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Abstract—Enforcing protection at the browser side has
recently become a popular approach for securing web
authentication. Though interesting, existing attempts in the
literature only address specific classes of attacks, and thus
fall short of providing robust foundations to reason on
web authentication security. In this paper we provide such
foundations, by introducing a novel notion of web session
integrity, which allows us to capture many existing attacks
and spot some new ones. We then propose FF+, a security-
enhanced model of a web browser that provides a full-
fledged and provably sound enforcement of web session
integrity. We leverage our theory to develop SESSINT, a
prototype extension for Google Chrome implementing the
security mechanisms formalized in FF+. SESSINT provides
a level of security very close to FF+, while keeping an eye
at usability and user experience.

I. INTRODUCTION

Despite the growing success of security-critical web
applications, “today’s Web authentication almost appears
to be an exercise in demonstrating how an authentica-
tion process should not be realized” [28]. Besides its
inherent weaknesses, password-based authentication is
particularly vulnerable on the Web, since any password
entered into a login form flows into the DOM of the page
and is made available to any malicious script injected
on it. Even when the password is not leaked during the
login process, client authentication on the Web is still
heavily at risk after the initial authentication step, since
a large majority of web applications employ cookies to
keep track of the authenticated sessions established upon
password verification. The attack surface against cookie-
based sessions is painfully large: authentication cookies
can inadvertently be sent in clear over the wire [26],
leaked to malicious websites through XSS flaws [21],
or fixated by an attacker [27]. Moreover, untrusted
parties may force the browser into creating arbitrary
authenticated requests to trusted websites [10]. While
current web application frameworks do allow to deploy
web authentication safely at the server side, developers
often misuse them, and/or are reluctant to adopt recom-
mended security practices [36]. Enforcing protection at
the browser side has thus become a popular approach for

securing web authentication [15], [18]–[20], [29]–[31],
[33]–[35]. Unfortunately, all the existing proposals in the
literature only address very specific classes of known
vulnerabilities, often lack rigorous security definitions
and proofs, and eventually fall short of providing robust
foundations for understanding the real effectiveness of
client-side defenses for web authentication.

Contributions: In this paper we advocate the study of
web authentication security through the introduction of a
novel notion of (web) session integrity. Our theory draws
on reactive systems, a formalism which has been previ-
ously proposed as an appropriate model of the browser
behaviour [13]. Our definition of session integrity is
particularly appealing, since it is browser-centric and
thus naturally amenable for effective enforcement at the
client side, without any background knowledge of the
server behaviour. We show how our definition captures
many existing attacks and spots some new ones.

We then introduce Flyweight Firefox (FF), a core
model of a web browser distilled from the Feather-
weight Firefox model developed with the Coq proof
assistant [11], [12], and we discuss FF+, a security-
enhanced extension of FF that provides a full-fledged
enforcement of web session integrity. The runtime mech-
anisms underlying FF+ are robust against both web
threats and network attacks, and the resulting model is
concrete enough to be amenable for an almost direct
implementation, while at the same time being fit for a
rigorous formal treatment and a security proof.

We leverage our theory to develop SESSINT, a pro-
totype extension for Google Chrome enforcing the se-
curity policy formalized in FF+. SESSINT is a proof
of concept that the mechanisms proposed in FF+ can
be implemented in real browsers without affecting too
much the user experience of many web applications. In
our experiments we identify web scenarios where the
security mechanisms of FF+ need to be relaxed in order
to regain usability or functionality of websites: in these
cases, SESSINT warns users of the security risk, affecting
as less as possible their navigation experience.



Related work: There exists a huge literature on attacks
against web authentication, we refer to [28] for a good
overview. The research community has proposed several
solutions against these attacks in the last few years, based
on server-side countermeasures [10], [21], [27], stronger
web authentication schemes [4], [17], [23], [25], [28],
or purely client-side solutions [15], [18]–[20], [29]–[31],
[33]–[35]. In this paper we are particularly interested in
the last research line, as browser-side defenses have a
very wide scope and applicability: if a website does not
comply with recommended security practices and/or is
affected by a vulnerability, web authentication can often
be protected by working solely at the browser’s. Server-
side defensive mechanisms or better web authentication
protocols are clearly important and worth of study, since
they can precisely fix the root cause of the vulnerabili-
ties and prevent usability issues, but we consider these
approaches orthogonal to our present endeavours.

We find existing client-side defenses very inspiring
and we borrowed (and refined) a number of ideas
from them in our work. Still, we observe that different
solutions are designed around different threat models,
hence it is not obvious how to soundly combine them
in practice. We also notice that the lack of formal
foundations in previous studies led to the development
of sub-optimal solutions: we refer to Section II-A for a
subtle attack which can be prevented at the browser side,
but escapes state-of-the-art proposals against CSRF.

SessionShield [33] is a client-side proxy aimed at
protecting authentication cookies from XSS attacks, by
isolating them from JavaScript accesses. The solution
protects the confidentiality of authentication cookies
against web attacks, but does not enforce protection
against network attacks. The same limitation applies to
the competitor tool Noxes [30] and to Zan [35].

Several client-side solutions have been proposed
against CSRF vulnerabilities [18], [19], [29], [31]. All
these tools share the same idea of stripping authen-
tication cookies from (selected classes of) cross-site
requests, thus making CSRF attacks largely ineffective.
Only the design of [19] has been formally validated,
through bounded model-checking. However, the verifi-
cation excludes from the threat model both XSS flaws
and network attackers, which instead are two important
aspects we consider in the present work.

Serene [20] is a browser-side solution against session
fixation attacks. The core idea is to instruct the browser
to attach to outgoing HTTP(S) requests only those au-
thentication cookies which have been set via HTTP(S)
headers, thus preventing cookies set by a malicious script
from being used for authentication. Serene does not

protect against network attacks, since network attackers
can overwrite any cookie in the browser just by forging
HTTP responses from the registering domain [1], [14].
The design of Serene has not been formally validated.

CookiExt [15] is a recent browser extension aimed at
protecting the confidentiality of authentication cookies
against both web and network attacks, by marking any
authentication cookie received by the browser as both
HttpOnly and Secure, and forcing a redirection from
HTTP to HTTPS for supporting websites. The approach
has been proved sound through a mechanized non-
interference proof, but it does not ensure the integrity of
authentication cookies and authenticated requests, thus
leaving room for attacks like session fixation and CSRF.

A different approach to secure web authentication at
the client side would be to extend the browser with
a full-fledged information flow control policy, as in
FlowFox [24]. At the time of writing, FlowFox does
not support integrity policies, which would be central
to enforcing our security notion.

Origin cookies have been proposed as a lightweight
solution for protecting web sessions, by providing
stronger integrity guarantees than standard cookies [14].
Origin isolation is a sound security principle and we
leverage it in FF+ / SESSINT. However, origin cookies
do not solve the problem of protecting the first authen-
tication step, i.e., when the password is sent from the
browser to the server. Moreover, origin cookies do not
directly support mixed HTTP/HTTPS websites, which
instead are largely present on the Web and are supported
by our solution (cf. Section IV). We also notice that the
Origin attribute does not solve all the potential prob-
lems affecting cookie-based authentication: for instance,
non-HttpOnly origin cookies can still be leaked via
XSS, so it is not obvious what security guarantees are
supported by the Origin attribute. On the other hand,
origin cookies ensure protection against related-domain
attackers, which is something we do not consider in our
formal model for the sake of simplicity.

