
Language-Based Web Session Integrity
Stefano Calzavara∗, Riccardo Focardi∗, Niklas Grimm†, Matteo Maffei†, Mauro Tempesta†

∗Università Ca’ Foscari Venezia †TU Wien

Abstract—Session management is a fundamental component
of web applications: despite the apparent simplicity, correctly
implementing web sessions is extremely tricky, as witnessed
by the large number of existing attacks. This motivated the
design of formal methods to rigorously reason about web session
security which, however, are not supported at present by suitable
automated verification techniques. In this paper we introduce
the first security type system that enforces session security on a
core model of web applications, focusing in particular on server-
side code. We showcase the expressiveness of our type system
by analyzing the session management logic of HotCRP, Moodle,
and phpMyAdmin, unveiling novel security flaws that have been
acknowledged by software developers.

I. INTRODUCTION

Since the HTTP protocol is stateless, web applications
that need to keep track of state information over multiple
HTTP requests have to implement custom logic for session
management. Web sessions typically start with the submission
of a login form from a web browser, where a registered
user provides her access credentials to the web application.
If these credentials are valid, the web application stores in the
user’s browser fresh session cookies, which are automatically
attached to all subsequent requests sent to the web application.
These cookies contain enough information to authenticate the
user and to keep track of session state across requests.

Session management is essential in the modern Web, yet it
is often vulnerable to a range of attacks and surprisingly hard
to get right. For instance, the theft of session cookies allows an
attacker to impersonate the victim at the web application [31],
[12], [33], while the weak integrity guarantees offered by
cookies allow subtle attacks like cookie forcing, where a
user is forced into an attacker-controlled session via cookie
overwriting [36]. Other common attacks include cross-site
request forgery (CSRF) [28], where an attacker instruments
the victim’s browser to send forged authenticated requests to
a target web application, and login CSRF, where the victim’s
browser is forced into the attacker’s session by submitting a
login form with the attacker’s credentials [9]. We refer to a
recent survey for an overview of attacks against web sessions
and countermeasures [16].

Given the complexity of session management and the range
of threats to be faced on the web, a formal understanding of
web session security and the design of automated verification
techniques is an important research direction. Web sessions
and their desired security properties have been formally stud-
ied in several papers developing browser-side defenses for web
sessions [13], [12], [29], [14]: while the focus on browser-
side protection mechanisms is appealing to protect users of
vulnerable web applications, the deployment of these solutions

is limited since it is hard to design browser-side defenses that
do not cause compatibility issues on existing websites and are
effective enough to be integrated in commercial browsers [16].

Thus, security-conscious developers would better rely on
server-side programming practices to enforce web session
security when web applications are accessed by standard
browsers. Recently, Fett et al. [22] formalized a session
integrity property specific to OpenID within the Web Infras-
tructure Model (WIM), an expressive web model within which
proofs are, however, manual and require a strong expertise.

In this work, we present the first static analysis technique
for web session integrity, focusing on sound server-side pro-
gramming practices. In particular:
1) we introduce a core formal model of web systems, repre-

senting browsers, servers, and attackers who may mediate
communications between them. Attackers can also interact
with honest servers to establish their own sessions and host
malicious content on compromised websites. The goal in
the design of the model is to retain simplicity, to ease the
presentation of the basic principles underlying our analysis
technique, while being expressive enough to capture the
salient aspects of session management in real-world case
studies. In this model, we formalize a generic definition of
session integrity, inspired by prior work on browser-side
security [13], as a semantic hyperproperty [18] ruling out
a wide range of attacks against web sessions;

2) we design a novel type system for the verification of ses-
sion integrity within our model. The type system exploits
confidentiality and integrity guarantees of session data
to endorse untrusted requests coming from the network
and enforces appropriate browser-side invariants in the
corresponding responses to guarantee session integrity;

3) we showcase the effectiveness and generality of our type
system by analyzing the session management logic of
HotCRP, Moodle, and phpMyAdmin. After encoding the
relevant code fragments in our formal model, we use the
type system to establish a session integrity proof: failures
in this process led to the discovery of critical security flaws.
We identified two vulnerabilities in HotCRP that allow an
attacker to hijack accounts of authors and even reviewers,
and one in phpMyAdmin, which has been assigned a
CVE [30]. All vulnerabilities have been reported and
acknowledged by the application developers. We finally
established security proofs for the fixed versions by typing.

II. OVERVIEW

In this Section we provide a high-level overview of our
approach to the verification of session integrity. Full formal

details and a complete security analysis of the HotCRP con-
ference management system are presented in the remainder of
the paper.

A. Encoding PHP Code in our Calculus

The first step of our approach consists in accessing the PHP
implementation of HotCRP and carefully handcrafting a model
of its authentication management mechanisms into the core
calculus we use to model web application code. While several
commands are standard, our language for server-side programs
includes some high-level commands abstracting functionalities
that are implemented in several lines of PHP code. The login
command abstracts a snippet of code checking, e.g., in a
database, whether the provided credentials match an existing
user in the system. Command auth is a security assertion
parametrized by expressions it depends on. In our encoding it
abstracts code performing security-sensitive operations within
the active session: here it models code handling paper submis-
sions in HotCRP. Command start takes as argument a session
identifier and corresponds to the session_start function
of PHP, restoring variables set in the session memory during
previous requests bound to that session.

In the following we distinguish standard PHP variables
from those stored in the session memory (i.e., variables in the
$_SESSION array) using symbols @ and $, respectively. The
reply command models the server’s response in a structured
way by separating the page’s DOM, scripts, and cookies set
via HTTP headers.

B. A Core Model of HotCRP

We assume that the HotCRP installation is hosted at the
domain dC and accessible via two HTTPS endpoints: login,
where users perform authentication using their access creden-
tials, and manage, where users can upload their papers or
withdraw their submissions. The session management logic
is based on a cookie sid established upon login. We now
discuss the functionality of the two HTTPS endpoints; we
denote the names of cookies in square brackets and the name
of parameters in parentheses. The login endpoint expects a
username uid and a password pwd used for authentication:

1. login[](uid , pwd) ↪→
2. if uid = ⊥ and pwd = ⊥ then
3. reply ({auth 7→ form(login, 〈⊥,⊥〉)}, skip, {})
4. else
5. @r := fresh(); login uid , pwd ,@r ; start @r ; $user := uid ;
6. reply ({link 7→ form(manage, 〈⊥,⊥,⊥〉)}, skip, {sid 7→ x})
7. with x = @r

If the user contacts the endpoint without providing access
credentials, the endpoint replies with a page containing a
login form expecting the username and password (lines 2–
3). Otherwise, upon successful authentication via uid and
pwd , the endpoint starts a new session indexed by a fresh
identifier which is stored into the variable @r (line 5). For
technical convenience, in the login command we also specify
the fresh session identifier as a third parameter to bind the
session with the identity of its owner. Next, the endpoint
stores the user’s identity in the session variable $user so that

the session identifier can be used to authenticate the user in
subsequent requests (line 5). Finally, the endpoint sends a reply
to the user’s browser which includes a link to the submission
management interface and sets a cookie sid containing the
session identifier stored in @r (lines 6–7).

The submission management endpoint requires authentica-
tion, hence it expects a session cookie sid . It also expects
three parameters: a paper , an action (submit or withdraw)
and a token to protect against CSRF attacks [9]:

1. manage[sid](paper , action, token) ↪→
2. start @sid ;
3. if $user = ⊥ then
4. reply ({auth 7→ form(login, 〈⊥,⊥〉)}, skip, {})
5. else if paper = ⊥ then
6. $utoken = fresh();
7. reply ({add 7→ form(manage, 〈⊥,submit, x〉),
8. del 7→ form(manage, 〈⊥,withdraw, x〉)}, skip, {})
9. with x = $utoken
10. else if tokenchk(token, $utoken) then
11. auth paper , action at `C ; reply ({}, skip, {})

The endpoint first tries to start a session over the cookie sid :
if it identifies a valid session, session variables from previous
requests are restored (line 2). The condition $user = ⊥ checks
whether the session is authenticated, since the variable is only
set after login: if it is not the case, the endpoint replies with a
link to the login page (lines 3–4). If the user is authenticated
but does not provide any paper in her request, the endpoint
replies with two forms used to submit or withdraw a paper
respectively. Such forms are protected against CSRF with a
fresh token, whose value is stored in the session variable
$utoken (lines 5–9). If the user is authenticated and requests
an action over a given paper, the endpoint checks that the
token supplied in the request matches the one stored in the
user’s session (line 10) and performs the requested action upon
success (line 11). This is modeled via a security assertion in
the code that authorizes the requested action on the paper on
behalf of the owner of the session. The assertion has a security
label `C , intuitively meaning that authorization can be trusted
unless the attacker can read or write at `C . Security labels
have a confidentiality and an integrity component, expressing
who can read and who can write. They are typically used in
the information flow literature [14] not only to represent the
security of program terms but also the attacker itself. Here we
let `C = (https(dC), https(dC)), meaning that authorization
can be trusted unless HTTPS communication with the domain
dC hosting HotCRP is compromised by the attacker.

C. Session Integrity

In this work, we are interested in session integrity. Inspired
by [13], we formalize it as a relational property, comparing
two different scenarios: an ideal world where the attacker
does nothing and an attacked world where the attacker uses
her capabilities to compromise the session. Intuitively, session
integrity requires that any authorized action occurring in the
attacked world can also happen in the ideal world, unless the
attacker is powerful enough to void the security assertions; this
must hold for all sequences of actions of a user interacting with
the session using a standard web browser.

As a counterexample to session integrity for our HotCRP
model, pick an attacker hosting an HTTPS website at the
domain dE 6= dC , modeled by the security label `E =
(https(dE), https(dE)). Since `E 6w `C , this attacker should
not be able to interfere with authorized actions at the sub-
mission management endpoint. However, this does not hold
due to the lack of CSRF protection on the endpoint login. In
particular, pick the following sequence of user actions where
evil stands for an HTTPS endpoint at dE :

~a = load(1, login, {}), submit(1, login,auth, {1 7→ usr, 2 7→ pwd}),
load(2, evil , {}), submit(1, login,link, {}),
submit(1,manage,add, {1 7→ paper})

The user opens the login endpoint in tab 1 and submits her
username and password via the authentication form (identified
by the tag auth). She then loads the attacker’s website in tab
2 and moves back to tab 1 where she accesses the submission
management endpoint by clicking the link obtained upon
authentication. Finally, she submits a paper via the add form.

Session integrity is violated since the attacker can reply
with a page containing a script which automatically submits
the attacker’s credentials to the login endpoint, authenticating
the user as the attacker at HotCRP. Thus, the last user action
triggers the security assertion in the attacker’s session rather
than in the user’s session. Formally, this is captured by the
security assertion firing the event][paper,submit]usr,atk`C

,
modeling that the paper is submitted by the user into the
attacker’s session. As such an event cannot be fired in the ideal
world without the attacker, this violates session integrity.

