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Abstract Despite its success and popularity, machine learning is now recognized
as vulnerable to evasion attacks, i.e., carefully crafted perturbations of test in-
puts designed to force prediction errors. In this paper we focus on evasion attacks
against decision tree ensembles, which are among the most successful predictive
models for dealing with non-perceptual problems. Even though they are powerful
and interpretable, decision tree ensembles have received only limited attention by
the security and machine learning communities so far, leading to a sub-optimal
state of the art for adversarial learning techniques. We thus propose Treant, a
novel decision tree learning algorithm that, on the basis of a formal threat model,
minimizes an evasion-aware loss function at each step of the tree construction. Tre-

ant is based on two key technical ingredients: robust splitting and attack invariance,
which jointly guarantee the soundness of the learning process. Experimental re-
sults on publicly available datasets show that Treant is able to generate decision
tree ensembles that are at the same time accurate and nearly insensitive to evasion
attacks, outperforming state-of-the-art adversarial learning techniques.

1 Introduction

Machine Learning (ML) is increasingly used in several applications and different
contexts. When ML is leveraged to ensure system security, such as in spam filtering
and intrusion detection, everybody acknowledges the need of training ML models
resilient to adversarial manipulations (Huang et al., 2011; Biggio and Roli, 2018).
Yet the same applies to other critical application scenarios in which ML is now
employed, where adversaries may cause severe system malfunctioning or faults. For
example, consider an ML model which is used by a bank to grant loans to inquiring
customers: a malicious customer may try to fool the model into illicitly qualifying
him for a loan. Unfortunately, traditional ML algorithms proved vulnerable to a
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wide range of attacks, and in particular to evasion attacks, i.e., carefully crafted
perturbations of test inputs designed to force prediction errors (Biggio et al., 2013;
Nguyen et al., 2015; Papernot et al., 2016a; Moosavi-Dezfooli et al., 2016).

To date, research on evasion attacks has mostly focused on linear classifiers
(Lowd and Meek, 2005; Biggio et al., 2011) and, more recently, on deep neural
networks (Szegedy et al., 2014; Goodfellow et al., 2015). Whereas deep learn-
ing obtained remarkable and revolutionary results on many perceptual problems,
such as those related to computer vision and natural language understanding,
decision trees ensembles are nowadays one of the best methods for dealing with
non-perceptual problems, and are one of the most commonly used techniques in
Kaggle competitions (Chollet, 2017). Decision trees are also considered interpretable

compared to other models (Tolomei et al., 2017), yielding predictions which are
human-understandable in terms of syntactic checks over domain features, which is
particularly appealing in the security setting. Unfortunately, despite their success,
decision tree ensembles have received only limited attention by the security and
machine learning communities so far, leading to a sub-optimal state of the art for
adversarial learning techniques (see Section 2.3).

In this paper, we thus propose Treant,1 a novel learning algorithm designed
to build decision trees which are resilient against evasion attacks at test time.
Based on a formal threat model, Treant optimizes an evasion-aware loss function
at each step of the tree construction (Madry et al., 2018). This is particularly chal-
lenging to enforce correctly, considered the greedy nature of traditional decision
tree learning (Hunt et al., 1966). In particular, Treant has to ensure that the
local greedy choices performed upon tree construction are not short-sighted with
respect to the capabilities of the attacker, who has the advantage of choosing the
best attack strategy based on the fully built tree. Treant is based on the combi-
nation of two key technical ingredients: a robust splitting strategy for decision tree
nodes, which reliably takes into account at training time the attacker’s capability
of perturbing instances at test time, and an attack invariance property, which pre-
serves the correctness of the greedy construction by generating and propagating
constraints along the decision tree, so as to discard splitting choices which might
be vulnerable to attacks.

We finally deploy our learning algorithm within a traditional random forest
framework (Breiman, 2001) and show its predictive power on real-world datasets.
Notice that, although there have been various proposals that tried to improve ro-
bustness against evasion attacks by using ensemble methods (Hershkop and Stolfo,
2005; Perdisci et al., 2006; Tran et al., 2008; Biggio et al., 2010), it was shown that
ensembles of weak models are not necessarily strong (He et al., 2017). We avoid this
shortcoming by employing Treant to train an ensemble of decision trees which
are individually resilient to evasion attempts.

1.1 Roadmap

To show how Treant improves over the state of the art, we proceed as follows:

1. We first review decision trees and decision tree ensembles, presenting a critique
of existing adversarial learning techniques for such models (Section 2).

1 The name comes from the role playing game “Dungeons & Dragons”, where it identifies
giant tree-like creatures.
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2. We introduce our formal threat model, discussing an exhaustive white-box
attack generation method, which allows for an accurate evaluation of the per-
formance of decision trees under attack and proves scalable enough for our
experimental analysis (Section 3).

3. We present Treant, the first tree learning algorithm which greedily, yet soundly,
minimizes an evasion-aware loss function upon tree construction (Section 4).

4. We experimentally show that Treant outperforms existing adversarial learning
techniques on four publicly available datasets (Section 5).

Our analysis shows that Treant is able to build decision tree ensembles that
are at the same time accurate and nearly insensitive to evasion attacks, providing
a significant improvement over the state of the art.

2 Background and Related Work

2.1 Supervised Learning

Let X ⊆ Rd be a d-dimensional vector space of real-valued features. An instance

x ∈ X is a d-dimensional feature vector (x1, x2, . . . , xd) representing an object in the
vector space.2 Each instance x ∈ X is assigned a label y ∈ Y by some unknown tar-

get function g : X 7→ Y. Starting from a set of hypotheses H, the goal of a supervised

learning algorithm is to find the function ĥ ∈ H that best approximates the target g.
This is practically achieved through empirical risk minimization (Vapnik, 1992);
given a sample of correctly labeled instances D = {(x1, g(x1)), . . . , (xn, g(xn))}
known as the training set, the empirical risk is defined by a loss function L :
H× (X × Y)n 7→ R+ measuring the cost of erroneous predictions, i.e., the cost of
predicting ĥ(xi) instead of the true label g(xi), for all (xi, g(xi)) ∈ D. Supervised
learning thus amounts to finding ĥ = argminh∈H L(h,D).

The loss L is typically obtained by aggregating an instance-level loss ` : Y×Y 7→
R+. In this work, we assume L(h,D) =

∑
(x,y)∈D `(h(x), y).

2.2 Decision Trees and Decision Tree Ensembles

A powerful set of hypotheses H is the set of the decision trees (Breiman et al.,
1984; Quinlan, 1986). We focus on binary decision trees, whose internal nodes
perform thresholding over feature values. Such trees can be inductively defined
as follows: a decision tree t is either a leaf λ(ŷ) for some label ŷ ∈ Y or a non-
leaf node σ(f, v, tl, tr), where f ∈ [1, d] identifies a feature, v ∈ R is the threshold
for the feature f and tl, tr are decision trees (left and right respectively). At test
time, an instance x traverses the tree t until it reaches a leaf λ(ŷ), which returns
the prediction ŷ, denoted by t(x) = ŷ. Specifically, for each traversed tree node
σ(f, v, tl, tr), x falls into the left tree tl if xf ≤ v, and into the right tree tr otherwise.
We just write λ or σ to refer to some leaf or node of the decision tree when its
actual content is irrelevant. The problem of learning an optimal decision tree is

2 For simplicity, we only consider numerical features over R. However, our framework can be
readily generalized to other use cases, e.g., categorical or ordinal features, which we support
in our implementation and experiments.
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Algorithm 1 BuildTree

1: Input: training data D
2: ŷ ← argminy L(λ(y),D)
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr ← BestSplit(D)
4: if L(σ(f, v, λ(ŷl), λ(ŷr)),D) < L(λ(ŷ),D) then
5: tl ← BuildTree(Dl)
6: tr ← BuildTree(Dr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if

Algorithm 2 BestSplit

1: Input: training data D
. Build a set of candidate tree nodes N via an exhaustive search over f and v

2: N ← {σ(f, v, λ(ŷl), λ(ŷr)) | ŷl, ŷr = argminyl,yr L(σ(f, v, λ(yl), λ(yr)),D)}
. Select the candidate node t̂ ∈ N which minimizes the loss L on the training data D

3: t̂ = argmint∈N L(t,D) = σ(f, v, λ(ŷl), λ(ŷr))

. Split the training data D based on the best candidate node t̂ = σ(f, v, λ(ŷl), λ(ŷr))
4: Dl ← {(x, y) ∈ D | xf ≤ v}
5: Dr ← D \ Dl
6: return t̂,Dl,Dr

known to be NP-complete (Hyafil and Rivest, 1976; Murthy, 1998); as such, a
top-down greedy approach is usually adopted (Hunt et al., 1966), as shown in
Algorithm 1.