A seminal paper by Akhawe et al. [5] proposes a
formal definition of web session integrity formulated
in Alloy. Roughly speaking, the definition requires that
the attacker is not involved in the “causal chain” of
the events which lead to an authenticated HTTP(S)
request being fired by the browser. The property is very
syntactic, so it is hard to generalize it to new settings
and carry out a precise comparison with our proposal.
What we observe though is that the definition in [5] is
only concerned about web attackers entering the causal
chain: indeed, we argue that it would be difficult to
extend the notion to deal with network attackers, since
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the latter can enter the causal chain of any transaction
which includes at least a communication over HTTP and
trivially violate session integrity. Besides the differences
in the definitions, we notice that the focus of our work
is rather different with respect to [5]: here we target
a security property which can be provably enforced at
the browser side for any authenticated session, with
no background knowledge about the intended server
behaviour. The authors of [5], instead, use their property
to verify some specific browser-server interactions (e.g.,
the WebAuth protocol) by bounded model-checking.

Similar considerations apply to WebSpi, a ProVerif
library for modelling browsers and web applications [9].
While we find the WebSpi approach interesting and
general, e.g., it has been applied also to verify cloud-
storage services [8], we notice that authenticity prop-
erties in ProVerif are modelled through correspondence
assertions: if we wanted to define web session integrity
in these terms, we would need to explicitly model all the
pages of the web server and its authentication goals, but
this would make it difficult or even impossible to provide
integrity guarantees for any authenticated session.

Armando et al. [6], [7] employ formal methods to
analyse the security of existing Single Sign-On pro-
tocols, exposing real and dangerous attacks against
web authentication. The approach is based on bounded
model-checking, using SATMC. These papers, however,
bear only limited similarities with the present work:
their goal is protocol verification and the attacks they
report are flaws in the protocol logic, rather than web
application vulnerabilities. Their analysis abstracts from
many browser-specific and web-specific aspects, which
instead are central to the present paper.

Finally, we observe that our focus on client-side
defenses has an important impact on the threat model we
consider, which is significantly stronger than usual, since
we assume that each web page may suffer of both XSS
and CSRF. Given that these vulnerabilities are dangerous
and widespread in practice, we argue that the design of
browser-based defenses like FF+/ SESSINT should be
robust even in the presence of these server-side flaws.

Structure of the paper: Section II introduces our
notion of session integrity and shows how it captures
different attacks. Section III describes the browser-based
enforcement of session integrity in FF+. Section IV
presents our SESSINT implementation. Section V con-
cludes, while the full version [2] provides additional
material and proofs.

II. SESSION INTEGRITY

Following [12], we define web browsers in terms of a
very general notion of reactive systems, based on which

we then define session integrity.

Definition 1 (Reactive System). A reactive system is a
tuple (C,P, I,O,−→), where C and P are disjoint sets
of consumer and producer states respectively, I and O
are disjoint sets of input and output events respectively.
The last component, −→, is a labelled transition relation
over the set of states S , C ∪ P and the set of labels
A , I ∪ O, defined by the following clauses:

1) C ∈ C and C α−→ Q imply α ∈ I and Q ∈ P;
2) P ∈ P , Q ∈ S and P α−→ Q imply α ∈ O;
3) C ∈ C and i ∈ I imply ∃P ∈ P : C

i−→ P ;
4) P ∈ P implies ∃o ∈ O,∃Q ∈ S : P

o−→ Q.

A reactive system is an event-driven state machine
that waits for an input, produces a sequence of outputs
in response, and repeats the process indefinitely without
ever getting stuck. We presuppose a lattice of security
labels (L,v), with bottom and top elements ⊥ and >.
With each output event of a reactive system, we associate
a label in L by way of a trust mapping τ : O → L. The
intuition is that each label in the lattice corresponds to
an interaction point for the reactive system (an origin,
in the context of web systems), and τ(o) = l indicates
that o is a message output by the reactive system (the
browser) in an authenticated session with l’s endpoint.
We further stipulate that τ(o) = ⊥ whenever o does not
belong to any authenticated session, and let τ⊥ stand for
the trust mapping such that τ⊥(o) = ⊥ for all o ∈ O.
Finally, we let trust change dynamically, noted τ o−→ τ ′,
upon certain output (authentication) events.

Definition 2 (Traces). Given a trust mapping τ and an
input stream I , a reactive system in a state Q generates
the output stream O iff the judgement τ ` Q(I)  O
can be derived by the following inference rules:

(T-NIL)

τ ` C([ ]) [ ]

(T-IN)
C

i−→ P τ ` P (I) O

τ ` C(i :: I) O

(T-OUT)
P

o−→ Q τ
o−→ τ ′ τ ′ ` Q(I) O

τ ` P (I) (o, τ(o)) :: O

A reactive system generates the trace (I,O) if and only
if τ⊥ ` C0(I) O, where C0 is the initial state of the
reactive system.

Most existing frameworks formalize integrity as a
non-interference property predicating that the sensitive
(high-level) outputs generated by a system should not
depend on the tainted (low-level) information the system
receives as an input. This simple idea becomes more
complicated in the presence of active attackers, like
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the network attackers we consider in this paper. Our
proposal is thus reminiscent of robustness [22], [32],
which intuitively ensures that an active attacker does not
have more power than a passive attacker.

We characterize the attacker as a security label l ∈ L,
and define the behaviour of an attacked system in terms
of a new output-generation relation τ, l,M ` Q(I) O,
where M represents the messages the attacker was able
to intercept or eavesdrop. The definition is parametric
with respect to the relations of interception (†), eaves-
dropping ( ? ) and synthesis (
).

Definition 3 (Attacked Traces). Let l be an attacker.
Given an input stream I and a trust mapping τ , an
attacked reactive system in a given state Q generates
an output stream O (written τ, l ` Q(I)  O) if and
only if the judgement τ, l, ∅ ` Q(I) O can be derived
by the inference rules below:

(AT-NIL)

τ, l,M ` C([ ]) [ ]

(AT-IN)
C

i−→ P τ, l,M ` P (I) O

τ, l,M ` C(i :: I) O

(AT-OUT)
P

o−→ Q τ
o−→ τ ′ τ ′, l,M ` Q(I) O

τ, l,M ` P (I) (o, τ(o)) :: O

(AT-GETIN)
τ, l † i

τ, l,M ∪ {i} ` Q(I) O

τ, l,M ` Q(i :: I) O

(AT-GETOUT)
P

o−→ Q τ, l † o
τ, l,M ∪ {o} ` Q(I) O

τ, l,M ` P (I) O

(AT-HEARIN)
τ, l ? i τ, l,M ∪ {i} ` Q(i :: I) O

τ, l,M ` Q(i :: I) O

(AT-HEAROUT)
P

o−→ Q τ
o−→ τ ′ τ, l ? o

τ ′, l,M ∪ {o} ` Q(I) O

τ, l,M ` P (I) (o, τ(o)) :: O

(AT-SYNIN)
C

i−→ P τ, l,M 
 i
τ, l,M ` P (I) O

τ, l,M ` C(I) O

(AT-SYNOUT)
τ, l,M 
 o τ

o−→ τ ′ τ ′, l,M ` Q(I) O

τ, l,M ` Q(I) (o, τ(o)) :: O

A reactive system generates the attacked trace (l, I, O)
if and only if τ⊥, l ` C0(I) O, where C0 is the initial
state of the reactive system.

Our definition of session integrity arises from contrast-
ing the behaviour (i.e., the traces) of a reactive system in
the presence, or absence, of an attacker. Given an output
stream O, let O ↓ l denote the stream that results from
O by considering only the events at trust level l.

Definition 4 (Session Integrity). A reactive system pre-
serves session integrity for its trace (I,O) iff for all
l ∈ L, and all its attacked traces (l, I, O′) one has:

∀l′ 6v l : O′ ↓ l′ is a prefix of O ↓ l′.

