
Testing for Integrity Flaws in Web Sessions

Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and Michele Bugliesi

Università Ca’ Foscari Venezia

Abstract. Web sessions are fragile and can be attacked at many differ-
ent levels. Classic attacks like session hijacking, session fixation and cross-
site request forgery are particularly dangerous for web session security,
because they allow the attacker to breach the integrity of honest users’
sessions by forging requests which get authenticated on the victim’s be-
half. In this paper, we systematize current countermeasures against these
attacks and the shortcomings thereof, which may completely void protec-
tion under specific assumptions on the attacker’s capabilities. We then
build on our security analysis to introduce black-box testing strategies to
discover insecure session implementation practices on existing websites,
which we implement in a browser extension called Dredd. Finally, we use
Dredd to assess the security of 20 popular websites from Alexa, exposing
a number of session integrity flaws.

Keywords: Web sessions · session hijacking · session fixation · CSRF

1 Introduction

Since the HTTP protocol is stateless, web applications treat each HTTP request
independently from all the others by default. However, online services often need
to track state information across multiple HTTP requests to provide controlled
access to private data and authorize security-sensitive operations for authenti-
cated users. HTTP cookies are the most common mechanism to maintain state
information across HTTP requests [2], thus enabling the implementation of au-
thenticated web sessions. Unfortunately, web session security is hard to get right,
as shown by the huge number of attacks and defenses presented in the litera-
ture [13]. As a result, although it is possible to ensure the security of web sessions
using existing technologies, web session implementations in the wild still suffer
from severe security flaws [8, 35, 29, 30].

Security testing is a very popular solution to detect vulnerabilities in web
applications [5]. The Open Web Application Security Project (OWASP) has long
recognized the importance of testing for web application security and maintains
a guide with recommendations about it - the OWASP Testing Guide [25] - which
also includes a section about session management. Although this guide provides
useful advice to improve web session security, it is not systematic and does not
provide a comprehensive coverage of realistic attack vectors based on a rigorous
threat model. For instance, the proposed testing strategy for cross-site request
forgery vulnerabilities is insufficient to assess security against network attackers



who have control of the HTTP traffic, because it does not consider their ability to
compromise cookie integrity [4]. Moreover, a number of recommendations in the
OWASP Testing Guide are rather generic or overly conservative, making them
hard to follow for web developers. For instance, the proposed testing strategy
for session hijacking recommends the use of an intercepting proxy to check that
all cookies containing session identifiers are marked with the Secure attribute
to prevent their leakage over HTTP. However, this can be hard to do in practice,
because it presupposes that security testers know the role of all cookies, and it
might even be unnecessary, because when multiple cookies are used for session
management it might suffice to protect just one of them [15, 23].

Our main goal in the present work is to make security testing for web sessions
more principled and systematic by building on precise security properties and
threat models. At the same time, we advocate the adoption of testing strategies
which semantically capture attacks, thus detecting exploitable vulnerabilities,
as opposed to testing strategies based on syntactic conditions, such as the afore-
mentioned use of the Secure attribute, which instead can just identify room for
potential attacks. Our approach makes security testing more effective by elimi-
nating false positives and enables a more precise security assessment.

Contributions. Concretely, we make the following contributions:

1. we provide an in-depth, up-to-date security analysis of web sessions that re-
views attacks, current countermeasures and the shortcomings thereof. While
several of such considerations have been piecemeal reported in the litera-
ture, we are not aware of any previous attempt to organize them within a
comprehensive, uniform framework. In particular, our analysis is based on a
clear notion of session integrity and a rich threat model which includes web
attackers, related-domain attackers and network attackers (Section 3);

2. we design black-box testing strategies to systematically detect integrity flaws
in existing web session implementations. Each testing strategy is parametric
with respect to the choice of an arbitrary attacker from our threat model
and targeted at detecting exploitable vulnerabilities, without requiring deep
understanding of the web application logic (Section 4);

3. we implement our testing strategies in a browser extension, called Dredd1,
which we make available upon request. We use Dredd to assess the security
of 20 popular websites from the Alexa ranking, exposing a number of session
integrity flaws exploitable by different attackers (Section 5).

2 Background

2.1 Same-Origin Policy

The same-origin policy (SOP) is a security policy implemented by all browsers,
which enforces a strict separation between contents provided by unrelated web-

1 The browser extension is named after Judge Joseph Dredd, a law enforcement and
judicial officer in the dystopian future created by some popular British comic books.



sites [22]. SOP allows scripts running in a page to access data of another page
only if the pages have the same origin, i.e., the same protocol, host and port [3].

SOP mediates several operations in the browser, including DOM and cookie
accesses. For instance, if a page at https://www.example.com embeds an iframe
from http://www.evil.com, malicious scripts running in the iframe cannot read
or write the DOM of the embedding page, because they come from a different ori-
gin. However, a few important browser operations are not subject to same-origin
checks, e.g., the inclusions of scripts and the submissions of forms. This leaves
room for attacks like cross-site request forgery, which is extensively discussed in
the next sections.

2.2 HTTP Cookies

Roughly, a cookie is a key-value pair, which is set by the server into the browser
and then automatically attached by the browser to all the subsequent requests
to the server, using the Cookie header. Cookies can be set using the Set-Cookie
header or by means of JavaScript through the document.cookie property.

Cookies rely on a relaxed definition of origin, since they are normally shared
across all protocols and ports of the host setting them. For instance, scripts at
https://www.example.com can read the cookies of http://www.example.com,
although these two origins do not match. By default, cookies are only attached
to requests sent to the same host which set them (host-only cookies). However, a
host may also set cookies for a parent domain by means of the Domain attribute,
as long as the parent domain does not occur in a list of public suffixes2: these
cookies are shared across all the sub-domains of such domain (domain cookies).