In practice, an attacker could perform the attack against an
author so that, upon uncareful submission, a paper is registered
in the attacker’s account, violating the paper’s confidentiality.
We also discovered a more severe attack allowing an attacker
to log into the victim’s session, explained in Section V.

D. Security by Typing

Our type system allows for sound verification of session
integrity and is parametric with respect to an attacker label. In
particular, typing ensures that the attacker has no way to forge
authenticated events in the session of an honest user (as in a
CSRF attack) or to force the user to perform actions within
a session bound to the attacker’s identity (e.g., due to a login
CSRF). Failures arising during type-checking often highlight
in a direct way session integrity flaws.

To ensure session integrity, we require two ingredients:
first, we need to determine the identity of the sender of the
request; second, we must ensure that the request is actually
sent with the consent of the user, i.e., the browser is not
sending the request as the attacker’s deputy. Our type system
captures these aspects using two labels: a session label and a
program counter (PC) label. The session label models both the
session’s integrity (i.e., who can influence the session and its
contents) and confidentiality (i.e., who can learn the session
identifier used as access control token). Since the identity
associated with an authenticated event is derived from the
ongoing session, the session label captures the first ingredient.
The PC label tracks who could have influenced the control

flow to reach the current point of the execution. Since a CSRF
attack is exactly a request of low integrity (as it is triggered by
the attacker), this captures the second ingredient. Additionally,
the type system relies on a typing environment that assigns
types to URLs and their parameters, to local variables and to
references in the server memory.

We type-check the code twice under different assumptions.
First, we assume the scenario of an honest user regularly
interacting with the page: here we assume that all URL
parameters are typed according to the typing environment and
we start with a high integrity PC label. Second, we assume the
scenario of a CSRF attack where all URL parameters have low
confidentiality and integrity (since they are controlled by the
attacker) and we start with a low integrity PC label. In both
cases, types for cookies and the server variables are taken from
the typing environment since, even in a CSRF attack, cookies
are taken from the cookie jar of the user’s browser and the
attacker has no direct access to the server memory.

We now explain on a high level why our type system fails
to type-check our (vulnerable) HotCRP model. To type the
security assertion auth paper, action at `C in the manage
endpoint, we need a high integrity PC label, a high integrity
session label and we require the parameters paper and action
to be of high integrity. While the types of the parameters are
immediately determined by the typing environment, the other
two labels are influenced by the typing derivation.

In the CSRF scenario, the security assertion is unreachable
due to the presence of the token check instruction (line 10).
When typing, if we assume (in the typing environment) that
$ltoken is a high confidentiality reference, we can conclude
that the check always fails since the parameter token (con-
trolled by the attacker) has low confidentiality, therefore we
do not need to type-check the continuation.1

In the honest scenario, the PC label has high integrity
assuming that all the preceding conditionals have high integrity
guard expressions (lines 3 and 6). The session label is set in
the command start @sid (line 2) and depends on the type
of the session identifier @sid . To succeed in typing, @sid
must have high integrity. However, we cannot type-check the
login endpoint under this assumption: since the code does not
contain any command that allows pruning the CSRF typing
branch (like the token check in the manage endpoint), the
entire code must be typed with a low integrity PC label. This
prevents typing the reply statement where cookie sid is set
(lines 6–7), since writing to a high integrity location from a
low integrity context is unsound. In practice, this failure in
typing uncovers the vulnerability in our code: the integrity of
the session cookie is low since an attacker can use a login
CSRF attack to set a session cookie in the user’s browser.

As a fix, one can protect the login endpoint against CSRF
attempts by using pre-sessions [9]: when the login endpoint
is visited for the first time by the browser, it creates a new

1 This reasoning is sound only when credentials (e.g., session identifiers and
CSRF tokens) are unguessable fresh names. To take into account these aspect,
in the type system we have special types for references storing credentials (cf.
Section IV-A) and we forbid subtyping for high confidentiality credentials.

unauthenticated session at the server-side (using a fresh cookie
pre) and generates a token which is saved into the session
and embedded into the login form. When submitting the login
form, the contained token is compared to the one stored at
the server-side in the pre-session and, if there is a mismatch,
authentication fails:

1. login[pre](uid , pwd , token) ↪→
2. if uid = ⊥ and pwd = ⊥ then
3. @r ′ := fresh(); start @r ′; $ltoken := fresh();
4. reply ({auth 7→ form(login, 〈⊥,⊥, x〉)}, skip, {pre 7→ y})
5. with x = $ltoken, y = @r ′

6. else
7. start @pre;
8. if tokenchk(token, $ltoken) then
9. @r := fresh(); login uid , pwd ,@r ; start @r ; $user := uid ;
10. reply ({link 7→ form(manage, 〈⊥,⊥,⊥〉)}, skip, {sid 7→ x}
11. with x = @r

The session identified by pre has low integrity but high
confidentiality: indeed, an attacker can cause a random pre
cookie to be set in the user’s browser (by forcing the browser
to interact with the login endpoint), but she has no way
to learn the value of the cookie and hence cannot access
the session. We can thus assume high confidentiality for the
session reference $ltoken in the session identified by pre.

With the proposed fix, the piece of code responsible for
setting the session cookie sid is protected by a token check,
where the parameter token is compared against the high con-
fidentiality session reference $ltoken of the session identified
by @pre (line 8). Similar to the token check in the manage
endpoint, this allows us to prune the CSRF typing branch and
we can successfully type-check the code with a high integrity
type for sid . We refer the reader to Section V-C for a detailed
explanation of typing of the fixed login endpoint.

The HotCRP developer acknowledged the login CSRF vul-
nerability and the effectiveness of the proposed fix, which is
currently under development.

III. A FORMAL MODEL OF WEB SYSTEMS

We present now our model of web systems that includes
the relevant ingredients for modeling attacks against session
integrity and the corresponding defenses and we formally
define our session integrity property.

A. Expressiveness of the Model

Our model of browsers supports cookies and a minimal
client-side scripting language featuring i) read/write access to
the cookie jar and the DOM of pages; ii) the possibility to
send network requests towards arbitrary endpoints and include
their contents as scripts. The latter capability is used to model
resource inclusion and a simplified way to perform XHR
requests. In the model we can encode many security-sensitive
aspects of cookies that are relevant for attacks involving their
theft or overwriting, i.e., cookie prefixes [35] and attributes
Domain and Secure [8]. We also model HSTS [27] which
can improve the integrity guarantees of cookies set by HSTS-
enabled domains. On the server-side we include primitives
used for session management and standard defenses against

CSRF attacks, e.g., double submit cookies, validation of the
Origin header and the use of CSRF tokens.

For the sake of presentation and simplicity, we intentionally
omit some web components that are instead covered in other
web models (e.g., the WIM [22]) but are not fundamental
for session integrity or for modelling our case studies. In
particular, we do not model document frames and cross-frame
communications via the Web Messaging API, web sockets,
local storage, DNS and an equational theory for cryptographic
primitives. We also exclude the Referer header since it
conveys similar information to the Origin header which we
already cover in our model. While we believe that our type
system can be in principle extended to cover also these web
components, the presentation and proof of soundness would
become cumbersome, obfuscating the key aspects of our static
analysis technique.

B. Syntax

We write ~r = 〈r1, . . . , rm〉 to denote a list of elements of
length m = |~r |. We denote with rk the k-th element of ~r and
we let r′ :: ~r be the list obtained by prepending the element
r′ to the list ~r. A map M is a partial function from keys to
values and we write M(k) = v whenever the key k is bound
to the value v in M . We let dom(M) be the domain of M
and {} be the empty map. Given two maps M1 and M2, we
define M1 /M2 as the map M such that M(k) = v iff either
M2(k) = v or k /∈ dom(M2) and M1(k) = v. We write
M1]M2 to denote M1 /M2 if M1 and M2 are disjoint. We
let M{k 7→ v} be the map obtained from M by substituting
the value bound to k with v.

1) Basics: we let N be a set of names modeling secrets
(e.g., passwords) and fresh identifiers that cannot be forged
by an attacker. Names are annotated with a security label `,
that we omit in the semantics since it has no semantic effect.
R is the set of references used to model cookies and memory
locations, while X is the set of variables used for parameters
and server commands. I is the set of identities representing
users: we distinguish a special identity usr representing the
honest user and we assume that the other identities are under
the attacker’s control.

A URL u is a triple (π, d, v) where π ∈ {http, https} is
the protocol identifier, d is the domain name, and v is a value
encoding the path of the accessed resource. We ignore the port
for the sake of simplicity. The origin of URL u is the simple
label π(d). For origins and URLs, we use ⊥ for a blank value.

We let v range over values, i.e., names, primitive values
(booleans, integers, etc.), URLs, identities and the blank value
⊥. We use z to range both over values and variables.

A page is either the constant error or a map f representing
the DOM of the page. The error page denotes that an error
has occurred while processing a request at the server-side. The
map f associates tags (i.e., strings) to links and HTML forms
contained in the page. We represent them using the notation
form(u, ~z), where u is the target URL and ~z is the list of
parameters provided via the query string of a link or in the
HTTP body of the request for forms.

TABLE I: Syntax (browsers B and scripts s are defined in the technical report [15]).
Basics

Names n`, i`, j` ∈ N References r ∈ R Variables x ∈ X
Identities ι ∈ I 3 usr Domains d ∈ D URLs u ∈ U
Origins o ∈ O ⊇ O Simple labels l ∈ L ⊇ L Labels ` ::= (l, l)
Types τ ∈ T Numbers k,m ∈ N Primitive values pv ::= true | false | k | . . .
Values v ::= pv | n | ι | u | ⊥ ∈ V Metavariables z ∈ V ∪ X Forms f ::= {} | f] {v 7→ form(u, ~z)}
Pages page ::= error | f Cookies ck ::= {} | ck]{r 7→ z} Memories M ::= {} | M] {r 7→ v}

Servers

Expressions se ::= x | @r | $r | v | fresh()` | se� se′ Commands c ::= skip | halt | c; c′ | @r := se | $r := se
Environments E ::= i,⊥ | i, j | if se then c else c′ | login seu, sepw, seid
Request contexts R ::= n, u, ι, l | start se | auth ~se at `
Databases D ::= {} | D] {n 7→M} | if tokenchk(e, e′) then c
Trust mappings φ ::= {} | φ] {n 7→ ι} | if originchk(L) then c
Servers S ::= (D,φ, t) | reply (page, s, ck) with ~x = ~se
Threads t ::= u[~r](~x) ↪→ c | dccRE | t ‖ t | redirect (u, ~z, ck) with ~x = ~se

User behavior

Tab IDs tab ∈ N
Inputs p ::= {} | p] {k 7→ vτ}
Actions a ::= halt | load(tab, u, p) | submit(tab, u, v, p)

Web Systems

Attacker’s Knowledge K ⊆ N
Web Systems W ::= B | S | W ‖W
Attacked Systems A ::= (`,K) . W

Memories are maps from references to values. We use them
in the server to hold the values of the variables during the
execution, while in the browser they are used to model the
cookie jar. We stipulate that M(r) = ⊥ if r /∈ dom(M), i.e.,
the access to a reference not in memory yields a blank value.