The function BuildTree takes as input a dataset D and initially computes
the label ŷ which minimizes the loss on D for a decision tree composed of just
a single leaf; for instance, when the loss is the Sum of Squared Errors (SSE),
such label just amounts to the mean of the labels in D. The function then checks
if it is possible to grow the tree to further reduce the loss by calling a splitting

function BestSplit (Algorithm 2), which attempts to replace the leaf λ(ŷ) with
a new sub-tree σ(f, v, λ(ŷl), λ(ŷr)). This sub-tree is greedily identified by choosing
f and v from an exhaustive exploration of the search space consisting of all the
possible features and thresholds, and with the predictions ŷl and ŷr chosen so as to
minimize the global loss on D. If it is possible to reduce the loss on D by growing
the new sub-tree, the tree construction is recursively performed over the subsets
Dl = {(x, y) ∈ D | xf ≤ v} and Dr = D \ Dl, otherwise the original leaf λ(ŷ)
is returned. Real-world implementations of the algorithm typically use multiple
stopping criteria to prevent overfitting, e.g., by bounding the tree depth, or by
requiring a minimum number of instances in the recursive calls.

Random Forest (RF) and Gradient Boosting Decision Trees (GBDT) are popu-
lar ensemble learning methods for decision trees (Breiman, 2001; Friedman, 2001).
RFs are obtained by independently training a set of trees T , which are combined
into the ensemble predictor ĥ, e.g., by using majority voting to assign the class
label. Each ti ∈ T is typically built by using bagging and per-node feature sam-
pling over the training set. In GBDTs, instead, each tree approximates a gradient
descent step along the direction of loss minimization. Both methods are very effec-
tive, where RF is able to train models with low variance, while GDBTs are models
of high accuracy yet possibly prone to overfitting.
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2.3 Related Work

Adversarial learning, which investigates the safe adoption of ML in adversarial set-
tings (Huang et al., 2011), is a research field that has been consistently increasing
of importance in the last few years. In this paper we deal with evasion attacks, a
research sub-field of adversarial learning, where deployed ML models are targeted
by attackers who craft adversarial examples that resemble normal data instances,
but force wrong predictions. Most of the work in this field regards classifiers, in
particular binary ones. The attacker starts from a positive instance that is classi-
fied correctly by the deployed ML model and is interested in introducing minimal
perturbations on the instance to modify the prediction from positive to negative,
thus “evading” the classifier (Nelson et al., 2010; Biggio et al., 2013, 2014; Srndic
and Laskov, 2014; Kantchelian et al., 2016; Carlini and Wagner, 2017; Dang et al.,
2017; Goodfellow et al., 2015; Zhang et al.). Contrary to robust machine learn-
ing (Tyler, 2008) where some form of probabilistic random noise is assumed, in the
adversarial setting even a single perturbation which is able to fool the classifier is
assumed to be adopted by the attacker with 100% probability. To prevent evasion
attacks, different techniques have been proposed for different models, including
support vector machines (Biggio et al., 2011; Xiao et al., 2015), deep neural net-
works (Gu and Rigazio, 2015; Goodfellow et al., 2015; Papernot et al., 2016b), and
decision tree ensembles (Kantchelian et al., 2016; Chen et al., 2019). Unfortunately,
the state of the art for decision tree ensembles is far from satisfactory.

The first adversarial learning technique for decision tree ensembles is due to
Kantchelian et al. (2016) and is called adversarial boosting. It is an empirical
data augmentation technique, borrowing from the adversarial training approach
(Szegedy et al., 2014), where a number of evading instances are included among
the training data to make the learned model aware of the attacks and, thereby,
possibly more resilient to them. Specifically, at each boosting round, the training
set is extended by crafting a set of possible perturbations for each original instance
and by picking the one with the smallest margin, i.e., the largest misprediction
risk, for the model trained so far. Adding perturbed instances to the training set
forces the learning algorithm to minimize the average error over both the origi-
nal instances and the chosen sample of evading ones, but this does not provide
clear performance guarantees under attack. This is both because evading instances
exploited at training time might not be representative of test-time attacks, and
because optimizing the average case might not defend against the worst-case at-
tack. Indeed, the experiments in Section 5 show that the performance of ensembles
trained via adversarial boosting can be severely downgraded by evasion attacks.

The second adversarial learning technique for decision tree ensembles was pro-
posed in a very recent work by Chen et al., who introduced the first tree learning
algorithm embedding the attacker directly in the optimization problem solved
upon tree construction (Chen et al., 2019). The key idea of their approach, called
robust trees, is to redefine the splitting strategy of the training examples at a tree
node. They first identify the so-called unknown instances of D, which may fall in
either in Dl or in Dr, depending on adversarial perturbations. The authors thus
claim that the optimal tree construction strategy would need to account for an ex-
ponential number of attack configurations over these unknown instances. To tame
such algorithmic complexity, they propose a sub-optimal heuristic approach based
on four “representative” attack cases. Though the key idea of this algorithm is
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certainly interesting and shares some similarities with our own proposal, it also
suffers from significant shortcomings. First, representative attack cases are not
such anymore when the attacker is aware of the defense mechanism, and they are
not anyway sufficient to subsume the spectrum of possible attacks: our algorithm
takes into account all the possible attack cases, while being efficient enough for
practical adoption. Moreover, the approach in (Chen et al., 2019) does not imple-
ment safeguards against the incremental greedy nature of decision tree learning:
there is no guarantee that, once the best splitting has been identified, the at-
tacker cannot adapt his strategy to achieve better results on the full tree. Indeed,
the experimental evaluation in Section 5 shows that it is very easy to evade the
trained models, which turn out to be even more fragile than those trained through
adversarial boosting in some cases.

3 Threat Model

The possibility to craft adversarial examples was popularized by Szegedy et al.
(2014) in the image classification domain: their seminal work showed that it is
possible to introduce minimal perturbations into an image so as to modify the
prediction of its class by a deep neural network.

3.1 Loss Under Attack and Adversarial Learning

At an abstract level, we can see the attacker A as a function mapping each instance
to a set of possible perturbations, which might be able to evade the ML model.
Depending on the specific application scenario, not every attack is plausible, e.g.,
A cannot force some perturbations or behaves surreptitiously to avoid detection.
For instance, in the typical image classification scenario, A is usually assumed to
introduce just slight modifications that are perceptually undetectable to humans.
This simple similarity constraint between the original instance x and its perturbed
variant z is well captured by a distance (Goodfellow et al., 2015), e.g., one could
have A(x) = {z | ‖z − x‖∞ ≤ ε}.

Similarly, assuming that the attacker can run independent attacks on every
instance of a given dataset D, we can define A(D) as the set of the datasets D′
obtained by replacing each (x, y) ∈ D with any (z, y) such that z ∈ A(x).

The hardness of crafting successful evasion attacks defines the robustness of a
given ML model at test time. The goal of learning a robust model is therefore to
minimize the harm an attacker may cause via perturbations. This learning goal
was formalized as a min-max problem by Madry et al. (2018):

ĥ = argmin
h∈H

max
D′∈A(D)

L(h,D′)︸ ︷︷ ︸
LA(h,D)

. (1)

The inner maximization problem models the attacker A replacing all the given
instances with an adversarial example aimed at maximizing the loss. We call loss

under attack, noted LA(h,D), the solution to the inner maximization problem. The
outer minimization resorts to the empirical risk minimization principle, aiming to
find the hypothesis that minimizes the loss under attack on the training set.
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3.2 Attacker Model

Distance-based constraints for defining the attacker’s capabilities are very flexible
for perceptual problems and proved amenable for heuristic algorithms for solving
the inner maximization problem of Equation 1 (Madry et al., 2018). However, they
cannot be easily generalized to other realistic application scenarios, e.g., where
perturbations are not symmetric, where the attacker may not be able to alter
some of the features, or where categorical attributes are present. To overcome
such limitations, we model the attacker A as a pair (R,K), where R is a set of
rewriting rules, defining how instances can be corrupted, and K ∈ R+ is a budget,
limiting the amount of alteration the attacker can apply to each instance. Each
rule r ∈ R has form:

[a, b]
f−→k [δl, δu],

where [a, b] and [δl, δu] are intervals on R∪{−∞,+∞}, with the former defining the
precondition for the application of the rule and the latter defining the magnitude

of the perturbation enabled by the rule; f ∈ [1, d] is the index of the feature to
corrupt; and k ∈ R+ is the cost of the rule. The semantics of the rewriting rule can
be explained as follows: if an instance x satisfies the condition xf ∈ [a, b], then the
attacker can corrupt it by adding any v ∈ [δl, δu] to xf and spending k from the
available budget. Note that v can possibly be negative, leading to a subtraction.
The attacker can corrupt each instance by using as many rewriting rules as desired
in whatever order, up to budget exhaustion.

According to this attacker model, we define A(x), the set of the attacks against
an instance x, as follows.

Definition 1 (Attacks) Given an instance x and an attacker A = (R,K), we let
A(x) be the set of the attacks that can be obtained from x, i.e., the set of the
instances z such that there exists a sequence of rewriting rules r1, . . . , rn ∈ R and
a sequence of instances x0, . . . ,xn where:

1. x0 = x and xn = z;
2. for all i ∈ [1, n], the instance xi−1 can be corrupted into the instance xi by

using the rewriting rule ri;
3. the sum of the costs of r1, . . . , rn is not greater than K.

Notice that x ∈ A(x) for any A by picking an empty sequence of rewriting rules.

