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ABSTRACT
Content Security Policy (CSP) is an emerging W3C stan-
dard introduced to mitigate the impact of content injection
vulnerabilities on websites. We perform a systematic, large-
scale analysis of four key aspects that impact on the ef-
fectiveness of CSP: browser support, website adoption, cor-
rect configuration and constant maintenance. While browser
support is largely satisfactory, with the exception of few no-
table issues, our analysis unveils several shortcomings rela-
tive to the other three aspects. CSP appears to have a rather
limited deployment as yet and, more crucially, existing poli-
cies exhibit a number of weaknesses and misconfiguration
errors. Moreover, content security policies are not regularly
updated to ban insecure practices and remove unintended
security violations. We argue that many of these problems
can be fixed by better exploiting the monitoring facilities of
CSP, while other issues deserve additional research, being
more rooted into the CSP design.
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•Security and privacy → Browser security;
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1. INTRODUCTION
The same-origin policy (SOP) is the baseline defence im-

plemented in web browsers to provide confidentiality and
integrity guarantees for contents provided by unrelated web-
sites. Under the SOP, data from https://www.mybank.com

is only accessible to scripts from https://www.mybank.com

and shielded from read or write attempts by scripts from
other web origins. Though apparently secure, it is well-
known that the SOP can be bypassed by content injection
attacks. In these attacks, attacker-controlled contents are
injected in benign web pages and become indistinguishable
from legitimate contents, thus inheriting their privileges.
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The most effective way to defend against content injection
is sanitization of inputs, preventing dangerous contents like
(unintended) script tags from entering benign web pages.
Unfortunately, sanitization is often difficult to get right and
content injections are still pervasive on the Web [6]. This
motivated the development of complementary in-depth de-
fence mechanisms aimed at mitigating the effects of a suc-
cessful content injection [14, 18, 19, 23, 11]. Among these,
Content Security Policy (CSP) is by far the most popu-
lar and well-established solution, being standardized by the
W3C and supported by all major web browsers [23, 3].

CSP is a language for defining restrictions on the func-
tionality of web pages, ideally to limit their capabilities to
the least set of privileges they need to work correctly. Most
notably, CSP mitigates the dangers of a successful content
injection by disallowing the execution of inline scripts and by
banning a few dangerous functions used for turning strings
into code, like the infamous eval. Moreover, CSP allows the
specification of constraints on content inclusion based on a
white-listing mechanism, whereby different content types,
like images or scripts, are bound to the sole set of origins
which are allowed to supply those contents. This way, in-
jected markup elements can only be abused to load contents
from white-listed web origins.

CSP is a client-server defence mechanism: policies are
specified by web developers using HTTP(S) headers or meta
elements in HTML pages, while they are enforced at the
browser side.

1.1 Research Goals
Our main goal in the present paper is to assess the state

of the art in the use and effectiveness of CSP as a security
mechanism for websites against content injection attacks.
We start our analysis by measuring the extent to which CSP
is supported by modern browsers and adopted by websites.
We then analyse two further aspects that provide insight on
how web developers use the mechanisms provided by CSP.
Specifically, we look at configuration correctness and main-
tenance. Indeed, the effectiveness of CSP crucially depends
on the ability of web developers to configure it so as to make
websites resistant to attacks, while at the same time preser-
ving their full functionality. Similarly, modern websites are
highly dynamic and constantly evolving, hence CSP secu-
rity is crucially dependent on the ability of web developers
to keep their policies up-to-date.

1.2 Contributions and Roadmap
We briefly anticipate the techniques used in our analysis

and the main findings and results:



1. browser support : we design a set of experiments to test
the browser implementations of the CSP specification.
We run the experiments in all major web browsers,
including their mobile variants. We report on the out-
come of the experiments, highlighting the cases where
at least one web browser does not behave as expected
and discussing their security import. Our investigation
reveals a dangerous behaviour of Microsoft Edge and
a subtle quirk in all browser implementations, which
deserves a careful security analysis (Section 3);

2. website adoption: we collect the CSP headers from
the Alexa Top 1M websites [1] and we analyse them to
shed light on the current state of the CSP deployment,
which turns out to be quite limited. We also investi-
gate which features of CSP are popular among web
developers and which ones are largely unused, identi-
fying many common bad practices (Section 4);

3. correct configuration: we identify three common classes
of errors made by web developers when writing content
security policies. We provide representative examples
of errors and we discuss their security and usability
import (Section 5). We then perform a systematic se-
curity analysis of existing content security policies. In
particular, we identify sufficient conditions on policies
which allow an attacker exploiting a content injection
to run arbitrary malicious code in CSP-protected web
pages. Based on this, we show that the very large
majority of the websites we surveyed (92.4%) deploy
content security policies which do not provide robust
defences against code injection (Section 6);

4. constant maintenance: we repeat the crawling of the
Alexa Top 1M for 14 weeks, automatically collecting
both CSP headers and violations to the policies con-
tained therein. We identify websites committing to
CSP or abdicating from it during this timespan and
we analyse how existing policies changed during the 14
weeks, discussing good and bad practices observed in
the wild. Finally, we investigate correlations between
changes to enforced policies and policy violations, con-
cluding that content security policies change less fre-
quently than needed (Section 7).

We present our perspective on the main findings in the pa-
per in Section 8. Our take is that many of the problems
we found can be fixed by better exploiting the monitoring
facilities of CSP, while other issues deserve more research,
being more rooted into the CSP design. Before this study,
two research papers about the state of the CSP deployment
have been published [28, 21]: we refer to the related work
section (Section 9) for an in-depth comparison with them.

2. CONTENT SECURITY POLICY

2.1 Overview
A content security policy is a list of directives, restricting

content inclusion for web pages by means of a white-listing
mechanism. Directives bind content types to lists of sources
from which a CSP-protected web page is allowed to include
resources of that specific type. For instance, the directive
img-src https://a.com enforces that a web page can only

load images from the host a.com via the HTTPS proto-
col. Content security policies are specified inside HTTP(S)
headers or using meta elements in the body of an HTML
page. Policy enforcement is performed by CSP-enabled web
browsers on a per-page basis: different pages of the same
website may specify different content security policies.