2) Server Model: we let se range over expressions in-
cluding variables, references, values, sampling of a fresh
name (with label `), e.g., to generate fresh cookie values,
and binary operations. Server-side applications are represented
as commands featuring standard programming constructs and
special instructions for session establishment and management.
Command login seu, sepw, seid models a login operation with
username seu and password sepw. The identity of the user
is bound to the session identifier obtained by evaluating seid.
Command start se starts a new session or restores a previous
one identified by the value of the expression se. Command
auth ~se at ` produces an authenticated event that includes
data identified by the list of expressions ~se. The command is
annotated with a label ` denoting the expected security level of
the event which has a central role in the security definition pre-
sented in Section III-E. Commands if tokenchk(x, r) then c
and if originchk(L) then c respectively model a token
check, comparing the value of a parameter x against the value
of the reference r, and an origin check, verifying whether the
origin of the request occurs in the set L. These checks are used
as a protection mechanism against CSRF attacks. Command
reply (page, s, ck) with ~x = ~se outputs an HTTP response
containing a page, a script s and a sequence of Set-Cookie
headers represented by the map ck. This command is a binder
for ~x with scope page, s, ck, that is, the occurrences of the
variables ~x in page, s, ck are substituted with the values
obtained by evaluating the corresponding expressions in ~se.
Command redirect (u, ~z, ck) with ~x outputs a message
redirect to URL u with parameters ~z that sets the cookies
in ck. This command is a binder for ~x with scope ~z, ck.

Server code is evaluated using two memories: a global
memory, freshly allocated when a connection is received, and
a session memory, that is preserved across different requests.

We write @r and $r to denote the reference r in the global
memory and in the session memory respectively. To link an
executing command to its memories, we use an environment,
which is a pair whose components identify the global memory
and the session memory (⊥ when there is no active session).

The state of a server is modeled as a triple (D,φ, t) where
the database D is a partial map from names to memories,
φ maps session identifiers (i.e., names) to the corresponding
user identities, and t is the parallel composition of multiple
threads. Thread u[~r](~x) ↪→ c waits for an incoming connection
to URL u and runs the command c when it is received. Lists ~r
and ~x are respectively the list of cookies and parameters that
the server expects to receive from the browser. Thread dccRE
denotes the execution of the command c in the environment
E which identifies the memories of D on which the command
operates. R tracks information about the request that triggered
the execution, including the identifier n of the connection
where the response by the server must be sent back, the URL
of the endpoint u, the user ι who sent the request, and the
origin of the request l. The user identity has no semantic
import, but it is needed to spell out our security property.

3) User Behavior: action halt is used when an unexpected
error occurs while browsing to prevent the user from per-
forming further actions. Action load(tab, u, p) models the
user entering the URL u in the address bar of her browser
in tab, where p are the provided query parameters. Action
submit(tab, u, v, p) models the user submitting a form or
clicking on a link (identified by v) contained in the page at
u rendered in tab; the parameters p are the inputs provided
by the user. We represent user inputs as maps from integers
to values vτ annotated with their security type τ . In other
words, we model that the user is aware of the security import
of the provided parameters, e.g., whether a certain input is a
password that must be kept confidential or a public value.

4) Browser Model: due to space constraints, we present the
browser model in the technical report [15]. In the following we
write Bι(M,P,~a) to represent a browser without any active
script or open network connection, with cookie jar M and

open pages P which is run by the user ι performing the list
of actions ~a.

5) Web Systems: the state of a web system is the parallel
composition of the states of browsers and servers in the
system. The state of an attacked web system also includes the
attacker, modeled as a pair (`,K) where the label ` defines the
attacker power and K is her knowledge, i.e., a set of names
that the attacker has learned by exploiting her capabilities.

C. Labels and Threat Model

Let d ∈ D be a domain and ∼ be the equivalence relation
inducing the partition of D in sets of related domains.2 We
define the set of simple labels L, ranged over by l, as the
smallest set generated by the grammar:

l ::= http(d) | https(d) | l ∨ l | l ∧ l

Intuitively, simple labels represent the entities entitled to read
or write a certain piece of data, inspect or modify the messages
exchanged over a network connection and characterize the
capabilities of an attacker. A label ` is a pair of simple labels
(lC , lI), where lC and lI are respectively the confidentiality
and integrity components of `. We let C(`) = lC and
I(`) = lI . We define the confidentiality pre-order vC as the
smallest pre-order on L closed under the following rules:

i ∈ {1, 2}
li vC l1 ∨ l2

i ∈ {1, 2}
l1 ∧ l2 vC li

l1 vC l3
l2 vC l3

l1 ∨ l2 vC l3

l1 vC l2
l1 vC l3

l1 vC l2 ∧ l3

We define the integrity pre-order vI on simple labels such that
∀l, l′ ∈ L we have l vI l′ iff l′ vC l, i.e., confidentiality and
integrity are contra-variant. For vC we define the operators
tC and uC that respectively take the least upper bound and
the greatest lower bound of two simple labels. We define
analogous operators tI and uI for vI . We let ` v `′ iff
C(`) vC C(`′) ∧ I(`) vI I(`′). We also define bottom and
top elements of the lattices as follows:

⊥C =
∧
d∈D(http(d) ∧ https(d)) >C =

∨
d∈D(http(d) ∨ https(d))

⊥I = >C >I = ⊥C ⊥ = (⊥C ,⊥I) > = (>C ,>I)

We label URLs, user actions and cookies by means of the
function λ. We label URLs with their origin, i.e., given u =
(π, d, v) we let λ(u) = (π(d), π(d)). The label is used to:
1) characterize the capabilities required by an attacker to read
and modify the contents of messages exchanged over network
connections towards u; 2) identify which cookies are sent to
and can be set by u. The label of an action is the one of its
URL, i.e., we let λ(a) = λ(u) for a = load(tab, u, p) and
a = submit(tab, u, v, p).

The labelling of cookies depend on several aspects, e.g.,
the attributes specified by the web developer. For instance, a
cookie for the domain d is given the following label:

(http(d) ∧ https(d),
∧
d′∼d(http(d′) ∧ https(d′)))

2 Two domains are related if they share the same base domain, i.e., the
first upper-level domain which is not included in the public suffix list [36].
For instance, www.example.com and atk.example.com are related
domains, while example.co.uk and atk.co.uk are not.

The confidentiality label models that the cookie can be sent
to d both over cleartext and encrypted connections, while the
integrity component says that the cookie can be set by any of
the related domains of d over any protocol, as dictated by the
lax variant of the Same Origin Policy applied to cookies.

When the Secure attribute is used, the cookie is attached
exclusively to HTTPS requests. However, Secure cookies
can be set over HTTP [8], hence the integrity is unchanged.
This behavior is represented by the following label:

(https(d),
∧
d′∼d(http(d′) ∧ https(d′)))

Cookie prefixes [35] are a novel proposal aimed at providing
strong integrity guarantees for certain classes of cookies.
In particular, compliant browsers ensure that cookies having
names starting with the __Secure- prefix are set over
HTTPS and the Secure attribute is set. In our label model
they can be represented as follows:

(https(d),
∧
d′∼d https(d

′))

The __Host- prefix strengthens the policy enforced by
__Secure- by additionally requiring that the Domain at-
tribute is not set, thus preventing related domains from setting
it. This is modeled by assigning the cookie the following label:

(https(d), https(d))

We provide additional examples, including the impact of HSTS
on the labelling of cookies, in our technical report [15].

In the model we can also formalize popular attackers from
the web security literature using labels which denote their read
and write capabilities:

1) The web attacker hosts a malicious website on domain d.
We assume that the attacker owns a valid certificate for d,
thus the website is available both over HTTP and HTTPS:

(http(d) ∨ https(d), http(d) ∨ https(d))

2) The active network attacker can read and modify the
contents of all HTTP communications:

(
∨
d∈D http(d),

∨
d∈D http(d))

3) The related-domain attacker is a web attacker who hosts
her website on a related domain of a domain d, thus she
can set (domain) cookies for d. Assuming (for simplicity)
that the attacker controls all the related domains of d, we
can represent her capabilities with the following label:

(
∨
d′∼d
d′ 6=d

(http(d′) ∨ https(d′)),
∨
d′∼d
d′ 6=d

(http(d′) ∨ https(d′)))

D. Semantics

We present now the most relevant rules of semantics in
Table II, deferring to [15] for a complete formalization. In the
rules we use the ternary operator “?:” with the usual meaning:
e ? e′ : e′′ evaluates to e′ if e is true, to e′′ otherwise.

TABLE II: Semantics (excerpt).