We highlight that this rule-based attacker model includes novel attack capa-
bilities like asymmetric perturbations, easily generalizes to categorical variables,
and still covers or approximates standard distanced-based models. For instance,
L0-distance attacker models where the attacker can corrupt at will a limited num-
ber of features can be easily represented (Kantchelian et al., 2016). The use of a
budget is convenient to fine-tune the power of the attacker and enables the adop-
tion of standard evaluation techniques for ML models under attack, like security

evaluation curves (Biggio and Roli, 2018).

Example 1 (L0-Distance) The L0-distance captures localized perturbations with
arbitrary magnitude. Specifically, given an instance x ∈ X ⊆ Rd and a possible
perturbation z, we have that ‖z − x‖0 = |{f ∈ [1, d] | zf 6= xf}|, and thus the
L0-distance simply counts the dimensions of x that were actually perturbed.
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In our framework, we can model this by means of an attacker A = (R,K),
where the budget K stands for the largest L0-distance allowed on adversarial
perturbations and R includes, for all features f , a rewriting rule of the form:

[−∞,+∞]
f−→1 [−∞,+∞].

It is easy to show that for all z we have z ∈ A(x) if and only if ‖z − x‖0 ≤ K.
In particular, the largest perturbation is obtained from the original x by applying
exactly K distinct rules, each perturbing a different dimension.

Example 2 (L1-Distance) The L1-distance also captures localized perturbations,
but constrains their magnitude. Specifically, given an instance x ∈ X ⊆ Rd and a
possible perturbation z, we have that ‖z − x‖1 =

∑
f |zf − xf |.

In our framework, we can model this by means of an attacker A = (R,K),
where the budget K stands for the largest L1-distance allowed on adversarial
perturbations and R includes, for all features f , a rewriting rule of the form:

[−∞,+∞]
f−→ε [−ε,+ε],

where ε ∈ R+ models a maximum discrete step of perturbation (and its cost).
It is easy to show that the set A(x) can approximate {z | ‖z − x‖1 ≤ K} with

arbitrarily large accuracy by choosing appropriately small values of ε. Note that
the largest perturbation is obtained from the original x by applying exactly bK/εc
rules, always choosing the maximum or minimum magnitude ±ε.

Example 3 (L∞-Distance) The L∞-distance encourages uniformly spread pertur-
bations with small magnitude. Specifically, given an instance x ∈ X ⊆ Rd and a
possible perturbation z, we have that ‖z − x‖∞ = maxf |zf − xf |.

We observe that this form of non-localized perturbations is not currently sup-
ported by our threat model, since, once a rewriting rule is defined for a given
feature, it can always be (locally) applied up to budget exhaustion. However, a
straightforward solution to this issue would be to transform our current global
budget into a set of per-feature budgets {K1, . . . ,Kd}. Then, if K is the largest
L∞-distance allowed on adversarial perturbations, one could let Ki = K for all i
and just reuse the rewriting rules defined for the case of the L1-distance. We do
not implement this extension of the model for the sake of simplicity.

3.3 Attack Generation

Computing the loss under attack LA is useful to evaluate the resilience of ML
models to evasion attacks at test time; yet this might be intractable, since it as-
sumes the ability to identify the most effective attack for all the test instances.
This issue is thus typically dealt with by using a heuristic attack generation algo-
rithm, e.g., the fast gradient sign method (Goodfellow et al., 2015) or any of its
variants, to craft adversarial examples which empirically work well. However, our
focus on decision trees and the adoption of a rule-based attacker model enables an
exhaustive attack generation strategy for the test set which, though computation-
ally expensive, proves scalable enough for our experimental analysis and allows the
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Fig. 1 A decision tree and an instance x that can be attacked by perturbing its feature 2 (by
adding any value in interval [0, 3]). Note that since the maximum budget of A is 2, and the cost
of applying the rule r is 1, the rule can be applied only twice provided that the precondition
holds.

actual identification of the most effective attacks. This enables the most accurate
security assessment in terms of the actual value of LA.

We consider a white-box attacker model, where the attacker has the complete
knowledge of the trained decision tree ensemble. We thus assume that the attacker
exploits the knowledge of the structure of the trees in the targeted ensemble and,
most importantly, of the features and thresholds which are actually used in the
prediction process.

Note that a decision tree ensemble induces a finite partition of the input vector
space X , defined by the features and thresholds used in the internal nodes of the
trees in the ensemble, where instances falling in the same element of the partition
share the same prediction. This partition of the vector space makes it possible to
significantly reduce the set of attacks that are relevant to compute LA by consid-
ering at most one representative attack for each element of the partition (Calzavara
et al., 2019). Once this is done, one can feed all the attack representatives to the
tree ensemble and identify the one that maximizes the loss.

For the sake of simplicity, we just sketch the algorithm that generates the attack
representatives. For any given instance x, we first identify the set of applicable
rules: if a rule targets the feature f with magnitude [δl, δr], the interval of possible
perturbations [xf + δl, xf + δu] is split into the sub-intervals induced by (i) the
ensemble’s thresholds relative to feature f , since this might change the prediction
of the tree ensemble, and (ii) the extremes of the pre-conditions of a rewriting
rule operating on feature f , since this might enable further perturbations which
will eventually lead to prediction changes. We then generate a single attack for
each of the identified sub-intervals by applying maximal perturbations therein and
recursively apply the algorithm up to budget exhaustion. Finally, we return just
the attacks which actually crossed some threshold of the tree ensemble, since only
those could lead to changes in predictions.

Example 4 (Attack Generation) Consider the instance x = (7, 9) with label +1 and
the decision tree in Figure 1, which classifies the instance correctly. Pick then
the attacker A = ({r}, 2), where r is a rewriting rule of cost 1 which allows the
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corruption of the feature 2 by adding any value in [0, 3], provided that the feature
value is in the interval [6, 10]. In our formalism, this is represented as follows:

r = [6, 10]
2−→1 [0, 3].

Only three values of the feature 2 are relevant in our setting to generate rep-
resentative attacks: besides 12 (the threshold used by the decision tree), which
actually partitions the second dimension into the intervals (−∞, 12] and (12,+∞),
also 6 (the lower bound of the pre-condition of rule r) and 10 (the upper bound
of the pre-condition of rule r). We include these bounds because rule r might be
applied again, as long as the perturbations fall within the interval [6, 10], and this
might be useful to eventually cross a threshold of the decision tree.

Our algorithm thus applies r multiple times to perturb the second feature of
x = (7, 9): in particular, the value 9 can initially be perturbed into any value from
[9, 12] after an application of the rule. Perturbations in this range can only cross
one of the previously identified thresholds, i.e., 10. This induces a partitioning of
[9, 12] in the sub-intervals [9, 10] and (10, 12]. The first attack x1 = (7, 10) does
not lead to a change of the prediction outcome of the decision tree, yet moved
towards the decision threshold and can still be corrupted by rule r. The alternative
attack x′1 = (7, 12) also does not lead to any prediction change and cannot be
corrupted any further due to the pre-condition of rule r. However, the attacker can
target the second feature of x1 = (7, 10) to corrupt it into any value from [10, 13].
Perturbations in this range can cross the decision threshold 12, inducing the sub-
intervals [10, 12] and (12, 13]. In particular, the attack x2 = (7, 13) is generated by
the algorithm and it is the only returned attack, since it is representative of all
the attacks causing the instance x to fall into the partition (12,+∞) of the second
dimension of the feature space.

4 Treant: Key Ideas & Design

In this section, we present a novel decision tree learning algorithm that, by min-
imizing the loss under attack LA at training time, enforces resilience to evasion
attacks at test time. We call Treant the proposed algorithm.

4.1 Overview

Compared to Algorithm 1, Treant replaces the BestSplit function by revising:
(i) the computation of the predictions on the new leaves, (ii) the selection of the
best split and (iii) the dataset partition along the recursion.

Before discussing the technical details, we build on the toy example in Figure 2
to illustrate the non-trivial issues arising when optimizing LA. Figure 2.(a) shows
a dataset D for which we assume the attacker A = ({r}, 1), where r is a rewriting
rule of cost 1 which allows the corruption of the feature p by adding any value in
the interval [−1,+1].

Assuming SSE is used as the underlying loss function L, the decision stump
initially generated by Algorithm 1 is shown in Figure 2.(b) along with the result of
the splitting. Note that while the loss L = 2 is small,3 the loss under attack LA = 5

3 L(t,D) = (−2 + 1)2 + (−1 + 1)2 + (−1− 0)2 + 4 · (2− 2)2 = 2.
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21

(d) (e)

Fig. 2 Overview of the Treant construction and its key challenges.

is much larger.4 This is because the attacker may alter x2 into a perturbed instance
x̃2 so as to reverse the outcome of the test xp ≤ 1, i.e., the original instance x2 falls
into the left leaf of the stump, but the perturbed instance x̃2 falls into the right
leaf. The first issue of Algorithm 1 is thus that the estimated loss L on the training
set, computed when building the decision stump, is smaller than the loss under
attack LA we would like to minimize. We solve this issue by designing a novel
robust splitting strategy to identify the best split of D, which directly minimizes
LA when computing the leaves predictions and leads to the generation of a tree
that is more robust to attacks. In particular, the decision stump learnt by using
our robust splitting strategy is shown in Figure 2.(c), where the leaves predictions
have been found by assuming that x2 actually falls into the right leaf (according
to the best attack strategy). For this new decision stump, the best move for the
attacker is still to corrupt x2, but the resulting LA = 3.7 is much smaller than that
of the previous stump.5 The figure also shows the outcome of the robust splitting.