Table 1 reports selected directive types available in CSP:
if a content security policy does not include a directive for a
given content type, the default-src directive applies to it.

Table 1: Selected CSP Directives
Directive Restricted Contents

img-src Images
script-src JavaScript, XSLT
style-src Stylesheets (CSS)
connect-src Targets of XMLHttpRequest
default-src Contents w/o explicit directives

Allowed sources for content inclusion are specified using
source expressions, a sort of regular expressions used to ex-
press sets of web origins in a compact way. Content inclu-
sion from a URL is only allowed if the URL matches any of
the source expressions specified for the appropriate content
type. The relevant details of the matching algorithm will be
introduced throughout the paper whenever needed.

The semantics of a content security policy can be summa-
rized as follows:

1. the execution of inline scripts is blocked, unless the
source expression ’unsafe-inline’ is included in the
script-src directive (or in the default-src directive
in absence of script-src);

2. the application of inline styles is blocked, unless the
source expression ’unsafe-inline’ is included in the
style-src directive (or in the default-src directive
in absence of style-src);

3. the conversion of strings into code via eval and simi-
lar functions is blocked, unless the source expression
’unsafe-eval’ is in the script-src directive (or in
the default-src directive in absence of script-src);

4. some dangerous methods of the CSS Object Model like
insertRule are blocked, unless the source expression
’unsafe-eval’ is in the style-src directive (or in the
default-src directive in absence of style-src);

5. the inclusion of a content of type t from a URL u is
only allowed if one of these conditions holds:

(a) u matches a source expression in t-src;

(b) there is no t-src directive and u matches a source
expression in default-src;

(c) there is neither t-src nor default-src.

If more than one content security policy is deployed on the
same web page, each policy must be individually enforced
following the rules above.



2.2 CSP Level 2
The core of CSP is a fine-grained mechanism for white-

listing content inclusion, but other features have been re-
cently added to the original standard CSP 1.0 [2], leading
to CSP Level 2 [3]. One of the major changes in the new
standard with respect to CSP 1.0 is the introduction of a
mechanism to relax the above restrictions on inline scripts
and stylesheets, without falling back to the dramatic ab-
sence of security guarantees provided by ’unsafe-inline’.
Specifically, it is now possible to white-list individual inline
scripts and styles by using nonces or hashes. The ’nonce-

$value’ source expression white-lists inline scripts or styles
with a nonce attribute equal to $value, while the ’shaXXX-

$value’ source expression white-lists inline scripts or styles
whose hash (computed using shaXXX) is $value.

CSP Level 2 also introduced a few new directives. Among
them, we mention here the frame-ancestors directive, used
to control whether browsers should be allowed to embed a
CSP-protected web page inside other documents (e.g., by
means of iframes). The directive is meant to supplant the
existing X-Frame-Options HTTP response header used for
frame busting [22].

2.3 Enforcing and Reporting
Content security policies can be run in two modes. The

enforcement mode applies all the content restrictions speci-
fied by the policy, while the report-only mode does not re-
strict the website functionality, but it just tells browsers
to log policy violations in the JavaScript console. In both
modes, the report-uri directive can be used to specify a
URI where browsers should send JSON-based reports when
a policy violation occurs.

3. TESTING BROWSER SUPPORT
We devised a number of experiments to test the implemen-

tation of the CSP specification [3] in major web browsers.
Our goal was finding both subtle corner cases of the specifi-
cation which deserve clarification and plain deviations with
respect to expected browser behaviours.

3.1 Methodology
We created a small set of HTML pages sending content se-

curity policies in enforcement mode, designing them so that
the browser behaviour upon policy enforcement is made ex-
plicit by visual clues. We make these pages available online,
along with a brief explanation of each of them1. We do not
claim that our investigation tested all the corner cases of the
specification, but we are confident about the effectiveness of
our test suite in providing a good coverage of the most re-
levant aspects of CSP which are commonly used, as well as
of the CSP semantics.

We visited the web pages with different browsers: Mozilla
Firefox 46, Chromium 50, Opera 36, Safari 9.1 and Microsoft
Edge 25.10586.0.0, as well as their mobile variants. Notice
that Safari and Microsoft Edge do not yet implement CSP
Level 2, but only CSP 1.0. Features specific to CSP Level 2
have not been tested on those browsers.

3.2 Results
We first present a set of tests passed by all major browsers

and then, separately, a few cases where at least one browser

1http://www.dais.unive.it/˜csp

behaves unexpectedly. We comment on the security import
of these inaccurate implementations. All our findings have
been disclosed to browser vendors via bug reports.

3.2.1 Passed Tests
All the browsers successfully passed the following tests:

1. Composition of multiple directives: The syntax of CSP
allows the inclusion of multiple directives for the same
content type (e.g., script-src) in the same header.
The expected behaviour in this case is that only the
first directive is enforced, while the other ones are ig-
nored ([3], Section 4.1.1);

2. Default scheme assignment : The syntax of source ex-
pressions includes host source expressions of the form
a.com. In these cases lacking an explicit scheme, the
CSP specification mandates a default scheme assign-
ment based on the scheme of the page deploying the
policy: a.com must be interpreted as https://a.com

in HTTPS pages, while it must interpreted as both
http://a.com and https://a.com in HTTP pages ([3],
Section 4.2.2);

3. Wildcard : In CSP Level 2, the * source expression is
a wildcard matching any URL whose scheme is not
blob, data or filesystem ([3], Section 4.2.2). These
schemes are considered dangerous, since the content
of URLs with these schemes is often derived from a
response body and may be under the control of an
attacker. Notice that in CSP 1.0 the wildcard simply
matches any URL ([2], Section 3.2.2.2);

4. Ambiguities on inline scripts: The script-src direc-
tive may include both ’unsafe-inline’ and nonces or
hashes white-listing individual inline scripts. In this
case, the CSP specification mandates that only inline
scripts white-listed using nonces or hashes are allowed
to run ([3], Section 7.15). Nonces and hashes are not
available in CSP 1.0.