Servers
(S-RECV)

α = req(ιb, n, u, p, ck, l) R = n, u, ιb, l i← N
∀k ∈ [1 . . . |~r |].M(rk) = (rk ∈ dom(ck)) ? ck(rk) : ⊥ m = |~x |

∀k ∈ [1 . . .m]. vk = (k ∈ dom(p)) ? p(k) : ⊥ σ = [x1 7→ v1, . . . , xm 7→ vm]

(D,φ, u[~r](~x) ↪→ c)
α−→ (D] {i 7→M}, φ, dcσcRi,⊥ ‖ u[~r](~x) ↪→ c)

(S-RESTORESESSION)
E = i, evalE(se,D) = j j ∈ dom(D)

(D,φ, dstart secRE)
•−→ (D,φ, dskipcRi,j)

(S-NEWSESSION)
E = i, evalE(se,D) = j j /∈ dom(D)

(D,φ, dstart secRE)
•−→ (D] {j 7→ {}}, φ, dskipcRi,j)

(S-LOGIN)
R = n, u, ιb, l evalE(seu, D) = ιs

evalE(sepw, D) = ρ(ιs, u) evalE(seid, D) = j

(D,φ, dlogin seu, sepw, seidcRE)
•−→ (D,φ / {j 7→ ιs}, dskipcRE)

(S-OCHKSUCC)
R = n, u, ιb, l l ∈ L

(D,φ, dif originchk(L) then ccRE)
•−→ (D,φ, dccRE)

(S-TCHKFAIL)
evalE(e1, D) 6= evalE(e2, D)

(D,φ, dif tokenchk(e1, e2) then ccRE)
•−→ (D,φ, dreply (error, skip, {})cRE)

(S-AUTH)
R = n, u, ιb, l j ∈ dom(φ) α =][~v]

ιb,φ(j)

`
∀k ∈ [1 . . . |~se|]. evali,j(sek, D) = vk

(D,φ, dauth ~se at `cRi,j)
α−→ (D,φ, dskipcRi,j)

(S-REPLY)
R = n, u, ιb, l m = |~x | = |~se| ∀k ∈ [1,m]. evalE(sek, D) = vk
σ = [x1 7→ v1, . . . , xm 7→ vm] α = res(n, u,⊥, 〈〉, ckσ, pageσ, sσ)

(D,φ, dreply (page, s, ck) with ~x = ~secRE)
α−→ (D,φ, dhaltcRE)

Web systems

(A-BROSER)
W

req(ιb,n,u,p,ck,l)−−−−−−−−−−−−→ W
′

W
′ req(ιb,n,u,p,ck,l)−−−−−−−−−−−−→ W

′′

K′ = (C(λ(u)) vC C(`)) ? (K ∪ ns(p, ck)) : K

(`,K) . W
•−→ (`,K′) . W

′′

(A-BROATK)
α = req(ιb, n, u, p, ck, l) W

α−→ W
′

I(`) vI I(λ(u))
K′ = (C(λ(u)) vC C(`)) ? (K ∪ ns(p, ck)) : K

(`,K) . W
α−→ (`,K′ ∪ {n}) . W

′

(A-ATKSER)
n← N ιb 6= usr ns(p, ck) ⊆ K
α = req(ιb, n, u, p, ck, l) W

α−→ W
′

(`,K) . W
α−→ (`,K ∪ {n}) . W

′

1) Servers: rules rely on the function evalE(se,D) that
evaluates the expression se in the environment E using the
database D. The formal definition is in [15], here we provide
an intuitive explanation. The evaluation of @r and $r yields
the value associated to r in the global and the session memory
identified by E, respectively. Expression fresh()` evaluates to
a fresh name sampled from N with security label `. A value
evaluates to itself. Evaluation of binary operations is standard.

Rule (S-RECV) models the receiving of a connection n at
the endpoint u, as indicated by the action req(ιb, n, u, p, ck, l).
A new thread is spawned where command c is executed after
substituting all the occurrences of variables in ~x with the
parameters p received from the network. We use the value ⊥
for uninitialized parameters. The environment is i,⊥ where i
identifies a freshly allocated global memory and ⊥ that there is
no ongoing session. The references of the global memory in ~r
are initialized with the values in ck (if provided). In the request
context we include the details about the incoming connection,
including the origin l of the page that produced the request (or
⊥, e.g., when the user opens the page in a new tab). The thread
keeps listening for other connections on the same endpoint.

The evaluation of command start se is modeled by rules
(S-RESTORESESSION) and (S-NEWSESSION). If se evaluates
to a name j ∈ dom(D), we resume a previously established
session, otherwise we create a new one and allocate a new
empty memory that is added to the database D. We write E =
i, to denote that the second component of E is immaterial.
In both cases the environment is updated accordingly.

Rule (S-LOGIN) models a successful login attempt. For
this purpose, we presuppose the existence of a global partial
function ρ mapping the pair (ιs, u) to the correct password

where ιs is the identity of the user and u is the login endpoint.
The rule updates the trust mapping φ by associating the session
identifier specified in the login command with the identity ιs.

Rules (S-OCHKSUCC) and (S-TCHKFAIL) treat a success-
ful origin check and a failed token check, respectively. In
the origin check we verify that the origin of the request is
in a set of whitelisted origins, while in the token check we
verify that two tokens match. In case of success we execute
the continuation, otherwise we respond with an error message.

Rule (S-AUTH) produces the authenticated event][~v]ιb,ιs`

where ~v is data identifying the event, e.g., paper and action
in the HotCRP example of Section II-B. The event is annotated
with the identities ιb, ιs, representing the user running the
browser and the account where the event occurred, and the
label ` denoting the security level associated to the event.

Rule (S-REPLY) models a reply from the server over the
open connection n as indicated by the action res. The response
contains a page page , script s and a map of cookies ck,
where all occurrences of variables in ~x are replaced with
the evaluation results of the expressions in ~se. The third and
the fourth component of res are the redirect URL and the
corresponding parameters, hence we use ⊥ to denote that no
redirect happens. We stipulate that the execution terminates
after performing the reply as denoted by the instruction halt.

2) Web Systems: the semantics of web systems regulates
the communications among browsers, servers and the attacker.
Rule (A-BROSER) synchronizes a browser sending a request
req with the server willing to process it, as denoted by the
matching action req. Here the attacker does not play an
active role (as denoted by action •) but she may update her
knowledge with new secrets if she can read the contents of

the request, modeled by the condition C(λ(u)) vC C(`).
Rule (A-BROATK) uniformly models a communication

from a browser to a server controlled by the attacker and an
attacker that is actively intercepting network traffic sent by the
browser. These cases are captured by the integrity check on
the origin of the URL u. As in the previous rule, the attacker
updates her knowledge if she can access the communication’s
contents. Additionally, she learns the network identifier needed
to respond to the browser. In the trace of the system we
expose the action intercepted/forged by the attacker. Rule
(A-ATKSER) models an attacker opening a connection to
an honest server. We require that the identity denoting the
sender of the message belongs to the attacker and that the
contents of the request can be produced by the attacker using
her knowledge. Sequential application of the two rules lets
us model a network attacker acting as a man-in-the-middle to
modify the request sent by a browser to an honest server.

E. Security Definition

On a high level, our definition of session integrity requires
that for each trace produced by the attacked web system, there
exists a matching trace produced by the web system without
the attacker, which in particular implies that authenticated
actions cannot be modified or forged by the attacker. Before
formalizing this property, we introduce the notion of trace.

Definition 1. The system A generates the trace γ = α1 ·. . .·αk
iff the system can perform a sequence of steps A α1−→ . . .

αk−−→
A′ for some A′ (also written as A

γ−→
∗
A′).

Traces include attacker actions, authenticated events][~v]ιb,ιs`

and • denoting actions without visible effects or synchroniza-
tions not involving the attacker. Given a trace γ, we write
γ ↓ (ι, `) for the projection containing only the authentication
events of the type][~v]ιb,ιs` with ι ∈ {ιb, ιs}. A trace γ is
unattacked if it contains only • actions and authenticated
events, otherwise γ is an attacked trace.

Now we introduce the definition of session integrity.

Definition 2. A web system W preserves session integrity
against the attacker (`a, K) for the honest user usr performing
the actions ~a if for any attacked trace γ generated by the sys-
tem (`a,K) . Busr({}, {},~a) ‖W there exists an unattacked
trace γ′ generated by the same system such that for all labels
`′ we have:

I(`a) 6vI I(`′)⇒ γ ↓ (usr, `′) = γ′ ↓ (usr, `′).

Intuitively, this means that the attacker can only produce au-
thenticated events in her account or influence events produced
by servers under her control. Apart from this, the attacker
can only stop on-going sessions of the user but cannot intrude
into them: this is captured by the existential quantification over
unattacked traces that also lets us pick a prefix of any trace.

IV. SECURITY TYPE SYSTEM

We now present a security type system designed for the
verification of session integrity on web applications. It consists

of several typing judgments covering server programs and
browser scripts. Due to space constraints, in this Section we
cover only the part related to server-side code and refer to [15]
for the typing rules of browser scripts.

A. Types

We introduce security types built upon the labels defined in
Section III-C. We construct the set of security types T , ranged
over by τ , according to the following grammar:

τ ::= ` | cred(`)

We also introduce the set of reference types TR =
{ref(τ) | τ ∈ T } used for global and session references and
we define the following projections on security types:

label(`) = ` label(cred(`)) = `

I(τ) = I(label(τ)) C(τ) = C(label(τ))

Security types extend the standard security lattice with the type
cred(`) for credentials of label `. We define the pre-order v`a ,
parametrized by the attacker label `a, with the following rules:

` v `′

` v`a `
′

C(τ) = C(τ ′) I(τ) vI I(τ ′)
τ v`a τ

′

C(τ) tC C(τ ′) vC C(`a) I(`a) vI I(τ) uI I(τ ′)
τ v`a τ

′

Intuitively, security types inherit the subtyping relation for
labels but this is not lifted to the confidentiality label of
credentials, since treating public values as secret credentials is
unsound. However, types of low integrity and confidentiality
(compared to the attacker’s label) are always subtype of each
other: in other words, we collapse all such types into a single
one, as the attacker controls these values and is not limited by
the restrictions enforced by types.

B. Typing Environment

Our typing environment Γ = (ΓU ,ΓX ,ΓR@ ,ΓR$,ΓV) is a
5-tuple and conveys the following information:
• ΓU : U → (L2× ~T ×L) maps URLs to labels capturing the

security of the network connection, the types of the URL
parameters and the integrity label of the reply;

• ΓX : X → T maps variables to types;
• ΓR@ ,ΓR$: R → TR map global references and session

references, respectively, to reference types;
• ΓV : V → (L2× ~T ×L) maps values used as tags for forms

in the DOM to the corresponding type. We typically require
the form’s type to match the one of the form’s target URL.

Now we introduce the notion of well-formedness which rules
out inconsistent type assignments.

Definition 3. A typing environment Γ is well-formed for λ
and `a (written λ, `a,Γ ` �) if the following conditions hold:
1) for all URLs u ∈ U with ΓU (u) = `u, ~τ , lr we have:

a) C(`u) = C(λ(u)) ∧ I(λ(u)) vI I(`u)
b) for all k ∈ [1 . . . |~τ |] we have C(τk) vC C(`u) ∧

I(`u) vI I(τk)

2) for all references r ∈ R with ΓR@(r) = τ :
a) C(τ) vC C(λ(r)) ∧ I(λ(r)) vI I(τ)
b) for all u ∈ U , if C(λ(r)) vC (λ(u))∧I(`a) vI I(λ(u))

then C(τ) vC C(`a)
c) if I(`a) vI I(λ(r)) and τ = cred(·) then C(τ) vC
C(`a)

Conditions (1a) and (2a) ensure that the labels of URLs and
cookies in the typing environment are at most as strict as in the
function λ introduced in Section III-C. For instance, a cookie
r with confidentiality label C(λ(r)) = http(d) ∧ https(d)
is attached both to HTTP and HTTPS requests to domain
d. It would be unsound to use a stronger label for typing,
e.g., https(d), since we would miss attacks due to the cookie
leakage over HTTP. In the same spirit, we check that URLs
do not contain parameters requiring stronger type guarantees
than those offered by the type assigned to the URL (1b).