However, a second significant issue arises when the decision stump is recursively
grown into a full decision tree. Suppose to further split the right leaf of Figure 2.(c),
therefore considering only the instances falling therein, including the instance x2

put there by the robust splitting. We would find that the best split is given by
xq ≤ 3, where the feature q cannot be modified by the attacker. The resulting tree
is shown in Figure 2.(d). Note however that, by creating the new sub-tree, new
attacking opportunities show up, because the attacker now finds more convenient
to just leave x2 unaltered and let it fall directly into the left child of the root.
As a consequence, by adding the new sub-tree, we observe an increased loss under
attack LA = 3.75.6 This second issue can be solved by ensuring that any new sub-
tree does not create new attacking opportunities that generate a larger loss. We

4 LA(t,D) = (−2 + 1)2 + (−1 + 1)2 + (2− 0)2 + 4 · (2− 2)2 = 5.
5 LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.6)2 + 4 · (2− 1.6)2 = 3.7.
6 LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.5)2 + (2− 1)2 + 3 · (2− 2)2 = 3.75.
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Table 1 Notation Summary

Symbol Meaning

D Training dataset
Dλ Local projection of D on the leaf λ
A(x) Set of all the attacks A can generate from x
A(D) Set of all the attacks A can generate from D
λ(ŷ) Leaf node with prediction ŷ

σ(f, v, tl, tr) Node testing xf ≤v and having sub-trees tl, tr
Dl(f, v, A) Left elements of ternary partitioning on (f, v)
Dr(f, v, A) Right elements of ternary partitioning on (f, v)
Du(f, v, A) Unknown elements of ternary partitioning on (f, v)
DL(t̂, A) Left elements of robust splitting on t̂
DR(t̂, A) Right elements of robust splitting on t̂
CL(t̂, A) Set of constraints for the left child of t̂
CR(t̂, A) Set of constraints for the right child of t̂

call this property attack invariance. The proposed algorithm grows the sub-tree on
the right leaf by carefully adjusting its predictions as shown in Figure 2.(e), still
decreasing the loss under attack to LA = 3 with respect to the tree in Figure 2.(c).7

This is enforced by including constraints along the tree construction, as shown in
the figure.

To sum up, the key technical ingredients of Treant are:

1. Robust splitting: given a candidate feature f and threshold v, the robust splitting
strategy evaluates the quality of the corresponding node split on the basis of
a ternary partitioning of the instances falling into the node. It identifies those
instances for which the outcome of the node predicate xf ≤ v depends on the
attacker’s moves, and those that cannot be affected by the attacker, thus always
traversing the left or the right branch of the new node. In particular, the LA
minimization problem is reformulated on the basis of left, right and unknown
instances, i.e., instances which might fall either left or right depending on
the attacker. Finally, the recursion on the left and right child of the node is
performed by separating the instances in a binary partition based on the effects
of the most harmful attack (Section 4.2).

2. Attack invariance: a security property requiring that the addition of a new sub-
tree does not allow the attacker to find better attack strategies that increase
LA. Attack invariance is achieved by imposing an appropriate set of constraints
upon node splitting. New constraints are generated for each of the attacked
instances present in the split node and are propagated to the child nodes upon
recursion (Section 4.3).

The pseudo-code of the algorithm is given in Section 4.4. To assist the reader,
the notation used in the present section is summarized in Table 1.

4.2 Robust Splitting

We present our novel robust splitting strategy that grows the current tree t by
replacing a leaf λ with a new sub-tree so as to minimize the loss under attack LA.

7 LA(t,D) = (−2 + 1.5)2 + (−1 + 1.5)2 + (0− 1.5)2 + (2− 1.5)2 + 3 · (2− 2)2 = 3.



Treant: Training Evasion-Aware Decision Trees 13

For the sake of clarity, we discuss it as if the splitting was employed on the root
node of a new tree, i.e., to learn the decision stump that provides the best loss
reduction on the full input dataset D. The next subsection discusses the application
of the proposed strategy during the recursive steps of the tree-growing process.

Aiming at greedily optimizing the min-max problem in Equation 1, we have to
find the best decision stump t̂ = σ(f, v, λ(ŷl), λ(ŷr)) such that:

t̂ = argmin
t
LA (t,D) =

= argmin
t

max
D′∈A(D)

L(t,D′) =

= argmin
t

∑
(x,y)∈D

max
z∈A(x)

`(t(z), y).

However, the equation shows that this is not trivial, because the loss incurred
by an instance (x, y) may depend on the attacks it is possibly subject to. Similarly
to (Chen et al., 2019), we thus define a ternary partitioning of the training dataset
as follows.

Definition 2 (Ternary Partitioning) For a feature f , a threshold v and an at-
tacker A, the ternary partitioning of the dataset D = Dl(f, v, A) ∪ Dr(f, v, A) ∪
Du(f, v, A) is defined by:

Dl(f, v, A) = {(x, y) ∈ D | ∀z ∈ A(x) : zf ≤ v}
Dr(f, v, A) = {(x, y) ∈ D | ∀z ∈ A(x) : zf > v}
Du(f, v, A) = (D \ Dl(f, v, A)) \ Dr(f, v, A).

In words, Dl(f, v, A) includes those instances (x, y) falling into the left branch
regardless of the attack, hence the attacker has no gain in perturbing xf . A sym-
metric reasoning applies to Dr(f, v, A), containing those instances which fall into
the right branch for all the possible attacks. The instances that the attacker may
actually want to target are those falling into Du(f, v, A), thus aiming at the largest
loss. By altering those instances, the attacker may force each (x, y) ∈ Du(f, v, A)
to fall into the left branch with a loss of `(ŷl, y), or into the right branch, with a
loss of `(ŷr, y).

Example 5 (Ternary Partitioning) The test node xp ≤ 1 and the attacker considered
in Figure 2.(c) determine the following ternary partitioning of D:

– Dl(p, 1, A) = {(x0,−2), (x1,−1)}
– Dr(p, 1, A) = {(x3, 2), (x4, 2), (x5, 2), (x6, 2)}
– Du(p, 1, A) = {(x2, 0)}

In other words, the instance x2 is the only instance for which the branch taken
at test time is unknown, as it depends on the attacker A.

By construction, given (f, v), the loss LA can be affected by the presence of the
attacker A only for the instances in Du(f, v, A), while for all the remaining instances
it holds that LA = L. Since the attacker may force each instance of Du(f, v, A)
to fall into either the left or the right branch, the authors of (Chen et al., 2019)
acknowledge a combinatorial explosion in the computation of LA. Rather than
evaluating all the possible configurations, they thus propose a heuristic approach
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evaluating four “representative” attack cases: i) no attack, ii) all the unknown
instances are forced in the left child, iii) all the unknown instances are forced in
the right child, and iv) all the unknown instances are swapped by the attacker,
i.e., they are forced in the left/right child when they would normally fall in the
right/left child. Then, the loss L is evaluated for these four split configurations
and the maximum value is used to estimate LA, so as to find the best stump t̂ to
grow. Note that L is computed as in a standard decision tree learning algorithm.
Unfortunately, this heuristic strategy does not offer soundness guarantees, because
the above four configurations leave potentially harmful attacks out of sight and
do not induce an upper-bound of LA.

To avoid this soundness issue, while keeping the tree construction tractable,
we pursue a numerical optimization as follows. For a given (f, v), we highlight that
finding the best attack configuration and finding the best left/right leaves predic-
tions ŷl, ŷr are two inter-dependent problems, yet the strategy adopted in (Chen
et al., 2019) is to first evaluate a few different attack configurations, and then find
the leaves predictions. We instead solve these two problems simultaneously via a
formulation of the min-max problem that, fixed (f, v), is expressed solely in terms
of ŷl, ŷr:

(ŷl, ŷr) = argmin
yl,yr

LA(σ(f, v, λ(yl), λ(yr)),D), (2)

where LA is decomposed via the ternary partitioning as:

LA(σ(f, v, λ(yl), λ(yr)),D) =

= L(λ(yl),Dl(f, v, A)) + L(λ(yr),Dr(f, v, A)) +

+
∑

(x,y)∈Du(f,v,A)

max{`(yl, y), `(yr, y)}.

Observe that if the instance-level loss ` is convex, then LA is also convex8 and it
can be efficiently optimized numerically. Convexity is indeed a property enjoyed by
many loss functions such as SSE (for regression) and Log-Loss (for classification).
This allows one to overcome the exploration of the exponential number of attack
configurations, still finding the optimal solution (up to numerical approximation).

Given the best predictions ŷl, ŷr, we can finally produce a binary split of D (as
in Algorithm 1). To do this, we split the instances by applying the best adversarial
moves, i.e., by assuming that every (x, y) ∈ Du(f, v, A) is pushed into the left or
right child so as to generate the largest loss. If the two children induce the same
loss, then we assume the instance is not attacked.

