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Abstract

Session management is a particularly delicate component of web applications,
which might suffer from a range of severe security issues, including imperson-
ation attacks. Unfortunately, the scope and significance of prior work on web
session security in the wild are limited by the complexity of the attack surface
and the challenges of automating the login process on existing websites. In the
present article, we fill this gap by proposing the first comprehensive, large-scale
web session security measurement based on post-login data. Our analysis is
comprehensive in that it deals with all key aspects of web sessions, i.e., the login
process, the logout process and the authentication cookie handling. Our auto-
mated approach analysed an extensive set of session management practices of
over 6,000 sites where login was successful and authentication cookies could be
automatically detected, uncovering a widespread adoption of insecure practices
in the wild.
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automated login, authentication
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1. Introduction

Web application security is a complex matter, with multiple facets and mov-
ing parts. A particularly delicate component of most web applications is session
management, where a user operating a client (browser) authenticates at a web
application to request access to security-sensitive functionality, e.g., a payment5

interface of an e-commerce website. Web sessions are normally established upon
successful verification of valid access credentials (login) and implemented on top
of authentication cookies. Unfortunately, despite their apparent simplicity, web

?Authors listed in alphabetical order.
∗Corresponding author
Email addresses: stefano.calzavara@unive.it (Stefano Calzavara),

hugo.jonker@ou.nl (Hugo Jonker), benjamin.krumnow@th-koeln.de (Benjamin Krumnow),
alvise.rabitti@unive.it (Alvise Rabitti)

Preprint submitted to Computers & Security



sessions can suffer from a wide range of severe security flaws [1]. Insecure im-
plementation practices in web sessions may even lead to impersonation attacks,10

where the attacker uses the victim’s password or cookies to authenticate as the
victim and get unconstrained access to her account.

Web security studies aim to better understand causes for insecure practices;
they unveil faulty implementations and highlight misunderstood concepts [2, 3].
However, web session security studies have been fairly limited so far. Analyzing15

web session security requires authenticated access to web applications, which
is a difficult process to automate [4]. Thus, prior work on web session security
reported on either (i) small-scale precise measurements involving a significant
amount of manual effort [5, 6, 7], or (ii) large-scale measurements based on
unauthenticated access to web applications, which miss valuable information,20

e.g., the login and logout processes [8]. The only notable exception is a recent
paper, which analyzed post-login web session security at scale, but only focused
on session hijacking enabled by cookie theft [9]. This means that prior web
security studies are too small in terms of analyzed sites [5, 6, 7], too imprecise
because carried out without performing authentication [8] or too narrow be-25

cause they only cover a limited set of web session security threats [9]; we further
discuss and compare against prior work in Section 8.

In the present article, we fill the gap in prior studies by presenting the first
comprehensive evaluation of web session security that is based on post-login
data collected through an automated large-scale measurement. Our analysis is30

comprehensive because it deals with all key aspects of web sessions, i.e., the login
process, the logout process and the authentication cookie handling. Note that
all these parts of the session management logic may be subject to vulnerabilities:

1. Web session security requires passwords to be protected against leakage
over HTTP and to be reasonably hard to guess. If passwords are not35

appropriately protected against disclosure, impersonation attacks become
trivial to perform.

2. Once a session is terminated by logging out, it should be invalidated at
the server-side to ensure that authentication cookies are not valid beyond
their intended expiration. Also, security-sensitive information stored at40

the client should be removed to minimize the risk of privacy leakage.

3. Insecure cookie configurations can fatally undermine web session security.
For example, if authentication cookies are leaked in clear over HTTP, their
theft may enable impersonation attempts (session hijacking).

We build our work on top of the Shepherd framework [4] for automated post-45

login studies, which we extend to mechanize the logout process and include new
traffic collection facilities. Our analysis is designed to be non-intrusive and
ethical: we leverage existing access credentials of popular sites from the pub-
lic BugMeNot1 database and we check compliance with security best practices

1http://bugmenot.com
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without actively mounting attacks when we might violate existing terms of ser-50

vices. Despite these necessary limitations, our analysis is valuable because it
identifies widespread adoption of insecure session management practices in the
wild. We arrive at this conclusion by analyzing data collected after authenti-
cating to 6,124 top sites from the Tranco list [10]. More concretely, our study
shows that the risk of impersonation attacks on the analyzed sites is significant:55

for example, we identify 909 (15%) sites where impersonation might be enabled
by an insecure implementation of the login process and 1,398 (23%) sites where
impersonation might be enabled by the lack of confidentiality of authentication
cookies. In addition, we identify a number of sites which implement the logout
functionality insecurely: specifically, 469 (8%) sites do not terminate sessions60

at the server upon logout, while 230 (4%) sites do not remove security-sensitive
information from the client after logout. All the vulnerabilities reported in the
present article have been responsibly disclosed to the respective site operators.

Contributions. To sum up, we contribute as follows:

1. We use Shepherd [4] to create a data set of traffic and client-side storage65

related to all phases of session security: logging in, post-login, logging out.
For this task, we extend Shepherd in two ways. First, we add support for
automated logging out. Second, we enhance Shepherd to capture targeted
parts of the HTTP traffic. This enables Shepherd to make use of its
understanding of the login / logout processes during traffic collection and70

support further security analyses.

2. We review an extensive set of web session security threats, focusing on
three different angles: login security, post-login security and logout secu-
rity. For each threat, we identify automated testing techniques amenable
for a large-scale security measurement in the wild.75

3. We apply these testing techniques to data collected from 6,124 sites of the
Tranco list [10] where Shepherd successfully logged in. We analyse the
results to shed light on the current state of session security on those sites,
detecting a widespread adoption of insecure practices.

2. Background80

In this section we clarify how web sessions are implemented, we introduce
our threat model and we review relevant background on web session security.

2.1. Web Sessions

A web session is established when a user operating a client (normally a web
browser) provides valid access credentials to a web application by the submission85

of a login form, which is sent to a remote endpoint (the form’s action) for
verification. Normally, upon a successful verification of the access credentials,
the web application issues a set of cookies which authenticate the user on the
following HTTP requests [11], e.g., because they store a unique session identifier

3



Client Server

GET /index.html

Login form

POST /login.php
Body: u=alice&p=fruit

Set-Cookie: sid=4ff2d165a

GET /index.html
Cookie: sid=4ff2d165a

Welcome back, Alice!

Figure 1: Example of web session

bound to the user’s identity. Such cookies are known as authentication cookies290

and are automatically sent by the client to the web application which set them.
Figure 1 shows the typical establishment of a web session, where the user

Alice first logs in with password “fruit” and then remains authenticated by
presenting an authentication cookie sid, which uniquely identifies her session
(4ff2d165a). Once Alice has finished interacting with the web application, she95

can log out and move back to an unauthenticated state (not shown in the figure).
This makes her session identifier invalid for future accesses.

2.2. Threat Model

We audit the security of web sessions against the traditional threats posed
by web attackers and network attackers, the standard attacker models of the100

web security literature [12], which have been commonly used in previous web
session security studies, e.g., [13, 14, 8, 15, 1, 16, 17, 9]. A web attacker is an
unprivileged web user who operates a browser and has control of a malicious
website. A network attacker extends the capabilities of a web attacker with
the ability to inspect and arbitrarily modify the content of the HTTP traffic105

exchanged between the client and the server, e.g., because the attacker has
control of the WiFi access point used by the client and operates from a man-
in-the-middle position. However, a network attacker cannot sniff or corrupt the
content of HTTPS traffic, assuming the adoption of robust cryptography and the
deployment of a trusted certificate on the server. In our analysis, we only focus110

2This is interchangeable with the term session cookies in some other work. We avoid the
use of the latter term, since it can also be used to denote those cookies which are deleted
when the browser is closed.
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on sites equipped with certificates signed by a trusted certification authority
according to a major commercial browser (Google Chrome). We also assume
perfect cryptography, in the sense that our analysis focuses on session security,
not cryptographic security of HTTPS. Note that cryptographic weaknesses in
HTTPS implementations are generally harder both to identify and to exploit in115

practice [16].
Finally, for the specific case of logout security, we also consider a next user

attacker, who gains access to the client after the previous user has logged out
of her session. This attacker covers often overlooked threats related to sharing
devices, such as borrowing someone’s computer or using an Internet cafe. The120

next user attacker has access to the same browser and resources as used by the
victim. More specifically, a website that does not clean up client-side storage
upon logging out leaves behind information in the form of cookies and local-
Storage items. Information in sessionStorage is safe, because sessionStorage is
deleted when the user closes the corresponding browser tab.125

2.3. Web Defenses

We review here a few common defenses designed to improve the security of
web sessions.

2.3.1. Cookie Attributes and Prefixes

To understand the security implications of cookies, it is important to review130

their semantics. By default, cookies are only attached to requests sent to the
same host which set them. However, a host may also set cookies for a parent
domain by means of the Domain attribute, as long as the parent domain does
not occur in the Public Suffix List:3 these cookies, called domain cookies, are
shared across all the sub-domains of such domain. For instance, a.foo.com can135

set a cookie with the Domain attribute set to foo.com, which would also be sent
to b.foo.com.

Cookies are normally shared across all protocols and ports. For instance,
cookies set by a secure connection to https://www.foo.com are attached to
insecure requests to http://www.foo.com, i.e., they can potentially be stolen140

by network sniffing. To improve their confidentiality guarantees, cookies can be
marked with the Secure attribute, which instructs browsers to communicate
such cookies only over HTTPS connections. Similarly, cookies can be shielded
from JavaScript accesses by marking them with the HttpOnly attribute, which
mitigates the dangers coming from script injection (XSS).145

The lack of cookie isolation between protocols also implies that http://www.
example.com can set cookies for https://www.example.com, i.e., cookies lack
integrity against network attackers [14]. To avoid this, cookies can make use
of the security prefixes Secure- and Host-. Though the semantics of the
two prefixes is different, both of them require the cookie to be set over HTTPS150

connections, thus providing cookie integrity.