Additionally, well-formedness rules out two inherently in-
secure type assignments for cookies. First, if a low integrity
URL can read a cookie, then the cookie must have low
confidentiality since the attacker can inject a script leaking
the cookies, as in a typical XSS (2b). Second, cookies that
can be set over a low integrity network connection cannot be
high confidentiality credentials since the attacker can set them
to a value she knows (2c).

C. Intuition Behind the Typing Rules
The type system resembles one for standard information

flow control (IFC) where we consider explicit and implicit
flows for integrity, but only explicit flows for confidential-
ity: since our property of interest is web session integrity,
regarding confidentiality we are only interested in preventing
credentials from being leaked (since they are used for access
control), while the leakage of other values does not impact
our property. The type system restricts the operations on
credentials to be equality checks, hence the leak of information
through implicit flows is limited to one bit: this is consistent
with the way credentials are handled by real web applications.
A treatment of implicit flows for confidentiality would require
a declassification mechanism to handle the bit leaked by
credential checks, thus complicating our formalism without
adding any tangible security guarantee.

As anticipated in Section II, the code is type-checked twice
under different assumptions: first, we consider the case of an
honest user visiting the server; second, we consider a CSRF
attempt where the attacker forces the user’s browser to send
a request to the server. We do not consider the case of the
attacker visiting the server from her own browser since we
can prove that such a session is always well-typed, which is
close in spirit to the opponent typability lemma employed in
type systems for cryptographic protocols [26], [4].

To enforce our session integrity property, the type system
needs to track the identity of the user owning the session and
the intention of the user to perform authenticated actions. In
typing, this is captured by two dedicated labels.

The session label `s records the owner of the active session
and is used to label references in the session memory. The

label typically equals the one of the session identifier, thus
it changes when we resume or start a new session. Formally,
`s ∈ L2 ∪ {×} where × denotes no active session.

The program counter label pc ∈ L tracks the integrity of
the control flow. A high pc implies that the control flow is
intended by the user. The pc is lowered in conditionals with
a low integrity guard, as is standard in IFC type systems. In
the CSRF typing branch, the pc will be permanently low: we
need to prune this typing branch to type-check high integrity
actions. For this purpose, we use token or origin checks: in
the former, the user submits a CSRF token that is compared
to a (secret) session reference or cookie, while in the latter
we check whether the origin of the request is contained in a
whitelist. There are cases in which we statically know that the
check will fail, allowing us to prune typing branches.

We also briefly comment on another important attack,
namely cross-site scripting (XSS): we can model XSS vul-
nerabilities by including a script from an attacker-controlled
domain, which causes a failure in typing. However, XSS
prevention is orthogonal to the goal of our work and must be
solved with alternative techniques, e.g., proper input filtering
or CSP [34].

D. Explanation of the Typing Rules

1) Server Expressions: typing of server expressions is ruled
by the judgement Γ, `s `se`a se : τ , meaning that the expression
se has type τ in the typing environment Γ within the session
`s. Names have type cred(`) where ` is the label provided as
an annotation (T-ENAME, T-EFRESH). Values different from
names are constants of type ⊥, i.e., they have low confiden-
tiality and high integrity (T-EVAL). Rule (T-EUNDEF) gives
any type to the undefined value ⊥. This is needed since the
initial memory and empty parameters contain this value and
have to be well-typed. Types for variables and references in the
global memory are read from the corresponding environments
(T-EVAR,T-EGLOBREF). For session references we combine
the information stored in the environment with the session
label `s, which essentially acts as an upper bound on the types
of references (T-ESESREF). In a honest session, `s has high
confidentiality, thus the session memory can be used to store
secrets. In the attacker session, instead, the types of all session
references are lowered to at most `a. Typing fails if no session
is active, i.e., `s = ×. The computed type for a reference is
a credential type if and only if it is so in the environment.
Binary operations are given the join of the types of the two
operands (T-EBINOP). However, on credentials we allow only
equality checks to limit leaks through implicit flows. Finally,
(T-ESUB) lets us use subtyping on expressions.

2) Server References: typing of server references is ruled
by the judgment Γ, `s `sr`a r : ref(τ) meaning that the
reference r has type ref(τ) in the typing environment Γ
within the session `s. This judgement is used to derive the
type of a reference we write into, in contrast to the typing of
expressions which covers the typing of references from which
we read. While (T-RGLOBREF) just looks up the type of the
global reference in the typing environment, in (T-RSESREF)

TABLE III: Type system.
Server expressions

(T-ENAME)

Γ, `s `se`a n
`

: cred(`)

(T-EFRESH)

Γ, `s `se`a fresh()
`

: cred(`)

(T-EVAL)
v 6∈ N

Γ, `s `se`a v : ⊥

(T-EUNDEF)

Γ, `s `se`a ⊥ : τ

(T-EVAR)

Γ, `s `se`a x : ΓX (x)

(T-EGLOBREF)
ΓR@ (r) = ref(τ)

Γ, `s `se`a @r : τ

(T-ESESREF)
ΓR$ (r) = ref(τ

′
) ` = (C(τ

′
) uC C(`s), I(τ

′
) tI I(`s))

`s 6= × τ = (τ
′ 6= cred(·)) ? ` : cred(`)

Γ, `s `se`a $r : τ

(T-EBINOP)
Γ, `s `se`a se : τ Γ, `s `se`a se

′
: τ
′

(τ, τ
′ 6= cred(·)) ∨ � is =

Γ, `s `se`a se� se
′

: τ t τ ′

(T-ESUB)
Γ, `s `se`a se : τ

′
τ
′ v`a τ

Γ, `s `se`a se : τ

Server references

(T-RGLOBREF)

Γ, `s `sr`a @r : ΓR@ (r)

(T-RSESREF)
`s 6= × ΓR$ (r) = ref(τ

′
) ` = (C(τ

′
) uC C(`s), I(τ

′
) tI I(`s))

τ = (τ
′ 6= cred(·)) ? ` : cred(`)

Γ, `s `sr`a $r : ref(τ)

(T-RSUB)
Γ, `s `sr`a r : ref(τ

′
) τ v`a τ

′

Γ, `s `sr`a r : ref(τ)

Server-side commands

(T-SKIP)

Γ, `s, pc `c`a,C skip : `s, pc

(T-SEQ)
Γ, `s, pc `c`a,C c : `s

′
, pc′

Γ, `s
′
, pc′ `c`a,C c

′
: `s
′′
, pc′′

Γ, `s, pc `c`a,C c; c
′

: `s
′′
, pc′′

(T-LOGIN)
Γ, `s `se`a seu : τ Γ, `s `se`a sepw : cred(`) Γ, `s `se`a sesid : cred(`

′
)

C(cred(`)) vC C(cred(`
′
)) I(cred(`)) tI pc vI I(cred(`′))

Γ, `s, pc `c`a,C login seu, sepw, sesid : `s, pc

(T-START)
Γ, `s `se`a se : cred(`)

`s
′

= (C(cred(`)) vC C(`a)) ? `a : `

Γ, `s, pc `c`a,C start se : `s
′
, pc

(T-SETGLOBAL)
Γ, `s `sr`a @r : ref(τ) Γ, `s `se`a se : τ

pc vI I(τ)

Γ, `s, pc `c`a,C @r := se : `s, pc

(T-SETSESSION)
Γ, `s `sr`a $r : ref(τ) Γ, `s `se`a se : τ

pc vI I(τ)

Γ, `s, pc `c`a,C $r := se : `s, pc

(T-IF)
Γ, `s `se`a se : τ pc′ = pc tI I(τ) Γ, `s, pc

′ `c`a,C c : `s
′′
, pc1

Γ, `s, pc
′ `c`a,C c

′
: `s
′′′
, pc2 pc′′ = pc1 tI pc2 `s

′
= (`s

′′
= `s

′′′
) ? `s

′′
: ×

Γ, `s, pc `c`a,C if se then c else c
′

: `s
′
, pc′′

(T-AUTH)
`s 6= × ∀k ∈ [1 . . . |~se|].Γ, `s `se`a sek : τk(

I(`a) vI
⊔
I

1≤k≤| ~se|

I(τk) tI pc tI I(`s)
)
⇒ I(`a) vI I(`)

Γ, `s, pc `c`a,C auth ~se at ` : `s, pc

(T-PRUNETCHK)
Γ, `s `sr`a r : ref(cred(`)) Γ, `s `se`a x : τ

C(τ) 6= C(cred(`)) C(cred(`)) 6vC C(`a) b = csrf

Γ, `s, pc `c`a,(u,b,P) if tokenchk(x, r) then c : `s, pc

(T-TCHK)
Γ, `s `sr`a r : ref(cred(`)) Γ, `s `se`a x : cred(`)

Γ, `s, pc `c`a,C c : `s
′
, pc

Γ, `s, pc `c`a,C if tokenchk(x, r) then c : `s
′
, pc

(T-PRUNEOCHK)
∀l ∈ L.I(`a) 6vI l u ∈ P b = csrf

Γ, `s, pc `c`a,(u,b,P) if originchk(L) then c : `s, pc

(T-OCHK)
Γ, `s, pc `c`a,C c : `s

′
, pc

Γ, `s, pc `c`a,C if originchk(L) then c : `s
′
, pc

(T-REPLY)
ΓU (u) = `u, ~τ, lr

pc′ = pc tI lr Γ
′
X = x1 : τ1, . . . , x| ~se| : τ| ~se| Γ

′
= (ΓU ,Γ

′
X ,ΓR@ ,ΓR$,ΓV) ∀k ∈ [1 . . . |~se|].Γ, `s `se`a sek : τk ∧ C(τk) vC C(`u)

∀r ∈ dom(ck).Γ, `s `sr`a r : ref(τr) ∧ Γ
′
, `s `se`a ck(r) : τr ∧ pc′ vI I(τr) Γ

′
, b, pc′ `s`a,P s b = csrf ⇒ ∀x ∈ vars(s). C(Γ

′
X (x)) vC C(`a)

b = hon⇒ pc vI lr ∧
(
page = error ∨ ∀v ∈ dom(page).Γ

′
, v, pc′ `f`a page(v)

)
I(`a) vI I(`u)⇒ ∀k ∈ [1 . . . |~se|]. C(τk) vC C(`a)

Γ, `s, pc `c`a,(u,b,P) reply (page, s, ck) with ~x = ~se : `s, pc

(T-REDIR)
ΓU (u) = `u, ~τ, lr Γ

′
X = x1 : τ1, . . . , x| ~se| : τ| ~se| Γ

′
= (ΓU ,Γ

′
X ,ΓR@ ,ΓR$,ΓV)