Definition 3 (Robust Splitting) For a sub-tree to be grown t̂ = σ(f, v, λ(ŷl), λ(ŷr))
and an attacker A, the robust split of D = DL(t̂, A)∪DR(t̂, A) is defined as follows:

– DL(t̂, A) contains all the instances of Dl(f, v, A) and DR(t̂, A) contains all the
instances of Dr(f, v, A);

– for each (x, y) ∈ Du(f, v, A), the following rules apply:
– if `(ŷl, y) > `(ŷr, y), then (x, y) goes to DL(t̂, A);
– if `(ŷl, y) < `(ŷr, y), then (x, y) goes to DR(t̂, A);

8 The pointwise maximum and the sum of convex functions preserve convexity.
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– if `(ŷl, y) = `(ŷr, y), then (x, y) goes to DL(t̂, A) if xf ≤ v and to DR(t̂, A)
otherwise.

Example 6 (Robust Splitting) Once identified ŷl and ŷr for the decision stump t̂ =
(p, 1, λ(−1.5), λ(1.6)) in Figure 2.(c), the datasets obtained for the leaves by robust
splitting are:

– DL(t̂, A) = {(x0,−2), (x1,−1)}
– DR(t̂, A) = {(x2, 0), (x3, 2), (x4, 2), (x5, 2), (x6, 2)}

Notice that, unlike a standard decision tree learning algorithm, the right par-
tition contains the instance x2 due to the presence of the attacker, even though
such instance normally satisfies the root node test.

To summarize, the ternary partitioning allows LA to be optimized for a given
(f, v) and dataset D, hence it can be used to find the best tree-growing step by
an exhaustive search over f and v. Once this is done, the robust splitting allows
the dataset D to be partitioned in order to feed the algorithm recursion on the
left and right children of the newly created sub-tree. Ultimately, the goal of the
proposed construction is solving the min-max problem of Equation 1 for a single
tree-growing step and pushing the attacked instances into the partition induced
by the most harmful attack.

4.3 Attack Invariance

The optimization strategy described in Section 4.2 needs some additional refine-
ment to provide a sound optimization of LA on the full dataset D. When growing
a new sub-tree at a leaf λ, we denote with Dλ the local projection of the full dataset
at λ, i.e., the subset of the instances in D falling in λ along the tree construction by
applying the robust splitting strategy. The key observation now is that the robust
splitting operates by assuming that the attacker behaves greedily, i.e., by locally
maximizing the generated loss, but as new nodes are added to the tree, new attack
opportunities arise and different traversal paths towards different leaves may be-
come more fruitful to the attacker. If this is the case, the robust splitting becomes
unrepresentative of the possible attacker’s moves and any learning decision made
on the basis of such splitting turns out to be unsound, i.e., with no guarantee of
minimizing LA. Notice that this is a major design problem of the algorithm pro-
posed in (Chen et al., 2019), and experimental evidence shows how the attacker
can easily craft adversarial examples in some cases (see Section 5).

In the end, the computation of the best split for a given leaf λ cannot be done
just based on the local projection Dλ, unless additional guarantees are provided.
We thus enforce a security property called attack invariance, which ensures that the
tree construction steps preserve the correctness of the greedy assumptions made
on the attacker’s behavior. Given a decision tree t and an instance (x, y) ∈ D, we
let ΛA(t, (x, y)) stand for the set of leaves of t which are reachable by some attack
z ∈ A(x) that generates the largest loss among A(x).

Attack invariance requires that the tree construction steps preserves ΛA, in that
the attacker has no advantage in changing the attack strategy which was optimal
up to the previous step, thus recovering the soundness of the greedy construction.
We define attack invariance during tree construction as follows.
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Definition 4 (Attack Invariance) Let t be a decision tree and let t′ be the de-
cision tree obtained by replacing a leaf λ of t with the new sub-tree σ(f, v, λl, λr).
We say that t′ satisfies attack invariance for the dataset D and the attacker A iff:

∀(x, y) ∈ Dλ : ΛA(t′, (x, y)) ∩ {λl, λr} 6= ∅.

The above definition states that, after growing a new sub-tree from λ, the set
of the best options for the attacker against the instances in λ must include the
newly created leaves, so that the path originally leading to λ still represents the
most effective attack strategy against those instances.

Example 7 (Attack Invariance) Let t be the decision tree of Figure 2.(c). Figure 2.(d)
shows an example where adding a new sub-tree to t leads to a decision tree t′ which
breaks the attack invariance property. Indeed, we have ΛA(t′, (x2, 0)) = {λ(−1.5)},
which contains neither λ(1), nor λ(2). Notice that the best attack strategy has
indeed changed with respect to t, as leaving x2 unaltered now produces a larger
loss (2.25) than the originally strongest attack (1.0).

We enforce attack invariance by introducing a set of constraints into the opti-
mization problem of Equation 2. Suppose that the new sub-tree σ(f, v, λ(ŷl), λ(ŷr))
replaces the leaf λ and that an instance (x, y) ∈ Dλ is placed in the right child
by robust splitting, because one of its corruptions traverses the threshold v and
`(ŷr, y) ≥ `(ŷl, y). Then, attack invariance is granted if, whenever the leaves λ(ŷl)
and λ(ŷr) are later replaced by sub-trees tl and tr, there exists an attack z ∈ A(x)
that falls into a leaf of tr generating a loss larger than (or equal to) the loss of any
other attack falling in tl. We enforce such constraint during the recursive tree build-
ing process as follows. The requirement `(ŷr, y) ≥ `(ŷl, y) is transformed in the pair
of constraints `(tr(x), y) ≥ γ and `(tl(x), y) ≤ γ, where γ = min{`(ŷr, y), `(ŷl, y)}.
These two constraints are respectively propagated into the recursion on the right
and left children. As long as any sub-tree tr replacing λ(ŷr) satisfies the con-
straint `(tr(x), y) ≥ γ and any sub-tree tl replacing λ(ŷl) satisfies the constraint
`(tl(x), y) ≤ γ, the attacker has no advantage in changing the original attack strat-
egy, hence attack invariance is enforced.

To implement this mechanism, each leaf λ is extended with a set of constraints,
which is initially empty for the root of the tree. When λ is then split upon tree
growing, the constraints therein are included in the optimization problem of Equa-
tion 2 to determine the best predictions ŷl, ŷr for the new leaves. These constraints
are then propagated to the new leaves and new constraints are generated for them
based on the following definition, which formalizes the previous intuition.

Definition 5 (Constraints Propagation and Generation) Let λ be a leaf to be
replaced with sub-tree t̂ = σ(f, v, λ(ŷl), λ(ŷr)) and let C be its set of constraints.
The sets of constraints CL(t̂, A) and CR(t̂, A) for the two new leaves are defined as
follows:9

– if `(t(x), y) ≶ γ ∈ C and there exists z ∈ A(x) such that zf ≤ v, then
`(tl(x), y) ≶ γ is added to CL(t̂, A);

– if `(t(x), y) ≶ γ ∈ C and there exists z ∈ A(x) such that zf > v, then
`(tr(x), y) ≶ γ is added to CR(t̂, A);

9 We use the symbol ≶ to stand for either ≤ or ≥ when the distinction is unimportant.



Treant: Training Evasion-Aware Decision Trees 17

– if (x, y) ∈ Dλu(f, v, A) ∩ DλL(t̂, A), then `(tl(x), y) ≥ `(ŷr, y) is added to CL(t̂, A)
and `(tr(x), y) ≤ `(ŷr, y) is added to CR(t̂, A);

– if (x, y) ∈ Dλu(f, v, A) ∩ DλR(t̂, A), then `(tl(x), y) ≤ `(ŷl, y) is added to CL(t̂, A)
and `(tr(x), y) ≥ `(ŷl, y) is added to CR(t̂, A).

Example 8 (Enforcing Constraints) The tree in Fig. 2.(e) is generated by enforcing a
constraint on the loss of x2. After splitting the root, the constraint `(tr(x2), 0) ≥
`(ŷl, 0) is generated for the right leaf of the tree in Fig. 2.(c), where `(ŷl, 0) =
(−1.5 − 0)2 = 2.25. The solution of the constrained optimization problem on the
right child of the tree in Fig. 2.(c) finally grows two new leaves, generating the tree
in Fig. 2.(e). The difference from the tree in Fig. 2.(d) is that the prediction on
the left leaf of the right child of the root has been enforced to satisfy the required
constraint. For this tree, the attacker has no gain in changing attack strategy over
the previous step of the tree construction, shown in Figure 2.(c).

More formally, after growing the tree in Fig. 2.(c) with suitable constraints we
obtain the tree t′ in Fig. 2.(e), where the leaf λ(1.6) has been substituted with a
decision stump with the two new leaves {λ(1.5), λ(2)}. This gives ΛA(t′, (x2, 0)) =
{λ(−1.5), λ(1.5)}, where ΛA(t′, (x2, 0)) ∩ {λ(1.5), λ(2)} = {λ(1.5)} 6= ∅, thus satis-
fying the attack invariance property.

Note that constraints grant attack invariance at the cost of reducing the space
of the possible solutions for tree-growing. Nevertheless, in the experimental section
we show that this property does not prevent the construction of robust decision
trees that are also accurate in absence of attacks.

4.4 Tree Learning Algorithm

Our Treant construction is summarized in Algorithm 3. The core of the logic is
in the call to the TreantSplit function (line 3), which takes as input a dataset
D, an attacker A and a set of constraints C initially empty, and implements the
construction detailed along the present section. The construction terminates when
it is not possible to further reduce LA (line 4).