It is sometimes desirable to improve the confidentiality guarantees of cookies.
For instance, scripts at http://www.example.com can normally access cookies
set by https://www.example.com, although these scripts were not sent over a
secure channel. The Secure attribute can be used to mark cookies which must
only be accessed from HTTPS pages and sent over HTTPS channels.

2.3 HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a security policy implemented in all
modern web browsers, which allows hosts to require browsers to communicate
with them only over HTTPS [18]. Specifically, HTTP requests to HSTS hosts
are automatically upgraded to HTTPS by the browser before they are sent.

HSTS can be activated over HTTPS using the Strict-Transport-Security
header, where it is possible to specify for how long HSTS should be active and
whether its protection should additionally be extended to sub-domains. Alterna-
tively, hosts may request to be included in the HSTS preload list of major web
browsers, so that HSTS is activated on them by default. We refer to full HSTS
adoption when a host activates HSTS for itself and all its sub-domains, and to
partial HSTS adoption when a host activates HSTS just for itself. We discuss a
few shortcomings of the partial HSTS adoption in the next sections.

2 Available at https://publicsuffix.org/



3 Integrity Analysis of Web Sessions

We describe the typical set-up of a web session. Browser B, operated by user
Alice, submits a login form including valid access credentials to website W ,
which replies by sending back a cookie sid storing a session identifier which
uniquely identifies Alice; we refer to sid as the session cookie3. Browser B then
automatically attaches sid to all the subsequent requests sent to W , so that W
has a way to authenticate Alice and authorize operations on her behalf.

3.1 Web Session Integrity

We say that Alice’s session has integrity when a malicious user Mallory cannot
forge requests which get authenticated under Alice’s identity. There are three
ways available to Mallory to break session integrity:

1. session hijacking : if Mallory is able to steal Alice’s sid, she can authenticate
as Alice at W directly from her browser (Section 3.3);

2. session fixation: if Mallory can force Alice’s sid to a known value, she can
authenticate as Alice at W directly from her browser (Section 3.4);

3. cross-site request forgery : if Mallory cannot steal or force the choice of Alice’s
sid, she can still forge security-sensitive requests from Alice’s browser B, so
as to fool W into processing such requests on Alice’s behalf (Section 3.5).

We only cover attacks where Mallory intrudes on Alice’s session. Attacks
where Alice is forced into Mallory’s session, e.g., login CSRF and cookie forc-
ing [13], are considered out of scope. The reason is that such threats are specific
to a relatively narrow class of web applications and use cases.

3.2 Threat Model

The goal of Mallory is to break the integrity of sessions established between
Alice and the target website W = www.target.com. We consider three different
attackers. The weakest one is the web attacker, who is the owner of a malicious
website [1]. This attacker can reply to HTTP requests to her website with arbi-
trary contents and can obtain a valid HTTPS certificate for her website from a
trusted certification authority. To simplify the exposition, we stipulate that the
web attacker operates https://www.attacker.com. We assume that the user ac-
cesses this malicious website from her browser, either deliberately or because she
is fooled into doing it. However, we assume that the web attacker has no script-
ing capabilities at the target: she has no control of active contents included by
the target itself and she cannot exploit cross-site scripting vulnerabilities (XSS)
therein. This is a standard assumption, motivated by the fact that most web
defenses are voided when the attacker can script in the target’s origin.

3 Real services often use multiple session cookies, but the discussion abstracts from
this point for simplicity. Session cookies have also been called authentication cookies
in related work [15].



The related-domain attacker is a stronger variant of the web attacker, who can
host her website on a related domain of the target website [6]. Two domains are
related when they share a sufficiently long suffix, e.g., accounts.example.com
and mail.example.com; any non-public suffix will work in current browsers. The
related-domain attacker is traditionally considered in the web session security
literature, due to her extended ability to compromise cookie confidentiality and
integrity compared to the web attacker. Though most websites do not lease sub-
domains to untrusted organizations, a recent study highlighted the threats of
the related-domain attacker due to the common use of a large number of sub-
domains, many of which at low security [12]. To improve readability, we stipulate
that the related-domain attacker is hosted at https://attacker.target.com.

Finally, the network attacker extends the capabilities of the web attacker
with the ability to read, modify and block the contents of all the HTTP traffic.
However, we assume that this attacker cannot sniff or corrupt the HTTPS traffic,
due to the adoption of trusted certificates at the target website. When reasoning
about session integrity against the network attacker, we always assume that the
target website is deployed on HTTPS, otherwise the website is trivially insecure.

Observe that the web attacker is weaker than both the related-domain at-
tacker and the network attacker by definition, while the related-domain attacker
and the network attacker are incomparable. In particular, although the network
attacker can masquerade as any HTTP website, she cannot host any HTTPS
website on a related domain of the target website.

3.3 Session Hijacking

Session hijacking happens when the attacker is able to steal the session cookies
of the victim and uses them to impersonate her at the target website. Different
attackers have different ways to steal session cookies: although the web attacker
has no access to such cookies in absence of XSS (thanks to SOP), the related-
domain attacker and the network attacker are more powerful. In particular, the
related-domain attacker can potentially access all the domain cookies of the
target website and intrude on the victim’s session by reusing them.

The picture is more complex for the network attacker. If HSTS is not enabled
at the target website, any cookie without the Secure attribute can be disclosed.
This is true even if the target website is entirely deployed on HTTPS, because
the network attacker can still force the victim’s browser into trying to contact
the target website over HTTP [8]. If instead HSTS is partially adopted, host-
only cookies cannot be disclosed irrespective of the use of the Secure attribute,
because the victim’s browser will never contact the target website over HTTP;
however, domain cookies must still be marked with the Secure attribute to
prevent their disclosure [21]. Finally, in the case of a full HSTS adoption, the
network attacker is no more powerful than the web attacker for session hijacking
and the use of the Secure attribute is redundant.

