is in [0,2000], it can be increased by 50;

– cost 5: if the construction year is in [1900,1970], it can be increased by 10.

We consider 10, 20, 30, 40 as possible values of the attacker’s budget.

Wine. The Wine4 dataset represents different types of wines. The prediction
task is detecting whether a wine has quality score at least 6 on a scale 0–10. For
this dataset, we define four rewriting rules:

– cost 2: if the residual sugar is in [2,4], it can be lowered by 0.01;
– cost 5: if the alcohol level is in [0,11], it can be increased by 0.01;
– cost 5: if the volatile acidity is in [0,1], it can be lowered by 0.01;
– cost 5: if the free sulfur dioxide is in [20,40], it can be lowered by 0.1.

We consider 20, 30, 40, 50, 60 as possible values of the attacker’s budget.

5.3 Experimental Results

Precision. Table 2 reports for all datasets and budgets a number of measures
computed for the trained decision tree t:

1. the traditional loss in absence of attacks L(t,Dtest). This is the fraction of
wrong predictions returned by t on Dtest in the unattacked setting;

2. the loss under attack LA(t,Dtest), computed by enumerating all the repre-
sentative attacks using the algorithm in [5]. This is the fraction of wrong
predictions returned by t on Dtest upon attack;

3. the over-approximation of the loss under attack L(t#,Dtest), computed using
the program analysis of TreeCert;

4. the false positive rate of TreeCert, noted FPR;
5. the false discovery rate of TreeCert, noted FDR.

The experimental results clearly confirm the quality of the analysis performed
by TreeCert. In particular, we observe that the FPR is remarkably low, stand-
ing well below 5%, where 10% is considered a state-of-the-art reference for static
analysis techniques [24]. Indeed, in Census we measured an absolute number of
4 https://www.openml.org/data/get_csv/49817/wine_quality.arff

14 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

Table 2. Accuracy results across datasets.

Dataset Budget L(t,Dtest) LA(t,Dtest) L(t#,Dtest) FPR FDR

Census

20 0.14 0.17 0.17 0.00 0.00
40 0.14 0.17 0.17 0.00 0.01
60 0.14 0.18 0.18 0.00 0.01
80 0.14 0.20 0.21 0.00 0.01

House

10 0.10 0.12 0.12 0.00 0.02
20 0.10 0.14 0.15 0.01 0.04
30 0.10 0.16 0.17 0.01 0.06
40 0.10 0.18 0.19 0.02 0.08

Wine

20 0.24 0.30 0.31 0.01 0.02
30 0.24 0.34 0.35 0.02 0.03
40 0.24 0.36 0.37 0.02 0.04
50 0.24 0.37 0.39 0.03 0.05
60 0.24 0.38 0.40 0.03 0.05

false positives never greater than 5. This is interesting, because it shows that for
many instances there is a simple security proof, i.e., TreeCert is able to prove
that they cannot be successfully attacked (i.e., they are TN), which significantly
drops the FPR. As to the FDR, we observe that it also scores extremely well
on all datasets, though it tends to be slightly higher than FPR. However, this
is not a major problem in our application setting: contrary to what happens
in traditional program analysis, where users are forced to investigate all false
alarms to identify possible bugs, here we are rather interested in the aggregated
analysis results, i.e., the final over-approximation of the loss under attack. Even
on the House dataset, where FDR tends to be higher, we observe that the loss
under attack is appropriately approximated by TreeCert, since there is a dif-
ference of at most 0.01 between the actual value of the loss under attack and
its over-approximation. Remarkably, our experiments also show that the quality
of the over-approximation is not significantly affected by the attacker’s budget,
which is important because it suggests that TreeCert likely generalizes to cases
where computing the actual value of the loss under attack is computationally
intractable, which is the intended use case of our analysis tool.