A reactive system preserves session integrity if and only
if it preserves session integrity for all its traces.

Session integrity ensures that the attacker has no
effective way to interfere with any authenticated session
within the set of traces. In particular, if the trust mapping
remains constant at τ⊥ along the trace, no authentication
event occurs in O and the attacker may only initiate its
own authenticated sessions, at level l or lower. If instead
the trust mapping does change, to include authenticated
output events at level l′ 6v l, then the requirement that
O′ ↓ l′ be a prefix of O ↓ l′ ensures that the attacker
will at best be able to interrupt the on-going sessions,
but not otherwise intrude into them.

A. Web vulnerabilities as session integrity violations

We illustrate a series of attack scenarios, showing how
they can be characterized as violations of our session
integrity property. We refer to the full version [2] for
additional attacks captured by our model, i.e., password
theft, login CSRF [10], and session fixation [27].

We picture the attack scenarios as diagrams in which
the browser is the reactive system whose input/output
events are represented by incoming/outgoing edges re-
spectively. The inputs are generated by the user or
correspond to responses from the servers (origins) the
browser contacts. The outputs, in turn, are the requests
made by the browser or by other origins. Each output is
marked by its associated trust level. The diagrams also
mark the dynamic changes to the trust mapping along
the trace: these arise as a result of authentication events,
whose effect is to upgrade the trust level of the cookies
set upon authentication to the level of the authentication
credentials. The trust level for the credentials is pre-
defined, and given as assumptions credential : Origin,
where each Origin corresponds to a label in the security
lattice. All attack scenarios involve two origins, S and
E, placed at incomparable levels in the security lattice:
S is the browser’s intended partner in the session, while
E plays the role of the attacker (or compromised server).
The diagrams provide a graphical representation of the
attacked traces (cf. Definition 4). The formal encoding
of the attacks in the FF model is given in [2].

Cross-Site Request Forgery (Figure 1 (a)): Requested
by the user, the browser establishes an authenticated
session with S that the server associates with the cookie
c: the cookie (the session) assumes a trust label S, based
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on the assumption pwd : S. Later, the user opens a
new page on site E in another browser tab, concluding
the unattacked trace. The attacker, sitting at E, provides
a response page which automatically triggers a further
request to S (via XHR). Being directed to S, for which
the browser has registered the cookie c, the new request
includes c, thus effectively becoming part of the existing
authenticated session with S in the attacked trace. Given
that S 6v E, this violates the prefix condition in our
integrity definition.

Reflected XSS (Figure 1 (b)): Like in the previous
scenario, the browser establishes an authenticated session
with S and associated with a cookie c : S, and later the
user requests a new page on site E in another browser tab,
concluding the unattacked trace. The response, provided
by the attacker at E, redirects the browser to a new page
û at S, passing a script as a parameter to the page.
Assuming S is vulnerable to injection attacks, the script
gets included in the response page at û, which, when
rendered, executes the script, thus leaking c to E. At
this stage E may generate an output event at level S,
which violates the integrity condition for the trace. In
the diagram, we tacitly assume that the unattacked part
of the trace is over HTTPS, the redirection forced by
the attacker is over HTTP, and the cookie c is flagged as
Secure. If the cookie was not flagged as Secure, the
attack would resurface as a forgery, like in Figure 1 (a),
since c would be attached to the request to û.

Local CSRF (Figure 1 (c)): This scenario has the
same structure as the reflected XSS attack represented in
Figure 1 (b). The difference is that the attacker exploits
the XSS vulnerability to mount a “same-site” request
forgery via the injected script. As a result, unlike the
XSS scenario of Figure 1 (b), this attack is effective even
when the cookie is flagged as HttpOnly. Interestingly,
this attack is not prevented by the standard browser-
based protection mechanisms against CSRF [18], [19],
[29], [31] that strip the cookies from cross-site requests,
since the last request is not cross-site.

To the best of our knowledge, this last attack is not
covered by literature on the subject. Having identified
it and devising a technique to guarantee client-side
protection against it represent a novel contribution.

III. ENFORCING SESSION INTEGRITY IN FF+

Here we introduce FF, a core model of a standard
web browser. We then move from FF to FF+, a security-
enhanced variant of FF which enforces session integrity.

A. FF: syntax and informal semantics

We fix disjoint sets of names N (a, b, c, d, k,m, n, p)
and variables V (w, x, y, z). A map M is a partial

Browser Origin S Origin E

enter pwd

login pwd ⊥

[set c]OK

OK
c:S

open page

req u ⊥

u〈xhr S/û〉
render page

[c]req û S

(a) Classic CSRF

Browser Origin S Origin E

enter pwd

login pwd ⊥

[set c]OK

OK
c:S

open page

req u ⊥

redirect S/û ? q =script〈leak doc.cookie〉

req û ? q =script〈leak doc.cookie〉 ⊥

û〈script〈leak c〉〉
render page

leak c

[c] hijackedS

(b) Reflected XSS

Browser Origin S Origin E

enter pwd

login pwd ⊥

[set c]OK

OK
c:S

open page

req u ⊥

redirect S/u ? q = script〈req û〉

requ ? q = script〈req û〉 ⊥

u〈script〈req û〉〉

[c] req û S

(c) Local CSRF

Figure 1: Violations of session integrity (pwd : S)
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function from keys to values and we write M(k) = v or
{k 7→ v} ∈ M when the key k is bound to the value v
in M ; dom(M) denotes the domain of M and {} is the
empty map. Given two maps M1 and M2, M1 / M2 is
the map M such that M(k) = v iff either M2(k) = v
or M1(k) = v and k /∈ dom(M2), while M1]M2 is the
map M1 / M2 whenever dom(M1) ∩ dom(M2) = ∅.

1) URLs: We let π ∈ {http, https} note a protocol
identifier. A URL u ∈ U is either the constant blank
or a triple (π, d, v), where d is a domain name and v
is a value encoding additional information, like the full
path of the accessed resource or a query string. For u =
(π, d, v) we let domain(u) = d and path(u) = v.

2) Cookies: Cookies are collected in maps ck such
that ck(k) = (n, f) whenever the cookie named k is
bound to the value n and marked with f ∈ {H, S,>,⊥}.
Flag H models HttpOnly cookies, which must not be
accessed by JavaScript and only be included in HTTP(S)
requests to the registering domain. Flag S, in turn,
models Secure cookies, which must only be sent over
encrypted connections. Finally, flag ⊥ is for cookies
with no special security requirements, while > marks
cookies which are both HttpOnly and Secure. We let
ck vals(ck) = {n | ∃k, f : ck(k) = (n, f)}.

3) Values and expressions: We let v range over val-
ues, i.e., unit, URLs, names, variables and functions:

v ::= () | u | n | x | λx.e.

We let e range over expressions of a simple scripting
language which includes first-class functions, basic op-
erations on cookies and the creation of AJAX requests:

e ::= v v′ | let x = e in e′ | v? | v!〈v′, f〉
| xhr(v, v′) | auth(v, v′) | v.

(λx.e) v evaluates to e{v/x}; let x = e in e′ first
evaluates e to a value v and then behaves as e′{v/x};
k? returns the value of cookie k, provided that k is not
flagged HttpOnly; k!〈n, f〉 with f ∈ {⊥, S} stores the
cookie {k 7→ (n, f)} in the cookie jar, ensuring that no
existing HttpOnly cookie is overwritten. The expression
xhr(u, λx.e) sends an AJAX request to u and, whenever
a value v is available as a response, it behaves as e{v/x}.
Finally, auth(u, p) sends to the URL u the password p.