3Available at https://publicsuffix.org/
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2.3.2. HTTP Strict Transport Security (HSTS)

HSTS is a security policy implemented in all modern browsers, which allows
hosts to require browsers to communicate with them only over HTTPS. Specif-
ically, HTTP requests to HSTS hosts are automatically upgraded to HTTPS155

by the browser before they are sent. This way, site operators can assume that
HTTP is banned and reduce the attack surface. Note that HSTS provides bet-
ter protection than a standard HTTPS deployment (without HSTS), because
HTTP communication is entirely forbidden, hence network attackers cannot
impersonate the (non-existing) HTTP version of the target site.160

HSTS can be activated over HTTPS using the appropriate header, which
must specify a max-age attribute expressing the duration of protection. More-
over, the header can set the includeSubDomains option, which extends the
scope of HSTS to all subdomains. Rather than activating HSTS via head-
ers, hosts may request to be included in the HSTS preload list of major web165

browsers,4 so that HSTS is activated on them by default. HSTS can be deacti-
vated by setting the max-age attribute to a non-positive value.

3. Data Collection

We now provide details about our data collection. We start by discussing re-
cently emerged approaches to automate the collection of post-login data. Then,170

we describe our data collection process, which tool we use and explain our mod-
ifications to it. Finally, we zoom in our data set and analyse its characteristics.

3.1. Access Credentials

The mandatory requirement for logging in across many websites is valid
credentials. However, for legal and ethical reasons, leaked credentials cannot be175

used in our research. That leaves the following approaches to be considered:

1. using single sign-on (SSO)

2. automating registration

3. crowd-sourcing credentials

Note that none of these approaches will work flawlessly on all sites; each of180

these therefore introduces a bias in the set of sites covered by it. Some of this
bias will be inherent to automated logins: credentials for, e.g., banking sites are
not legitimately available at scale. Other bias will be specific to each approach.

Using SSO to log in is supported on 6.3% of the Alexa Top 1 Million [18].
SSO offers a clear advantage for large-scale studies, i.e., only a limited number185

of credentials are needed to log in on many different sites. Unfortunately, using
SSO is also challenging: it may necessitate additional actions, such as account
registration despite SSO access and authorization granting, e.g., in the case of

4Available at https://hstspreload.org/
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OAuth 2.0. This makes using SSO rather hard. For example, Zhou and Evans
had limited success [19]: 912 logins out of 20K sites (4.6%). In addition to those190

challenges, using SSO imposes its own bias on the set of sites: first, sites may
insist upon their own account registration system and not offer any other login
(e.g., webshops, banks). Other sites may not offer SSO for privacy reasons (e.g.,
adult entertainment). All such sites are excluded from an SSO-only approach.
Moreover, there is no single, world-wide most popular SSO provider. Different195

regions prefer different SSO providers. Using common western SSO providers
would bias the study towards their sphere of influence; minimising such bias
necessitates a world-wide view on all SSO providers and their sphere of influence.

Automating account registration may address such concerns. A signif-
icant benefit of this approach is its general applicability, as it does not require200

SSO availability. In a recent study [9], this approach was used to login on 23,176
sites (out of 1.6M sites, 1.6%). A major downside to automatic registration is
that the registration process is a critical security feature of websites frequently
targeted for automated attack. As such, it is typically protected against auto-
mated visitors (e.g., by means of a CAPTCHA). Automating circumvention of205

techniques deliberately employed to prevent automated registration poses seri-
ous ethical concerns. Moreover, even if the ethical issues are ignored (we stress:
they should not), automated registration still introduces a bias: it will only suc-
ceed on sites with insufficient defenses against it, thus likely skewing towards
websites with weak security.210

Using crowd-sourced credentials from public databases solves the ethical
issues related to automated account registration. Nevertheless, this also leads
to a bias. The bias inherent in legitimate crowd-sourced credentials is due to
the type of accounts that users are willing or allowed to share. For example,
sites where registration is simple and accounts are not associated with (personal)215

value will be prevalent, while other accounts (banks, social media, online stores),
will be underrepresented or even absent due to the rules governing the crowd-
sourcing effort. The current largest study based on this approach [4] gathered
credentials for ∼50K sites, and was successful on 7.1K of these (14%).

To sum up, while automating registration managed (so far) to log in on220

the largest absolute number of sites, its success rate is an abysmal 1.6% [9].
Moreover, automated registration might violate existing terms of services, while
still skewing the set of sites under consideration towards weak security. Using
SSO is a more viable option, but requires a complex automation infrastructure
to perform an open-ended scan with a low success rate (best success rate: 4.6%).225

In contrast, the use of crowd-sourced credentials minimizes the scanning effort
and proved quite effective in the past (best success rate: ∼14%), which motivates
its adoption in the present article. We acknowledge this approach might still
suffer from a bias coming from the availability of credentials, which however is
still not entirely solved by competitor approaches. In the article we thus report230

on several experiments designed to mitigate the impact of such bias.
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3.2. Data Collection Tool

To collect data, we use Shepherd [4], a crawling framework based on Selenium
and WebDriver to automate interaction with the Chromium browser. It uses a
multi-step approach to automate the login process for unknown sites. First, it235

applies various strategies to identify login areas. Then, for each potential login
area, it chooses a login routine based on the login areas characteristics. Next,
Shepherd attempts to login with each given credential until it succeeds or all
credentials were used unsuccessfully. If Shepherd believes a login succeeded, it
verifies whether this is actually true. Finally, if successful login is verified, the240

same verification process is used to identify authentication cookies.
Input to Shepherd is a set of given URLs with site-specific credentials. On

a set of unvetted credentials, Shepherd achieved a success rate of about 14%,
which is the current state of the art, because the wide variety of websites makes
a general automation of logging in challenging [4]. As discussed in the original245

paper, causes for failures are either due to invalid entries in the data set (e.g.,
sites without logins, invalid credentials), or part of the automated login process
failing (login area not detected, CAPTCHA encountered, etc.).

3.3. Extending Shepherd

Shepherd [4] provides the login functionality needed for the present study.250

However, it does not support logging out or accessing network traffic, which
are needed for our session security analysis. We extend Shepherd to include
functionality for both. While capturing network traffic could be accomplished
just by adding a proxy, a simple proxy would fail to account for Shepherd’s
awareness of where in the login / logout process it is.255

3.3.1. Logout Automation

We leverage the similarities between the logout process and the login process,
which is already supported by Shepherd. In particular, our Shepherd extension
to log out follows similar steps, executed after a successful login.

The first step is to visit potential pages of interests. For our extension, we260

choose the page reached after logging in (likely a profile page) and the site land-
ing page. Note that a well-designed website facilitates logout buttons on any
page, after logging in. Second, we identify candidates for logout interaction ele-
ments. To this group belong elements that offer click functionality and contain
keywords related to logging out. To determine if an element is clickable, Shep-265

herd scans elements for attached event listeners, element tags (e.g., buttons,
anchors etc.), and common properties of clickable elements. The third step is to
define the order of elements to be triggered. For that, we rely on the distance of
an element from the upper right-hand corner of the page. We noticed this aspect
as a common property of logout elements during the development of our exten-270

sion. This practice has also been shown to be successful for identifying login
buttons in previous work [19]. Fifth, Shepherd triggers these elements first by
opening URLs from anchor elements, and then by performing mouse clicks. The
final action is the verification of successful logout. For a verification, Shepherd
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visits the same page used to verify success of login, and checks whether login275

verification fails, i.e., the signals used to detect a failed login are used to detect
a successful logout. More specifically, Shepherd uses the same information from
the login phase to check whether the existence of login forms, logout elements,
password fields and account information on the page has changed.

3.3.2. Capturing Network Traffic280

The standard version of Shepherd provides access to a website’s JavaScript,
WebStorage items and cookies. However, it does not capture HTTP traffic,
which is important for web session security analyses; for example, HTTP headers
provide useful information about the adoption of defense mechanisms like HSTS.

Our goal is to analyse traffic related to specific phases of session management.285

Shepherd knows when each phase is reached and thus when traffic should be
recorded. We therefore embed a way for Shepherd to enrich the recorded traffic
stream with semantic information based on the selenium-wire package.5 This
enables our analysis to exactly target the various phases of session management,
and opens the possibility to correlate website interactions (e.g., triggering a290

button, submitting a form and so on) with their corresponding network traffic.
In this project, we use this functionality in two ways. First, we let Shepherd

mark the beginning and the end of each action of the traditional session manage-
ment process (see Section 3.4.1). Second, we introduce marking for interaction
steps, such as setting a marker when submitting a form and when the page has295

stabilized after form submission. This allows re-identification of traffic belong-
ing to an action, which would be lost otherwise. We apply this functionality for
traffic reduction. For that, we select actions (e.g., identifying the login page,
false login attempts, etc.) that produce irrelevant traffic and remove them from
our data set. We tested this in comparison to unfiltered traffic recording and300

found a reduction of captured traffic in size of up to 65%.