Efficiency. To show the efficiency of our approach, we compare in Figure 5 the
running time of TreeCert against the time taken to compute the full set of the
representative attacks. It is possible to clearly see that the two curves exhibit
completely different trends. The time taken to construct the representative at-
tacks has an exponential trend: the approach is efficient and feasible when the
attacker’s budget is low, but blows up to intractability very quickly. For ex-
ample, each increase in the attacker’s budget multiplies the execution time of
a 3x factor in the case of Census and we experimentally confirmed that more
than 12 hours of computation are needed when the budget grows to 100 (not

Certifying Decision Trees Against Evasion Attacks by Program Analysis 15

20 40 60 80
Budget

0

100

200

300
Ti

m
e

(m
in

ut
es

)
Census

10 20 30 40
Budget

0

100

200

300

400

Ti
m

e
(m

in
ut

es
)

House

20 30 40 50 60
Budget

0

10

20

30

40

50

Ti
m

e
(m

in
ut

es
)

Wine
Representative Attacks TreeCert

Fig. 5. Running time of TreeCert against the enumeration of representative attacks.

plotted). Conversely, the execution time of TreeCert is only marginally affected
when increasing the attacker’s budget, since the analysis always converges in
less than one hour. In the case of the House dataset, computing the set of the
representative attacks is even less feasible: even for small budgets, the running
time is remarkably high, due to the fact that the trained decision tree uses many
different thresholds, which makes the number of representative attacks blow up.
Finally, also the Wine dataset shows similar figures, though the execution times
there are lower due to its smaller size. This confirms that brute-force approaches
based on the exhaustive enumeration of the representative attacks do not scale,
yet luckily they can be replaced by more efficient abstraction techniques with
very good precision.

6 Related Work

Verifying the security guarantees of machine learning models is an important
task, which received significant attention by the research community in the last
few years. In particular, many papers proposed techniques to verify the security
of deep neural networks [28, 27, 17, 20, 15]; we refer to a recent survey for more
work in this research area [29]. As of now, however, comparatively less attention
has been received by the security verification of decision trees models.

The closest related work to our approach is a very recent paper by Ranzato
and Zanella [23]. Their work also focuses on decision trees and builds on the ab-
stract interpretation framework. However, their approach can only be applied to
attackers who admit a simple mathematical characterization as a set of pertur-
bations, e.g., based on distances. In particular, their soundness theorem relies on
the hypothesis that, for each test instance x, one has A(x) ⊆ γ(α({x})), i.e., the
abstraction of x must cover all the possible attacks. Checking this condition for
distance-based attackers is straightforward, yet it is computationally infeasible
in general. For example, in the case of the rewriting rules we considered, A(x) is
unknown a priori, but is induced by the application of the rules. Indeed, their
tool silva only supports attackers based on the infinity-norm L∞, which has a

16 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

compact mathematical characterization as a set, but falls short of representing
realistic threats. Instead, our approach is general enough to work on attackers
modeled as arbitrary imperative programs.

Other approaches also deal with the verification of decision trees, but are not
based on abstract interpretation. For example, Einzinger et al. use SMT solving
to verify the robustness of gradient-boosted models [13]. Their approach also
requires to explicitly encode the set of attacks A(x) in closed form, which is
only easily doable for artificial distance-based attackers. Moreover, SMT solving
suffers from scalability issues, which required the authors to develop custom
optimizations to make their approach practical. It is unclear whether this line of
work can be adapted and scale to more expressive attackers or not, also because
their tool is not publicly available. Other notable work includes the robustness
verification algorithm by Chen et al. [8], which only works for attackers based
on the infinity-norm L∞, and the abstraction-refinement approach by Törnblom
and Nadjm-Tehrani [26], which is not proved sound.

Finally, it is worth mentioning adversarial learning algorithms which train
decision trees more resilient to evasion attacks by construction [19, 5, 7, 6]. This
line of work is orthogonal to the security verification of decision trees, i.e., our
approach can also be applied to estimate the improved robustness guarantees of
trees trained using such algorithms.