∀k ∈ [1 . . . |~se|].Γ, `s `se`a sek : τk ∧ C(τk) vC C(`u) ∀r ∈ dom(ck).Γ, `s `sr`a r : ref(τr) ∧ Γ
′
, `s `se`a ck(r) : τr ∧ pc vI I(τr)

I(`a) vI I(`u)⇒ ∀k ∈ [1 . . . |~se|]. C(τk) vC C(`a) b = csrf ⇒ ∀x ∈ vars(~z). C(Γ
′
X (x)) vC C(`a)

ΓU (u
′
) = `

′
u,
~τ ′, b = hon⇒

(
pc vI I(`u) ∧m = |~z | = |~τ ′| ∧ ∀k ∈ [1 . . .m].Γ

′
, `s `se`a zk : τ

′
k ∧ τ

′
k v`a τk

)
Γ, `s, pc `c`a,(u,b,P) redirect (u

′
, ~z, ck) with ~x = ~se : `s, pc

Forms
(T-FORM)
ΓV(v) = ΓU (u) = `u, ~τ, lr pc vI I(`u) m = |~z | = |~τ | ∀k ∈ [1 . . .m].Γ, `s `se`a zk : τ

′
k ∧ τ

′
k v`a τk

Γ, v, pc `f`a form(u, ~z)

Server threads

(T-PARALLEL)
Γ
0 `t`a,P t Γ

0 `t`a,P t
′

Γ
0 `t`a,P t ‖ t

′

(T-RECV)
λ, `a,Γ

0 ` � Γ
0
U (u) = `u, ~τ, lr m = |~τ | = |~x |

∀k ∈ [1 . . . |~r |]. C(Γ
0

R@ (rk)) vC C(`u) ∧ I(`u) vI I(Γ0

R@ (rk))

ΓX = x1 : τ1, . . . , xm : τm (Γ
0
U ,ΓX ,Γ

0

R@ ,Γ
0

R$,Γ
0
V),×, I(`u) `c`a,(u,hon,P) c : , I(`u)

Γ
′
X = x1 : `a, . . . , xm : `a (Γ

0
U ,Γ

′
X ,Γ

0

R@ ,Γ
0

R$,Γ
0
V),×,>I `c`a,(u,csrf,P) c : ,>I

Γ
0 `t`a,P u[~r](~x) ↪→ c

we have analogous conditions to (T-ESESREF) for session
references. Subtyping for reference types is contra-variant to
subtyping for security types (T-RSUB).

3) Server Commands: the judgement Γ, `s,pc `c`a,(u,b,P)

c : `s
′,pc′ states that the command c (bound to the endpoint

at URL u) can be typed against the attacker `a in the typing
branch b ∈ {hon, csrf} using typing environment Γ, session
label `s and program counter label pc. P contains all URLs
that rely on an origin check to prevent CSRF attacks. After
the execution of c, the session label and the PC label are
respectively updated to `s

′ and pc′. We let C = (u, b,P) if
the individual components of the tuple are not used in a rule.
The branch b tracks whether we are typing the scenario of an
honest request (b = hon) or the CSRF case (b = csrf).

Rule (T-SKIP) does nothing, while (T-SEQ) types the
second command with the session label and the PC label
obtained by typing the first command.

Rule (T-LOGIN) verifies that the password and the session
identifier are both credentials and that the latter is at least as
confidential as the former, since the identifier can be used for
authentication in place of the password. Finally, we check that
the integrity of the password and pc are at least as high as the
integrity of the session identifier to prevent an unauthorized
party from influencing the identity associated to the session.

Rule (T-START) updates the session label used for typing
the following commands. First we check that the session
identifier se has a credential type: if it has low confidentiality,
we update the session label to `a (since the attacker can access
the session), otherwise we use the label ` in the type of se.

Rules (T-SETGLOBAL) and (T-SETSESSION) ensure that
no explicit flow violates the confidentiality or integrity poli-
cies, where for integrity we also consider the PC label.

Rule (T-IF) lowers the PC based on the integrity label of the
guard expression of the conditional and uses it to type-check
the two branches. In the continuation we use the join of the PC
labels returned in the two branches: using a higher PC would
be unsound since reaching the continuation may depend on
which branch is executed (e.g., if one of the branches contains
a reply command). If typing the two branches yields two
different session labels, we use the session label × in the
continuation to signal that the session state cannot be statically
predicted and thus no session operation should be allowed.

Rule (T-AUTH) ensures that the attacker cannot affect any
component leading to an authenticated event (PC label, session
label or any expression in ~se) unless the event is annotated
with a low integrity label. Since authenticated events are bound
to sessions, we require `s 6= ×.

Rules (T-PRUNETCHK) and (T-TCHK) handle CSRF token
checks. In (T-PRUNETCHK) we statically know that the check
fails since the reference where the token is stored has a high
confidentiality credential type and the parameter providing
the token is a low confidentiality value, hence we do not
type-check the continuation c. This reasoning is sound since
credentials are unguessable fresh names and we disallow sub-
typing for high confidentiality credentials, i.e., public values
cannot be treated as secret credentials. This rule is used only

in the CSRF typing branch. Rule (T-TCHK) covers the case
where the check may succeed and we simply type-check the
continuation c. We do not change the PC label since a failure
in the check produces an error page which causes the user to
stop browsing.

Similarly, rules (T-PRUNEOCHK) and (T-OCHK) cover
origin checks. We can prune the CSRF typing branch if the
URL we are typing is protected (u ∈ P) and all whitelisted
origins have high integrity, since the origin of a CSRF attack
to a protected URL has always low integrity.

Rule (T-REPLY) combines the PC label with the expected
integrity label of the response lr for the current URL to
compute pc′ which is used to type the response. In the
honest typing branch, we require pc′ = lr, which establishes
an invariant used when typing an include command in a
browser script, where we require that the running script and
the included script can be typed with the same pc (cf. rule (T-
BINCLUDE) in [15]). Using the typing environment Γ′ which
contains types for the variables embedded in the response, we
check the following properties:
• secrets are not disclosed over a network connection which

cannot guarantee their confidentiality;
• the types of the values assigned to cookies are consistent

with those in the typing environment (where the PC label is
taken into account for the integrity component);

• the script in the response is well-typed (rules in [15]);
• secrets are not disclosed to a script in the CSRF typing

branch since it might be included by an attacker’s script;
• in the honest typing branch, we check that the returned

page is either the error page or all its forms are well-typed
according to rule (T-FORM). We do not perform this check
in the CSRF branch since a CSRF attack is either triggered
by a script inclusion or through a redirect. In the first case
the attacker cannot access the DOM, which in a real browser
is enforced by the Same Origin Policy. In the second case,
well-formed user behavior (cf. Definition 4) ensures that the
user will not interact with the DOM in this scenario;

• no high confidentiality data is included in replies over a low
integrity network connection, since the attacker could inject
scripts to leak secrets embedded in the response.

Rule (T-REDIR) performs mostly the same checks as (T-
REPLY). Instead of typing script and DOM, we perform checks
on the URL similar to the typing of forms, as discussed below.

4) Forms: the judgement Γ, v,pc `f`a f says that a form
f identified by the name v is well-typed in the environment
Γ under the label pc. Our rule for typing forms (T-FORM)
first checks that the type of the form name matches the type
of the target URL. This is needed since for well-formed user
behavior (cf. Definition 4) we assume that the user relies on
the name of a form to ensure that her inputs are compliant with
the expected types. With pc vI I(`u) we check that the thread
running with program counter label pc is allowed to trigger
requests to u. In this way we can carry over the pc from one
thread where the form has been created to the one receiving
the request since we type-check the honest branch with pc =
I(`u). Finally, we check that the types of form values comply

with the expected type for the corresponding URL parameters,
taking the PC into account for implicit integrity flows.

5) Server Threads: the judgement Γ0 `t`a,P t says that
the thread t is well-typed in the environment Γ0 against the
attacker `a and P is the set of URLs protected against CSRF
attacks via origin checking.

Rule (T-PARALLEL) states that the parallel composition of
two threads is well-typed if both are well-typed. Rules for
typing running threads (i.e., t = dccRE) are in the technical
report [15], since they are needed only for proofs.

Rule (T-RECV) checks that the environment is well-formed
and that the network connection type `u is strong enough to
guarantee the types of the cookies, akin to what is done for
parameters in Definition 3. Then we type-check the command
twice with `s = ×, since no session is initially active. In the
first branch we let b = hon: parameters are typed according to
the type of u in Γ0

U which is reflected in the environment ΓX .
As the honest user initiated the request, we let pc = I(`u),
i.e., we use the integrity label of the network connection as
pc. This allows us to import information about the program
counter from another (well-typed) server thread or browser
script that injected the form into the DOM or directly triggered
the request. In the second branch we let b = csrf: parameters
are chosen by the attacker, hence they have type `a in Γ′X . As
the attacker initiated the request, we let pc = >I .

E. Formal Results

We introduce the notion of navigation flow, which identifies
a sequence of navigations among different pages occurring
in a certain tab and triggered by the user’s interaction with
the elements of the DOM of rendered pages. Essentially, a
navigation flow is a list of user actions consisting of a load on
a certain tab followed by all actions of type submit in that tab
(modeling clicks on links and submissions of forms) up to the
next load (if any). A formal definition is presented in [15].

Next we introduce the notion of well-formedness to con-
strain the interactions of an honest user with a web system.

Definition 4. The list of user actions ~a is well-formed for the
honest user usr in a web system W with respect to a typing
environment Γ0 and an attacker `a iff
1) for all actions a′ in ~a we have:
• if a′ = load(tab, u, p), ΓU (u) = `u, ~τ , lr then for all
k ∈ dom(p) we have p(k) = vτ

′ ⇒ τ ′ v`a τk;
• if a′ = submit(tab, u, v′, p), ΓV(v′) = `u, ~τ , lr then for

all k ∈ dom(p) we have p(k) = vτ
′ ⇒ τ ′ v`a τk.

2) (`a,K0) . Busr({}, {},~a) ‖ W
γ−→
∗

(`a,K′) .
Busr(M,P, 〈〉) ‖ W ′ for some K′,W ′,M, P where γ is
an unattacked trace;

3) for every navigation flow ~a ′ in ~a, we have that I(`a) vI
I(λ(a′j)) implies I(`a) vI I(λ(a′k)) for all j < k ≤ |~a′|.

Condition 1 prevents the user from deliberately leaking
secrets by enforcing that the expected parameter types are
respected. While the URL in a load event is the target URL
and we can directly check its type, in a submit action it refers

to the page containing the form: intuitively, this models a
user who knows which page she is actively visiting with a
load and which page she is currently on when performing a
submit. However, we do not expect the user to inspect the
target URL of a form. Instead, we expect the user to identify
a form by its displayed name (the parameter v′ in submit)
and input only data matching the type associated to that form
name. For instance, in a form named “public comment”, we
require that the user enters only public data. Typing hence has
to enforces that all forms the user interacts with are named
correctly. Otherwise, an attacker could abuse a mismatch of
form name and target URL in order to steal confidential data.