Table 1 summarizes the conditions under which the confidentiality of cookies
can be violated. To ensure protection against session hijacking, it is critical to
ensure the confidentiality of the session cookies.



Table 1. Conditions for cookie leakage under different attackers

Attacker Condition for cookie leakage

Web attacker no leakage is possible (in absence of XSS)

Related-domain attacker the Domain attribute is set to a parent domain

Network attacker either of the following conditions holds true:

1. no HSTS adoption and the Secure attribute
is not set;

2. partial HSTS adoption, the Secure attribute
is not set and the Domain attribute is set to a
parent domain.

3.4 Session Fixation

Session fixation is enabled by the insecure practice of preserving the same value of
the session cookies before and after authentication. This typically happens when
session cookies are used to store state information even before login, e.g., to add
items to a shopping cart. In this case, the attacker can obtain a set of session
cookies from the target website without authenticating and force them into the
victim’s browser, using different techniques; if the victim later authenticates at
the target, she will be identified by the session cookies chosen by the attacker,
who will then become able to impersonate the victim [19].

Different attackers have different ways to force session cookies into the vic-
tim’s browser. Again, the web attacker lacks this capability in absence of XSS,
because SOP prevents her from setting cookies for the target website, but the
related-domain attacker and the network attacker are more powerful. Specifi-
cally, the related-domain attacker can set domain cookies for the target website,
which are indistinguishable from host-only cookies to it [6]. Though the related-
domain attacker cannot overwrite host-only cookies previously set by the target
website due to SOP, she can still issue domain cookies before the host-only cook-
ies are set, which often suffices to prevent the host-only cookies from ever being
issued. Moreover, the related-domain attacker can set domain cookies with the
same name of host-only cookies, which may fool the target website into choos-
ing the domain cookies over the host-only cookies [35]. The only effective way
to prevent these attacks is extending the name of the session cookies with the
Host- prefix, which requires cookies to be set as host-only [32]. The Host-

prefix also has the benefit of requiring cookies to be set over HTTPS with the
Secure attribute, which is useful against the network attacker.

As to the network attacker, she can abuse the lack of HSTS to set cookies for
the target website by forging HTTP traffic. Notice that a full HSTS adoption is
needed to prevent this attack, otherwise the network attacker could still make
the victim’s browser contact a sub-domain of the target website over HTTP and
then forge domain cookies from there. If full HSTS is not an option for some
reason, an alternative protection mechanism is based on the use of the Secure-

prefix in the cookie name, which requires cookies to be set over HTTPS with the



Table 2. Conditions for cookie compromise under different attackers

Attacker Condition for cookie compromise

Web attacker no compromise is possible (in absence of XSS)

Related-domain attacker lack of Host- prefix in the cookie name

Network attacker both the following conditions hold true:

1. lack of full HSTS adoption;
2. lack of Host- and Secure- prefixes in the

cookie name.

Secure attribute [32]. Notice that the Secure attribute alone does not suffice
to provide cookie integrity, because modern browsers prevent cookies with the
Secure attribute from being set or overwritten over HTTP, yet cookies with
the same name but without the Secure attribute can still be forged over HTTP
before the legitimate cookies are actually issued [33].

Table 2 provides a summary of the conditions under which the integrity of
cookies can be violated. To prevent session fixation, it is important to guarantee
the integrity of the session cookies which are not freshly issued upon login.

3.5 Cross-Site Request Forgery

Cross-site request forgery (CSRF) is enabled by the standard behavior of web
browsers to attach cookies to all HTTP requests by default, irrespective of the
origin of the page which fired the request [4]. A CSRF attack typically works
as follows: the victim first logs into the target website and gets a set of session
cookies which authenticates her; the victim then visits the attacker’s website,
which sends a cross-site request to the target, e.g., using HTML or JavaScript.
Since the request includes the victim’s cookies, it is authenticated as coming
from the victim, hence it may be abused to trigger security-sensitive operations
at the victim’s account. There are different defenses against CSRF.

Custom Headers. JavaScript can set HTTP headers with custom names, for
instance X-Requested-With, to be attached to outgoing HTTP requests. Since
SOP prevents the setting of custom headers for cross-origin requests, the mere
presence of such headers can be used to stop CSRF attempts. Given that none
of the attackers we consider controls the exact origin of the target website,
custom headers are an effective protection mechanism against all the attackers.
Unfortunately, custom headers can only be used by websites which implement
all their security-sensitive operations via JavaScript.

Referer/Origin Header. Browsers normally attach to each outgoing request
at least one between two standard HTTP headers, called Referer and Origin,
which contain the URI and the origin of the page which triggered the request



Table 3. Examples of dangerous Referer/Origin headers

Attacker Spoofed Referer/Origin

Web attacker https://www.target.com.attacker.com

Related-domain attacker https://attacker.target.com

Network attacker
no HSTS http://www.target.com

partial HSTS http://attacker.target.com

full HSTS https://www.target.com.attacker.com

respectively. This can be used to filter out cross-site requests, but some care is
needed to implement this check correctly. We discuss just the case of the Referer
header, because the same reasoning applies to the Origin header.

Though the web attacker is hosted at https://www.attacker.com, she could
try to fool the target via the sub-domain www.target.com.attacker.com, so
that the Referer header of requests coming from this sub-domain will start
with the substring https://www.target.com. This would be enough to fool
a Referer check based on a liberal regular expression. The related-domain at-
tacker, instead, could send requests from https://attacker.target.com, which
would bypass lenient Referer checks allowing requests from any sub-domain.
Finally, the network attacker could abuse the lack of HSTS to send requests
from http://www.target.com, which would escape Referer checks that are in-
tended to filter out cross-site requests, but do not enforce the use of the HTTPS
protocol. Observe that, if HSTS is only partially adopted, the network attacker
could attempt a variant of the attack from http://attacker.target.com. This
would fool Referer checks which are intended to only accept requests from sub-
domains, but do not check for the adoption of the HTTPS protocol. In the case of
a full HSTS adoption, the network attacker loses these capabilities and becomes
no more powerful than the web attacker.