3.4. Data Collection Process

Like in the original Shepherd paper, we extracted the credentials used to
access sites from BugMeNot6, a website that provides crowd-sourced credentials
for other sites. We searched BugMeNot for credentials for 1 million most popular305

websites according to the Tranco list [10]7, which aggregates the ranks from the
lists provided by Alexa, Umbrella, Majestic and Quantcast from 14/4/2020 to
13/5/2020. The Tranco list is constructed to provide a more stable list of most
popular websites, in contrast to individual rankings [10]. This resulted in a list
of credentials for 56,437 websites.310

3.4.1. Data Acquisition

We let Shepherd perform the following actions in sequence on these sites:

5https://pypi.org/project/selenium-wire/
6http://bugmenot.com/
7Available at https://tranco-list.eu/list/VKQN/1000000
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action # sites out of perc.

Connected 53,602 56,437 95%
Login area detected 35,465 53,602 66%
Failed login 29,699 35,465 81%

– All credentials are invalid 19,102 29,699 64%
– CAPTCHA protects login 2,676 29,699 9%

Logged in 6,766 13,687 49%
– Authentication cookies identified 6,124 6,766 91%

Logged out 3,302 6,124 54%

Table 1: Breakdown of the data collection process

connect→ identify login area→ log in→ verify→ visit subpages→
derive authentication cookies → log out → perform security checks.

In addition to logging out and security tests, we included a step for deep315

scanning websites. Our goal is to capture authentication cookies that are not
immediately set after logging in, or may only be set on subpages [6]. For that
Shepherd extracts URLs from anchor elements that are embedded into the land-
ing page. It first filters third party URLs and duplicates and then picks a random
selection of the remaining URLs. Shepherd limits its visits to a maximum of320

5 subpages for performance reasons. We consider a subpage to belong to the
same site when its URL shares the eTLD+1 of the site landing page.

Table 1 reports the number of sites reached for the different steps of the data
acquisition process, as well as the number of failures for some automatically
detected failure cases with large impact. Shepherd’s performance in our study325

roughly matches that discussed in its original paper, leading to a success rate
of 13% [4]. Shepherd found a login area in 35,465 sites (66% of 53,602). Out of
those, we found 19,102 sites where all the credentials from BugMeNot turned
out to be invalid and 2,676 sites where the login process was protected by a
CAPTCHA, hence not amenable for automation. This leaves 13,687 sites where330

Shepherd had a chance to automate the login process, which succeeded in 6,766
(49%) cases. For most of these cases, we were able to successfully identify
their authentication cookies as discussed below. In the following, we restrict
our security analysis to the 6,124 sites where login was successful and Shepherd
could identify the authentication cookies.335

During the data acquisition steps, we captured all requests and responses,
with exception of the response body. This resulted in a data set of 86 GB. For
each site, we captured cookies, LocalStorage and SessionStorage in four situa-
tions: (1) before logging in, (2) after verifying success of having logged in, (3)
after visiting several pages while logged in, and (4) after verifying success of340

having logged out. In addition, we keep track of which credentials were success-
fully used to log in, and what URL led to a login area. Once login is verified,
we determine which cookies are authentication cookies, that is, cookies without
which the browser is no longer logged in. Shepherd’s initial implementation
relies on the work by Mundada et al. [6] and Calzavara et al. [20]. The worst345
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(a) (b)

Figure 2: (a) Distribution of sites for which at least one set of credentials was acquired over
the Tranco Top 1M; (b) Breakdown of successful logins by site popularity.

case scenario for this approach is an exponential run time with respect to the
number of cookies. Therefore, we extended Shepherd to apply the improved
solution by Calzavara et al. [21], which runs in linear time on most sites.

3.4.2. Significance and Potential Bias

With the respect to our discussion concerning the limitations of automated350

login approaches (cf. Sec 3.1), any research relying on such a data set should
be checked for significance and biases.

To show that our data covers not just random sites from the tail of Tranco,
but also very popular sites, we report two interesting results. First, Figure 2
(a) shows the distribution of sites for which at least one set of credentials was355

acquired over the Tranco Top 1M. The detection of invalid credentials is auto-
matically done by Shepherd’s “reasonably accurate” integrated detection rou-
tines [4]. The figure shows that the most popular sites from Tranco (Top 100K)
are quite represented in BugMeNot. In contrast, Figure 2 (b) depicts the distri-
bution of sites with successful logins. This confirms that the data is distributed360

over the entire Top 1M, with more emphasis on the most popular sites and the
first half of the Tranco list.

Next, we investigate the skewness of our data set. Due to the restriction on
sites with a public login within our study, we expect an inherent bias. More
specifically: not all sites offer a login; such sites are inherently excluded from365

our study. Moreover, our credential source is crowd-sourced for the goal of
avoiding login ‘nags’ – sites that pester visitors to create a login and limit content
available to non-logged in users. We anticipate that this may cause certain types
of sites to be underrepresented (e.g., malicious sites), and others, where login
nagging is common, to be overrepresented. To gain an estimate of this skewness,370

we derive categories for sites where Shepherd successfully logged in and compare
it with categories of sites in the Tranco list. Specifically, we use Symantec’s

11



Figure 3: Relative frequency for all categories covering more than 2% of either our data set
or the Tranco data set. Categories with a difference of over two percentage points between
both sets are highlighted in bold.

Review Database [22] which classifies sites into 86 categories.8 Unfortunately,
access to Symantec’s API is restricted through rate-limits, preventing us from
sampling the entire Tranco 1M list. We circumvent this restriction by creating375

a systematic sample of 50K sites (5% of the Tranco 1M list). We select domains
based on a fixed interval (20 ranks), starting from a random position in the top
20 of the Tranco list.

Our results show that our Tranco sample contains sites from all 86 cate-
gories, while the login data set covers 79 categories. Notably, missing categories380

in our data set account for less than 0.1% of all sites. Figure 3 depicts the
result for categories that exceed a 2% threshold for both data sets. Seven of
these categories, marked in bold, differ by more than 2 percentage points be-
tween the sets. For these categories, we further discuss why these are over- or
underrepresented in our login set:385

• Sites requiring logging in by nature: Some sites can only be used
in their full potential when logging in. Unsurprisingly, we encounter such
sites more frequently in our data set. Sites categorised as Games or News-
groups/Forums are likely candidates that fit this description.

• Sites usually not shared by users: Our goal is to investigate the390

security of legitimate sites targeted at genuine users. In our login data
set, two types of sites occur rarely but make up for significant portion
in the Tranco list: Suspicious and Placeholders. Since neither category
brings value to users, these are less relevant to our study. Moreover, they

8https://sitereview.norton.com/#/category-descriptions
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are also less relevant for genuine users and thus such sites are expected to395

occur only infrequently in a crowd-sourced data set. We find that this is
indeed the case.

• Tendency in the BugMeNot database: Sites categorised as Technol-
ogy/Internet and Entertainment are overrepresented in our login data set
(by ∼9 percentage points). We believe this due to BugMeNot’s mission400

and audience matching these types of sites particularly well.

• Sites excluded by BugMeNot: As prescribed in BugMeNot’s terms of
use9, sites that offer paid content may not be submitted. This applies to
certain sites in the Business/Economy category.

In conclusion, prevalence of categories in our data set mostly matches (within405

±2%) incidence in the Tranco list. Deviations over this threshold are limited
in number and small in size; we thus consider our data set to align sufficiently
well with the Tranco set.

In more detail: only 4 out of 86 categories are significantly overrepresented.
This is not surprising, as logins are not equally distributed over all categories.410

Finally, three categories are underrepresented: Business/Economy, Suspicious,
and Placeholders. We consider the latter two less relevant for a security study, as
neither are meant to provide genuine service to users. In particular, Placeholders
sites do not concern real sites, but parked domains, search bait, etc. Similarly,
Suspicious sites are sites that seem to be attacking genuine sites or users, not415

genuine sites themselves. This only leaves the Business/Economy category as
underrepresented. The difference for this category is still relatively small (2.8
percentage points). Moreover, despite being underrepresented, it makes up for
over 7.5% of our data set. Therefore, there is ample data for this particular
category in our data set.420

3.4.3. Failures in Logging Out

Careful readers would have noticed from Table 1 that automatically logging
out from existing sites is surprisingly difficult: we only managed to automate
the logout process on 3,302 sites, which is 54% of the sites where we successfully
logged in. We manually investigated causes for failing logout. This revealed sev-425

eral causes. First of all, paths to logout elements vary more in labelling than for
login elements. Some examples include logout, account, settings, profile, USER-
NAME, my SITENAME, etc. Exacerbating this, some websites hide the actual
logout interaction element in overlay menus. That is, there are websites that
only inject logout interaction elements into the DOM when the corresponding430

menu is activated. Identifying and triggering such menus is much more challeng-
ing, as these vary in appearance and implementation. Another cause we found
is related to banned accounts. For these sites, logging in succeeds, but any
interactive element in the post-login phase is blocked, including, interestingly

9http://bugmenot.com/terms.php
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enough, the ability to log out. This problem is related to the used credentials,435

and cannot be resolved in the automation process. A third cause, seen in a
a small number of sites, comes from confirmation requests when triggering a
logout. Integrating handling of logout dialogues is left as future work.

4. Login Security

The security of web sessions can be broken when the password used for440

establishing the session is not appropriately protected. We consider two pos-
sible attack vectors, which would enable unconstrained impersonation of the
victim: password theft and password brute-forcing enabled by insufficient pass-
word strength.