Function TreantSplit is summarized in Algorithm 4. Specifically, the function
returns the sub-tree minimizing the loss under attack LA on D subject to the con-
straints C, based on the ternary partitioning (lines 2-3). It then splits D by means
of the robust splitting strategy (lines 4-5) and returns new sets of constraints (lines
6-7), which are used to recursively build the left and right sub-trees. The optimiza-
tion problem (line 2) can be numerically solved via the scipy implementation of
the SLSQP (Sequential Least SQuares Programming) method, which allows the
minimization of a function subject to inequality constraints, like the constraint set
C generated/propagated by Treant during tree growing.

There is an important point worth discussing about the implementation of the
algorithm. As careful readers may have noticed, the TreantSplit function splits
each leaf λ by relying on the set of attacks A(x) for all instances (x, y) ∈ Dλ.
Though one could theoretically pre-compute all the possible attacks against the
instances in D, this would be very inefficient both in time and space, given the
potentially huge number of instances and attacks. Our implementation, instead,
incrementally computes a sufficient subset of A(x) along the tree construction. This
makes the construction computationally feasible by exploiting the observation that
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Algorithm 3 Treant

1: Input: training data D, attacker A, constraints C
2: ŷ ← argminy LA(λ(y),D) subject to C
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr, Cl, Cr ← TreantSplit(D, A, C)
4: if LA(σ(f, v, λ(ŷl), λ(ŷr)),D) < LA(λ(ŷ),D) then
5: tl ← Treant(Dl, A, Cl)
6: tr ← Treant(Dr, A, Cr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if

Algorithm 4 TreantSplit

1: Input: training data D, attacker A, constraints C
. Build a set of candidate tree nodes N using Ternary Partitioning to optimize LA

2: N ← {σ(f, v, λ(ŷl), λ(ŷr)) | ŷl, ŷr = argminyl,yr L
A(σ(f, v, λ(yl), λ(yr)),D) subject to C}

. Select the candidate node t̂ ∈ N which minimizes the loss LA on the training data D
3: t̂ = argmint∈N LA(t,D) = σ(f, v, λ(ŷl), λ(ŷr))

. Robust Splitting (see Definition 3)
4: Dl ← DL(t̂, A)
5: Dr ← DR(t̂, A)

. Constraint Propagation and Generation (see Definition 5)
6: Cl ← CL(t̂, A)
7: Cr ← CR(t̂, A)
8: return t̂,Dl,Dr, Cl, Cr

the ternary partitioning used for node splitting only requires the identification of
a single attack against the feature which is tested in the node predicate, hence the
computation of the full set of attacks is not actually needed.

More specifically, each instance (x, y) is enriched with a cost annotation k,
denoted by (x, y)k, initially set to 0 on the root. Such annotation keeps track of
the cost of the adversarial manipulations performed to push (x, y) into λ during
the tree construction. When splitting the leaf λ on (f, v), the algorithm generates
only the attacks against the feature f and assumes that k was already spent from
the attacker’s budget to further reduce the number of possible attacks. When
the instance (x, y)k is pushed into the left or right partition of Dλ by robust
splitting, the label k is updated to k+k′, where k′ is the minimum cost the attacker
must spend to achieve the desired node outcome. The same idea is applied when
propagating constraints, which are also associated with specific instances (x, y) for
which the computation of A(x) is required.

Observe that this implementation assumes that only the cost of adversarial
manipulations is relevant, not their magnitude, which is still sound when none of
the corrupted features is tested multiple times on the same path of the tree. We
enforce such restriction during the tree construction, which further regularizes the
growing of the tree. Since we are eventually interested in decision tree ensembles,
this does not impact on the performance of whole trained models.

4.5 Complexity Analysis

In a standard decision tree construction algorithm, the cost of splitting a node λ is
O(d · |Dλ|), since this requires a scan of the instances in λ to find the best feature
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and threshold for tree growing (Mehta et al., 1996). Similarly, Treant splits each
decision tree node by means of an exhaustive search over all possible features and
thresholds. The key difference lies in the node splitting procedure (Algorithm 4).
In particular, given a fixed feature and threshold, Treant pays an extra cost over
traditional tree constructions coming from two factors: the ternary partitioning
and the corresponding LA optimization problem (see Eq. 2). As we anticipated,
the optimization problem can be solved by the SLSQP method, which has cubic
complexity in the number of variables (Kraft, 1994). Our problem only has two
variables, corresponding to the predictions on the left and right leaf respectively.

Regarding the computational complexity of the ternary partitioning, we anal-
yse below the cost of deciding whether or not an instance x belongs to Dλu(f, v, A).
This has to be paid for every instance in the dataset and it is a multiplicative
factor with respect to the standard decision tree growing algorithm.

Proposition 1 Given a split candidate pair (f, v), an instance (x, y) ∈ D and an

attacker A = (R,K), the computational complexity of deciding whether x belongs to

Dλu(f, v, A) is O

((√
2|R|+ 1

) 2K
k∗
)

, where k∗ is the cost of the cheapest rule in R.

To assess whether x can be attacked, we are interested in finding (if it exists) a
sequence of perturbations with minimum cost which leads to crossing the thresh-
old v. Being of minimum cost, we can assume that each rule r in such chain is
maximally exploited so as to perturb the instance x to the extremes of the interval
[xf + δl, xf + δu] or to the ends of a precondition interval enabling some other rule
in R. Therefore, in the worst case, each rule r ∈ R can modify x into 2 + 2|R|
different ways, and this process is repeated up to budget exhaustion, i.e., at most
K/k∗ times where k∗ is the cost of the cheapest rule in R. We finally get a total

cost of O
(

(|R|(2 + 2|R|))
K
k∗
)

, or equivalently O

((√
2|R|+ 1

) 2K
k∗
)

.

Note that this bound is not tight as not all rules are always applicable, k∗

might be far from the cost of other rules, and it might not always be possible to
generate 2 + 2|R| perturbed instances. In fact, we may not need to enumerate all
the possible perturbations.

Below we consider a setting where the set of rules R encodes a L1-distance
attacker, which is one of the most commonly used models in literature. As discussed
in Section 3.2, the above attacker can be encoded with one single rule per feature,
which leads to a significantly lower computational complexity.

Proposition 2 Given a split candidate pair (f, v), a dataset D and an attacker A

such that there is only one rule per feature of the form r : [−∞,+∞]
f−→ε [−ε,+ε], the

computational complexity of deciding whether x belongs to Dλu(f, v, A) is O(1).

Supposing xf ≤ v (a similar reasoning holds for xf > v), an attacked instance
z with zf > v can be crafted with minimum cost by applying the rule r to x a
total of b(v−xf )/εc+1 times, where each application bears a cost equal to ε. If the
attacker’s budget K is sufficient to cover such cost, then the instance x belongs to
Dλu(f, v, A), and this check can be performed in constant time O(1). By repeating
this for every instance in D, we have a total cost of O(|D|).

The above strategy can be easily generalized to L0-distance attackers and to
every other rule set R where only one rule per feature is given. Specifically, an
analogous yet slightly more involved argument proves the following result.
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Proposition 3 Given a split candidate pair (f, v), a dataset D and an attacker A such

that there is only one rule per feature of the form r : [a, b]
f−→k [δl, δu], the computational

complexity of deciding whether x belongs to Dλu(f, v, A) is O(1).

Our experimental evaluation builds on the threat model supported by the
proposition above, which shows that the ternary partitioning can be efficiently
performed in practical use cases.

4.6 From Decision Trees to Tree Ensembles

In this section we introduced a new tree learning algorithm, yet individual decision
trees are rarely used in practice and ensemble methods are generally preferred for
real-world tasks. As anticipated in Section 2, the most popular ensemble meth-
ods for decision trees are Random Forest (RF) and Gradient Boosting Decision
Trees (GBDT). Extending Treant to these ensemble methods is straightforward,
because both methods can be seen as meta-algorithms which build on top of ex-
isting tree learning algorithms. RF builds multiple independent trees t1, . . . , tn by
using bagging and per-node feature sampling in each tj , while in GBDT each tree
ti adds a gradient descent step to minimize the cumulative loss incurred by the
previous trees. Hence, both methods eventually apply an underlying tree learning
algorithm multiple times to different training data.

The only delicate point to notice is that, since the Treant algorithm is para-
metric over an attacker A = (R,K), using the same attacker in the individual tree
constructions is a conservative approach to ensemble learning. This comes from
two factors: first, the construction of each tree tj relies on a robust splitting pro-
cedure which only accounts for attacks against tj , yet other trees in the ensemble
might contribute to make such attacks ineffective; second, the attacker’s budget
K is essentially refreshed along each tree construction. This conservative approach
overestimates the power of the attacker and cannot harm security, though it might
unnecessarily downgrade performance in the unattacked setting. That said, our ex-
perimental evaluation in the next section shows that ensembles built using Treant

are very accurate also in such setting. We leave the design of more sophisticated
ensemble learning techniques to future work.