Table 3 shows “canonical” examples of Referer values which could be abused
by the different attackers based on the previous discussion. Recall that both the
related-domain attacker and the network attacker subsume the web attacker, so
the first choice in the table is also available to them.

Anti-CSRF Tokens. Another common approach to CSRF prevention is based
on the use of random tokens to be included in legitimate authenticated requests:
requests lacking a valid token do not get processed. Tokens are normally embed-
ded in DOM elements which fire requests for security-sensitive operations, e.g.,
as a hidden field of payment forms. If tokens cannot be predicted or disclosed,
the attacker cannot craft cross-site requests which get successfully processed by
the target website. There are two traditional ways to implement tokens.

The first approach is based on stateful tokens. Stateful tokens are stored at
the server side, typically bound to users’ sessions. For example, the server could
store in Alice’s session the information that authenticated requests from Alice
must include the token Xf12gh68g. The second approach is based on stateless
tokens, which do not require such server-side state, but are harder to implement



securely. Stateless tokens are stored at the browser side, often inside a cookie.
For example, the server could set a cookie containing the token G9jp3mNt in
Alice’s browser and require authenticated requests to include such token inside
a parameter: this pattern is called double submit. Variants of this approach rely
on the encryption or other transformations of the token set in the cookie.

Stateless tokens can be attacked at different levels. If the confidentiality of
the cookie storing the token is not guaranteed, no protection against CSRF is
granted when the token validation process is performed via a parameter value
which can be computed from the token alone: we refer to Table 1 for a summary
of the conditions which can lead to cookie leakage. If instead the attacker can
compromise the integrity of the cookie storing the token, she can acquire a valid
token from the server and force it in the victim’s browser, so that the session is
still protected with a token known by the attacker. To avoid this issue, stateless
tokens must be session-dependent, so that the attacker’s tokens cannot be used
in the victim’s session [4]. We refer to Table 2 for a summary of the conditions
which enable cookie compromise.

Same-Site Cookies. Cookies can be marked with the SameSite attribute to
signal to the browser that they should not be attached to cross-site requests,
thus preventing CSRF attempts directly at the client side. This approach is
effective, since it fixes one of the root causes of CSRF, i.e., browsers attaching
session cookies by default. Strict or lax protection can be given by the SameSite

attribute, with the latter mode relaxing the mentioned security restriction in the
case of top-level navigations with a “safe” HTTP method [34].

4 Integrity Testing of Web Sessions

We now build on our security analysis to design precise black-box testing strate-
gies which allow human experts to detect session integrity flaws. Our main goal
is finding exploitable vulnerabilities without requiring an in-depth understanding
of the web application logic. All the testing strategies presuppose the availability
of two test accounts at the website under scrutiny, called Alice and Mallory. Alice
acts as the victim, while Mallory acts as the attacker; each strategy is parametric
with respect to the choice of an attacker from our threat model, which defines
Mallory’s capabilities (see Section 3.2). If Mallory’s actions affect Alice’s session,
we have a session integrity problem.

4.1 Testing for Session Hijacking

The intuition behind the testing strategy for session hijacking is to simulate a
scenario where Mallory steals all Alice’s cookies she might be exposed to (cf.
Table 1). Mallory may then use these cookies to access Alice’s account: if they
are enough to act on Alice’s behalf, session hijacking is possible. Even when this
is not possible, however, security might still be at risk, because it might be that
not all the cookies were disclosed to Mallory and the attempted operation failed



because just a subset of the expected cookies was sent to the website. To account
for this case, we also perform a fresh login to the website as Mallory to get a full
set of cookies and then restore the cookies stolen from Alice before reattempting
the operation, so that all the website cookies (though mixed from two different
accounts) are sent as part of a new operation attempt: if the operation succeeds
in Alice’s account, session hijacking is possible. Specifically, the testing strategy
proceeds as follows:

1. Login to www.target.com as Alice and reach the page under test;
2. Find the cookies which satisfy the cookie leakage conditions in Table 1 based

on Mallory’s capabilities and clear all the other cookies from the browser;
3. Perform the operation under test;
4. Check: has the operation been performed? If yes, report as insecure;
5. Clear the cookies from the browser;
6. Login to www.target.com as Mallory and reach the page under test;
7. Restore in the browser the cookies previously kept at step 2;
8. Perform again the operation under test;
9. Clear the cookies from the browser and login to www.target.com as Alice;

10. Check: has the operation been performed? If yes, report as insecure.

4.2 Testing for Session Fixation

To test for session fixation, we simulate a scenario where Mallory forces in Alice’s
browser all the cookies which are not freshly issued after login and do not have
integrity against her (cf. Table 2). After Alice’s login, Mallory presents the forced
cookies to access Alice’s account: if they are enough to act on Alice’s behalf,
session fixation is possible. The testing strategy for session fixation thus follows
the same pattern of the testing strategy for session hijacking, with the only
exception of step 2. More precisely, we replace step 2 as follows:

2. Find the cookies which satisfy the cookie compromise conditions in Table 2
based on Mallory’s capabilities and were not freshly issued after the login
process, then clear all the other cookies from the browser;

The testing strategy still has two exit conditions for the reasons explained above.