Condition 2 lets us consider only honest runs in which
the browser terminates regularly. Concretely, this rules out
interactions that deliberately trigger an error at the server-side,
e.g., the user loads a page expecting a CSRF token without
providing this token, or executions that do not terminate due
to infinite loops, e.g., where a script recursively includes itself.

Condition 3 requires that the user does not navigate a
trusted website reached by interacting with an untrusted page.
Essentially, this rules out phishing attempts where the attacker
influences the content shown to the user in the trusted website.

Our security theorem predicates over fresh clusters, i.e.,
systems composed of multiple servers where no command is
running or has been run in the past.

Definition 5. A server S is fresh if S = ({}, {}, t) where t is
the parallel composition of threads of the type u[~r](~x) ↪→ c.
A system W is a fresh cluster if it is the parallel composition
of fresh servers.

We now present the main technical result, namely that well-
typed clusters preserve the session integrity property from
Definition 2 for all well-formed interactions of the honest user
with the system, provided that her passwords are confidential.

Theorem 1. Let W be a fresh cluster, (`a, K) an attacker,
Γ0 a typing environment, P a set of protected URLs against
CSRF via origin checking and let ~a be a list of well-formed
user actions for usr in W with respect to Γ0 and `a. Assume
that for all u with ρ(usr, u) = n` we have C(`) 6vC C(`a) and
for all n` ∈ K we have C(`) vC C(`a). Then W preserves
session integrity against `a with knowledge K for the honest
user usr performing the list of actions ~a if Γ0 `t`a,P t for all
servers S = ({}, {}, t) in W .

The proof builds upon a simulation relation connecting a run
of the system with the attacker with a corresponding run of the
system without the attacker in which the honest user behaves
in the same way and high integrity authenticated events are
equal in the two runs. The full security proof can be found in
the technical report [15].

V. CASE STUDY

Now we resume the analysis of HotCRP, started in Section II
where we described the login CSRF and proposed a fix, and
describe the remaining session integrity problems we discov-
ered by typing its model in our core calculus. The encodings

of Moodle and phpMyAdmin, including the description of the
new vulnerability, are provided in the technical report [15].

A. Methodology

We type-check the HotCRP model of Section II against
different attackers, including the web-, related-domain-, and
network attacker. Two scenarios motivate the importance of
the related-domain attacker in our case study. First, many
conferences using HotCRP deploy the system on a subdomain
of the university organizing the event, e.g., CSF 2020: any user
who can host contents on a subdomain of the university can
act as the attacker. Second, anybody can host a conference on
a subdomain of hotcrp.com or access the administrative panel
of test.hotcrp.com: by exploiting a stored XSS vulnerability
(now fixed) in the admin panel, it was possible to show on the
homepage of the conference a message containing JavaScript
code that tampers with cookies to implement the attacks below.

Failures in type-checking highlight code portions that we
analyze manually, as they likely suffer from session integrity
flaws. Once a problem is identified, we implement a patch in
our HotCRP model and try to type-check it again; this iterative
process stops when we manage to establish a security proof
by typing, as shown in Section V-C.

B. Cookie Integrity Attacks

Our fix against login CSRF does not ensure the integrity of
session cookies against network and related-domain attackers:
the former can compromise cookie integrity by forging HTTP
traffic, while the latter can set cookies for the target website
by using the Domain attribute. Attackers can thus perform
cookie forcing to set the their session cookies in the victim’s
browser, achieving the same outcome of a login CSRF.

Even worse, the lack of cookie integrity combined with
a logical vulnerability on HotCRP code enables a session
fixation attack, where the attacker manages to force a known
cookie into the browser of the victim before she authenticates
which is used by HotCRP to identify the victim’s session
after login. With the known cookie, the attacker can then
access the victim’s session to steal submitted papers, send fake
reviews, or deanonymize reviewers. HotCRP tries to prevent
session fixation by checking during login whether the provided
session cookie (if any) identifies a session where no variable
is set: in such a case, the value of the cookie is changed
to an unpredictable random string. However, some session
variables are not properly unset during logout, thus the above
check can be voided by an attacker with an account on the
target website that obtains a valid cookie by authenticating
and logging out.3 At this point, the attacker can inject this
cookie into the victim’s browser to perform the attack.

Both attacks are captured in typing as follows: although we
have a certain liberty in the choice of our initial environment,
no possible type for sid leads to a successful type derivation

3 To simplify the presentation (and due to space constraints), this complex
behavior is not encoded in the example in Section II. However, the possibility
to perform cookie forcing, which is modeled in our example, is a prerequisite
for session fixation and is detected by the type system.

since sid must have a credential type. As the attacker can set
the cookie, it must have low integrity by well-formedness of
the typing environment (Definition 3). Since the attacker can
write (low confidentiality) values of her knowledge into sid ,
it may not be a credential of high confidentiality, again by
Definition 3. Hence we must assume that sid is a credential
of low confidentiality and integrity. However, since the user’s
password has high confidentiality, typing fails in the login
endpoint (on line 9) when applying rule (T-LOGIN).

A possible solution against these threats relies on the
adoption of cookie prefixes (cf. Section III-C) which pro-
vide high integrity guarantees against network and related-
domain attackers. This protection cannot be applied by de-
fault in HotCRP due to backward compatibility reasons, i.e.,
hotcrp.com relies on cookies shared across multiple domains to
link different conferences under the same account. However,
the developer has fixed the bug causing the session fixation
vulnerability and we have discussed with him the option to
offer cookie prefixes as an opt-in security mechanism during
the setup of HotCRP.

C. Typing Example

Now we show how to type-check the (fixed) login end-
point on domain dC against an attacker controlling a related-
domain dE ∼ dC , assuming that the session cookie is
secured with the __Host- prefix. We let the attacker label
`a = (http(dE) ∨ https(dE), http(dE) ∨ https(dE)), and
let `C = (https(dC), https(dC)), `LH = (⊥C , https(dC)),
`HL = (https(dC),>I). We then consider a minimal environ-
ment Γ sufficient to type the login endpoint, where:

ΓU = {login 7→ (`C , (`LH , cred(`C), cred(`HL)), https(dC)),

manage 7→ (`C , (`C , `LH , cred(`HL)), https(dC))}
ΓR@ = {r 7→ cred(`C), r′ 7→ cred(`HL),

sid 7→ cred(`C), pre 7→ cred(`HL)}
ΓR$ = {user 7→ `LH , ltoken 7→ cred(`HL)}
ΓV = {auth 7→ ΓU (login),link 7→ ΓU (manage)}

We typecheck the code under two different assumptions in (T-
RECV). Our goal is to prune the CSRF typing branch before
the security critical part and type it only in the honest setting.

We start with the honest typing branch. When typing the
conditional (line 2) in rule (T-IF), we do not lower pc
since the integrity label of the guard and pc is https(dC).
In the then branch (line 3), we have the assignment
@r ′ := fresh()`HL , which types successfully according to (T-
SETGLOBAL). The start statement with the freshly sampled
value yields a session label `s = (https(dC),>I). The
assignment $ltoken := fresh()`HL also succeeds according
to (T-SETSESSION). The session label does not affect the
type of the reference $ltoken in this case. For the reply
(lines 4–5) we successfully check that the URL is well-formed
and may be produced with the current pc (T-FORM), that
the empty script is well-typed, and that y = @r ′ may be
assigned to the cookie pre (T-REPLY). In the else branch
of the conditional, we start a session over the cookie @pre

hotcrp.com
test.hotcrp.com
hotcrp.com

(line 7), leading to a session label `s = (https(dC),>I) (T-
START). The conditions in (T-TCHK) are fulfilled for the
tokenchk command (line 8) and we continue typing without
any additional effect. Since we still have pc = https(dC),
the assignment @r := fresh()`C type-checks (line 9). As the
password is of the same type as the reference @r containing
the session secret, the login also type-checks successfully
(T-LOGIN). The start statement over a credential of type
cred(`C) gives us the session label `s = `C . For the reply
(lines 10–11), we check that we may include the form with the
current pc and that it is well formed (trivial since it contains
only ⊥), that the empty script is well-typed and that we may
assign the value of @r to the cookie sid (T-REPLY).

The then branch of the CSRF case types similarly to the
honest case, since all references used in it and the cookie pre
have integrity label >I . Additionally, in the CSRF branch, we
do not type the DOM (T-REPLY). In the else branch we start
a session (line 7) with label `s = (https(dC),>I) (T-START).
When performing the tokenchk (line 8), we can apply rule
(T-PRUNETCHK), since Γ, `s `se`a $ltoken : cred(`HL) and
Γ, `s `se`a token : `a cannot be given the same confidentiality
label. Hence, we do not have to type-check the continuation.

VI. RELATED WORK

Formal foundations for web security have been proposed in
a seminal paper [1], using a model of the web infrastructure
expressed in the Alloy model-checker to find violations of
expected web security goals. Since then, many other papers
explored formal methods in web security: a recent survey [11]
covers different research lines. We discuss here the papers
which are closest to our work.

In the context of web sessions, [12] employed reactive
non-interference [10] to formalize and prove strong confi-
dentiality properties for session cookies protected with the
HttpOnly and Secure attributes, a necessary condition
for any reasonable notion of session integrity. A variant
of reactive non-interference was also proposed in [29] to
formalize an integrity property of web sessions which rules
out CSRF attacks and malicious script inclusions. The paper
also introduced a browser-side enforcement mechanism based
on secure multi-execution [21]. A more general definition
of web session integrity, which we adapted in the present
paper, was introduced in [13] to capture additional attacks, like
password theft and session fixation. The paper also studied a
provably sound browser-based enforcement mechanism based
on runtime monitoring. Finally, [14] proposed the adoption of
micro-policies [20] in web browsers to prevent a number of at-
tacks against web sessions and presented Michrome, a Google
Chrome extension implementing the approach. None of these
papers, however, considered the problem of enforcing a formal
notion of session integrity by analyzing web application code,
since they only focused on browser-side defenses.

Formal methods found successful applications to web ses-
sion security through the analysis of web protocols, which
are the building blocks of web sessions when single sign-
on services are available. Bounded model-checking was em-

ployed in [3] and [2] to analyze the security of existing
single sign-on protocols, exposing real-world attacks against
web authentication. WebSpi is a ProVerif library designed to
model browser-server interactions, which was used to analyze
existing implementations of single sign-on based on OAuth
2.0 [7] and web-based cloud providers [6].