4) Event handlers: We let h range over (sets of)
event handlers, i.e., maps from names to functions. If
h(k) = λx.e, a handler registered on k is ready to run
e, with x bound to the value received along with the
firing event. FF handlers model two different aspects of
web browsing: first, we use them to encode event-driven
JavaScript programming (indeed, we represent the DOM
with a set of event handlers). Second, a new handler is

instantiated when an AJAX request is sent to a server
and it is triggered only when a response is sent back.

5) Pages: Pages are triples page ::= (u, h, h′), where
u keeps track of the origin of the page, h is a set of event
handlers registered on the DOM, and h′ is a dynamic
set of handlers, which grows/shrinks when new AJAX
requests/responses are sent/received by the page.

6) Events: Input events i are defined as follows:

i ::= load(u) | text(p, k, n)
| doc resp(n, ck, u, u′, h, e)
| xhr resp(n, ck, u, u′, v).

Event load(u) models the user navigating the web
browser to u: the browser reacts to the event by opening
a new network connection to u and sending a request
for the document located there. Event text(p, k, n) cor-
responds to the user inserting a value n in the text
field k of page p: if p contains a set of handlers h
such that h(k) = λx.e, the event triggers the expression
e{n/x}. Event doc resp(n, ck, u, blank, h, e) models the
receipt of a response from u over the network connection
n: the browser will store the cookies ck in its cookie
jar, render the document structure (modelled as the set
of handlers h) and then run the expression e. Event
doc resp(n, ck, u, u′, h, e) with u′ 6= blank represents
a redirect from u to u′: in this case, the cookies ck are
stored by the browser, but both h and e are ignored.
Event xhr resp(n, ck, u, blank, v) corresponds to the re-
ceipt of an AJAX response from u over the network
connection n: the browser will store the cookies ck,
then it will retrieve the continuation λx.e which must
be triggered by the response, and it will run the expres-
sion e{v/x}. Again, event xhr resp(n, ck, u, u′, v) with
u′ 6= blank models a redirect from u to u′ triggered by
an AJAX response (where ck is stored, v is ignored).

Output events o are defined as follows:

o ::= • | doc req(ck, u) | xhr req(ck, u)
| login(ck, u, p).

The dummy event • represents a silent reaction to
an input event with no observable side-effect. Event
doc req(ck , u) models a document request to u, attach-
ing the cookies ck: it is triggered either by a load(u)
event, or when the browser follows a redirect targeted
at u after a document response. Event xhr req(ck , u)
models an AJAX request to u, attaching the cookies
ck: it is triggered either by the expression xhr(u, λx.e),
or when the browser is redirected to u after an AJAX
response. Finally, login(ck, u, p) represents a request to
u which includes the password p, corresponding to the
submission of a login form: the occurrence of this event
may signal the establishment of a new session. The event
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is triggered by the expression auth(u, p) and it includes
the cookies ck which must be sent to u.

We let α ::= i | o range uniformly over input and
output events. We refer to requests, responses and logins
as network events.

7) Browser states: Browser states are 5-tuples Q =
〈W,K,N, T,O〉 where:

Windows W ::= {} | {p 7→ page} | W ]W,
Cookies K ::= {} | {d 7→ ck} | K ]K,

Networks N ::= {} | {n 7→ (u, v)} | N ]N,
Tasks T ::= {} | {p 7→ e},

Outputs O ::= [ ] | o.

The window store W maps fresh page identifiers to
pages, while the cookie jar K maps domain names to
the cookies they registered in the browser. The network
connection store N keeps track of the open network
connections: if {n 7→ (u, v)} ∈ N , then the browser
is waiting for a document/AJAX response from u (the
role of v will be apparent in the formal semantics). We
use T to represent tasks: if {p 7→ e} ∈ T , then the
expression e is running in the page p. Finally, O is a
size-1 buffer of output events, which is convenient to
interpret our model as a reactive system.

We say that Q = 〈W,K,N, T,O〉 is a consumer state
when both T and O are empty and we denote it with
C, otherwise we say that Q is a producer state and we
denote it with P . The formal semantics of FF is given
in the full version [2].

B. Session establishment

Our definition of session integrity relies on a lattice
of security labels, which we instantiate next.

Definition 5 (Security Labels). The set of security labels
L, ranged over by l, is the smallest set generated by the
following grammar:

l := ⊥ | > | evil | net | π(d) with π ∈ {http, https}.

We define v as the least pre-order over L with ⊥ as a
bottom element, > as a top element, induced by the ax-
ioms: {evil v http(d), http(d) v net, net v https(d)}.

We assume a partial function url label : U → L such
that url label(u) = π(d) whenever u = (π, d, v). We
also stipulate that the set of names N is partitioned into
the indexed family {Nl}l∈L: this is needed to capture in
the model the inability of the attacker to guess random
secrets, like passwords or authentication cookie values.

We adopt password-based authentication to establish
new sessions with remote web servers. Simply put, when
a valid password is submitted to a website supporting

authenticated access, a cookie is endorsed to identify
the password’s owner for the session. Formally, this
amounts to instantiating the relation τ o−→ τ ′ underlying
the semantics of reactive systems (cf. Definition 2). For
this purpose, we presuppose a function ρ : N → L
with the following understanding: if ρ(n) = π(d), then
n is the user’s password for the website at d and can
be exchanged on the protocol π. We let ρ(n) = evil
whenever n is a password identifying the attacker’s
account: for simplicity, we assume that this password
can be used to establish authenticated sessions on any
website. We assume ρ to be consistent with respect to
the partitioning of names, i.e., we stipulate ρ(n) v l
whenever n ∈ Nl.

Let now Uauth ⊆ U be the set of the URLs containing
a login form for password-based authentication. We
assume that Uauth is partitioned into two subsets Uok and
Ufix. If a valid password c is sent to u ∈ Uok, a fresh au-
thentication cookie is created by the server and employed
to identify the password’s owner; if u ∈ Ufix, instead,
the server may be subject to session fixation, hence it
endorses for authentication a cookie already included in
the login request. In both cases the (only) authentication
cookie is chosen by a function κ : Uauth → N identifying
its name, and the trust mapping is updated to reflect that
any output event o including that cookie will have the
trust level ρ(c) bound to the password, much like in
the examples of Section II-A. The formal details are in
Table 1 and commented below.

Rule (A-SRV) models a login on u ∈ Uok. If c is
a valid password, a fresh value n is picked from the
name partition Nρ(c) based on an underlying total order
(n ← Nρ(c)). The value n will be used to identify
the password’s owner: specifically, we perform a point-
wise join between the original trust function τ and the
auxiliary trust function τu,n,c in the table, which raises
to ρ(c) the trust of the output events sent to domain(u)
which include the cookie {κ(u) 7→ (n, f)} for some f .

Rule (A-FIX), instead, models a login on u ∈ Ufix. In
this case, the value n bound to the key k = κ(u) among
the cookies ck sent to the server will be used to identify
the password’s owner. If k 6∈ dom(ck), the authentication
fails and rule (A-NIL) must be applied.