3.2.2 Enforcing Multiple Policies
Multiple content security policies can be specified for the

same web page in different headers. The CSP specifica-
tion recommends that, if multiple policies are present on
the same page, each of them must be enforced individu-
ally ([3], Section 3.5). Our experiments assessed that all
browsers behave according to the specification, but for Mi-
crosoft Edge, which merges policies included in different
headers using a custom algorithm. For each content type,
the algorithm selects the first directive encountered in the
policies to be merged, and drops subsequent directives of the
same type found in other headers. For instance, if the first
header includes the directive script-src a.com b.com and
the second header includes the directive script-src a.com

c.com, the protected page can load scripts from both a.com

and b.com, though only a.com should be a valid source for
script inclusion based on the CSP specification.

Though the presence of multiple headers with different
directives for the same content type may sound strange at
first, this situation may happen in presence of security gate-
ways and web application firewalls run by large organiza-
tions [3]. In these cases, the behaviour of Microsoft Edge is
more liberal than the specification and may lead to attacks
on CSP-protected websites.



3.2.3 Blocking Inline Elements
A central design choice of CSP is that inline scripts are

disabled unless otherwise specified [23], for instance by using
’unsafe-inline’. However, we observed in all the tested
browsers a weird, unexpected difference in the treatment of
inline scripts between the following two policies:

1. img-src www.example.com;

2. img-src www.example.com; default-src *.

Our experiments revealed that the first policy allows the
execution of inline scripts, but the second one does not, de-
spite the fact that the default sources for script inclusion
should be set to the wildcard * in both cases [3]. This mis-
match is hard to explain, confusing for web developers and
not compliant with the CSP specification.

Fortunately, despite our initial concerns, the security im-
port of this unexpected behaviour looks minor. Indeed, nei-
ther of the two policies puts any restriction on the set of
URLs white-listed for script inclusion. This means that an
attacker does not really need to inject an inline script to at-
tack a website deploying any of the two policies above, which
are equally vulnerable in practice: indeed, under both poli-
cies, arbitrary script injection could be performed by first
hosting a malicious script on an attacker-controlled website
and then injecting a script tag loading the script in the tar-
get web page.

3.2.4 Scheme Relaxation
The ’self’ source expression identifies the origin of the

web page deploying a content security policy. Since web ori-
gins are defined as triples including a scheme, a hostname
and a port number [8], a directive like img-src ’self’ en-
forced at http://a.com should only allow the inclusion of
images from a.com over HTTP. We noticed that only Mi-
crosoft Edge and Safari strictly follow the CSP specification
when interpreting ’self’. Mozilla Firefox and Chromium
are instead more liberal, since the previous directive actu-
ally allows the inclusion of images from a.com over both
HTTP and HTTPS. We observed that Mozilla Firefox and
Chromium implement this scheme relaxation also in other
cases, i.e., any origin with an HTTP scheme in a directive
also allows the inclusion of contents served over HTTPS from
the same domain.

Though it is not mentioned in the CSP specification, the
scheme relaxation mechanism implemented in Mozilla Fire-
fox and Chromium looks perfectly sensible, since it is secure
and convenient for writing policies. Indeed, we noticed that
this more liberal behaviour is recommended in the draft of
the upcoming CSP Level 3 specification [4].

4. ANALYSIS OF CSP DEPLOYMENT
To evaluate the deployment of CSP and investigate the

trends in its adoption, we performed a crawl of the home-
pages of the Alexa Top 1M [1] websites in March 2016.
We accessed each website using both HTTP and HTTPS,
and we collected the CSP headers sent in the corresponding
HTTP(S) responses.

4.1 Adoption of CSP
Overall, we found CSP headers in 7,702 HTTP responses

and in 6,793 HTTPS responses, delivered by 8,133 distinct
websites. An earlier study [28] conducted in March 2014

identified only 850 websites deploying CSP in the Alexa Top
1M, so it seems that the popularity of CSP has significantly
improved in the last two years, approximately of a ten factor.
However, a more careful inspection of these numbers gives
insights about the real state of the CSP deployment. Out
of 8,133 websites sending CSP headers, we only found 3,220
websites running CSP in enforcement mode (39.6%). We
then identified 5,016 websites (61.7%) using the report-only
mode of CSP, which means that 103 websites (1.3%) im-
plement both modes. Though the existence of such websites
may be unexpected, combining enforcement and report-only
mode is encouraged by the CSP specification as a good way
to enforce a relatively weak policy, while monitoring the pos-
sibility of enforcing a stricter one.

The fact that only the 39.6% of the websites sending CSP
headers is actually enforcing a content security policy is an
interesting finding, since previous work from March 2014 [28]
identified 815 websites deploying CSP in enforcement mode
out of 850 websites making use of CSP (95.8%). We in-
vestigated why the majority of the websites runs CSP in
report-only mode nowadays and we concluded that this is
mostly due to the adoption of web development frameworks
and content management systems. For instance, we found
3,432 websites deploying the very same content security po-
licy in report-only mode, with the only difference being the
report-uri directive used to collect violation reports. These
websites are the 42.2% of all the websites deploying CSP and
all of them are based on Shopify, a popular content manage-
ment system for e-commerce websites, which ships a default
(lax) content security policy. We also identified other frame-
works and content management systems deploying CSP in
report-only mode, though they are not nearly as widespread
as Shopify. Based on these numbers, we think that a signifi-
cant amount of web developers making use of CSP may not
even be aware of the adoption of CSP on their websites!

4.2 Analysis of CSP Headers
We analysed the collected CSP headers to understand

which are the most commonly used features of CSP. We
mostly focused on the 3,220 websites running CSP in en-
forcement mode, since for these websites we assume a deli-
berate and fully-aware adoption of the standard.