4.1. Password Theft445

A number of insecure programming practices might lead to improper disclo-
sure of passwords over HTTP. In particular, we focus on three prominent attack
vectors:

1. If the action of the login form uses the HTTP protocol, the password is
communicated in clear, hence even a passive network attacker who just450

sniffs the network traffic might disclose it. We identified 755 (12%) sites
suffering from this vulnerability. Note that we implement this check on
the actual login request available in our data set so as to minimize the
number of false positives and false negatives, e.g., when the login form is
submitted via JavaScript.455

2. If the login page is served over HTTP, it can be modified by a network
attacker so as to force password leakage, e.g., by changing the action of
the login form to HTTP or by injecting an inline script which sends the
password to the attacker’s website. We identified 901 (15%) sites suffering
from this vulnerability.460

3. If the password is communicated in the query string of a GET request,
it might become part of the URL of the landing page. This means that
the password could be leaked as part of the Referer header if the landing
page loads content over HTTP or from external sites. To spot such cases,
we checked the Referer header of all the requests made during the web-465

site crawl, looking for our password value. We identified 4 sites leaking
passwords to third parties (with Google servers being among the third
parties in all cases) due to this vulnerability.

Overall, after removing overlaps between classes, we identified 909 (15%)
sites exposed to the risk of password theft through the discussed attack vectors.470

Note that this number is dominated by the second case, i.e., login page served
over HTTP. Notwithstanding the significant increase of HTTPS adoption in the
last few years, insecurely served login pages remain a key factor of insecurity.
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Two points here are worth mentioning about exploitation. First, modern
browsers might implement security checks which prevent the introduction or475

communication of passwords in insecure contexts. However, such checks are
not standardized and vary between different browsers, hence we consider bad
practices like (1) and (2) as security issues. For example, we observed that while
a recent version of Mozilla Firefox (80.0.1) warns users when they fill a login
form which is going to be submitted over HTTP, this is not the case for a recent480

version of Google Chrome (85.0.4183). Moreover, a leakage of secrets via the
Referer header might be prevented by appropriate configuration of the Referrer
Policy header, which provides site operators with the ability of controlling the
use of the Referer header.10 However, due to our analysis methodology, we can
confirm that all 4 vulnerable sites in the third class leak passwords to external485

sites via the Referer header.

Example: Chip PC

Chip PC Technologies (www.chippc.com) is a thin client manufacturer host-
ing a website to advertise and sell computers. The website provides access to a
dashboard where customers can manage orders, warranties and licenses. While490

the website is served over HTTPS, the login form submits authentication creden-
tials to portal.chippc.com over HTTP, hence even a passive network attacker
can sniff passwords just by monitoring the HTTP traffic. This enables imper-
sonation attempts, e.g., the attacker can access the victim’s purchase history
and steal her product licenses.495

Example: World Wide Art Resource

World Wide Art Resource (www.wwar.com) is a website for artists and cre-
atives who wish to publish their work, with optional paid tiers providing differ-
ent content hosting plans, exposure and sales commissions. The website uses
the GET method to communicate authentication credentials upon login, while500

importing several libraries from google-analytics.com, consensu.org and
sharethis.com domains, in addition to some content from the affiliated web-
site www.absolutearts.com. All these different hosts may get access to the
passwords of logged in users through the Referer header of HTTP requests
sent after login.505

4.2. Password Brute-Forcing

Even if a password is securely transmitted from the client to the server, it can
still be potentially disclosed by a determined attacker if it does not satisfy min-
imal password strength requirements. The French Data Protection Authority,
CNIL, has issued recommendations for securing authentication. CNIL consid-510

ers four cases, each with their own password requirements11: password only,

10https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
11https://www.cnil.fr/sites/default/files/atoms/files/recommandation_passwords_

en.pdf
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password + account access restrictions, password + additional authentication
information, and two factor authentication. Of these cases, our approach can
only succeed in logging in for the first two, hence we focus on them and observe
that, even in the presence of additional measures such as limiting the number of515

access attempts, CNIL recommends that the password must contain at least 8
characters from at least 3 of following sets: lowercase letters, uppercase letters,
digits and special characters.

Unfortunately, there is no general automated way to detect which password
requirements are in place on a given site, since these are not necessarily explicit520

and can be enforced in different ways. To deal with this problem, we rely on
two observations:

1. Although we cannot say anything about general password requirements,
we can still check the password strength requirements on the password
used to access the web application under analysis, i.e., we can check525

whether our password is weak or not. This is valuable information for
our measurement, since we did not create passwords ourselves, but rather
used public passwords from the BugMeNot database, which can be used
as a signal of inappropriate password requirements on existing sites.

2. HTML5 provides the maxlength attribute to enforce a maximal length for530

input elements, hence we can inspect its value to assess whether passwords
are forced to be shorter than 8 characters. Moreover, HTML5 also sup-
ports the pattern attribute to enforce that inputs match a given regular
expression, which can also be used to infer information about the general
shape of accepted passwords.535

By combining these two observations, we identified 5,347 (87%) sites using
passwords which do not satisfy minimal password strength requirements. The
very large majority of our findings comes from the analysis of our own pass-
words, since the use of the maxlength and pattern attributes on password
fields does not provide much information. In particular, though we identified540

884 sites making use of maxlength and 25 sites making use of pattern, we only
found 3 sites where maxlength was used to limit a password field to less than 8
characters. The interesting point here is that we are guaranteed that, for those
sites, all passwords are weak.

While the use of weak passwords is a bad security practice in general, it545

does not necessarily constitute an exploitable vulnerability. In particular, web-
sites can implement detection or prevention techniques against brute-forcing
attempts, such as locking accounts after a number of failed login attempts. We
do not actively test for protection against brute-forcing at scale, as this is ethi-
cally dubious at best. In addition, it may violate a site’s terms of services and550

put too much workload on the analyzed web applications.

Example: Geeks for Geeks

Geeks for Geeks (www.geeksforgeeks.org) is a popular portal offering ar-
ticles on different technology-related topics, paid courses and hiring help. We
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Site popularity ≤1K ≤10K ≤100K ≤1M

Successful logins 53 100% 430 100% 2,081 100% 6,124 100%

Password theft 0 0% 12 3% 149 7% 909 15%
– login form sent over HTTP 0 0% 8 2% 103 5% 755 12%
– login page served over HTTP 0 0% 10 2% 146 7% 901 15%
– password in query string 0 0% 1 0% 2 0% 4 0%

Password brute-forcing 42 79% 363 84% 1,783 86% 5,347 87%

Table 2: Login security results by site popularity

have been able to access this site by using a BugMeNot password which is com-555

posed just by 4 lowercase letters. This implies that no meaningful password
strength requirement is enforced on the website. This is concerning, because
the odds of brute-forcing such passwords are realistically high, even if some
kind of brute-force mitigation based on the frequency of failed attempts is put
in place.560

4.3. Analysis by Popularity

Table 2 reports a breakdown of our analysis results by website popularity.
The table shows two interesting observations. A positive result is that the
most popular websites in our data set do not suffer from the risk of password
theft, since no site in the Top 1K leaks passwords in some way. However, the565

percentage of vulnerable sites monotonically increases when less popular sites
are considered, up to a considerable amount (15%). This shows that the most
popular sites have a more thorough HTTPS deployment than less popular sites,
at least for the purpose of the login process.

Unfortunately, we also observe that the use of weak passwords is uniformly570

widespread and does not significantly correlate with site popularity: the number
of vulnerable sites ranges from 79% to 87% in our popularity buckets. This
might result from the bias coming from the use of public passwords from the
BugMeNot database, since it is plausible that many security-critical sites with
strong password requirements are not included there. However, this does not575

undermine the significance of our finding: there are many popular sites which
do not enforce minimal password strength requirements in the wild. Considered
the massive user base of these sites, particularly in the Top 10k bucket, this
result is both surprising and concerning.

5. Post-Login Security580

Even when users rely on strong passwords which are appropriately protected,
session security might be at harm due to the weak security guarantees of cookies
in their default configuration. We first consider two traditional attack vectors:
session hijacking, where the attacker impersonates the victim by stealing her
cookies, and session fixation, where the attacker impersonates the victim by585

forcing her to authenticate using a set of attacker-controlled cookies. Finally,
we focus on two different types of cookie brute-forcing attacks.
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5.1. Session Hijacking via Network Sniffing

Session hijacking happens when the attacker steals the authentication cook-
ies of the victim and uses them to impersonate her at the target website. Recall590

that the current design of cookies leaves them susceptible to theft by network
attackers, since cookies are normally shared between HTTP and HTTPS, hence
potentially exposed in clear over the network. To avoid this, site operators can
mark cookies with the Secure attribute, which restricts their scope to HTTPS.
However, even cookies lacking the Secure attribute might be protected against595

disclosure over HTTP, in particular when the site uses HSTS to enforce the
adoption of HTTPS at the client. We find a cookie to have low confidentiality
against a network attacker when it lacks the Secure attribute and either of the
following conditions holds true:

1. The server does not activate HSTS. In this case, the attacker can force an600

HTTP request to the site from the victim’s browser and sniff the cookie
in clear.

2. The cookie is set for a parent domain and the server activates HSTS
without the includeSubDomains option. In this case, the attacker can
force an HTTP request to a parent domain of the site to sniff the cookie605

in clear, as HSTS is only activated for the initial host.

Host-only Domain

Total 1,804 12,087
Lacks Secure flag 1,300 4,347

– low confidentiality 1,060 4,138

Table 3: Confidentiality properties of authentication cookies

Table 3 summarizes the confidentiality properties of the authentication cook-
ies collected in our measurement. We observe that 59% and 34% of host-only
and domain cookies respectively have low confidentiality against network attack-
ers. Notably, most of the authentication cookies lacking the Secure attribute610

have low confidentiality, which suggests that the current state of the HSTS
deployment in the wild is far from satisfying.