C. Threat model

We assume that all HTTPS traffic is signed using
trusted certificates (unsigned HTTPS traffic is repre-
sented using HTTP). The attacker’s power is character-
ized by a security label l, with the understanding that
higher labels provide additional capabilities. A novel
aspect of our threat model is that we assume the at-
tacker has full control over compromised sessions, i.e.,
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TABLE 1 Rules for password-based authentication

(A-SRV)
u ∈ Uok n← Nρ(c)

ρ(c) ∈ {url label(u), evil}

τ
login(ck,u,c)−−−−−−−→ τ t τu,n,c

(A-FIX)
u ∈ Ufix κ(u) = k

ck(k) = (n, f) ρ(c) ∈ {url label(u), evil}

τ
login(ck,u,c)−−−−−−−→ τ t τu,n,c

(A-NIL)
α has a different form

τ
α−→ τ

where τu,n,c(o) =

{
ρ(c) if o ∈ {{doc, xhr} req(ck′, u′) | domain(u) = domain(u′) ∧ ck′(κ(u)) = n ∧ τ(o) v ρ(c)}
⊥ otherwise

authenticated sessions established using the attacker’s
credentials. If a network request belongs to a compro-
mised session, we pessimistically assume that all the data
included in the request are stored by the server in the
attacker’s account and later made available to him: this
is useful to capture login CSRF attacks [10].

Formally, the threat model results from instantiating
the definitions of interception (†), eavesdropping ( ? ) and
synthesis (
) in Definition 2. Let ev label : A → L
be the function such that ev label(α) = url label(u)
whenever α is a network event sent to/received from
u; we assume ev label(α) = > whenever α is not a
network event.

The relations † and ? are defined as follows:

(II-NET)
ev label(α) v l

τ, l † α

(IH-NET)
ev label(α) u net v l

τ, l ?α

(IH-EVIL)
τ(o) = evil

τ, l ? o

According to rule (II-NET), a web attacker at level, say,
http(d) can intercept only the network traffic sent to d
either in clear or with no trusted certificates, while a
network attacker can intercept all the HTTP traffic (and
any HTTPS message directed to him). We remark that
a net-level attacker cannot intercept arbitrary HTTPS
traffic: indeed, since signed HTTPS communication en-
sures both freshness and integrity [3], the attacker cannot
replay encrypted messages or otherwise tamper with
HTTPS exchanges without breaking the communication
session. Hence, preventing the interception of arbitrary
HTTPS traffic ultimately amounts just to discarding
denial of service attacks, which we are not interested
to deal with in the present paper. Notice, however, that
an HTTPS exchange can still be overheard by a net-
level attacker using rule (IH-NET): network attackers
are thus aware of all the network traffic, even though
they may be unable to access its payload. Finally, rule
(IH-EVIL) makes any request sent over compromised
sessions available to the attacker, as we discussed above.

Defining the relation τ, l,M 
 α is slightly more
complex. We start by defining an auxiliary relation
τ, l,M 
 n, which identifies the names that can be

generated by the attacker:

(NS-BASE)
n ∈ Nl′
l′ v l

τ, l,M 
 n

(NS-LOOK)
ev label(α) v l
n ∈ fn(α)

τ, l,M ∪ {α} 
 n

(NS-EVIL)
τ(o) = evil
n ∈ fn(o)

τ, l,M ∪ {o} 
 n

According to (NS-BASE), an l-attacker can generate
any name in a name partition indexed by a label
bounded above by l. By rule (NS-LOOK) the attacker
may generate the free names of any network event α
previously intercepted or overheard, provided that the
attacker can inspect its payload. Finally, rule (NS-EVIL)
grants the attacker the capability to generate any name
communicated over compromised sessions.

Now, we can define the relation τ, l,M 
 α:

(IS-GEN)
α = i⇒ ev label(α) v l
∀n ∈ fn(α) : τ, l,M 
 n

τ, l,M 
 α

(IS-REP)
α ∈M

ev label(α) v net v l
τ, l,M 
 α

By rule (IS-GEN), an l-attacker can forge an input event
i, provided that he can generate all the free names in i
and the event label of i is bounded above by l: the latter
condition ensures, for instance, that a net-level attacker
cannot forge signed HTTPS traffic and that a web at-
tacker http(d) cannot provide responses for another web
server at d′. Rule (IS-GEN) also allows the attacker to
send arbitrary output events to any server, provided that
he is able to compose the request contents. Finally, rule
(IS-REP) allows an attacker with network capabilities
(side-condition net v l) to replay previously intercepted/
overheard traffic. Since HTTPS ensures freshness, the
side-condition ev label(α) v net similarly guarantees
that encrypted traffic cannot be replayed.

We conclude this section with a note on XSS attacks:
we implicitly include them in our model, since our
session integrity property quantifies over all the possible
inputs made available to the browser. This universal
quantification grants any attacker the capability to mount
reflected XSS attacks on any website.
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D. FF+: a secure extension of FF

FF provides a faithful abstraction of current web
browsers and, just like them, it is vulnerable to a variety
of attacks. In this section, we discuss the design of FF+,
a security-enhanced extension of FF aimed at enforcing
web session integrity.

1) Qualifiers: FF lacks the contextual information
needed to apply a sound security policy for session
integrity, since it does not track origin changes across
network requests. We fix this by extending the structure
of network connections and pages with qualifiers, by
having N ::= {} | {n 7→ (u, v, q)} | N ] N and
page ::= (u, h, h′, q). A qualifier q ∈ {3,5} is just
a boolean mark used to taint track the open network
connections. Pages downloaded from a given connection
inherit the qualifier assigned to the connection, and
connections become tainted when a cross-origin redirect
is performed over them. FF+ enforces different security
policies on a page based on the value of its qualifier.

2) Security contexts: FF must also be enhanced to
prevent the risk of password theft. When the user enters
a password into a login form, an event handler registered
on the page can steal the password and leak it to the at-
tacker. We address this issue by running each expression
e inside a security context, i.e., a sandbox represented
by a pair (e, l). If l = π(d), then the expression e is
allowed to communicate only with d on the protocol
π. When a password n is disclosed to an expression e,
we instantiate a new security context (e, ρ(n)), which
provides FF+ with the information needed to protect n.
Clearly, this assumes that FF+ keeps track of ρ(n) for
any password n input by the user, for instance by using
an internal password manager1. Formally, we enrich the
syntax of tasks by having T ::= {} | {p 7→ (e, l)}.

3) Secure cookie operations: Updates to the cookie
jar in FF+ adopt a strong security policy, whereby
authentication cookies received over HTTP are marked
HttpOnly, while authentication cookies received over
HTTPS are flagged both HttpOnly and Secure. If a
Secure cookie is sent from the server to the browser
over HTTP, which is one of the many quirks allowed
on the Web, it is discarded by FF+. Moreover, FF+

strengthens the integrity of cookies set over HTTPS
against network attacks, by ensuring that cookies which
are marked as both HttpOnly and Secure are never
overwritten by cookies set through HTTP responses. This
is not ensured by standard web browsers [1] and previous
proposals already highlighted the dangers connected to

1For simplicity, in the formal model each password is associated to
a single origin. Our implementation allows to reuse the same password
on different websites (cf. Section IV).

this practice [14]. The formal details correspond to the
secure cookie update function sec upd ck in Table 2.

We also introduce a secure counterpart of the stan-
dard procedure employed by web browsers to select
the cookies to be attached to a given network request.
Specifically, FF+ ensures that no outgoing cookie can
have been fixated by an attacker: for HTTP requests
we enforce protection against web attacks, by requiring
that only HttpOnly cookies are sent to the web server.
Since these cookies cannot be set by a script, they can
only be fixated by network attacks. For HTTPS requests,
instead, we target a higher level of protection and we
ensure that any cookie attached to them cannot have been
fixated, even by a network attacker. Accordingly with the
previous discussion, we thus impose that only cookies
which are marked as both Secure and HttpOnly are
attached to HTTPS requests. The formal details amount
to the definition of the function get http ck in Table 2.