4.2.1 Inline Elements and Unsafe Eval
Web developers are strongly encouraged to remove all the

inline scripts from their websites to reap the biggest benefits
out of CSP and limit the risks of XSS [29]. However, pre-
vious studies assessed that moving inline scripts to external
resources is not a trivial task [26] and showed that the large
majority of CSP-enabled websites just resorts to activating
’unsafe-inline’ [28]. Nonces and hashes have been intro-
duced in CSP Level 2 to give web developers the possibili-
ty of white-listing individual inline scripts and stylesheets.
These mechanisms were designed to simplify a large-scale
adoption of CSP and it is important to understand whether
or not they have been successful so far in replacing the in-
secure ’unsafe-inline’.

Out of 3,220 websites running CSP in enforcement mode,
1,669 include ’unsafe-inline’ in a script-src directive
(51.8%). Only 48 websites make use of hashes to white-list
their inline scripts (1.5%), while 37 websites rely on nonces
(1.1%). This shows that the majority of the web develo-
pers still disregards the dangers posed by inline scripts and



trades security for programming convenience, despite the
existence of new tools designed for minimising code changes
to existing websites. Similar findings apply to stylesheets:
1,564 websites use ’unsafe-inline’ in a style-src direc-
tive (48.6%), while only 2 websites use hashes to white-list
stylesheets and none relies on nonces.

We also found 1,680 websites (52.2%) including ’unsafe-

eval’ in a script-src directive and 126 websites (3.9%)
including it in a style-src directive. This suggests that the
majority of the websites using CSP resorts to dynamically
transforming strings into code, despite the fact that this is
well-recognised as an insecure programming practice.

4.2.2 Violation Reports
We assessed the adoption of the report-uri directive to

collect CSP violation reports. This is important, since vio-
lations to content security policies without this directive are
only logged in the JavaScript console and are much more
difficult to systematically detect for web developers, because
all the violations triggered by website users are lost. We ob-
served that only 694 out of 3,220 websites running CSP in
enforcement mode (21.6%) specify a report-uri directive,
hence most websites do not implement a robust monitoring
of their content security policies. This is surprising, since it
is very easy to activate the reporting facilities of CSP and
to parse the violation reports.

We also found 94 websites running CSP in report-only
mode, but without a report-uri directive. This is a very
small fraction (1.9%) of the 5,016 websites making use of the
report-only mode of CSP, but these cases are particularly
strange, since the lack of report-uri significantly reduces
the benefits of reporting. We investigated these cases and
we noticed 42 websites affiliated to Envato, an online market
of digital assets. These websites just implement redirects
to personal pages hosted at Envato and they all share two
common content security policies, configured for the Envato
website.

4.2.3 Frame Busting
Among the 3,220 websites running CSP in enforcement

mode, we found 697 websites (21.6%) using CSP just to
implement frame busting. These websites deploy very sim-
ple content security policies like frame-ancestors ’self’.
Remarkably, the goal of these policies is orthogonal to the
original scope of the CSP specification, which aimed at intro-
ducing “restrictions that give web application authors con-
trol over the content embedded on their site” [23].

The frame-ancestors directive is an exceptionally popu-
lar mechanism introduced in CSP Level 2, with 1,474 web-
sites making use of it in our dataset (45.8%).

5. ERRORS IN CSP POLICIES
To evaluate whether web developers can correctly specify

content security policies, we performed an in-depth inspec-
tion of the CSP headers collected from the Alexa Top 1M,
looking for different types of errors.

5.1 Methodology
Systematically detecting errors in CSP policies is subtle,

as one needs to define a meaningful notion of error, indepen-
dent of the specific use case and which does not require to
speculate on whether web developers actually enforced what

they wanted to enforce. We focus on three classes of factual
errors made by web developers:

1. typos and negligences: syntactic errors in policy speci-
fication. In these cases it is completely clear what web
developers wanted to enforce, but they specified it in-
correctly, e.g., the name of a directive was misspelled;

2. ill-formed policies: a first form of semantic error in
policy specification. These policies have an unclear
intended meaning, e.g., they contain contradictory or
unexpected information;

3. harsh policies: a second form of semantic error in poli-
cy specification. These policies are too strict and trig-
ger CSP violations upon navigation of the website.

We defined these classes of errors after a preliminary ma-
nual investigation of our dataset and we devised appropriate
queries to automatically catch these errors in all the websites
we visited.

5.2 Typos and Negligences
Syntactic errors in CSP headers are very easy to catch and

fix, but their import on security is significant, since all the
major web browsers ignore unknown directives in content
security policies and just output a warning in the JavaScript
console. If web developers are not careful enough, they may
deploy unexpectedly weak content security policies.

In our analysis, we found 5 websites sending CSP headers
containing unknown directives, due to obvious typos like:

defalt-src ’self’

nfont-src www.myfonts.com

report-uri/csp-report

We clarify the security import of this kind of trivial mistakes:
the typo in the first directive leads to the default-src direc-
tive being missing from the policy, actually white-listing eve-
ry website as a valid provider of contents lacking an explicit
directive. Similar considerations apply to errors like the se-
cond one, which allows browsers to load fonts from any web-
site (in absence of a stricter default directive). Errors like
the third one prevent the correct generation of CSP violation
reports, which may lead to attacks and policy issues going
undetected for a long time. We also found 3 websites where
the name of a directive was written incorrectly, not necessa-
rily due to a typo, but most likely because the web developer
was inaccurate in checking the CSP specification (e.g., wri-
ting frame-ancestor rather than frame-ancestors).

We also noticed 8 websites misusing punctuation symbols
next to directives. A few representative examples are:

"default-src ’self’; ..."

default-src: ’self’

default-src=self

All these cases lead to (a portion of) the content security
policy being skipped by the browser and not correctly en-
forced, with the risks described above.

Misquoting special source expressions like ’self’ or mis-
sing the terminating colon when writing a scheme like http:

is another prominent kind of errors, resulting in the white-
listing of a non-existing host. This may lead to the deploy-
ment of content security policies which are more restrictive
than intended. The impact of these errors on security is thus



limited, though they may lead to severe usability issues for
website users: for instance, white-listing self rather than
’self’ prevents the browser from loading same origin con-
tents on a CSP-protected web page. Notice that this may
even convince uncaring web developers to abandon CSP to
prevent further usability issues. We found 19 websites with
such errors in source expressions.