5 Experimental Evaluation

5.1 Methodology

We compare the performance of classifiers trained by different learning algorithms:
two standard approaches, i.e., Random Forest (Breiman, 2001) (RF) and Gradi-
ent Boosting Decision Trees (Friedman, 2001) (GBDT) as provided by the Light-
GBM10 framework; two state-of-the-art adversarial learning techniques, i.e., Ad-
versarial Boosting (Kantchelian et al., 2016) (AB) and Robust Trees (Chen et al.,
2019) (RT); and a Random Forest of trees trained using the proposed Treant

algorithm (RF-Treant). Notice that the original implementation of AB exploited

10 https://github.com/microsoft/LightGBM
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Table 2 Main statistics of the datasets used in our experiments.

Dataset census wine credit malware

n. of instances 45,222 6,497 30,000 47,580

n. of features 13 12 24 1,000

class distribution (pos.÷neg. %) 25÷75 63÷37 22÷78 96÷4

a heuristic algorithm to quickly find effective adversarial examples, which does
not guarantee to find the most damaging attack. Our own implementation of
AB, which is built on top of LightGBM, exploits the white-box attack generation
method described in Section 3.3 to identify the best adversarial examples. In this
regard, our implementation of AB is more effective than the original algorithm.

We perform our experimental evaluation on four publicly available datasets,
using three standard validity measures: accuracy, macro F1 and ROC AUC. We
compute all measures both in absence of attacks and under attack, using our
white-box attack generation method. We used a 60-20-20 train-validation-test split
through stratified sampling. Hyper-parameter tuning on the validation data was
conducted to set the number of trees (≤ 100), number of leaves ({8, 32, 256}) and
learning rate ({0.01, 0.05, 0.1}) of the various ensembles so as to maximize ROC
AUC. All the results reported below were measured on the test data. Observe that
all the compared adversarial learning techniques are parametric with respect to the
budget granted to the attacker, modeling his power: we consider multiple instances
of such budget both for training (train budget) and for testing (test budget).

5.2 Datasets and Threat Models

We perform our experimental evaluation on four datasets: Census Income,11 Wine
Quality,12 Default of Credit Cards,13 and Malware Analysis.14 We refer to such
datasets as census, wine, credit, and malware, respectively. Their main statistics
are shown in Table 2; each dataset is associated with a binary classification task.15

We therefore design different threat models by means of sets of rewriting rules
indicating the attacker capabilities, with each set tailored to a given dataset. The
features targeted by those rules have been selected after a preliminary data ex-
ploration stage, where we investigated the importance and the data distribution
of all the features, e.g., to identify the magnitude of adversarial perturbations. Of
course, in a real-world deployment the definition of the appropriate threat model
would depend on the specific application scenarios of the trained classifiers: the
definitions here considered are evocative of plausible attack scenarios possibly an-
ticipated by domain experts, yet they are primarily intended as a way to test the
robustness of the trained models against evasion attacks.

11 https://archive.ics.uci.edu/ml/datasets/census+income
12 https://www.kaggle.com/c/uci-wine-quality-dataset/data
13 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
14 https://ieee-dataport.org/open-access/malware-analysis-datasets-top-1000-pe-imports
15 The wine dataset was originally conceived for a multiclass classification problem; we turned

that into a binary one, where the positive class identifies good-quality wines (i.e., those whose
quality is at least 6, on a 0-10 scale) and the negative class contains the remaining instances.
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In the case of census, we define six rewriting rules: (i) if a citizen never worked,
he can pretend that he actually works without pay; (ii) if a citizen is divorced or
separated, he can pretend that he never got married; (iii) a citizen can present his
occupation as a generic “other service”; (iv) a citizen can cheat on his education
level by lowering it by 1; (v) a citizen can add up to $2,000 to his capital gain;
(vi) a citizen can add up to 4 hrs per week to his working hours. We let (i),(ii),
and (iii) cost 1, (iv) cost 20, (v) cost 50, and finally (vi) cost 100 budget units.
We consider 30, 60, 90, and 120 as possible values for the budget.

In the case of wine, we specify four rewriting rules: (i) the alcohol level can
be increased by 0.5% if its original value is less than 11%; (ii) the residual sugar
can be decreased by 0.25 g/L if it is already greater than 2 g/L; (iii) the volatile
acidity can be reduced by 0.1 g/L if it is already greater than 0.25 g/L; (iv) free
sulfur dioxide can be reduced by -2 g/L if it is already greater than 25 g/L. We
let (i) cost 20, (ii) and (iii) cost 30, and (iv) cost 50 budget units. We consider
20, 40, 60, 80 and 100 as possible values for the budget.

For credit, the attacker is represented by three rewriting rules: (i) the repay-
ment status of August and September can be reduced by 1 month if the payment
is delayed up to 5 months; (ii) the amount of bill statement in September can be
decreased by 4,000 NT dollars if it is between 20,000 and 500,000; and (iii) the
amount of given credit can be increased by 20,000 NT dollars if it is below 200,000.
For each rule, a cost of 10 budget units is required. We consider 10, 30, 40, and
60 as possible budget values.

Finally, the attacker targeting the malware dataset is modelled by three rewrit-
ing rules, which allow one to flip three binary features from 0 to 1. These features
represent invocations to the following functions: cexit, SearchPathW, exit. Each
rule has cost 20 and we pick three possible values of the budget: 20, 40 and 60.
Note that since the malware dataset is imbalanced, at training time we oversampled
the minority class so as to increase ten times the corresponding instances, yet the
oversampling was not applied at test time. For such imbalanced datasets, accuracy
values are less relevant than macro F1 and ROC measures, for which measures a
trivial classifier always predicting the majority class would barely score 0.50.

5.3 Experimental Evaluation

The primary goal of our experiments is answering the following research questions:

1. What is the robustness of standard decision tree ensembles like RF and GBDT
against evasion attacks?

2. Can adversarial learning techniques improve robustness against evasion attacks
and which technique is the most effective?

3. What is the impact of the training budget on the effectiveness of adversarial
learning techniques?

4. What are the key structural properties of the decision trees trained by Treant,
i.e., why do they provide appropriate robustness guarantees?

5. What is the performance overhead of Treant compared to other adversarial
learning techniques?

We report on the answer to each research question in a separate sub-section.
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Fig. 3 The impact of the attacker on RF and GBDT.

5.3.1 Robustness of Standard Decision Tree Ensembles

In Figure 3, we show how the accuracy, F1 and ROC AUC of standard ensembles
of decision trees trained by RF and GBDT change in presence of attacks. The
x-axis indicates the testing budget of the attacker, normalized in the range [0, 1],
with a value of 0 denoting the unattacked scenario.

Two main findings appear clear from the plots. First, both GBDT and RF are
severely impacted when they are attacked, and their performance deteriorates to
the point of turning them into almost random classifiers already when the attacker
spends just half of the maximum budget, e.g., in the case of the wine dataset. On
that dataset, the drop of ROC AUC ranges from -25.8% to -40.6% for GBDT and
from -15.5% to -28.4% for RF, when the attacker is supplied just half of the budget.
Second, RF typically behaves better than GBDT on our validity measures, with
a few cases where the improvement is very significant. A possible explanation of
this phenomenon is that RF usually exhibits better generalization performance,
while GBDT is known to be more susceptible to jiggling data, therefore more likely
to overfit (Nawar and Mouazen, 2017). Since robustness to adversarial examples
in a way resembles the ability of a model to generalize, RF is less affected by
the attacker than GBDT. Still, the performance drop under attack is so massive
even for RF that none of the traditional methods can be reliably adopted in an
adversarial setting.

The higher resiliency of RF to adversarial examples motivated our choice to
deploy Treant on top of such ensemble method in our implementation. It is worth
remarking though that Treant is still general enough to be plugged into other
frameworks for ensemble tree learning.

5.3.2 Robustness of Adversarial Learning Techniques

We now measure the benefit of using adversarial learning techniques to contrast
the impact of evasion attacks at test time. More specifically, we validate the ro-
bustness of our method in comparison with the two state-of-the-art adversarial
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Table 3 Comparison of adversarial learning techniques (training and test budget coincide).
The asterisk denotes statistically significant difference against the best competitor with p value
0.01 under McNemar test.

AB RT RF-Treant

Acc. F1 ROC Acc. F1 ROC Acc. F1 ROC

census

B
u

d
g
et

30 0.85 0.78 0.90 0.81 0.69 0.88 0.85 0.77 0.90

60 0.78 0.69 0.83 0.81 0.70 0.87 0.85∗ 0.77 0.89

90 0.80 0.71 0.83 0.78 0.61 0.86 0.85∗ 0.77 0.89

120 0.79 0.69 0.79 0.74 0.56 0.53 0.84∗ 0.76 0.89

wine

B
u

d
g
et

20 0.76 0.74 0.82 0.73 0.70 0.80 0.76 0.74 0.82

40 0.72 0.69 0.79 0.63 0.57 0.67 0.73∗ 0.69 0.80

60 0.72 0.69 0.79 0.59 0.49 0.55 0.72 0.68 0.80

80 0.72 0.68 0.77 0.62 0.54 0.63 0.73∗ 0.69 0.80

100 0.70 0.67 0.76 0.65 0.57 0.71 0.73∗ 0.69 0.80

credit

B
u

d
g
et

10 0.81 0.64 0.75 0.81 0.63 0.75 0.82∗ 0.66 0.77

30 0.79 0.54 0.66 0.81 0.61 0.73 0.81 0.62 0.75

40 0.78 0.55 0.66 0.81 0.62 0.73 0.81 0.62 0.74

60 0.78 0.53 0.62 0.81 0.62 0.72 0.81 0.62 0.74

malware

B
u

d
g
et 20 0.94 0.78 0.95 0.94 0.83 0.97 0.94 0.83 0.97

40 0.94 0.79 0.95 0.94 0.83 0.97 0.94 0.83 0.97

60 0.88 0.69 0.94 0.94 0.83 0.97 0.95 0.83 0.97

learning methods: Adversarial Boosting (AB) and Robust Trees (RT). Note that
the authors of RT did not experimentally compare RT against AB in their original
work (Chen et al., 2019).