We say that a site is vulnerable to session hijacking when all its session cook-
ies have low confidentiality, i.e., a network attacker can collect all information
required to obtain the authentication cookies and impersonate the victim. In615

our data set, we identified 1,398 (23%) sites which are subject to this threat.
Note that site operators might use defense-in-depth techniques, e.g., browser
fingerprinting, to detect stolen session identifiers and terminate hijacked ses-
sions. However, automating this analysis at scale would pose significant techni-
cal challenges: for example, sites might keep users authenticated and terminate620

sessions just when a security-sensitive operation is attempted. We acknowledge
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this limitation and partially mitigate it by manually confirming successful ses-
sion hijacking attempts on a random subset of 10 vulnerable sites, including the
following.

Example: Sotheby’s625

The popular auction house Sotheby’s runs a website (www.sothebys.com)
that, while redirecting HTTP requests to HTTPS, does not serve any HSTS
header, thus allowing requests to be sent over unencrypted connections. Since
none of the site’s authentication cookies is marked as Secure, a network attacker
can just sniff the first HTTP request sent to www.sothebys.com and gain access630

to valid session cookies. Note that the attacker could even force the browser to
send such HTTP request by corrupting unrelated HTTP traffic received by the
victim’s browser.

5.2. Protecting Session Cookies from JavaScript Cookie Stealing

Web attackers may attempt session hijacking by stealing authentication635

cookies via JavaScript, e.g., exploiting an XSS vulnerability. To mitigate this
threat, site operators should apply the HttpOnly attribute to their authenti-
cation cookies. For the same reasoning in the previous section, we consider a
website as potentially vulnerable against session hijacking via JavaScript cookie
stealing when all its authentication cookies lack the HttpOnly attribute. We640

find out that out of 6,124 sites in our data set, 2,484 (41%) sites do not set this
attribute for any authentication cookie.

Our analysis identifies sites whose authentication cookies lack inherent pro-
tection. Note that this lack of protection cannot be turned into an attack with-
out a script injection vulnerability. Nevertheless, it is relevant to analyse cookie645

protection itself, as XSS is consistently among the most common web security
vulnerabilities [23]; furthermore, mitigation techniques like Content Security
Policy fail to sufficiently address XSS in practice: up to 94% of policies in the
wild do not protect against XSS [3].

Example: Techrepublic650

Techrepublic (www.techrepublic.com) is an online news site within the
Tranco Top 2K. It uses one cookie for authentication, which is protected against
session hijacking attacks via the Secure cookie attribute and deployment of
HSTS. However, the cookies are not protected against access via JavaScript.
This, by itself, does not quite enable session hijacking yet – only scripts in655

first-party context can access these cookies. Interestingly, Techrepublic includes
several third parties in their first-party context, allowing these parties to access
user authentication cookies. Finally, the lack of adequate protection of authen-
tication cookies against JavaScript access means that protection against session
hijacking is fully dependent upon a flawless defense against XSS: any XSS flaw660

in the Techrepublic site can be leveraged to steal authentication cookies.
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5.3. Session Fixation

Session fixation may happen when a website does not refresh the value of the
authentication cookies when the privilege level of the session changes, e.g., upon
login. In this case, the attacker can force a set of known authentication cookies665

from the target site into the victim’s browser, so as to be able to impersonate the
victim when the attacker later authenticates at the target and gets privileged
access to it. To force cookies into the victim’s browser, a network attacker can
forge HTTP responses from the target site, thus abusing the lack of isolation
between HTTP and HTTPS in cookie storage to eventually achieve the same670

effect as session hijacking.
While refreshing the value of authentication cookies upon login is a best

practice, one can also thwart session fixation by ensuring the integrity of session
cookies. Specifically, a cookie has high integrity against a network attacker when
either of the following conditions holds true:675

1. The server activates HSTS with the includeSubDomains option. In this
case, the site forces the use of HTTPS on all the hosts which are allowed
to set a cookie for it, thus closing the door to network attacks.

2. The cookie name contains a security prefix ( Secure- or Host-), which
can only be set and accessed over HTTPS.680

We say that a site is vulnerable to session fixation when none of its session
cookies is refreshed upon login and, in addition, none of them has high integrity.
Interestingly, we found no authentication cookies making use of security prefixes
in our data set. This outcome is in line with the observations of a recent study
by Calzavara et al. [16], who found one site using cookie prefixes amongst 10K685

websites. We identified 1,082 (18%) sites which do not refresh authentication
cookies upon login, including 1,011 (16%) sites which are deemed vulnerable to
session fixation. The 71 sites which do not refresh authentication cookies, yet
still are not vulnerable, all ensure cookie integrity by means of HSTS.

Example: Adult Entertainment Sites690

We identified multiple adult entertainment sites vulnerable to session fixa-
tion attacks. In most cases, this comes from an inappropriate management of the
PHP session cookie PHPSESSID. The default PHP session management does not
account for logins, as the login logic is site specific. While PHP cannot refresh
session identifiers upon login automatically, it offers the session regenerate id695

function to be invoked after login to prevent session fixation. It is concerning
to find such vulnerabilities in adult entertainment sites, as a successful attack
might leak sensitive information.

5.4. Cookie Brute-Forcing

We now focus our attention to two dangerous brute-forcing attacks on cookie700

values. The first threat we consider comes from the use of predictable identifiers
in session cookies. The risk of brute-forcing attacks may be restricted by rate
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limiting requests from the same client, or the expiration time of a session, in
particular server-side session expiration. Unfortunately, the only way to test
whether rate limiting is present, is to exceed the number of allowed requests. We705

refrain from such an unethical course. Testing server-side session expiration is
also non-trivial. As shown in Section 6.1, client-side authentication cookies may
officially expire long before the server-side session is removed. We are therefore
left with considering to what extent cookie value itself is brute-forceable. We
use the OWASP recommendations on session ID length,12 which recommends710

session identifiers which contain at least 128 bits of entropy. We evaluate this
by concatenating all authentication cookies, and computing the entropy of the
resulting string. That is, we hold that, in these cases, the attacker can brute-
force all the information required to get access to the victim’s session. Our crawl
identified 1,981 (32%) sites which do not satisfy this security best practice. The715

average value of entropy among the vulnerable sites is 92 bits, with a standard
deviation of 39 bits.

The second threat we consider comes from an infamously insecure practice
used for authentication cookie generation: computing the session identifier by
applying a potentially invertible function to the password. This allows an at-720

tacker who gets access to a session identifier to recompute the password. This
is a severe threat as it enables account takeover (via the password change in-
terface) and might lead to impersonation on other services where the password
is reused. In particular, we focus on two popular yet now insecure hashing al-
gorithms: MD5 and SHA1. To identify these insecure practices, we compute725

the MD5 and SHA1 of the password we used to authenticate, and we look for
them in the session cookie values. Overall, we identified 63 sites storing a weak
hash of the password without salting inside a authentication cookie. Failure to
use salting in hashing password results in far greater risk of offline/rainbow ta-
bles brute-forcing. We experimentally confirmed that 47 (75%) of these hashes730

can be trivially inverted into the correct password by using the CrackStation13

rainbow tables free online service.

Example: DataLife Engine

We found 26 websites storing a weak MD5 hash of the password inside a
cookie called dle password, which is the authentication cookie of the DataLife735

Engine content management system. This is particularly concerning, because
all sites built on top of DataLife Engine might improperly disclose passwords.
In particular, we identified that in 15 cases the dle password cookie could be
sent in clear over HTTP: in 12 cases because the website was served over HTTP,
in 3 cases due to the lack of the Secure attribute on an HTTPS website without740

HSTS. All these authentication cookies can be disclosed by network attackers
and eventually inverted into the victim’s password.

12https://owasp.org/www-community/vulnerabilities/Insufficient_Session-ID_

Length
13https://crackstation.net/
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Site popularity ≤1K ≤10K ≤100K ≤1M

Successful logins 53 100% 430 100% 2,081 100% 6,124 100%

Session hijacking via network sniffing 9 17% 42 10% 358 17% 1,398 23%
Session hijacking via JavaScript 29 55% 192 45% 888 43% 2494 41%
Session fixation 6 11% 51 12% 312 15% 1,011 16%
Cookie brute-forcing 13 25% 100 23% 576 28% 2,044 33%

– weak session identifiers in cookies 13 25% 99 23% 564 27% 1,981 32%
– weak password hashes in cookies 0 0% 1 0% 12 1% 63 1%

Table 4: Cookie security results by site popularity

5.5. Analysis by Popularity

Table 4 reports a breakdown of our analysis results by website popularity.
The key insight here is that there is no strong correlation between security745

and popularity. In particular, the percentage of vulnerable sites in the Top 1K
bucket is only slightly lower than the percentage of vulnerable sites in the full
data set, for all the vulnerabilities we considered.

We find this remarkable, because all the considered vulnerabilities are well-
known and have easy solutions, hence we expected site operators at major com-750

panies to be aware of these problems and to be able to fix them. In retrospect,
however, we see two possible reasons why top sites exhibit more positive figures
for login security rather than for cookie security. First, understanding and en-
forcing login security is easier, since the adoption of HTTPS already fixes the
most severe vulnerabilities. Considered how much HTTPS is getting traction,755

also thanks to the efforts by browser vendors, one might argue that login inse-
curity has been naturally fixed by the evolution of the web platform over the
years. Moreover, based on our research experience, real-world web applications
are complex and developed using a number of different technologies. This means
that the session management logic is often spread through multiple authentica-760

tion cookies issued by different components and it might be hard to assess the
security of all of them.

6. Logout Security

Most websites offer users the possibility to terminate sessions by logging
out. Though the logout process sounds simple in theory, there are a couple765

of implementation subtleties which might introduce security flaws. In partic-
ular, websites should properly implement both server-side and client-side ses-
sion invalidation, as discussed in the following. Server-side session invalidation
ensures that terminated sessions are forgotten by the server, i.e., presenting
session cookies for those sessions should not enable authenticated access any-770

more. Client-side session invalidation, instead, guarantees that privacy-sensitive
session information is removed from the browser upon session termination.