5.3 Ill-Formed Policies
We noticed a number of content security policies with an

unclear meaning or using the CSP directives in an unex-
pected way. These cases are typically hard or even impos-
sible to fix without contacting the original authors of the
policies, since it is unclear what they wanted to enforce. To
illustrate, we identified 6 websites whose content security
policies have the following format:

script-src a.com b.com; c.com

There are at least two legitimate intended interpretations for
an incorrect policy like this one. The first possibility is that
c.com should be actually part of the script-src directive: it
is plausible that the web developer included this entry after
the semicolon by accident. The second possibility, instead, is
that the developer forgot to insert the name of the directive
preceding c.com. Interestingly, the first error would make
the policy more restrictive than intended, while the second
error could also make it more liberal, e.g., in absence of a
default-src directive.

We also found 50 websites whose CSP header just con-
tained the character *. This was surprising, since such a
policy does not contain any directive and it is ignored by web
browsers. The quirk was readily explained when we realised
that all the 50 websites were developed using ASP.NET, so
this is likely a default behaviour implemented by the web
framework when CSP support is not properly configured.

Finally, we found 22 websites repeating the same direc-
tive (e.g., script-src) multiple times. In these cases, all
the browsers we tested enforce the first occurrence of the
directive and ignore the other ones, correctly following the
CSP specification. It is unclear whether web developers are
really aware of how web browsers enforce such policies and
why repeated directives are not just removed, so it is legiti-
mate to deem these cases at least as bad practices.

5.4 Harsh Policies
We developed a Chromium extension which intercepts the

CSP headers of incoming HTTP(S) responses and changes
the report-uri directive so that any CSP violation report is
redirected to a web server under our control. We then used
Selenium to drive Chromium into navigating all the websites
deploying CSP in enforcement mode, while running our ex-
tension. This way, we were able to automatically detect CSP
violations triggered when accessing the homepage of these
websites. Surprisingly, we observed that 553 out of 3,220
websites (17.2%) trigger at least one CSP violation when
their homepage is accessed by our crawler. Notice that this
is a subset of the real violations which may be triggered
upon navigation, since the crawler does not exercise any
website functionality besides page loading. It is interesting
to note that 414 of these websites (74.9%) do not use the
report-uri directive to collect CSP violation reports, so it
is perfectly plausible that these violations went unnoticed by
web developers. Overall, we collected 921 violation reports:
we summarise the reasons for the violations in Table 2.

Table 2: Summary of CSP Violations
Type of Violation #Violations #Websites
Inline scripts 12 9
Inline styles 82 80
Use of eval 6 6
data: or blob: 43 33
Remote inclusion 778 441

We observed 12 inline scripts blocked by CSP in 9 web-
sites. Most of these scripts are related to advertisement or
other third-party functionalities injected in the web pages,
like site metrics. Interestingly, we also found 82 inline styles
blocked by CSP in 80 websites. After a manual investigation
of these cases, we noticed they are due to a high number of
tiny styles applied to individual page elements, e.g., to draw
borders around text boxes, which probably went unnoticed.

We then found 6 websites where a call to eval was stopped
by CSP. One site used eval to invoke decodeURIComponent

on the base64 encoding of an email address, which is thus
not rendered correctly; one site invoked eval to populate
some global variables needed to apply style elements to the
homepage; one other site made use of eval to check whether
the web browser accessing the site was implementing CSP
correctly. The last 3 cases were more involved and harder
to understand by code inspection, though we noticed that 2
of them seem to be related to AngularJS2.

We also detected 43 violations in 33 websites due to the
data: or blob: source expressions being missing in a di-
rective. Most of these cases are related to images (16 vio-
lations) and fonts (23 violations), with probably just minor
visual consequences.

We finally performed a more systematic evaluation of the
778 violations fired upon requests for HTTP(S) resources
which had not been white-listed in the content security poli-
cy. We observed in particular two recurrent patterns, which
cover almost half of the violations we encountered. First,
we noticed 232 violations (29.8%) in 198 websites which are
due to advertisement or tools loaded from websites owned
by Google, i.e., whose hostname contains the strings google,
gstatic or doubleclick. Part of these violations are due
to the fact that google.com, often correctly white-listed in
the content security policy, actually enforces a redirection to
google.tld, where tld is a national top-level domain. There
is no easy way to accommodate this use case in the current
CSP specification, since the syntax of policies does not allow
source expressions of the form google.* [3]. Second, we
observed 78 violations (10.0%) in 54 websites due to requests
targeted at the same domain of the site or some sub-domain
of it. Besides the obvious cases where web developers forgot
to include the site domain (or some sub-domain of it) in the
content security policy, we noticed two other main reasons
for this kind of violations:

1. HTTPS websites requesting contents over HTTP, de-
spite a strong content security policy which prevents
this behaviour. These cases often occur when source
expressions like ’self’ or a.com are included in the
policy, since they only white-list HTTPS contents when
deployed on HTTPS pages. Some of these violations
have no visible import, since modern browsers already

2http://docs.angularjs.org/api/ng/directive/ngCsp



block requests for active contents sent over HTTP from
HTTPS pages in accordance with the mixed content
policy [5];

2. websites like http://www.a.com loading contents from
http://a.com, though only http://www.a.com is de-
clared as a valid source for content inclusion (or vice-
versa). These cases often occur when the policy uses
the ’self’ source expression, since ’self’ only white-
lists same origin contents, but http://www.a.com and
http://a.com are different origins. The occurrence of
these violations thus depends on the user typing the
www prefix or not in the address bar when accessing the
website, which is undesirable.