Web protocols for single sign-on have also been manually
analyzed in the expressive Web Infrastructure Model (WIM):
for instance, [23] focused on OAuth 2.0, [24] considered
OpenID Connect, and [22] analyzed the OpenID Financial-
grade API. While the WIM is certainly more expressive than
our core model, proofs are at present manual and require a
strong human expertise. In terms of security properties, [22]
considers a session integrity property expressed as a trace
property that is specific to the OpenID protocol flow and
the resources accessed thereby, while our definition of session
integrity is generic and formulated as a hyperproperty.

Server-side programming languages with formal security
guarantees have been proposed in several research papers. Ex-
amples include SELinks [19], UrFlow [17], SeLINQ [32] and
JSLINQ [5]. All these languages have the ability to enforce
information flow control in multi-tier web applications, poten-
tially including a browser, a server and a database. Information
flow control is an effective mechanism to enforce session
integrity, yet these papers do not discuss how to achieve
web session security; rather, they propose new languages and
abstractions for developing web applications. To the best of our
knowledge, there is no published work on the formal security
analysis of server-side programming languages, though the
development of accurate semantics for such languages [25] is
undoubtedly a valuable starting point for this kind of research.

VII. CONCLUSION

We introduced a type system for sound verification of
session integrity for web applications encoded in a core model
of the web, and used it to assess the security of the session
management logic of HotCRP, Moodle, and phpMyAdmin.
During this process we unveiled novel critical vulnerabilities
that we responsibly disclosed to the applications’ developers,
validating by typing the security of the fixed versions.

We are currently developing a type-checker to fully auto-
mate the analysis, which we intend to make available as open
source. Providing type annotations is typically straightforward,
as they depend on the web application specification and are
easily derivable from it (e.g., cookie labels are derived from
their attributes) and typing derivations are mostly determinis-
tic, with a few exceptions (e.g., subtyping) that however follow
recurrent patterns (e.g., subtyping is used in assignments to
upgrade the value type to the reference type).

Furthermore, while in this work we focused on a concise
web model to better illustrate the foundational aspects of our
analysis technique, it would be interesting to extend the type
system to cover richer web models, e.g., the WIM model [22],
as well as additional web security properties. We also plan
to automate the verification process for PHP code, e.g., by
developing an automated translation from real world code into

our calculus. Finally, we would like to formalize our theory
in a proof assistant.

ACKNOWLEDGMENTS

This work has been partially supported by the the European
Research Council (ERC) under the European Union’s Horizon
2020 research (grant agreement 771527-BROWSEC); by the
Austrian Science Fund (FWF) through the project PROFET
(grant agreement P31621); by the Austrian Research Promo-
tion Agency (FFG) through the Bridge-1 project PR4DLT
(grant agreement 13808694) and the COMET K1 SBA.

REFERENCES

[1] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and D. Song, “Towards
a Formal Foundation of Web Security,” in Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, CSF 2010, 2010, pp. 290–
304.

[2] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G. Pellegrino, and
A. Sorniotti, “An Authentication Flaw in Browser-Based Single Sign-
On Protocols: Impact and remediations,” Computers & Security, vol. 33,
pp. 41–58, 2013.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra,
“Formal Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking
the SAML-Based Single Sign-On for Google Apps,” in Proceedings of
the 6th ACM Workshop on Formal Methods in Security Engineering,
FMSE 2008, 2008, pp. 1–10.

[4] M. Backes, C. Hriţcu, and M. Maffei, “Union, Intersection and Refine-
ment Types and Reasoning About Type Disjointness for Secure Protocol
Implementations,” Journal of Computer Security, vol. 22, pp. 301–353,
2014.

[5] M. Balliu, B. Liebe, D. Schoepe, and A. Sabelfeld, “JSLINQ: Building
Secure Applications across Tiers,” in Proceedings of the 6th ACM
Conference on Data and Application Security and Privacy, CODASPY
2016, 2016, pp. 307–318.

[6] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Keys
to the Cloud: Formal Analysis and Concrete Attacks on Encrypted
Web Storage,” in Proceedings of the 2nd International Conference on
Principles of Security and Trust, POST 2013, 2013, pp. 126–146.

[7] ——, “Discovering Concrete Attacks on Website Authorization by
Formal Analysis,” Journal of Computer Security, vol. 22, no. 4, pp.
601–657, 2014.

[8] A. Barth, “Http state management mechanism,” 2011, available at https:
//tools.ietf.org/html/rfc6265.

[9] A. Barth, C. Jackson, and J. C. Mitchell, “Robust Defenses for Cross-
Site Request Forgery,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS 2008, 2008, pp. 75–88.

[10] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic,
“Reactive Noninterference,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS 2009, 2009, pp. 79–
90.

[11] M. Bugliesi, S. Calzavara, and R. Focardi, “Formal methods for web
security,” Journal of Logic and Algebraic Programming, vol. 87, pp.
110–126, 2017.

[12] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan, “CookiExt:
Patching the Browser Against Session Hijacking Attacks,” Journal of
Computer Security, vol. 23, no. 4, pp. 509–537, 2015.

[13] M. Bugliesi, S. Calzavara, R. Focardi, W. Khan, and M. Tempesta,
“Provably Sound Browser-Based Enforcement of Web Session Integrity,”
in Proceedings of the 27th IEEE Computer Security Foundations Sym-
posium, CSF 2014, 2014, pp. 366–380.

[14] S. Calzavara, R. Focardi, N. Grimm, and M. Maffei, “Micro-Policies
for Web Session Security,” in Proceedings of the 29th IEEE Computer
Security Foundations Symposium, CSF 2016, 2016, pp. 179–193.

[15] S. Calzavara, R. Focardi, N. Grimm, M. Maffei, and M. Tem-
pesta, “Language-Based Web Session Integrity,” arXiv e-prints, p.
arXiv:2001.10405, Jan 2020.

[16] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving the
Web: A Journey into Web Session Security,” ACM Computing Surveys,
vol. 50, no. 1, pp. 13:1–13:34, 2017.

[17] A. Chlipala, “Static Checking of Dynamically-Varying Security Policies
in Database-Backed Applications,” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2010, 2010, pp. 105–118.

[18] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, September 2010.

[19] B. J. Corcoran, N. Swamy, and M. W. Hicks, “Cross-Tier, Label-Based
Security Enforcement for Web Applications,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2009, 2009, pp. 269–282.

[20] A. A. de Amorim, M. Dénès, N. Giannarakis, C. Hritcu, B. C. Pierce,
A. Spector-Zabusky, and A. Tolmach, “Micro-Policies: Formally Veri-
fied, Tag-Based Security Monitors,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy, S&P 2015, 2015, pp. 813–830.

[21] D. Devriese and F. Piessens, “Noninterference through Secure Multi-
execution,” in Proceedings of the 31st IEEE Symposium on Security
and Privacy, S&P 2010, 2010, pp. 109–124.

[22] D. Fett, P. Hosseyni, and R. Küsters, “An Extensive Formal Security
Analysis of the OpenID Financial-Grade API,” in Proceedings of the
40th IEEE Symposium on Security and Privacy, S&P 2019, 2019, pp.
453–471.

[23] D. Fett, R. Küsters, and G. Schmitz, “A Comprehensive Formal Security
Analysis of OAuth 2.0,” in Proceedings of the 23rd ACM Conference on
Computer and Communications Security, CCS 2016, 2016, pp. 1204–
1215.

[24] ——, “The Web SSO Standard OpenID Connect: In-depth Formal
Security Analysis and Security Guidelines,” in Proceedings of the 30th
IEEE Computer Security Foundations Symposium, CSF 2017, 2017, pp.
189–202.

[25] D. Filaretti and S. Maffeis, “An Executable Formal Semantics of PHP,”
in Proceedings of the 28th European Conference in Object-Oriented
Programming, ECOOP 2014, 2014, pp. 567–592.

[26] R. Focardi and M. Maffei, Types for Security Protocols. IOS Press,
2011, pp. 143–181.

[27] J. Hodges, C. Jackson, and A. Barth, “Http strict transport security
(hsts),” 2012, available at https://tools.ietf.org/html/rfc6797.

[28] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing Cross Site Request
Forgery Attacks,” in Proceedings of the 2nd International Conference on
Security and Privacy in Communication Networks, SecureComm 2006,
2006, pp. 1–10.

[29] W. Khan, S. Calzavara, M. Bugliesi, W. D. Groef, and F. Piessens,
“Client Side Web Session Integrity as a Non-interference Property,”
in Proceedings of the 10th International Conference on Information
Systems Security, ICISS 2014, 2014, pp. 89–108.

[30] MITRE, “CVE-2019-12616,” June 2019. [Online]. Available: https:
//www.cvedetails.com/cve/CVE-2019-12616/

[31] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen,
“SessionShield: Lightweight Protection against Session Hijacking,” in
Proceedings of the 3rd International Symposium on Engineering Secure
Software and Systems, ESSoS 2011, 2011, pp. 87–100.

[32] D. Schoepe, D. Hedin, and A. Sabelfeld, “SeLINQ: Tracking In-
formation Across Application-Database Boundaries,” in Proceedings
of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2014, 2014, pp. 25–38.

[33] S. Tang, N. Dautenhahn, and S. T. King, “Fortifying Web-Based Appli-
cations Automatically,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, 2011, pp. 615–626.

[34] W3C, “Content Security Policy Level 2,” December 2016. [Online].
Available: https://www.w3.org/TR/CSP2/

[35] M. West, “Cookie Prefixes.” [Online]. Available: https://tools.ietf.org/
html/draft-west-cookie-prefixes-05

[36] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and N. Weaver,
“Cookies Lack Integrity: Real-World Implications,” in Proceedings of
the 24th USENIX Security Symposium, USENIX Security 2015, 2015,
pp. 707–721.

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6797
https://www.cvedetails.com/cve/CVE-2019-12616/
https://www.cvedetails.com/cve/CVE-2019-12616/
https://www.w3.org/TR/CSP2/
https://tools.ietf.org/html/draft-west-cookie-prefixes-05
https://tools.ietf.org/html/draft-west-cookie-prefixes-05

	Introduction
	Overview
	Encoding PHP Code in our Calculus
	A Core Model of HotCRP
	Session Integrity
	Security by Typing

	A Formal Model of Web Systems
	Expressiveness of the Model
	Syntax
	Basics
	Server Model
	User Behavior
	Browser Model
	Web Systems

	Labels and Threat Model
	Semantics
	Servers
	Web Systems

	Security Definition

	Security Type System
	Types
	Typing Environment
	Intuition Behind the Typing Rules
	Explanation of the Typing Rules
	Server Expressions
	Server References
	Server Commands
	Forms
	Server Threads

	Formal Results

	Case Study
	Methodology
	Cookie Integrity Attacks
	Typing Example

	Related Work
	Conclusion
	References