22



6.1. Server-Side Session Invalidation

The desired effect of a logout is that the session is no longer valid at the
server side. If this is not handled properly, an attacker that manages to acquire775

session identifiers of incorrectly terminated sessions can still get authenticated
access to the website. Moreover, unnecessarily extended session validity make
session identifiers more vulnerable to the threat of brute-forcing.

In general, checking whether a website has proper server-side session hygiene
consists of three steps: (1) login and keep cookies, (2) logout and (3) re-visit780

the site with the previously stored cookies.
The timing between logging out and revisiting is important. In a properly

implemented session management system, server-side session cleanup should (at
the latest) coincide with the notification to the client that the session has ter-
minated. However, to account for sites sending a “session terminated” message785

in parallel with cleaning up session data in their backend servers, we check
server-side session invalidation at three different times:

1. Immediately, that is: directly upon page stabilisation14 after a logout
request was sent by the browser. This is how an ideal session management
implementation should work.790

2. After 5 minutes. This time frame accounts for possible concurrency issues
upon session termination, e.g., the logout request needs to be propagated
to multiple replicated databases storing session information.

3. After 10 days. This time frame allows us to identify websites where ses-
sions are not invalidated within any reasonable threshold and are definitely795

at risk.

In the second case, we let Shepherd evaluate every minute if a session is still
active. This evaluations stops when the session turns out to be invalid or the
five-minute mark is reached. For the final test, Shepherd re-uses the cookie jar
from the original login and repeats the login verification step 10 days later.800

Overall, we count 2,601 (82%) websites where session cookies were correctly
invalidated directly after logout. In addition, we found 97 (3%) sites that did not
invalidate authentication cookies immediately, yet did so within five minutes.
This shows that some tolerance is useful in this kind of analysis. The remaining
604 (18%) sites did not invalidate authentication cookies upon logout within805

five minutes. Of these, 471 (14%) sites also failed the third test: 10 days later,
the session was still valid at the server. This is worrisome, because, if a user’s
authentication cookies are ever captured by an attacker, the attacker might
control the user’s account.

14A page is considered as stable, when all HTTP responses are fully loaded and the DOM
has not been updated for two seconds.
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Example: Flattr810

Flattr (www.flattr.com) is micro-payment service in the Tranco Top 10K.
It enables users to make small (potentially recurring) donations to individuals
as a form of patronage. We found that Flattr’s authentication cookies were still
valid 10 days after logging out. This is unexpected, given the nature of the site
(micro-payments). Luckily, Flattr uses several protection measures that prevent815

cookie stealing, which mitigates the impact of this vulnerability.

Example: Suedkurier

Suedkurier (suedkurier.de) is a German regional newspaper with logins
(free registration). Using the authentication cookies from the successful lo-
gin resulted in a logged in state, 10 days after logging out from that session.820

Moreover, we found that Suedkurier’s session identifiers have low entropy. The
combination of low entropy and absent server-side invalidation significantly ex-
acerbates the threat of cookie brute-forcing attacks.

6.2. Client-Side Session Invalidation

Session invalidation on the client-side serves to avoid data leakage. For825

example, network attackers can use the attacks from Section 5.1 to capture
cookies left behind on the client even after session termination. This may leak
privacy-sensitive information in case this is contained inside cookies, e.g., an
email address. We also consider threats posed by next user attackers with
access to the same client of the victim, as discussed in Section 2.2.830

To evaluate proper session clean up, we search for Personally Identifiable
Information (PII) in cookies and localStorage items that remain after logging
out. In particular, we look for username, email and password in localStorage
and in cookie values – both in plain text and hashed with MD5 or SHA1. Note
that in our data set, username and passwords sometimes coincide. Thus we835

cannot always distinguish if the username or password was stored.
Our analysis identified 230 (7%) sites persisting PII in client-side storage

after logout. A breakdown of the results according to the different types of
client-side storage are shown in Table 5. Column Cnet counts cookies which
are not protected against network sniffing, hence can be accessed by both types840

of attackers we consider. Column Cloc also includes cookies which are locally
accessible to the next user attacker alone, while column L reports on localStor-
age items. The table shows that, in 186 of the 199 cases (94%), PII is stored in
cookies without protection against a network attacker. Similarly worrying, some
sites store passwords in cookies, and do not remove these after a logout. We845

manually verified cases with passwords, and found that insecurity was typically
obvious from the cookie name (e.g., PASSWORD or passwd[207860]). Finally, we
also observe that when PII is stored, its value is rarely obscured by means of
hashing.

We compare these numbers with PII stored during the login phase. We850

encountered 756 sites with PII in cookies, which were properly removed upon
logout in 557 (74%) cases. We also checked use of localStorage: out of 199 sites
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Cnet Cloc L

Username
– regular username 105 109 14
– email address 13 14 16
Password 2 2 0
credential? 58 64 17
MD5 username
– regular username 2 2 0
– email 2 2 3
MD5 password 0 0 0
MD5 credential? 6 7 0

Cnet : Cookies accessible by network attacker
Cloc : Cookies accessible by next user attacker
L: localStorage
? cases where username = password

Table 5: PII left at client-side after logout.

storing PII in localStorage, 151 (76%) sites properly cleaned up localStorage
upon logout.

Example: Drop APK855

Our study revealed a file hoster within the Tranco Top 20K, Drop APK
(dropapk.com), that keeps track of the username in a user’s cookie jar. This
cookie is not removed after logging out. For Drop APK, knowledge of the user-
name suffices to list all public files of a user (https://dropapk.to/users/{username}).
A next user attacker can exploit this to identify a previous user’s username on860

DropAPK and browse through the public files the user stored on the service.

6.3. Analysis by Popularity

Table 6 reports a breakdown of our analysis results by website popularity.
Though the number of sites where we performed our evaluation is relatively
small, particularly in the Top 1K bucket, we do not observe any significant865

correlation between security and popularity. We identified sites incorrectly im-
plementing server-side session termination in all popularity buckets, roughly
with the same percentages. Similarly, errors in client-side session invalidation
are also fairly constant with respect to popularity (ignoring the limited data for
≤1K).870

Interestingly, in all popularity buckets, the next user attacker is only slightly
more powerful than the network attacker. This confirms that even top sites
often overlook the adoption of cookie protection mechanisms, even for privacy-
sensitive cookies. This is concerning, because we expected operators of top sites
to be more familiar with the semantics of cookies and their insecure default875

configuration.
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≤1K ≤10K ≤100K ≤1M

Logged out 15 100% 169 100% 975 100% 3,302 100%

Server-side invalidation: 13 87% 137 81% 819 84% 2,833 86%
– immediately 11 73% 116 69% 734 75% 2,601 79%
– within 5 minutes 1 7% 7 4% 37 4% 97 3%
– 5 minutes – 10 days 1 8% 14 8% 48 6% 135 4%
– unknown, > 10 days 2 13% 32 19% 156 16% 469 14%

Client-side left PII behind in: 3 20% 14 8% 78 8% 230 7%
– localStorage 1 7% 6 4% 26 3% 48 2%
– Cookiesloc 2 13% 8 5% 60 6% 199 6%
– Cookiesnet 2 13% 8 5% 56 6% 186 6%

Table 6: Session invalidation results by site popularity

7. Perspective

Our approach successfully logged in on 6,124 sites and logged out from 3,302
sites. What we found was quite concerning, at all levels of the session manage-
ment logic. As to the login phase, we observed insecure connections for sending880

the login form (15%) or receiving it (12%), passwords leaked to third parties
due to being submitted via GET instead of POST (4 sites), widespread (87%)
allowance of weak passwords. After login, we identified authentication cookies
vulnerable to session hijacking (23%) or accessible via Javascript (41%), session
fixation vulnerabilities (16%), weak session identifiers (32%) and invertible pass-885

word hashes stored in cookies (47 sites). Finally, after logout, we found sessions
still not invalidated even after 10 days (8%), and failures to purge PII-containing
session data from local session storage (8%).

Despite the bias coming from the analysis of sites for which valid access cre-
dentials can be found in a public database like BugMeNot, our results paint a890

troubling picture of the current state of the Web, because most of sites we ana-
lyzed are unquestionably popular services ranking in the Tranco Top 100k [10].
Although all the vulnerabilities we identified are relatively well known to web
security experts, they are not necessarily easy to deal with and we recommend
actions at many different layers to improve on the current state of affairs.895

The first observation we make is that the login process is arguably the easiest
part to secure of the session management logic. Security-savvy web users can
largely mitigate the dangers coming from insecure login pages. In particular,
users can leverage password managers to generate strong passwords even for sites
which accept weak passwords, and they can install popular browser extensions900

like HTTPS Everywhere15 to force the adoption of HTTPS even on sites which
do not deploy HSTS. We observe that browser vendors can play a major role to
improve login security and they are already taking actions in this direction. For
example, the most recent versions of Google Chrome warn users when passwords

15https://www.eff.org/https-everywhere
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are communicated in clear over HTTP and most modern browsers already ship905

an integrated password manager. We think and hope that by further pushing
these actions it will be possible to rule out insecure logins from the Web within
a reasonable time frame.