4.3 Testing for Cross-Site Request Forgery

The proposed testing strategy for CSRF is a variant of the one presented in [30],
extended to consider related-domain attackers and network attackers, as well as
to cover a few additional subtleties emerged in our security analysis. The idea is
to trigger the operation under test as Mallory and intercept the corresponding
HTTP request to transform it into a variant which can be forged from Alice’s
browser from a cross-site position. The forged request lacks both custom headers
and same-site cookies, yet includes a potentially dangerous value in the Referer

and Origin headers, based on Mallory’s capabilities (cf. Table 3). If the request is
successfully processed by the website, a CSRF attack is possible. More precisely,
the testing strategy proceeds as follows:



1. Login to www.target.com as Mallory and reach the page under test;
2. Perform the operation under test and intercept the corresponding HTTP

request before it is sent;
3. Clear the cookies from the browser;
4. Login to www.target.com as Alice;
5. Forge a copy of the HTTP request intercepted at step 2 from a cross-site

position and let the browser attach the HTTP headers (including the Cookie
header containing Alice’s cookies, with the exception of same-site cookies);

6. Set the Referer and Origin headers of the forged request to the values in
Table 3 based on Mallory’s capabilities, e.g., using an intercepting proxy;

7. Check: has the operation been performed? If yes, report as insecure.

If the operation has not been performed, we can conclude security against
web attackers, but the picture is more complicated in case of stronger attackers,
who can break the confidentiality and the integrity of stateless anti-CSRF tokens.
We identify potentially vulnerable implementations of the double submit pattern
by inspecting the HTTP request intercepted at step 2. If the request contains a
cookie c and a parameter p such that the value of c matches the value of p, we
reason about the confidentiality and the integrity of c (cf. Table 1 and Table 2
respectively) and we revise the original testing strategy accordingly.

If c has low confidentiality, the anti-CSRF token stored in c becomes useless,
because its value might be known to the attacker. However, this does not neces-
sarily mean that it is possible to run a CSRF attack, because the tested website
might implement multiple defenses against CSRF, e.g., it might also check for
the presence of custom headers. To confirm the potential attack, we thus revise
the original testing strategy as follows: after step 4 we read the value of the
cookie c from Alice’s session and at step 6 we modify the forged HTTP request
so that the parameter p matches such value. This simulates a scenario where
Mallory stole Alice’s token and used it to forge the malicious request.

If c has low integrity, CSRF protection can be bypassed if the token stored
in c is not session-dependent. To detect this, we have to test whether Mallory’s
token can successfully be used in Alice’s session. We can do this by revising the
original testing strategy as follows: after step 1 we read the value of the cookie
c from Mallory’s session and at step 6 we modify the forged HTTP request so
that the cookie c matches such value. This simulates a scenario where Mallory’s
forced her own token into Alice’s browser before forging the malicious request.

4.4 Discussion

Testing is a powerful tool to unveil security breaches, but clearly it is of no use
in establishing security proofs. Irrespective of how carefully a testing strategy
might have been designed, there is no way that black-box testing can be made
complete in general: for instance, it is not possible to know whether a stateless
anti-CSRF token is cryptographically bound to the value of a request parameter
without having access to the web application code. A further important remark
concerns coverage. In our testing strategies we assume that the security tester



knows the security-sensitive operations to scrutinize. However, identifying all
such operations in real websites might be complex: we refer to [10] for a recent
research work on the topic. Having said that, the testing strategies we have just
described turned out to be rather effective and useful in practice (see below).

5 Dredd: Implementation and Experiments

5.1 Security Testing with Dredd

We developed Dredd, a browser extension for Mozilla Firefox which implements
and semi-automates the testing strategies presented in the previous section. The
configuration of Dredd requires the specification of the access credentials of two
test accounts (Alice and Mallory) for the website under test. When activated on
a website, Dredd asks for the vulnerability to test for (session hijacking, session
fixation or CSRF) and the attacker of interest (web attacker, related-domain
attacker or network attacker). Dredd then instructs the security tester to login
using one of the test accounts and perform the operation under test. Once the
tester confirms that this has been done, Dredd runs the corresponding testing
strategy up to completion and asks the security tester to confirm its outcome,
i.e., to flag whether Mallory successfully managed to attack Alice or not. This is
trivial to do for the security tester by visually checking the website, yet generally
hard to automate given the variegate nature of existing web applications.

The Mozilla Firefox extension APIs support a natural and direct implemen-
tation of Dredd, because the webRequest API provides the ability to inter-
cept and modify HTTP requests and responses, and extensions can ask for the
cookies permission to access the cookie jar of all web origins. Porting Dredd to
Google Chrome would be straightforward, given that Mozilla Firefox and Google
Chrome essentially implement the same extension architecture.

5.2 Experimental Evaluation

We tested Dredd on 20 randomly sampled websites from the Alexa Top 1,000.
We only considered websites in English or in Italian, since we were required to
understand the website user interface and potential error messages. Moreover,
we only considered websites which allow single sign-on access with a major iden-
tity provider (Google or Facebook), so as to avoid the manual account creation
process. Finally, we only considered websites served over HTTPS, because the
network attacker is part of our threat model.

For each website, we chose a single security-sensitive operation to test, based
on our understanding of the web application semantics, and ran all our testing
strategies under all the attackers of our threat model. Occasionally, we managed
to avoid a few redundant tests: for instance, if a website is already vulnerable to
CSRF attacks against the web attacker, then it also suffers from the same flaw
against the related-domain attacker and the network attacker.

Table 4 provides the full breakdown of the identified vulnerabilities on the
tested websites. We present the details in the rest of this section and discuss the
security impact of our findings in Section 5.3.