We first investigate how robust a model is when it is targeted by an attacker
with a test budget exactly matching the training budget. This simulates the de-
sirable scenario where the threat model was accurately defined, i.e., each model is
trained knowing the actual attacker capabilities. Table 3 shows the results obtained
by the different adversarial learning techniques for the different training/test bud-
gets. It is clear how our method improves over its competitors, basically for all
measures and datasets. Most importantly, the superiority of our approach often
becomes more apparent as the strength of the attacker grows. For example, the
percentage improvement in ROC AUC over AB on the credit dataset amounts
to 2.1% for budget 10, while this improvement grows to 19.6% for budget 60. It
is also interesting to show that the heuristic approach implemented in RT is not
always representative of all the possible attacks which might occur at test time:
RT behaves similarly to our method on the credit and malware datasets, but it
performs way worse on the census and wine datasets. In particular, the heuris-
tic approach exploited by RT is most effective on the malware dataset, likely due
to the presence of simple binary features. Indeed, this proves the effectiveness of
our proposed strategy in presence of more complex datasets where the attacker
behaviour cannot be approximated through simple heuristic approaches.

The second analysis we carry out considers the case of adversarial learning
techniques trained with the maximum available budget. We use security evalua-
tion curves to measure how the performance of the compared methods changes
when the test budget given to the attacker increases up to the maximum avail-
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Fig. 4 Comparison of adversarial learning techniques for different test budgets and maximum
train budget.

able. The results are shown in Figure 4, where we normalized the test budget in
[0, 1]. The security evaluation curves show that our method constantly outper-
forms its competitors on all datasets and measures, especially when the attacker
gets stronger. The price to pay for this increased protection is just a slight perfor-
mance degradation in the unattacked setting, which is always compensated under
attack. Indeed, the performance of our method is nearly constant and insensitive
to variations in the attacker’s budget, which is extremely useful when such infor-
mation is hard to exactly quantify for security experts. We observe again that RT
cannot always cope with strong attackers: this is particularly apparent in the case
of the census dataset, where the model trained by RT is completely fooled when
the test budget reaches its maximum.

5.3.3 Impact of the Training Budget

Another intriguing aspect to consider is how much adversarial learning techniques
are affected by the assumptions made on the attacker’s capabilities upon learning,
i.e., the value of the training budget. Figure 5 is essentially the “dual” of Figure 4,
where we consider the strongest possible attacker (with the largest test budget)
and we analyze how much models learned with different training budgets are able
to respond to evasion attempts.

We draw the following observations. First, our method leads to the most robust
models for all measures and datasets, irrespective of the budget used for training.
Moreover, our method is the one which most evidently presents a healthy, expected
trend: the greater the training budget used to learn the model, the better its per-
formance under attack. This trend eventually reaches its peak when the training
budget matches the test budget. AB and RT show a more unpredictable behavior,
as their performance fluctuates up and down, and sometimes suddenly drops. This
is likely due to the fact that these approaches are heuristics and eventually short-
sighted with respect to the set of all the attacks which might occur at test time.
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Fig. 5 Comparison of adversarial learning techniques for different train budgets and maximum
test budget.

Finally, we remark a last appealing, distinctive aspect of our method: even when
the training uses a significantly smaller budget than the one used by the attacker at
test time, it already achieves nearly optimal performance. The same is not true for
its competitors, which complicates their deployment in real-world settings, since
it requires security experts to be very precise in their budget estimates.

5.3.4 Structural Properties of Decision Trees

To better understand why our approach provides improved robustness against at-
tacks, we studied the feature importance of the trained adversarial learning models
on the different datasets (considering the highest training budget). Figure 6 shows
the plots built for the wine and credit datasets, where we use a grey background
to denote attacked features.

In the case of the wine dataset, we observe that the alcohol level (though
attacked) is a very useful feature for all the models. The importance of this feature
seems inherent to the training data, however the figure is very different for other
attacked features, like residual sugar and volatile acidity. These features are quite
useful overall for AB and RT, while they are essentially not used by our model:
this justifies the improved robustness of our method over its competitors. As to
the case of the credit dataset, the feature importance of RT follows the same lines
of our model: attacked features are essentially not used, while AB is fooled into
giving a lot of importance to them. This motivates why AB performs quite worse
than the other two methods there.

5.3.5 Efficiency Analysis

We conclude our experiments with an efficiency evaluation of our algorithm. We
note that code optimization was not the main goal of our prototype implemen-
tation, i.e., we were more concerned about robustness to attacks than about effi-
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Fig. 6 Feature importance for wine and credit datasets. The grey background denotes at-
tacked features.

Fig. 7 Normalized training times for the wine and credit datasets. The black line shows the
amount of attacks generated during training in terms of a multiplicative factor of the original
dataset size.

ciency. However, it is still possible to draw interesting conclusions about efficiency
as well. Figure 7 compares the training times of our models against those of the
models trained by our implementation of RT on the wine and credit datasets.
This analysis is insightful, because RT is essentially a simplified version of our
approach, where the ternary partitioning is heuristically approximated and attack
invariance is not enforced upon tree construction.

The figure reports the normalized running times with respect to the fastest
training time, i.e., RT with the lowest train budget, as a function of the attacker
budget. The figure also plots the amount of generated attacks in terms of the mul-
tiplicative increase of the original training dataset, due to the corrupted instances
an attacker can generate for each budget.

Regarding RF-Treant, we report a breakdown of its cost into loss optimization
and tree growing. The impact of the loss optimization ranges between 20% and 30%
of the total time. Fluctuations in the loss optimization cost are due to the use of a
numerical solver, whose inner workings and resolution strategies may change on the
basis of the number of variables, constraints, etc., of the optimization problem. The
remaining cost of the tree growing phase, which includes the ternary partitioning,
dominates the overall RF-Treant training time. Overall, the cost of RF-Treant

is pretty stable when varying the attacker budget.

The figure confirms that RT is indeed faster than our approach, for all budgets.
For the wine dataset, the overhead is essentially of a 3x factor, while for credit the
cost of the two algorithms is actually very close. The overhead on wine however
is largely justified by the complete coverage of all the possible attack strategies,
which greatly improves the robustness guarantees provided by our approach (see
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Table 3). An interesting trend is shown on the credit dataset, where with an
increased budget the cost of solving the optimization problem increases, while the
tree growing itself becomes cheaper than that of RT. This is likely due to the
larger number of attacks that induces more complex optimization problems to be
solved, i.e., with more constraints required to enforce attack invariance. At the
same time, such constraints reduce the tree growing opportunities, thus reducing
the cost of the tree growing.

It is also interesting to note that the number of generated attacks grows much
faster than the training times: for example, when moving from budget 20 to budget
100, the number of generated attacks for the wine dataset increases from around
4x to around 9x the dataset size, yet the overall training time does not significantly
increase. This means that the attack generation takes only a limited fraction of
the training time, because each feature just needs to be attacked independently
of all the others. Similar considerations apply to the credit dataset, though it is
worth noticing that the overhead of our approach over RT is much more limited
there for all budgets.

6 Conclusion

This paper proposes Treant, a new adversarial learning algorithm that is able to
grow decision trees that are resilient against evasion attacks. Treant is the first
algorithm which greedily, yet soundly, minimizes an evasion-aware loss function,
capturing the attacker’s goal of maximizing prediction errors. Our experiments,
conducted on four publicly available datasets, confirm that Treant produces accu-
rate tree ensembles, which are extremely robust against evasion attacks. Compared
to the state of the art, Treant exhibits a significant improvement.

As future work, we plan to revise our decision tree construction to make it
aware of its deployment inside an ensemble; in other words, we aim at exploiting
the information that the currently grown ensemble is particularly strong or weak
against some classes of attacks to guide the construction of the next member of the
ensemble. At the same time, we want to explore ways to relax the restriction that
each attacked feature is only tested once on each path of the decision trees, without
sacrificing the soundness and scalability of the construction. It is also intriguing
to explore further applications and extensions of our proposed threat model: for
example, we consider to take advantage of work on inverse classification (Lash
et al., 2017) to express dependencies between different features, e.g., features which
cannot be manipulated, but are computed as a function of other corrupted features.

On the experimental side, we would like to evaluate our learning technique
against regression datasets to get an additional quantitative evaluation of its secu-
rity benefits. Finally, we plan to investigate the combined use of standard decision
trees and decision trees trained using Treant in the same ensemble, to improve
the trade-off between accuracy in the unattacked setting and resilience to attacks.
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