6. SECURITY OF CSP AGAINST XSS
Though CSP is becoming a complex and variegate stan-

dard, the main threat addressed by CSP is still content in-
jection [23, 29]. Content injection may take different forms
and be exploited to mount a number of attacks, like UI re-
dressing. In our view, however, the most dangerous form
of client-side content injection on the Web is XSS, where
arbitrary attacker-controlled scripts are injected in benign
web pages. Our goal here is understanding to which extent
websites running CSP use it to protect against XSS.

6.1 Methodology
Systematically detecting whether a website is vulnerable

to XSS is still an open research challenge, because it would
require an automatic analysis of its sanitization routines [27].
Since we are interested in CSP in the present paper, we
tackle a slightly different research question: do existing con-
tent security policies provide enough protection to ensure
that a content injection cannot be exploited to run arbi-
trary code? We thus identify sufficient conditions on content
security policies under which any content injection can be
turned into XSS, despite a correct policy enforcement. The
threat model we consider is the standard web attacker from
the literature, normally used when reasoning about content
injection. The web attacker operates a malicious website,
attacker.com, and can respond to HTTP(S) requests sent
to this website with arbitrary content. We assume the at-
tacker set up HTTPS on his web server.

Having defined the threat model above, we can introduce
the following notion of liberal source expression.

Definition 1 (Liberality). A liberal source expres-
sion is the wildcard * or any of the schemes http:, https:
or data:.

Liberal source expressions constitute a poor mechanism
to specify content restrictions, since the set of sources they
denote includes attacker-controlled contents. The wildcard
* and the HTTP(S) scheme include attacker.com as a valid
source for content inclusion, while the data: scheme is dan-
gerous since data URIs provide a way to include inline con-
tents in web pages just as if they were external resources.

Based on this auxiliary notion, we can introduce the main
definition of interest.

Definition 2 (Vulnerability to XSS). We say that
a content security policy is vulnerable to XSS if at least one
of the following conditions holds true:

1. script-src includes ’unsafe-inline’, but it does not
include hashes or nonces;

2. script-src includes a liberal source expression;

3. there is no script-src directive and default-src in-
cludes ’unsafe-inline’, but it does not include hashes
or nonces;

4. there is no script-src directive and default-src in-
cludes a liberal source expression;

5. both script-src and default-src are missing.

If any of the previous conditions holds true and content
injection is possible, then arbitrary code injection becomes
possible. Condition (1) is trivial: if a website allows arbi-
trary inline scripts, the attacker can directly inject malicious
scripts in the website. Under condition (2), inline scripts are
not allowed to run, but the attacker can inject arbitrary code
by fetching a remote script from attacker.com or by using
a suitable data URI. Condition (3) is similar to condition
(1), while condition (4) is reminiscent of condition (2), since
default-src applies when script-src is missing. Condi-
tion (5) covers websites which do not restrict in any way
their set of allowed sources for script inclusion.

There are a few points which are worth discussing in the
definition. First, the definition is based on CSP Level 2:
it can readily be adapted to CSP 1.0 by dropping the side-
conditions about nonces and hashes, which would deem more
content security policies as vulnerable. Second, there are no
clauses predicating on ’unsafe-eval’, since the contents
which are passed to eval or any similar function may un-
dergo a sanitization process, thus preventing the attacker
from injecting arbitrary code on a web page. Finally, it is
worth stressing that the clauses only define sufficient condi-
tions for turning a content injection into an arbitrary code
injection: for instance, websites making use of nonces may
still be subject to XSS attacks in some cases3.

6.2 Results
Based on the previous definition, we observed that 2,974

out of 3,220 websites running CSP in enforcement mode are
vulnerable to XSS (92.4%). We report in Table 3 the num-
ber of websites which violate each of the conditions of Defini-
tion 2. The sum is higher than 2,974, since the same website
may violate more than one condition.

Table 3: Reasons for Vulnerability to XSS
Reason for Vulnerability #Websites

’unsafe-inline’ in script-src 1,619
liberal src. exp. in script-src 259
no script-src +
’unsafe-inline’ in default-src 275
liberal src. exp. in default-src 175
no default-src 1,024

The majority of the websites in this set renounces to
security by including ’unsafe-inline’ in script-src or
default-src without making use of hashes or nonces: this
is the case for 1,894 websites, amounting to the 63.7% of

3http://blog.innerht.ml/csp-2015/



the vulnerable websites. We tried to assess whether inline
scripts are really needed for these websites by developing
a Chromium extension which strips ’unsafe-inline’ from
incoming CSP headers and redirects violation reports to a
web server under our control. We then used Selenium to
navigate the 1,894 websites, accessing them with Chromium
after installing the extension. Overall, we found violations
due to the presence of inline scripts in 1,591 out of 1,894
websites (84.0%). This confirms that inline scripts are still
pervasive nowadays, but it also suggests that 303 websites
could at least attempt the deployment of a stricter and safer
content security policy.

Finally, we had a more in-depth look at the 246 web-
sites whose content security policies violate all the clauses
of Definition 2 and are thus deemed as potentially robust
against XSS. We observed that 56 of these websites (22.8%)
deliver the very same policy, blocking inline scripts and only
allowing the inclusion of contents from the same origin of
the website. While we were not able to identify a common
framework or owner for these websites, which appear unre-
lated and developed using different technologies, we think
that the content security policy enforced by them may have
been copied verbatim from some online source. Other secure
policies are extremely simple, using only the default-src or
the script-src directives to white-list local contents.

7. EVOLUTION OF CSP DEPLOYMENT
We conducted a series of experiments to estimate how the

adoption of CSP and existing content security policies are
evolving over time. Our goals were detecting relevant trends
and assessing whether web developers keep their content
security policies constantly updated. To evaluate this, we
performed weekly crawls of the homepages of the Alexa Top
1M websites [1] from March to June 2016, collecting their
CSP headers. We also built a dataset of CSP violations u-
sing our Chromium extension and we looked for correlations
between changes to existing content security policies and
website functionality being reduced by policy enforcement.