Table 4. Overview of the vulnerabilities identified with Dredd

Website
Session Hijacking Session Fixation CSRF
Related Network Related Network Web Related Network

www.adobe.com x x

www.airbnb.it x

www.aol.com x

www.bitdefender.net

www.coursera.org x

www.expedia.com x

www.geeksforgeeks.org x

www.genius.com x

www.glassdoor.com x

www.groupon.com x

www.imgur.com x x x x

www.immobiliare.it x x x x

www.instacart.com x

www.kijiji.it

www.medium.com x

www.mondadoristore.it x x x x x x x

www.prezi.com x x

www.quora.com x x x x x x x

www.scoop.it x

www.yandex.com x

Session Hijacking. The first observation we make is that the related-domain
attacker is significantly more powerful than the network attacker when it comes
to session hijacking. In particular, we found that the related-domain attacker
can hijack the sessions of 15 websites, which is motivated by the fact that large
websites often span multiple sub-domains, hence the use of domain cookies for
session management is widespread. The proposed testing strategy completed 13
times at step 4 and twice at step 10, which shows that having two exit conditions
there is sometimes useful in practice.

The network attacker can perform session hijacking on 7 websites, all of which
were deemed as vulnerable at step 4 of the testing strategy. These websites do
not implement full HSTS, yet make an insufficient use of the Secure attribute
to protect their session cookies; 5 of them do not activate HSTS at all, while the
other 2 websites do it only partially, i.e., without protecting their sub-domains.
As to the 13 secure cases, 9 websites adopt full HSTS and 4 websites do not, but
still manage to protect their sessions thanks to an appropriate use of the Secure

attribute and/or the adoption of host-only cookies (in case of partial HSTS).

Session Fixation. We identified room for session fixation in 3 websites. All
these websites are vulnerable against both the related-domain attacker and the
network attacker. None of the websites uses cookies prefixes, 2 of them do not
activate HSTS at all, while the last website does it only partially, hence cookie



integrity is not guaranteed against the aforementioned attackers. The proposed
testing strategy completed twice at step 4 and once at step 10, hence handling
two exit conditions is occasionally useful to catch real-world vulnerabilities.

Cross-Site Request Forgery. The web attacker is able to exploit CSRF vul-
nerabilities just in 2 websites. This suggests that the large majority of the de-
velopers of the websites we tested are aware of the dangers of CSRF, which is
reassuring considered their popularity. Remarkably, however, both the related-
domain attacker and the network attacker are able to exploit 2 additional CSRF
vulnerabilities on the tested websites, due to incorrect implementations of the
double submit pattern. We discuss these two cases in detail.

The website www.imgur.com performs the double submit using a domain
cookie which is not marked as Secure, hence both the related-domain attacker
and the network attacker can breach its confidentiality and circumvent the CSRF
protection. The website www.prezi.com implements the double submit pattern
by using a cookie which is not session-dependent, without deploying HSTS or
cookie prefixes to protect its integrity, hence both the related-domain attacker
and the network attacker can bypass the CSRF protection mechanism. Moreover,
this cookie is shared with the sub-domains and lacks the Secure attribute, hence
its confidentiality is not guaranteed against the aforementioned attackers, which
enables an additional vector for CSRF.

5.3 Security Impact

Web Attacker. The web attacker is the baseline attacker to consider on the
Web, since the owner of any untrusted website can potentially act as the web
attacker against a high-profile service. Luckily, we only found two websites which
suffer from significant security flaws exploitable by the web attacker. It is worth
discussing here the case of www.mondadoristore.it. This e-commerce website
does not implement any form of protection against CSRF, hence all the security-
sensitive functionality typical of such services, e.g., shopping cart management,
is left vulnerable. Even worse, the password change functionality can be abused
to change the account password to a new value chosen by the attacker, which
enables account takeover. This provides illegitimate access to confidential infor-
mation like shipping addresses and credit card numbers.

Network Attacker. The network attacker is now a common web security threat
to deal with, due to the widespread adoption of WiFi networks. Observe that
all the attacks we discussed are effective even under the (optimistic) assumption
that users navigate just low-profile websites over untrusted WiFi. The network
attacker can perform session hijacking on 7 websites and session fixation on 3
websites, thus taking full control of the victim’s session. Moreover, the network
attacker can exploit CSRF vulnerabilities on 4 websites: 3 of them already suffer
from a more serious security flaw like session hijacking, while www.prezi.com

can only be targeted by means of CSRF. It is worth noticing that the network



attacker can entirely bypass CSRF protection there and abuse all the website
functionality, since the implementation of the defense mechanism itself is flawed.

Related-Domain Attacker. The related-domain attacker is the strongest at-
tacker in our pool on the 20 tested websites, in particular due to her ability of
performing session hijacking on 15 websites. One might argue that this was ex-
pected, given the common practice of building sessions on top of domain cookies,
and that the related-domain attacker is not a realistic threat, given that most
websites are not leasing sub-domains to untrusted users and organizations. Al-
though we acknowledge that we cannot tell for sure whether the related-domain
attacker is part of the threat model of the tested websites, we point out that re-
cent work highlighted the dangers of related domains for session security [12]. In
particular, the authors showed that the high number of sub-domains in popular
websites amplifies the attack surface against web sessions, because it is common
to identify TLS vulnerabilities in at least one of these hosts.

In our work, we further substantiate the threats posed by the related-domain
attacker. By crawling the Certificate Transparency logs, we observed that 6 out
of the 20 tested websites have more than 100 sub-domains and that the me-
dian number of sub-domains is 26, i.e., the attack surface coming from related
domains is large. Notice that these numbers represent a lower bound of the num-
ber of existing sub-domains and that 18 out of the 20 websites use a wildcard
HTTPS certificate, which means that the number of their sub-domains can grow
arbitrarily large. Most importantly, we analyzed all the 20 websites with the tool
developed in [12] to identify TLS vulnerabilities in any of their sub-domains, ex-
posing 5 vulnerable websites: www.adobe.com, www.aol.com, www.expedia.com,
www.groupon.com and www.yandex.com. Since the detected TLS vulnerabilities
affect the confidentiality of domain cookies, we note that at least these 5 websites
are at concrete risk of session hijacking (see Table 4).