4) Inputs: The transitions C i−→ P in Table 3 describe
how the consumer state C reacts to the input i by
evolving into a producer state P . The definition of
C

i−→ P consists only of two rules, i.e., (I-MIRROR)
and (I-COMPLETE). The definition relies on the auxiliary
relation C i7−→ P , which is the bulk of the semantics: this
is convenient to interpret FF+ as a reactive system.

We start with the behaviour of document requests and
responses. When the user navigates the browser to a
URL u, a new network connection n is created and it is
assigned the qualifier 3 by rule (I-LOAD). Moreover, a
new document request event is generated and put in the
output buffer. If a cross-origin redirect is received over
n, the connection is given the qualifier 5 and becomes
tainted, and it will never be restored to an untainted
state by rule (I-DOCREDIR). Further requests sent over
a tainted connection n will never include cookies, to
thwart CSRF attacks performed through a redirect: this
policy is applied also to same-origin requests, to prevent
local CSRF attacks similar to the one described in
Section II-A. When a document response is eventually
received over the network connection n, the connection
is closed and a new page is stored in the browser by rule
(I-DOCRESP). The page inherits the qualifier assigned
to n and the cookie jar is updated only if n was marked
as untainted: this is needed to prevent the attacker from
corrupting the cookies stored in the browser through
malicious redirects.

Text input events are handled by rule (I-TEXT) as
anticipated, by letting the disclosed expression e{n/x}
run in the security context ρ(n), which will ensure that
the confidentiality of passwords is protected. Finally,
AJAX responses are processed much like document re-
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TABLE 2 Secure management of the cookie jar

{} ↗ π = {}
f ∈ {⊥, H}

{k 7→ (n, f)} ↗ http = {k 7→ (n, H)}
f ∈ {S,>}

{k 7→ (n, f)} ↗ http = {}

{k 7→ (n, f)} ↗ https = {k 7→ (n,>)}
ck1 ↗ π = ck′1 ck2 ↗ π = ck′2

(ck1 ] ck2)↗ π = ck′1 ] ck′2
For u = (π, d, v), we let:

sec upd ck(K,u, ck) =


K ] {d 7→ (ck ↗ π)} if d /∈ dom(K)

K′ ] {d 7→ (ck′ / (ck ↗ π))} if K = K′ ] {d 7→ ck′} ∧ π = https

K′ ] {d 7→ (ckh / (ck ↗ π / cks))} if K = K′ ] {d 7→ ckh ] cks} ∧ π = http

where:

∀k ∈ dom(ckh) : ckh(k) = (n, f)⇒ f ∈ {⊥, H, S}
∀k ∈ dom(cks) : cks(k) = (n, f)⇒ f = >.

Finally, we let get http ck(K,u) be defined as the least map M such that:

M(k) =

{
(n,>) if u = (https, d, v) ∧ ∃ck : K(d) = ck ∧ ck(k) = (n,>)
(n, H) if u = (http, d, v) ∧ ∃ck : K(d) = ck ∧ ck(k) = (n, H)

sponses. The only interesting differences from a security
perspective are in rule (I-XHRRESP), where we must
additionally instantiate the label of the new security
context to the url label of the page which sent the AJAX
request: this is needed to protect the confidentiality of
passwords when the continuation of an AJAX request
is executed. It is also worth noticing that we require
the qualifier q of the network connection to match the
qualifier of the page where the response is received:
loading tainted scripts inside an untainted page would be
unsound, since these scripts would be allowed to send
authenticated requests (see below).

5) Outputs: Table 4 collects the transitions P o−→ Q,
describing how a producer state P can generate an output
o and evolve into another state Q. Several rules are
standard, so we just comment the most interesting points.

Rule (O-SET) models the setting of a cookie via
JavaScript. The upd ck function stands for the standard
cookie update operation available in web browsers (for-
malized in [2]). The only point worth mentioning here
is the security label ⊥ required on the security context,
which is needed to prevent confidentiality leaks resulting
by setting a cookie containing password information.

Rule (O-XHR) is the most complex and models the
sending of an AJAX request by an expression running
on a page. Different security policies are applied, based
on the qualifier of the page and the label of the security
context where the expression is run. Let u′ be the URL
of the page, q the qualifier of the page, l the label of

the security context, and u the destination of the AJAX
request. When l = ⊥, no password was previously typed
by the user and no confidentiality policy is enforced;
otherwise, FF+ allows the sending of the request only
if l = url label(u). We also require l = url label(u′)
to prevent a password leakage when the asynchronous
continuation of an AJAX request is disclosed, as we
anticipated in rule (I-XHRRESP). Moreover, FF+ strips
the cookies from outgoing requests when url label(u) 6=
url label(u′) or q = 5: this prevents both classic and
local CSRF attacks. Notice that only untainted pages are
allowed to open untainted network connections via XHR.

We conclude with rule (O-LOGIN). The condition
ρ(c) = url label(u) prevents login CSRF attacks, where
the user is authenticated as the attacker, while the re-
quirement l = url label(u) ensures the confidentiality
of the password. We also require that any login form
is submitted to a URL within the same origin of the
page: this prevents the attacker from fooling the user
into establishing new authenticated sessions with trusted
websites, which would violate session integrity.

E. Formal results

We can prove that FF+ enforces session integrity
for any well-formed trace. Intuitively, well-formedness
ensures a basic set of constraints on incoming input
events, which are needed for our formal result, but have a
limited practical impact. Clearly, we do not assume that
the intruder is forced to produce well-formed inputs.
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TABLE 3 Reactive semantics of FF+: inputs

(I-LOAD)
ck = get http ck(K,u)

〈W,K,N, {}, [ ]〉 load(u)7−−−−→ 〈W,K,N ] {n 7→ (u, (),3)}, {}, doc req(ck , u)〉

(I-TEXT)
W (p) = (u, h, h′, q) h(k) = λx.e

〈W,K,N, {}, [ ]〉 text(p,k,n)7−−−−−−→ 〈W,K,N, {p 7→ (e{n/x}, ρ(n))}, [ ]〉

(I-DOCRESP)
q = 3⇒ K′ = sec upd ck(K,u, ck) q = 5⇒ K′ = K

〈W,K,N ] {n 7→ (u, (), q)}, {}, [ ]〉 doc resp(n,ck,u,blank,h,e)7−−−−−−−−−−−−−−−→ 〈W ] {p 7→ (u, h, {}, q)},K′, N, {p 7→ (e,⊥)}, [ ]〉

(I-DOCREDIR)
q = 3⇒ K′ = sec upd ck(K,u, ck) q = 5⇒ K′ = K

q = 3 ∧ url label(u) = url label(u′)⇒ ck′ = get http ck(K′, u′) ∧ q′ = 3
q = 5 ∨ url label(u) 6= url label(u′)⇒ ck′ = {} ∧ q′ = 5

〈W,K,N ] {n 7→ (u, (), q)}, {}, [ ]〉 doc resp(n,ck,u,u′,h,e)7−−−−−−−−−−−−−−→ 〈W,K′, N ] {n 7→ (u′, (), q′)}, {}, doc req(ck ′, u′)〉

(I-XHRRESP)
q = 3⇒ K′ = sec upd ck(K,u, ck) q = 5⇒ K′ = K

h′ = h′′ ] {n 7→ λx.e} W ′ =W ] {p 7→ (u′, h, h′′, q)} l = url label(u′)

〈W ] {p 7→ (u′, h, h′, q)},K,N ] {n 7→ (u, p, q)}, {}, [ ]〉 xhr resp(n,ck,u,blank,v)7−−−−−−−−−−−−−−→ 〈W ′,K′, N, {p 7→ (e{v/x}, l)}, [ ]〉

(I-XHRREDIR)
q = 3⇒ K′ = sec upd ck(K,u, ck) q = 5⇒ K′ = K

q = 3 ∧ url label(u) = url label(u′)⇒ ck′ = get http ck(K′, u′) ∧ q′ = 3
q = 5 ∨ url label(u) 6= url label(u′)⇒ ck′ = {} ∧ q′ = 5

〈W,K,N ] {n 7→ (u, p, q)}, {}, [ ]〉 xhr resp(n,ck,u,u′,v)7−−−−−−−−−−−−→ 〈W,K′, N ] {n 7→ (u′, p, q′)}, {}, xhr req(ck ′, u′)〉

(I-MIRROR)
C

i7−→ P

C
i−→ P

(I-COMPLETE)
〈W,K,N, {}, [ ]〉 6 i7−→

〈W,K,N, {}, [ ]〉 i−→ 〈W,K,N, {}, •〉

Notation: we write C 6 i7−→ whenever there does not exist P such that C i7−→ P .