Unfortunately, despite their apparent simplicity, web session security issues
occurring after login are much harder to fix. There are several reasons for this.910

First, cookies are opaque to both web users and browser vendors, so detecting
authentication cookies to analyze (and automatically improve) their security
guarantees requires custom heuristics [21]. In particular, the most effective
heuristics operate online (via testing) and are not straightforward to imple-
ment in commercial browsers without sacrificing performance or compatibility915

with existing web applications. In principle, one could try to experiment with
safe defaults, e.g., automatically promote all cookies to Secure, however such
forms of client-side protection can break existing websites [8]. In the end, we
believe that secure session management crucially relies on the intervention of
site operators, i.e., browser vendors and web users are limited in their range of920

actions. Automated security scanners like our extension of Shepherd are thus
an important tool to improve the current state of web session security.

8. Related Work

Web session security is a wide research area, whose key contributions were
summarized in a relatively recent survey [1]. Here, we discuss selected prior925

work which is most closely related to ours, and we describe trends based on
previously conducted session security evaluations.

8.1. Comparison with closely related work

Only two previous studies assessed web session security after logging in with
an (semi-)automated approach: a first study by Mundada et al [6], and a sec-930

ond study by Drakonakis et al. [9]. Table 7 compares the aspects investigated
by these studies and ours. The study by Mundada et al. [6] uses a manual
login approach; users carry out the login process, while the security assessment
is automated. Due to the manual login process, their corpus is much smaller
than either Drakonakis et al.’s work, or ours: only 149 sites have been analyzed.935

Drakonakis et al.’s study relies on account creation and logging in with SSO.
This approach to automatically logging in has a low success rate. They com-
pensate for the low success rate by attempting logins on the largest number of
sites of all three studies, i.e., around 1.6M sites.

With respect to security analyses, there are several noteworthy differences940

between these studies. The overlap between the security assessment of Drakon-
akis et al. and our work concerns session hijacking via network sniffing and
protection against JavaScript cookie stealing. Though there is some overlap be-
tween Mundada et al.’s work and our security analysis in terms of threats, there
are significant differences with our work. Their work primarily focuses upon945
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[6] [9] this work

Logging in stats
– login manual automated automated
– # of sites approached 149 1.6M 53.6K
– # of successful logins 149 25.2K 6.1K

Login security
– password theft – – X
– password brute-forcing – – X

Post-login security
– session hijacking via network sniffing X X X
– session hijacking via JavaScript X X X
– session fixation – – X
– cookie brute-forcing X – X

Logout security
– server-sided session invalidation X – X
– session data clean-up X – X

Privacy
– personal data leakage – X –

Table 7: Comparison of post-login studies investigating aspects of session security in detail.

automated detection of session cookies, rather than measuring web session se-
curity at scale (they only focus on 149 sites, due to limited login automation).
As such, they do not evaluate login security and session fixation.

Other studies focused on specific web session security problems. For exam-
ple, session hijacking has been studied against different threat models, includ-950

ing web attackers [24], network attackers [5] and both [8]. Session fixation also
got some attention by the research community, particularly with the design of
possible defense mechanisms [25, 26]. In more recent work, Calzavara et al.
proposed black-box testing strategies to identify security flaws in web sessions,
including session hijacking and session fixation [7]. However, the experimental955

analyses in all these papers are either small-scale (in the order of tens of sites)
or based on data collected without logging in, which limits the analysis surface
and requires one to come up with unreliable heuristics for authentication cookie
detection [21].

The only research study on login security on the Web is due to Van Acker et960

al. [15]. They also discuss bad practices which enable exploitation by network
attackers, e.g., login pages served over HTTP or sending the password in clear.
However, their analysis methodology is different from ours, since they collect
login forms by inspecting the HTML rather than by dynamically monitoring
form submissions, which is generally more precise. For example, dynamic mon-965

itoring naturally covers the case of form submission via JavaScript, which was
not handled in [15].

Compared to the security of login pages, more attention was given to the
creation of passwords which are resilient to brute-forcing attacks [27, 28, 29, 30].

In our work, we base our analysis on standard recommendations from CNIL,970

which appear to be widespread based on anecdotal evidence. For example, the
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year #sites logs in Cookie attributes Invalidation

HttpOnly Secure HSTS Server Client

2010, [31] 50 X 48% – – – –
2011, [24] 419K – 22% – – – –
2012, [32] 64 X – 48% – 69% –
2015, [2] 1.1M – – – 1% – –
2015, [8]1

– 2014, from [20] 70 X 63% 8% – – –
– 2015 #1 1K – 28% 5% – – –
– 2015 #2 ≤100 X 38% 20% – – –
2016, [5] 26 X 62% – – – 47%
2016, [6] 149 X 68% 57% 257% 50% 91%
2016, [33] 22K – – – 11% – –
2019, [9] 25K X 77% 57% 258% – –
2020, this work 6K X 59% 159% 1,263% 79% 93%

1: Numbers are reported in cookies and not sites

2: Numbers apply only to sites without protection of the Secure cookie attribute

Table 8: Trends in adoption of security measures (in % of sites).

popular LastPass16 password manager generates passwords which follow the
CNIL password strength requirements in its default configuration.

8.2. Trends in adoption of security measures

In the last decade, several studies have presented data on the current state975

of selected aspects of session security. Approach, measurements taken, and
interpretation all vary significantly between these studies. Nevertheless, there
is some overlap in the underlying security measures they sampled. This allows
us to determine adoption trends in the last decade. Table 8 lists findings from
earlier studies. In general, we find that adoption rates for these simple server-980

side security measures are slowly increasing, though still far from ubiquitous.
We discuss trends for specific measures below.

Adoption of the HttpOnly cookie attribute. Data on the adoption of the HttpOnly
cookie attribute has been reported in [5, 6, 9, 31, 24]. Since the reported num-
bers vary with each study’s data set, these should be considered as a rough985

indicator for adoption. Reports before 2016 point to a low adoption rate be-
tween 22% and 63% at most. In comparison, later studies indicate an increase
to a rate between 59% and 77% in a best-case scenario.

Adoption of the Secure cookie attribute. Multiple reports [8, 32, 6, 9] provide
data on the adoption of the Secure cookie attribute. As these reports differ how990

they report results (e.g. for partial or all cookies, for the entire site), they are not
directly comparable. Nevertheless, the overall trend is clearly upwards, from a
low of 5% in 2015 [8] to a vastly improved – but still disconcertingly low – 59% in

16https://www.lastpass.com
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this work. Do note that we find susceptibility to session hijacking significantly
lower at 23%. This is due to websites that deploy the Secure cookie attribute995

to some (but not all) authentication cookies and due to the deployment of other
security measures, such as HSTS.

Adoption of HTTP Strict Transport Security. Previous reports on the adoption
of HSTS show an overall small adoption: 1% of sites found by Kranch and Bon-
neau [2] in 2015 and 11% by Sivakorn et al. [33] in 2016. Thankfully, adoption1000

rates have picked up in recent years, culminating in a 63% adoption rate to date.
Nevertheless, all studies that investigated HSTS consistently find that lack of a
Secure cookie attribute is only rarely mitigated by HSTS.

Server-side session invalidation. To the best of our knowledge, there are only
two prior studies providing data on session invalidation, the study by Bursztein1005

et al. [32] and the study by Mundada et al. [6]. Both studies have limited a sam-
ple size: 64 sites and 149 sites, respectively. As such, we cannot extrapolate from
these studies, but we do note that a lack of server-side invalidation frequently oc-
curred in either study. Our results suggests that the trend is improving, though
we still find every fifth site failing to properly invalidate authentication cookies1010

on the server-side following logout.

Session data clean up after logging out. Sivakorn et al. [5] conducted an in-depth
study for privacy leakage on a small number of websites. As such, they evaluated
if various privacy leaks even occur after logging out. They found that 47% of the
assessed sites delete cookies holding PII. Mundada et al. [6] also performed tests1015

for client-side cleanups. In contrast, they looked for authentication cookies that
remain on the client-side after logging out. In their study, 91% of sites removed
such cookies. Our study shows that this issue has further decreased.

9. Conclusions

We set out to investigate the current state of web session security in the wild,1020

by performing a comprehensive session security analysis based on post-login
data collected at a large scale. We used the Shepherd framework for post-login
studies to automate logins, and extended it to handle logouts and capture traffic
for further analysis. We acquired the needed credentials from a crowd-sourced
repository (BugMeNot). We analysed security of the login process, security of1025

the session (and its cookies), and security of the logout process. This includes
an analysis of password strength of accepted passwords in practice, and the first
(to the best of our knowledge) large-scale analysis of session invalidation.

As future work, we plan to further improve the automation of the logout
process based on the data collected in the present study. We also want to further1030

extend the scale of our analysis by integrating support for SSO, which would
allows us to collect information from sites which are not included in BugMeNot.
Finally, we would like to investigate how to extend our security analysis to
other attackers, e.g., web attackers, without biasing the results of our results
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towards overly conservative assumptions, e.g., that all web applications might1035

suffer from XSS or other script injections.
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W. Joosen, Tranco: A research-oriented top sites ranking hardened against
manipulation, in: Proc. 26th Annual Network and Distributed System Se-1075

curity Symposium (NDSS’19), The Internet Society, 2019. doi:10.14722/
ndss.2019.23386.

[11] D. Kristol, L. Montulli, RFC 2965: HTTP state management mechanism,
https://www.ietf.org/rfc/rfc2965.txt, 2000.

[12] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, D. Song, Towards a1080

formal foundation of web security, in: Proc. 23rd IEEE Computer Security
Foundations Symposium (CSF’10), IEEE Computer Society, 2010, pp. 290–
304. doi:10.1109/CSF.2010.27.

[13] P. Chen, N. Nikiforakis, C. Huygens, L. Desmet, A dangerous mix: Large-
scale analysis of mixed-content websites, in: ISC, volume 7807 of Lecture1085

Notes in Computer Science, Springer, 2013, pp. 354–363. doi:10.1007/
978-3-319-27659-5_25.