5.4 Responsible Disclosure

We responsibly disclosed all the identified vulnerabilities exploitable by the web
attacker and the network attacker to the respective website owners or security
teams. We also reported all the sub-domains suffering from TLS vulnerabilities
according to the tool developed in [12], which may allow an attacker with control
of the network traffic to play the role of the related-domain attacker.

We also collected a few responses to our responsible disclosure. In particular,
www.imgur.com and www.quora.com acknowledged the reported vulnerabilities
as valid through their bug bounty programs. Though none of our reports was
deemed invalid, which confirms the effectiveness of Dredd, we unfortunately no-
ticed that developers are not always aware of the security implications of the
reported vulnerabilities or do not consider security as a priority. For example,
we observed that several bug bounty programs consider out of scope the fol-
lowing security issues: lack of cookie security attributes, CSRF, misconfigura-
tion of TLS. However, these vulnerabilities have already been exploited multiple



times, often with severe security consequences: for example, CSRF has recently
been proved exploitable for purchase hijacking, payment hijacking and account
takeover on existing websites [10]. We hope that the security awareness of web
developers will increase in the next future as a result of recent security analyses
of existing websites, including the present one.

6 Related Work

Web session security is a popular research area, which received extensive atten-
tion from the security community: we refer to [13] for a recent survey.

Session hijacking is a major threat for web sessions, yet no rigorous testing
strategy for it has been proposed so far. However, several protection mechanisms
have been designed, including one-time cookies [16], origin-bound certificates [17]
and a variety of browser extensions which protect session cookies [24, 31, 8]. A
variant of the attack called sub-session hijacking has also been studied [14].

Session fixation has been thoroughly studied in previous work, which also pro-
posed a methodology to identify room for potential attacks [19]. Unfortunately,
the proposed approach assumes the knowledge of the full set of the session cook-
ies and might produce false positives, since it is based on manual code inspection
and does not take cookie integrity into account.

Robust defenses against CSRF have been first presented in [4]. Although the
security analysis therein is thorough and exhaustive, it is also quite outdated:
when the paper was published, HSTS, cookie prefixes and same-site cookies were
not available yet, and the threats posed by related-domain attackers were still
unknown [6]. A testing strategy for CSRF vulnerabilities has been first proposed
in [30]. Our strategy extends this work to cover related-domain attackers and
network attackers, which requires one to reason about their ability to circumvent
the protection granted by stateless anti-CSRF tokens.

Deemon [26] is a dynamic analysis tool which can be used to identify CSRF
vulnerabilities in PHP code. Deemon is a language-based tool, which only works
on PHP and requires access to the web application code, while our testing strate-
gies are language-independent and black-box. Mitch [10] is a black-box analysis
tool for CSRF vulnerabilities based on machine learning and syntactic heuristics
on HTTP responses, but its threat model only considers the web attacker.

Different flavours of web session integrity have been already discussed and
formalized in the literature [1, 9, 20, 11]. Notable practical papers on web session
integrity include [29] and [35], which showed the dangers posed by the lack of
cookie confidentiality and integrity on existing popular websites.

Finally, it is worth noticing that model-based testing has been proposed for
web application security in a number of papers [7, 28, 27]. This approach operates
on a formal model of the web application, rather than on its implementation.
As such, it can leverage tools like model-checkers to perform a systematic explo-
ration of the web application state space, but it requires the creation of formal
web application models. This is typically a time-consuming and complex task,
which does not match the expertise of most web developers.



7 Conclusion

We discussed session integrity as a necessary property for web session security,
which is violated by classic attacks like session hijacking, session fixation and
cross-site request forgery. We then proposed black-box testing strategies to de-
tect session integrity flaws and we implemented these strategies in a browser
extension called Dredd to semi-automate the testing process. Finally, we used
Dredd to expose a significant number of vulnerabilities in popular websites from
the Alexa ranking. Our work provides yet another proof of the security challenges
of web session implementations: though all the attacks we considered are well-
known, the complexity of the web platform and its threat model makes subtle
security issues hard to detect. We showed that Dredd is a useful tool to support
web developers in a systematic security assessment, which identifies exploitable
vulnerabilities without requiring a deep understanding of the web application.

As future work, we plan to further automatize the security testing process to
extend its coverage and enlarge the scope of our analysis to a larger number of
websites, so as to get a better understanding of session security on the current
Web. Moreover, we also would like to devise new testing strategies to cover more
attacks, like login CSRF and cookie forcing [13].

Acknowledgements. We would like to thank Alessandro Busatto for contributing
to an early stage of the project.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a Formal
Foundation of Web Security. In: Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010. pp. 290–304 (2010)

2. Barth, A.: HTTP State Management Mechanism. Available at http://tools.

ietf.org/html/rfc6265 (2011)
3. Barth, A.: The Web Origin Concept. Available at http://tools.ietf.org/html/

rfc6454 (2011)
4. Barth, A., Jackson, C., Mitchell, J.C.: Robust Defenses for Cross-Site Request

Forgery. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security, CCS 2008. pp. 75–88 (2008)

5. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.C.: State of the art: Automated black-
box web application vulnerability testing. In: 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. pp.
332–345 (2010)

6. Bortz, A., Barth, A., Czeskis, A.: Origin Cookies: Session Integrity for Web Ap-
plications. In: Web 2.0 Security & Privacy Workshop (W2SP 2011) (2011)

7. Büchler, M., Oudinet, J., Pretschner, A.: Spacite - web application testing engine.
In: Fifth IEEE International Conference on Software Testing, Verification and Val-
idation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012. pp. 858–859 (2012)