We say that a URL u is well-formed (written `� u)
iff domain(u) ∈ N⊥ and there exists l v url label(u)
such that path(u) ∈ Nl.

Definition 6 (Well-formed Trace). An input event i is
well-formed if and only if the judgement `� i can be
proved through the following inference rules:

(WF-LOAD)
`� u

`� load(u)

(WF-TEXT)
n ∈ Nρ(n)

`� text(p, k, n)

(WF-XHR)
l = url label(u) ck vals(ck) ⊆ Nl `� u `� u′
∃l′ v l : path(u′) ∈ Nl′ dom(ck) ∪ fn(v) ∪ {n} ⊆ N⊥

`� xhr resp(n, ck, u, u′, v)

(WF-DOC)
l = url label(u) ck vals(ck) ⊆ Nl
`� u `� u′ ∃l′ v l : path(u′) ∈ Nl′

dom(ck) ∪ fn(h) ∪ fn(e) ∪ {n} ⊆ N⊥
`� doc resp(n, ck, u, u′, h, e)

We say that a trace (I,O) is well-formed iff so is every
i ∈ I .

An explanation of the rules follows: rule (WF-LOAD)
ensures that the user never types in the address bar a
URL containing a password (or an authentication cookie
value) which should not be disclosed to the remote
server. Rule (WF-TEXT) rules out text inputs containing
names corresponding to authentication cookie values: in
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TABLE 4 Reactive semantics of FF+: outputs

(O-APP)

〈W,K,N, {p 7→ ((λx.e) v, l)}, [ ]〉 •7−→ 〈W,K,N, {p 7→ (e{v/x}, l)}, [ ]〉

(O-LETCTX)
〈W,K,N, {p 7→ (e′, l)}, [ ]〉 o7−→ 〈W ′,K′, N ′, {p 7→ (e′′, l)}, [ ]〉

〈W,K,N, {p 7→ (let x = e′ in e, l)}, [ ]〉 o7−→ 〈W ′,K′, N ′, {p 7→ (let x = e′′ in e, l)}, [ ]〉

(O-LET)

〈W,K,N, {p 7→ (let x = v in e, l)}, [ ]〉 •7−→ 〈W,K,N, {p 7→ (e{v/x}, l)}, [ ]〉

(O-GET)
W (p) = (u, h, h′, q) d = domain(u) ∃ck : K(d) = ck ∧ ck(k) = (n, f) ∧ f ∈ {⊥, S}

〈W,K,N, {p 7→ (k?, l)}, [ ]〉 •7−→ 〈W,K,N, {p 7→ (n, l)}, [ ]〉

(O-GETFAIL)
W (p) = (u, h, h′, q) d = domain(u) ¬∃ck : K(d) = ck ∧ ck(k) = (n, f) ∧ f ∈ {⊥, S}

〈W,K,N, {p 7→ (k?, l)}, [ ]〉 •7−→ 〈W,K,N, {p 7→ ((), l)}, [ ]〉

(O-SET)
W (p) = (u, h, h′, q) d = domain(u)

¬∃ck : K(d) = ck ∧ ck(k) = (m, f ′) ∧ f ′ ∈ {H,>} K′ = upd ck(K, d, {k 7→ (n, f)})
〈W,K,N, {p 7→ (k!〈n, f〉,⊥)}, [ ]〉 •7−→ 〈W,K′, N, {p 7→ ((),⊥)}, [ ]〉

(O-SETFAIL)
W (p) = (u, h, h′, q) d = domain(u) l 6= ⊥ ∨ (∃ck : K(d) = ck ∧ ck(k) = (m, f ′) ∧ f ′ ∈ {H,>})

〈W,K,N, {p 7→ (k!〈n, f〉, l)}, [ ]〉 •7−→ 〈W,K,N, {p 7→ ((), l)}, [ ]〉

(O-XHR)
W ′ =W ] {p 7→ (u′, h, h′ ] {n 7→ λx.e}, q)}

l 6= ⊥ ⇒ l = url label(u) = url label(u′) ∧ q = 3
q = 3 ∧ url label(u) = url label(u′)⇒ ck = get http ck(K,u) ∧ q′ = 3

q = 5 ∨ url label(u) 6= url label(u′)⇒ ck = {} ∧ q′ = 5

〈W ] {p 7→ (u′, h, h′, q)},K,N, {p 7→ (xhr(u, λx.e), l)}, [ ]〉 xhr req(ck,u)7−−−−−−−−→ 〈W ′,K,N ] {n 7→ (u, p, q′)}, {p 7→ ((), l)}, [ ]〉

(O-LOGIN)
W (p) = (u′, h, h′,3) ρ(c) = url label(u) l = url label(u) = url label(u′) ck = get http ck(K,u)

〈W,K,N, {p 7→ (auth(u, c), l)}, [ ]〉 login(ck,u,c)7−−−−−−−→ 〈W,K,N ] {n 7→ (u, (),3)}, {p 7→ ((), l)}, [ ]〉

(O-FLUSH)

〈W,K,N, T, o〉 o7−→ 〈W,K,N, T, [ ]〉

(O-MIRROR)
P

o7−→ Q

P
o−→ Q

(O-COMPLETE)
〈W,K,N, {p 7→ (e, l)}, [ ]〉 67→

〈W,K,N, {p 7→ (e, l)}, [ ]〉 •−→ 〈W,K,N, {}, [ ]〉

Notation: we write P 67→ whenever there do not exist o and Q such that P o7−→ Q.
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other words, we assume that the user is always entering
either a password or some public data. Rules (WF-DOC)
and (WF-XHR) ensure that cookies set by a honest
server are picked from the correct name partition and
only occur in the standard HTTP header: furthermore,
we require that confidential data (e.g., passwords) never
appear in the body of a response or in the cookie names.

Theorem 1 (Session Integrity). FF+ enforces session
integrity for any well-formed trace (with respect to the
threat model in Section III-C).

The proof draws on a label-indexed family of simu-
lation relations, which connect the attacked trace with
the original one. The proof is challenging, due to the
significant differences which may arise between the two
traces: full details are in [2].

IV. ENFORCING SESSION INTEGRITY IN SESSINT

In this section, we discuss how to transfer FF+ prov-
able security into real browser security. To accomplish
that, the following aspects must be taken in due account.
First, the implementation of the required protection
mechanisms should be designed so as to minimize their
impact on the user experience: this is a difficult task,
which requires careful design based on the search of the
best possible trade-off between security and usability.
Second, the design should lend itself to an implemen-
tation as a browser extension, to ease its deployment.
When that is not possible, it is important to fine-tune
the proposed security mechanisms so that they are still
consistent with the theoretical model.