7.1 Changes in CSP Adoption
Let t1, . . . , tn be the sequence of the weekly crawls. We

say that a website w commits to CSP if there exists a crawl
ti such that w does not enforce CSP in t1, . . . , ti−1, but w
enforces CSP in ti, . . . , tn. Conversely, a website w abdicates
from CSP if there exists a crawl ti such that w enforces CSP
in t1, . . . , ti−1, but w does not enforce CSP in ti, . . . , tn.

Figure 1 reports the number of committing and abdicating
websites we found during our weekly crawls. We observed
many more websites committing to CSP rather than abdi-
cating from it in all our crawls, which testifies a constant
growth in the CSP deployment. Overall, we found 931 com-
mitting websites and 268 abdicating websites in the conside-
red timespan. Interestingly, we noticed that 79 abdicating
websites (29.5%) triggered at least one CSP violation du-
ring our crawls. We believe that this non-negligible amount
of policy violations may quite possibly have influenced the
choice of abdicating from CSP.

Another relevant trend we analysed in the CSP adoption is
the transition from report-only to enforcement mode, which
should be the most desirable outcome of a preliminary re-
porting phase. Overall, we found 26 websites changing their
policies from report-only to enforcement mode during our
crawls, thus fully embracing CSP. However, we also found 6
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Figure 1: Committing and abdicating websites

websites switching from enforcement mode to report-only.
Finally, we observed an interesting phenomenon of tem-

porary CSP support. Let t1, . . . , tn be the sequence of the
weekly crawls, we say that a website w had temporary CSP
support if w does not enforce CSP in t1 and tn, but there
exists ti such that w enforces CSP in ti. We found 2,862
websites with temporary CSP support in our weekly crawls.
An investigation of these websites revealed that this phe-
nomenon was mostly due to Blogger, a famous blogging ser-
vice hosting several websites in the Alexa ranking: 2,576
websites with temporary CSP support contain the strings
blogger or blogspot in their hostname (90.0%). Notably,
their policies only included upgrade-insecure-requests, a
newly proposed CSP directive [7] not present in the official
specification. This directive asks web browsers to upgrade to
HTTPS a number of HTTP requests sent by CSP-protected
websites, so as to simplify their full transition to HTTPS
while avoiding mixed content errors. The policies were likely
removed after a full transition of Blogger to HTTPS. It is
interesting to notice that Blogger never used CSP for its
original purposes of restricting content inclusion, but just to
benefit of this recent addition to the standard.

7.2 Changes in Content Security Policies
We evaluated how frequently websites change their con-

tent security policies. To get uniform and reliable results, we
focused on the 2,784 websites enforcing CSP in all the weekly
crawls. The majority of these websites never changed their
content security policies: this is the case for 1,855 websites
(66.6%). Remarkably, however, there are also 929 websites
which updated their policies at least once.

Figure 2 reports the distribution of these 929 websites with
respect to the number of observed policy changes. As ex-
pected, the majority of the websites changed their policies
only once or twice. However, it is not uncommon to ob-
serve websites which changed their policies more frequently.
The most surprising cases in this respect are websites which
changed policy basically every week: a manual investigation
revealed several pornographic websites including apparently
random strings as valid hostnames for content inclusion. In
these cases, it seems that the same contents are regularly
relocated on different domains, likely due to legal reasons.

An important aspect we investigated on our data is how
the treatment of dangerous constructs like inline elements
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Figure 2: Number of changes to CSP policies

and eval changed over time. It seems websites are reluctant
to update their policies to change the browser behaviour for
these constructs and, even worse, the trend is not positive
from a security perspective. Overall, we only found 6 web-
sites improving their security by dropping ’unsafe-inline’,
replacing ’unsafe-inline’ with hashes or nonces, or by
dropping ’unsafe-eval’; however, we identified 16 websites
which made the opposite choices. We also found 2 websites
which tested the possibility of removing ’unsafe-inline’

for a few weeks, but eventually resorted to adding it back in
their policies.

Other insightful observations on policy changes come from
our dataset of CSP violations. We detected 682 violations
during our crawls which eventually disappeared at some
point in time. For these cases, we compared the content se-
curity policies enforced before and after the disappearance
of the violation, to investigate whether the changes per-
formed by the web developers were aimed at fixing the vio-
lation or not. We identified 95 interventions making poli-
cies more liberal to enable a blocked functionality, while in
587 cases the changes were not related to the violations we
collected. It is interesting to note that 587 violations disap-
peared though the underlying content security policy was
not actually changed to prevent them: this behaviour is
likely due to the dynamic nature of modern websites and
to the widespread practice of including advertisement. We
think that the volume of these transient violations is wor-
risome, since it means that it is difficult to keep content
security policies constantly updated.

Further insight about the need for policy changes comes
from the analysis of persistent CSP violations. We found 322
violations in 241 websites being triggered at every visit of our
crawler. These cases call for policy changes, but apparently
web developers are not aware of them or have been unable
to fix them properly. We think that the first possibility is
the most likely, since 190 out of the 241 websites (78.8%) do
not make use of the report-uri directive to systematically
collect CSP violation reports.

8. PERSPECTIVE
As a result of our investigation, we found two main classes

of problems for CSP in its current form. The first class
of problems comes from a lack (or loss) of useful feedback
for web developers when writing content security policies.

Though the reporting facilities of CSP are excellent, the
large majority of the web developers do not benefit of them,
since the 78.4% of the websites running CSP in enforcement
mode do not activate the report-uri directive. A simple
change we propose is making browsers output a warning in
the JavaScript console when parsing a policy lacking the
report-uri directive: none of the browsers we tested pro-
vides this warning. We think that recommending the usage
of report-uri would be very helpful to make web deve-
lopers aware of the importance of reporting and to prevent
the deployment of policies which are too strict (Section 5.4).
Moreover, we propose that the report-uri directive should
also be leveraged to collect CSP violation reports whenever
unknown directives or ill-formed policies are parsed by the
browser. This would be useful to prevent the numerous er-
rors discussed in Sections 5.2 and 5.3. These errors are a
serious problem in practice, since the syntax of CSP is very
liberal and browsers are tolerant when parsing policies for
the sake of backward compatibility.