[14] X. Zheng, J. Jiang, J. Liang, H.-X. Duan, S. Chen, T. Wan, N. Weaver,
Cookies lack integrity: Real-world implications., in: Proc. 24th
USENIX Security Symposium (USENIX Security’15), USENIX Associ-1090

ation, 2015, pp. 707–721. URL: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/zheng.

[15] S. van Acker, D. Hausknecht, A. Sabelfeld, Measuring login webpage se-
curity, in: Proc. 32nd ACM SIGAPP Symposium On Applied Computing
(SAC’17), ACM, 2017, pp. 1753–1760. doi:10.1145/3019612.3019798.1095

[16] S. Calzavara, R. Focardi, M. Nemec, A. Rabitti, M. Squarcina, Postcards
from the post-HTTP world: Amplification of HTTPS vulnerabilities in
the web ecosystem, in: Proc. 40th IEEE Symposium on Security and
Privacy (SP’19), IEEE Computer Society, 2019, pp. 281–298. doi:10.1109/
SP.2019.00053.1100

[17] M. Steffens, C. Rossow, M. Johns, B. Stock, Don’t trust the locals: Inves-
tigating the prevalence of persistent client-side cross-site scripting in the
wild, in: NDSS, The Internet Society, 2019. doi:https://dx.doi.org/10.
14722/ndss.2019.23009.

[18] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, J. Polakis, O1105

single sign-off, where art thou? an empirical analysis of single sign-on
account hijacking and session management on the web, in: Proc. 27th
USENIX Security Symposium (USENIX Security’18), USENIX Associa-
tion, 2018, pp. 1475–1492. URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/ghasemisharif.1110

[19] Y. Zhou, D. Evans, SSOScan: Automated testing of web applica-
tions for single sign-on vulnerabilities, in: Proc. 23rd USENIX Secu-
rity Symposium (USENIX Security’14), USENIX Association, 2014, pp.

32

http://dx.doi.org/10.14722/ndss.2019.23386
http://dx.doi.org/10.14722/ndss.2019.23386
http://dx.doi.org/10.14722/ndss.2019.23386
https://www.ietf.org/rfc/rfc2965.txt
http://dx.doi.org/10.1109/CSF.2010.27
http://dx.doi.org/10.1007/978-3-319-27659-5_25
http://dx.doi.org/10.1007/978-3-319-27659-5_25
http://dx.doi.org/10.1007/978-3-319-27659-5_25
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/zheng
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/zheng
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/zheng
http://dx.doi.org/10.1145/3019612.3019798
http://dx.doi.org/10.1109/SP.2019.00053
http://dx.doi.org/10.1109/SP.2019.00053
http://dx.doi.org/10.1109/SP.2019.00053
http://dx.doi.org/https://dx.doi.org/10.14722/ndss.2019.23009
http://dx.doi.org/https://dx.doi.org/10.14722/ndss.2019.23009
http://dx.doi.org/https://dx.doi.org/10.14722/ndss.2019.23009
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif


495–510. URL: https://www.usenix.org/system/files/conference/

usenixsecurity14/sec14-paper-zhou.pdf.1115

[20] S. Calzavara, G. Tolomei, M. Bugliesi, S. Orlando, Quite a mess in my
cookie jar! leveraging machine learning to protect web authentication,
in: Proc. 23rd International Conference on World Wide Web (WWW’14),
ACM, 2014, pp. 189–200. doi:10.1145/2566486.2568047.

[21] S. Calzavara, G. Tolomei, A. Casini, M. Bugliesi, S. Orlando, A supervised1120

learning approach to protect client authentication on the web, ACM Trans-
actions on the Web (TWEB) 9 (2015) 15:1–15:30. doi:10.1145/2754933.

[22] Symantec, Webpulse site review request, https://sitereview.norton.

com/#/, 2021.

[23] OWASP, OWASP top ten – 2017: The ten most critical web application1125

security risks, 2017. URL: https://owasp.org/www-project-top-ten/

2017/.

[24] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, W. Joosen, SessionShield:
Lightweight protection against session hijacking, in: Proc. 3rd Symposium
on Engineering Secure Software and Systems (ESSoS’11), volume 6542 of1130

LNCS, Springer, 2011, pp. 87–100. doi:10.1007/978-3-642-19125-1\_7.

[25] M. Johns, B. Braun, M. Schrank, J. Posegga, Reliable protection against
session fixation attacks, in: Proc. 26th ACM Symposium on Applied
Computing (SAC’16), ACM, 2011, pp. 1531–1537. doi:10.1145/1982185.
1982511.1135

[26] P. de Ryck, N. Nikiforakis, L. Desmet, F. Piessens, W. Joosen, Serene:
self-reliant client-side protection against session fixation, in: Proc. IFIP
International Conference on Distributed Applications and Interoperable
Systems, volume 7272 of LNCS, Springer, 2012, pp. 59–72. doi:10.1007/
978-3-642-30823-9\_5.1140

[27] S. Houshmand, S. Aggarwal, Building better passwords using probabilis-
tic techniques, in: Proc. 28th Annual Computer Security Applications
Conference (ACSAC’12), ACM, 2012, pp. 109–118. doi:10.1145/2420950.
2420966.

[28] R. Shay, L. Bauer, N. Christin, L. F. Cranor, A. Forget, S. Komanduri,1145

M. L. Mazurek, W. Melicher, S. M. Segreti, B. Ur, A spoonful of sugar?:
The impact of guidance and feedback on password-creation behavior, in:
Proc. 33rd ACM Conference on Human Factors in Computing Systems
(CHI’15), ACM, 2015, pp. 2903–2912. doi:10.1145/2702123.2702586.

[29] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek, S. M.1150

Segreti, B. Ur, L. Bauer, N. Christin, L. F. Cranor, Designing password
policies for strength and usability, ACM Trans. Inf. Syst. Secur. 18 (2016)
13:1–13:34. doi:10.1145/2891411.

33

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-zhou.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-zhou.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-zhou.pdf
http://dx.doi.org/10.1145/2566486.2568047
http://dx.doi.org/10.1145/2754933
https://sitereview.norton.com/#/
https://sitereview.norton.com/#/
https://sitereview.norton.com/#/
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-project-top-ten/2017/
http://dx.doi.org/10.1007/978-3-642-19125-1_7
http://dx.doi.org/10.1145/1982185.1982511
http://dx.doi.org/10.1145/1982185.1982511
http://dx.doi.org/10.1145/1982185.1982511
http://dx.doi.org/10.1007/978-3-642-30823-9_5
http://dx.doi.org/10.1007/978-3-642-30823-9_5
http://dx.doi.org/10.1007/978-3-642-30823-9_5
http://dx.doi.org/10.1145/2420950.2420966
http://dx.doi.org/10.1145/2420950.2420966
http://dx.doi.org/10.1145/2420950.2420966
http://dx.doi.org/10.1145/2702123.2702586
http://dx.doi.org/10.1145/2891411


[30] Y. Shin, S. S. Woo, What is in your password? analyzing memorable
and secure passwords using a tensor decomposition, in: Proc. 28th The1155

Web Conference (WWW’19), ACM, 2019, pp. 3230–3236. doi:10.1145/
3308558.3313690.

[31] Y. Zhou, D. Evans, Why aren’t http-only cookies more widely deployed,
Proceedings of 4th Web 2.0 Security and Privacy Workshop 2 (2010).
https://www.cs.virginia.edu/~evans/pubs/w2sp2010/.1160

[32] E. Bursztein, C. Soman, D. Boneh, J. C. Mitchell, Sessionjuggler:
secure web login from an untrusted terminal using session hijacking,
in: WWW, ACM, 2012, pp. 321–330. doi:https://dl.acm.org/doi/10.
1145/2187836.2187880.

[33] S. Sivakorn, A. D. Keromytis, J. Polakis, That’s the way the cookie crum-1165

bles: Evaluating HTTPS enforcing mechanisms, in: WPES@CCS, ACM,
2016, pp. 71–81. doi:https://doi.org/10.1145/2994620.2994638.

34

http://dx.doi.org/10.1145/3308558.3313690
http://dx.doi.org/10.1145/3308558.3313690
http://dx.doi.org/10.1145/3308558.3313690
https://www.cs.virginia.edu/~evans/pubs/w2sp2010/
http://dx.doi.org/https://dl.acm.org/doi/10.1145/2187836.2187880
http://dx.doi.org/https://dl.acm.org/doi/10.1145/2187836.2187880
http://dx.doi.org/https://dl.acm.org/doi/10.1145/2187836.2187880
http://dx.doi.org/https://doi.org/10.1145/2994620.2994638

	Introduction
	Background
	Web Sessions
	Threat Model
	Web Defenses
	Cookie Attributes and Prefixes
	HTTP Strict Transport Security (HSTS)


	Data Collection
	Access Credentials
	Data Collection Tool
	Extending Shepherd
	Logout Automation
	Capturing Network Traffic

	Data Collection Process
	Data Acquisition
	Significance and Potential Bias
	Failures in Logging Out


	Login Security
	Password Theft
	Password Brute-Forcing
	Analysis by Popularity

	Post-Login Security
	Session Hijacking via Network Sniffing
	Protecting Session Cookies from JavaScript Cookie Stealing
	Session Fixation
	Cookie Brute-Forcing
	Analysis by Popularity

	Logout Security
	Server-Side Session Invalidation
	Client-Side Session Invalidation
	Analysis by Popularity

	Perspective
	Related Work
	Comparison with closely related work
	Trends in adoption of security measures

	Conclusions