8. Bugliesi, M., Calzavara, S., Focardi, R., Khan, W.: CookiExt: Patching the Browser
Against Session Hijacking Attacks. Journal of Computer Security 23(4), 509–537
(2015)



9. Bugliesi, M., Calzavara, S., Focardi, R., Khan, W., Tempesta, M.: Provably Sound
Browser-Based Enforcement of Web Session Integrity. In: Proceedings of the IEEE
27th Computer Security Foundations Symposium, CSF 2014. pp. 366–380 (2014)

10. Calzavara, S., Conti, M., Focardi, R., Rabitti, A., Tolomei, G.: Mitch: A machine
learning approach to the black-box detection of CSRF vulnerabilities. In: IEEE
European Symposium on Security and Privacy (2019)

11. Calzavara, S., Focardi, R., Grimm, N., Maffei, M.: Micro-policies for web session
security. In: IEEE 29th Computer Security Foundations Symposium, CSF 2016,
Lisbon, Portugal, June 27 - July 1, 2016. pp. 179–193 (2016)

12. Calzavara, S., Focardi, R., Nemec, M., Rabitti, A., Squarcina, M.: Postcards from
the post-HTTP world: Amplification of HTTPS vulnerabilities in the web ecosys-
tem. In: IEEE Symposium on Security and Privacy (2019)

13. Calzavara, S., Focardi, R., Squarcina, M., Tempesta, M.: Surviving the web: a
journey into web session security. ACM Computing Surveys (2017)

14. Calzavara, S., Rabitti, A., Bugliesi, M.: Sub-session hijacking on the web: Root
causes and prevention. Journal of Computer Security 27(2), 233–257 (2019)

15. Calzavara, S., Tolomei, G., Casini, A., Bugliesi, M., Orlando, S.: A supervised
learning approach to protect client authentication on the web. TWEB 9(3), 15:1–
15:30 (2015)

16. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-Time Cookies: Pre-
venting Session Hijacking Attacks with Stateless Authentication Tokens. ACM
Transactions on Internet Technology 12(1), 1–24 (2012)

17. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-Bound Certificates: a
Fresh Approach to Strong Client Authentication for the Web. In: Proceedings of
the 21th USENIX Security Symposium, USENIX 2012. pp. 317–331 (2012)

18. Hodges, J., Jackson, C., Barth, A.: HTTP Strict Transport Security (HSTS). Avail-
able at http://tools.ietf.org/html/rfc6797 (2012)

19. Johns, M., Braun, B., Schrank, M., Posegga, J.: Reliable Protection Against Ses-
sion Fixation Attacks. In: Proceedings of the 26th ACM Symposium on Applied
Computing, SAC 2011. pp. 1531–1537 (2011)

20. Khan, W., Calzavara, S., Bugliesi, M., Groef, W.D., Piessens, F.: Client side web
session integrity as a non-interference property. In: Proceedings of the 10th In-
ternational Conference on Information Systems Security, ICISS 2014. pp. 89–108
(2014)

21. Kranch, M., Bonneau, J.: Upgrading HTTPS in mid-air: An empirical study of
strict transport security and key pinning. In: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015 (2015)

22. Mozilla: Same-Origin Policy. http://developer.mozilla.org/en-US/docs/Web/

Security/Same-origin_policy (2015)
23. Mundada, Y., Feamster, N., Krishnamurthy, B.: Half-baked cookies: Hardening

cookie-based authentication for the modern web. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016. pp. 675–685 (2016)

24. Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W.: SessionShield:
Lightweight Protection against Session Hijacking. In: Proceedings of the 3rd Inter-
national Symposium on Engineering Secure Software and Systems, ESSoS 2011.
pp. 87–100 (2011)

25. OWASP: OWASP Testing Guide. https://www.owasp.org/index.php/OWASP_

Testing_Guide_v4_Table_of_Contents (2016)



26. Pellegrino, G., Johns, M., Koch, S., Backes, M., Rossow, C.: Deemon: Detecting
CSRF with dynamic analysis and property graphs. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. pp. 1757–1771 (2017)

27. Peroli, M., Meo, F.D., Viganò, L., Guardini, D.: Mobster: A model-based security
testing framework for web applications. Softw. Test., Verif. Reliab. 28(8) (2018)

28. Rocchetto, M., Ochoa, M., Dashti, M.T.: Model-based detection of CSRF. In:
ICT Systems Security and Privacy Protection - 29th IFIP TC 11 International
Conference, SEC 2014, Marrakech, Morocco, June 2-4, 2014. Proceedings. pp. 30–
43 (2014)

29. Sivakorn, S., Polakis, I., Keromytis, A.D.: The cracked cookie jar: HTTP cookie
hijacking and the exposure of private information. In: IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. pp. 724–742 (2016)

30. Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A., Morelli,
U.: Large-scale analysis & detection of authentication cross-site request forgeries.
In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017,
Paris, France, April 26-28, 2017. pp. 350–365 (2017)

31. Tang, S., Dautenhahn, N., King, S.T.: Fortifying web-based applications automat-
ically. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, CCS 2011. pp. 615–626 (2011)

32. West, M.: Cookie prefixes. Available at https://tools.ietf.org/html/

draft-ietf-httpbis-cookie-prefixes-00 (2016)
33. West, M.: Strict secure cookies. Available at https://tools.ietf.org/html/

draft-ietf-httpbis-cookie-alone-01 (2016)
34. West, M., Goodwin, M.: Same-site cookies. Available at https://tools.ietf.

org/id/draft-ietf-httpbis-cookie-same-site-00.txt (2016)
35. Zheng, X., Jiang, J., Liang, J., Duan, H., Chen, S., Wan, T., Weaver, N.: Cook-

ies Lack Integrity: Real-World Implications. In: Proceedings of the 24th USENIX
Security Symposium, USENIX 2015. pp. 707–721 (2015)