Unfortunately, the second class of problems affecting CSP
is more rooted into its design. Banning inline scripts is cer-
tainly important to mitigate code injection, but too many
web developers still resort to activating ’unsafe-inline’ on
their web pages (58.8%). Nonces and hashes are a step in
the right direction, but their adoption is minuscule: less than
the 3% of the websites running CSP in enforcement mode
use them and the trend does not seem to be changing. More-
over, inline scripts are not the only attack vector for code
injection: 434 websites (13.5%) include a liberal source ex-
pression in their white-list for script inclusion. This leads us
to the more general observation that white-lists require web
developers to strike a very delicate balance between security
and usability. Carefully designed white-lists are difficult to
write and to maintain, as testified by the large number of
CSP violations we encountered on existing websites: as a
result, web developers resort to white-listing liberal source
expressions to prevent functionality issues. To make matters
worse, CSP violations are often due to elements which are
not totally under the control of the author of the content se-
curity policy. In our analysis, we noticed that redirects and
advertisement systems are particularly troublesome in this
respect. Redirects trigger security violations when a white-
listed origin forces a redirection to an origin which is not
white-listed. Advertisement systems, instead, have a very
dynamic and unpredictable behaviour which hardly fits the
nature of a white-list, hence they end up triggering transient
security violations. More research is needed to find robust
solutions to these issues.

9. RELATED WORK
Before this study, two research papers about the state of

the CSP deployment have been published [28, 21]. Patil and
Frederik performed an analysis of the CSP adoption on the
Alexa Top 100k in October 2013 [21]. After assessing a limi-
ted adoption of the standard, the authors proposed a tool,
UserCSP, to automatically synthesise content security poli-
cies for existing websites. Weissbacher et al. evaluated the
deployment of CSP on the Alexa Top 1M in March 2014 [28].
They then discussed challenges for practical CSP adoption
and techniques for semi-automated policy generation.

There are many important differences between the present
paper and previous work [28, 21]. First, the focus of the
works is different, since we are only interested in assessing



the trends and the effectiveness of the current CSP adoption,
while [28, 21] put great emphasis on (semi-)automated po-
licy generation. Finding effective ways to generate content
security policies is definitely an important and intriguing
research challenge, which we plan to pursue in future work.
On the other hand, the evaluation of the CSP effectiveness
in [28, 21] is not nearly as comprehensive and systematic as
ours: [28, 21] do not include any evaluation of the CSP sup-
port in existing browsers, nor any analysis of common errors
in policy specification. Also the security analysis in [28, 21]
is much more limited than ours, less rigorous and not as
exhaustive in covering the possible attack vectors for XSS.
Only [28] briefly touches on the point of the evolution of
CSP, but it is limited to three websites (BBC, CNN, Twit-
ter), while we focus on 2,784 websites.

Besides these methodological aspects, there are also good
technological reasons motivating further, up-to-date research
about CSP. When the studies in [28, 21] were performed,
CSP Level 2 did not yet exist, so there is no published re-
search on the latest additions to the CSP standard, e.g.,
hashes and nonces. Moreover, the adoption of CSP has sig-
nificantly increased in the last two years: [21] identified only
27 websites running CSP in enforcement mode, [28] found
815 websites, while the present work identified 3,220 web-
sites. Such a larger scale calls for a more systematic evalua-
tion like the one pursued in this paper.

Van Acker et al. studied the current inability of CSP at
preventing data exfiltration attacks [24]. Their work pro-
vides empirical evidence that no major web browser imple-
ments defences against data exfiltration in presence of DNS
and resource prefetching, even when the strongest content
security policy is put in place. Their paper also proposes
mitigation techniques against these issues.

Hausknecht et al. focused on the tension between content
security policies and browser extensions [12]. Since browser
extensions can modify the DOM, they may end up making
web pages request external resources which are not white-
listed by the underlying content security policy. The paper
proposes a mechanism to endorse CSP modifications per-
formed by browser extensions, so as to strike a good balance
between websites security and extensions functionality.

Hothersall-Thomas et al. developed BrowserAudit, a web
application implementing a series of more than 400 auto-
mated security tests for web browsers [13]. Notably, Browser-
Audit also includes a set of 226 tests for CSP 1.0 divided
in 10 main families. The compliance tests for CSP im-
plemented in BrowserAudit are simple and quite low-level,
likely because the scope of BrowserAudit is not limited to
CSP, but rather embraces browser security as a whole.

Johns identified three limitations of CSP leaving room for
dangerous code injections: no prevention of insecure server-
side assembly of JavaScript code, lack of control over the
content of white-listed external scripts, and lack of control
over the number and the appearance order of script tags [15].
His paper proposes a framework, called PreparedJS, which
complements CSP with solutions (or mitigations) against
these attack vectors.

The present paper positions itself in the popular research
line of large-scale security evaluations of the Web [25]. Just
to mention a few relevant works, previous evaluations fo-
cused on other aspects of web security, like remote JavaScript
inclusion [20], DOM-based XSS [17], mixed content web-
sites [10], authentication cookies [9] and HSTS [16].

10. CONCLUSION
We performed a large-scale, systematic analysis of four

key factors to the effectiveness of CSP: browser support,
website adoption, correct configuration and constant main-
tenance. Though browser support is largely satisfactory,
with the exception of few notable issues, the other three
points present significant shortcomings. The deployment of
CSP is still quite limited in practice and, more importantly,
there are many errors and weaknesses in existing content
security policies, which leave room for security or usability
issues. Moreover, content security policies are not regularly
updated to ban insecure practices and remove unintended
security violations. We argue that many of the problems
we found can be fixed by better exploiting the reporting fa-
cilities of CSP, but other issues deserve additional research,
being more rooted into the CSP design.

Overall, CSP is growing, but not nearly as fast and effec-
tively as desirable. Given the still relatively limited adoption
of the standard, this could be an excellent moment for a re-
trospective look at its design and motivations based on the
observations we collected.
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