7 Conclusion

We proposed a technique to certify the security of decision trees against evasion
attacks by leveraging the abstract interpretation framework. This is the first
solution which is both sound and expressive enough to deal with sophisticated
attackers represented as arbitrary imperative programs. Our experiments showed
that our technique is both precise and efficient, yielding only a minimal number
of false positives and scaling up to cases which are intractable for a competitor [5].

We foresee several avenues for future work. First, we plan to extend our
approach to the analysis of regression tasks and tree ensembles: though this is
straightforward from an engineering perspective, we want to analyze the preci-
sion and the efficiency of our solution in such settings. Moreover, we will inves-
tigate techniques to automatically infer the minimal attacker’s budget required
to induce a given error rate on the test set, so as to efficiently provide security
analysts with this useful information. Finally, we will investigate the trade-off be-
tween the precision and the efficiency of TreeCert by testing more sophisticated
abstract domains and analysis techniques, e.g., trace partitioning.

References

1. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndic, N., Laskov, P., Giacinto,
G., Roli, F.: Evasion attacks against machine learning at test time. In: Proceedings
of ECML PKDD. pp. 387–402 (2013)

Certifying Decision Trees Against Evasion Attacks by Program Analysis 17

2. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognit. 84, 317–331 (2018)

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Wadsworth (1984)
5. Calzavara, S., Lucchese, C., Tolomei, G.: Adversarial training of gradient-boosted

decision trees. In: Proceedings of CIKM. ACM (2019)
6. Calzavara, S., Lucchese, C., Tolomei, G., Abebe, S.A., Orlando, S.: Treant: Training

evasion-aware decision trees. Data Min. Knowl. Discov. (2020), to appear
7. Chen, H., Zhang, H., Boning, D.S., Hsieh, C.: Robust decision trees against adver-

sarial examples. In: Proceedings of ICML. PMLR (2019)
8. Chen, H., Zhang, H., Si, S., Li, Y., Boning, D.S., Hsieh, C.: Robustness verification

of tree-based models. In: Proceedings of NeurIPS. pp. 12317–12328 (2019)
9. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In: Proceed-
ings of POPL. ACM (1977)

10. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Proceedings of POPL. ACM (1979)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL. ACM Press (1978)

12. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: Proceed-
ings of CAV. Springer (2018)

13. Einziger, G., Goldstein, M., Sa’ar, Y., Segall, I.: Verifying robustness of gradient
boosted models. In: Proceedings of AAAI. pp. 2446–2453. AAAI Press (2019)

14. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics pp. 1189–1232 (2001)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of Security and Privacy. IEEE Computer Society
(2018)

16. Goodfellow, I., McDaniel, P., Papernot, N.: Making machine learning robust
against adversarial inputs. Commun. ACM 61(7) (Jul 2018)

17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Proceedings of CAV. Springer (2017)

18. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Proceedings of CAV. Springer (2009)

19. Kantchelian, A., Tygar, J.D., Joseph, A.D.: Evasion and hardening of tree ensemble
classifiers. In: Proceedings of ICML. JMLR.org (2016)

20. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Proceedings of CAV.
Springer (2017)

21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings of ICLR. OpenReview.net
(2018)

22. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
(2006)

23. Ranzato, F., Zanella, M.: Abstract interpretation of decision tree ensemble classi-
fiers. In: Proceedings of AAAI. AAAI Press (2020)

24. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google. Commun. ACM 61(4) (Mar 2018)

18 Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

25. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: Proceedings of ICLR (2014)

26. Törnblom, J., Nadjm-Tehrani, S.: An abstraction-refinement approach to formal
verification of tree ensembles. In: Proceedings of SAFECOMP. Springer (2019)

27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Proceedings of NeurIPS 2018 (2018)

28. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of USENIX Security.
USENIX Association (2018)

29. Xiang, W., Musau, P., Wild, A.A., Lopez, D.M., Hamilton, N., Yang, X., Rosen-
feld, J.A., Johnson, T.T.: Verification for machine learning, autonomy, and neural
networks survey. CoRR abs/1810.01989 (2018), http://arxiv.org/abs/1810.
01989