Below, we report on our development of SESSINT, a
proof-of-concept implementation of the integrity mech-
anisms of FF+ as a browser extension for Google
Chrome. While the current design is targeted at Chrome,
and depends on its extension API, the same development
appears possible on other major web browsers.

A. Implementing FF+ security

We start by discussing how the different browsing
events correspond to FF+ events, and are handled by
SESSINT accordingly.

1) Address bar: Typing a URL in the address bar and
loading a page corresponds to the load event in FF+, i.e.,
we trust what the user types in the address bar. Here we
have a first problem due to Chrome’s API, which does
not provide enough information to distinguish between
a request triggered by the user typing in the address bar
and a redirect, possibly caused by Javascript. For the
moment, we have solved the issue by letting the user
add a special character ‘g’ before inserting the URL, so
that we can capture this input via the Chrome omnibox

API and detect, accordingly, that the URL has been typed
in the address bar.

2) User clicks: Following a link via a click is mapped
to a xhr operation of FF+. The rationale is that we do not
trust clicks as, in fact, they might have been performed
by malicious Javascript code. Moreover, it is unrealistic
to assume that the user carefully checks every single link
before clicking on it. Even though a user click could
correspond to a load event, we decided to treat it as an
xhr req event and apply a more conservative security
policy, whereby SESSINT strips all authentication cook-
ies before sending cross-origin requests, so as to prevent
cross-origin request forgeries from malicious scripts.

3) Implicit loads: Implicit loads from a page or script
correspond to xhr operations in FF+, since we cannot
trust these events. Hence, SESSINT strips all authentica-
tion cookies before sending cross-origin requests.

4) Passwords: In order to prevent passwords from
being leaked by malicious Javascript code, we sandbox
login forms into an isolated popup. SESSINT imple-
ments a password manager, which checks that the input
password is correct before sending it. If the password
is not yet in the password manager, the user is asked
for confirmation and, in case of a positive answer, the
password is stored and associated to the page and action
URLs, to enforce the runtime discipline adopted by FF+.
Notice that the Chrome API does not allow to inspect
the page content before inline scripts are executed.
However, if these scripts modify the action URL before
the extension creates the sandboxed form, the password
manager will detect it by a comparison with the stored
action URL and will warn the user before proceeding.

5) Cookies: SESSINT performs a taint tracking over
the open network connections, exactly as FF+: cookies
are only updated when they are received over an un-
tainted connection. SESSINT marks any authentication
cookie received by the browser on HTTP connections as
HttpOnly; authentication cookies received over HTTPS,
instead, are marked as both HttpOnly and Secure. This
prevents leakage from malicious Javascript programs and
protects cookies in case HTTP links are injected into
HTTPS websites. To preserve functionality, SESSINT
forces a redirection on HTTPS for the entire website
when a login form is submitted over HTTPS: indeed,
if the website contains some hard-coded HTTP links,
marking some authentication cookies as Secure would
break the session when navigating these links. As done
by other extensions [15], [20], [33], authentication cook-
ies are detected based on standard naming conventions
(e.g., PHPSESSID) and a heuristics that measures the
degree of entropy of the cookie value. In a recent paper
we show how the authentication cookie detection process
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can be improved significantly using machine learning
techniques [16].

B. Protection vs usability

There are a few situations where the security policy of
FF+ would break too many websites, hence we have to
slightly relax it in SESSINT. We discuss these situations
and the implications on browser security and usability.

1) HTTP sessions: Some websites only support
HTTPS for a subset of their pages. If some portions of
the website do not provide support for HTTPS, SESSINT
selectively allows a fallback to HTTP, with the proviso
that cookies which have been previously promoted to
Secure by the extension must be included to preserve
the session [15]. If a HTTPS connection times out, we
do not force the fallback, to prevent a network attacker
intercepting HTTPS traffic from forcing SESSINT into
leaking over HTTP authentication cookies of websites
normally providing HTTPS support. Of course, we can-
not provide session security against network attacks for
websites which only partially support HTTPS, and the
user is warned when this is the case.

2) Redirection to HTTPS: Many websites redirect the
browser to HTTPS when an HTTP access is requested.
However, SESSINT would not include authentication
cookies upon these HTTPS redirections, since these
redirects could as well be exploited by a network attacker
to point the browser to a sensitive HTTPS URL and
carry out a forgery: this cookie stripping breaks many
websites, e.g., Facebook. To regain functionality, in the
specific case of a protocol upgrading with unmodified
URL, the user is asked (once for each site) to confirm
that the redirection is expected, so that authentication
cookies can be sent to the website. If the redirection
looks suspicious, the user can block it.

3) HTTPS login forms into HTTP pages: It is com-
mon to find websites where HTTPS login forms are
embedded (e.g., as iframes) into HTTP pages. This is
insecure, as an attacker can change the HTTP page so
as to redirect forms to a server that he controls, but it
is a very common practice and we need to let it work.
Our choice is to warn the user when this happens, then
the password manager will give an extra warning in case
the password is going to be sent to a URL that is not
yet known. The combination of the two warnings should
make the user well aware of a possible attack.

4) Subdomains and external sites: It is common that
secure sessions link to subdomains or to external sites
as, e.g., in e-payments. Navigating to a different domain
would normally strip authentication cookies. To avoid
breaking websites, SESSINT by default sends authen-
tication cookies when moving into a subdomain, even

though this could sometimes be exploited by a web at-
tacker with scripting capabilities in the subdomain [14],
[20]. We are investigating how to extend this behaviour
to external (trusted) websites. A simple idea might be to
include a white-list of trusted sites, e.g., for e-payments,
that are needed to be reached by other websites, so that
when the navigation comes back to the original site,
authentication cookies are correctly sent and the session
is preserved. We also plan to study to which extent we
can engineer in SESSINT previous proposals aimed at
supporting useful collaborative web scenarios [19].

C. Experiments

We tested SESSINT on existing vulnerable web ap-
plications, such as OWASP Mutillidae and Damn Vul-
nerable Web Application. We believe this is important
to confirm that the more relaxed security policy adopted
in SESSINT does not sacrifice too much of the bullet-
proof security of FF+. Here, we report some simple, but
significant examples of attacks prevented by SESSINT:

1) CSRF: A link to domain A from a different do-
main B, that performs an action inside an active session
with A (cf. Figure 1 (a)). With SESSINT authentication
cookies are stripped and the action has no effect.

2) Cookie stealing via XSS: An XSS attack can
access the JavaScript object document.cookie and
leak an authentication cookie (cf. Figure 1 (b)). With
SESSINT all authentication cookies are set HttpOnly

and the attack is prevented.
3) Local CSRF: Domain A is vulnerable to XSS.

The attacker injects a payload into A that redirects to
a location, still in A, that performs an action inside the
session (cf. Figure 1 (c)). The attack is prevented by
SESSINT, since authentication cookies are stripped when
a redirection happens over a tainted connection.

V. CONCLUSION

We introduced a novel notion of web session integrity
and we showed that our definition is both general and
amenable for client-side enforcement. We then proposed
FF+, a security-enhanced model of a web browser that
provides a full-fledged and provably sound enforcement
of web session integrity. Based on that, we developed
SESSINT, a proof-of-concept browser extension which
implements the security checks formalized in FF+. We
discussed the effectiveness of our solution and we pre-
sented some design choices we made to foster usability.

As a future work, we would like to further engineer
SESSINT, trying to support more complicated collabo-
rative web scenarios. We also plan to investigate how
to enforce web session integrity in a browser supporting
information flow control policies like FlowFox [24].
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