
AMEBA: An Adaptive Approach to the Black-Box Evasion of
Machine Learning Models

Stefano Calzavara

Università Ca’ Foscari Venezia

stefano.calzavara@unive.it

Lorenzo Cazzaro

Università Ca’ Foscari Venezia

864683@stud.unive.it

Claudio Lucchese

Università Ca’ Foscari Venezia

claudio.lucchese@unive.it

ABSTRACT
Machine learning models are vulnerable to evasion attacks, where

the attacker starts from a correctly classified instance and perturbs

it so as to induce a misclassification. In the black-box setting where

the attacker only has query access to the target model, traditional

attack strategies exploit a property known as transferability, i.e., the

empirical observation that evasion attacks often generalize across

different models. The attacker can thus rely on the following two-

step attack strategy: (i) query the target model to learn how to train

a surrogate model approximating it; and (ii) craft evasion attacks

against the surrogate model, hoping that they “transfer” to the tar-

get model. This attack strategy is sub-optimal, because it assumes

a strict separation of the two steps and under-approximates the

possible actions that a real attacker might take. In this work we

propose AMEBA, the first adaptive approach to the black-box eva-

sion of machine learning models. AMEBA builds on a well-known

optimization problem, known as Multi-Armed Bandit, to infer the

best alternation of actions spent for surrogate model training and

evasion attack crafting. We experimentally show on public datasets

that AMEBA outperforms traditional two-step attack strategies.

CCS CONCEPTS
• Security and privacy → Database and storage security; •
Computing methodologies→Machine learning.

KEYWORDS
Adversarial machine learning; evasion attacks; transferability

ACM Reference Format:
Stefano Calzavara, Lorenzo Cazzaro, and Claudio Lucchese. 2021. AMEBA:

An Adaptive Approach to the Black-Box Evasion of Machine Learning

Models. In Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong
Kong. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3433210.

3453114

1 INTRODUCTION
Machine Learning (ML) has become phenomenally popular in re-

cent years and found a wide range of practical applications, yet it

is now acknowledged that the adoption of ML in security-oriented

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00

https://doi.org/10.1145/3433210.3453114

applications should be done with care [3]. Many papers studied the

security of supervised learning and, in particular, its application to

classification tasks, where ML models are trained to predict one out

of a set of possible classes, e.g., spam vs. ham.

A prominent class of threats against ML comes from evasion
attacks. In an evasion attack, the attacker starts from an instance

which is classified correctly by a ML model and perturbs it so as to

induce a misclassification [2]. For example, the attacker may cor-

rupt the image of a panda through tiny pixel perturbations, which

are imperceptible to humans, yet suffice to fool a ML model into

predicting a gibbon with high confidence [11, 28]. Depending on

the information available to the attacker, evasion attacks might be

white-box or black-box [3]. White-box attacks assume the attacker

to know everything about the model under attack, e.g., the learn-

ing algorithm, the training data and the model hyper-parameters.

Black-box attacks, instead, only require the attacker to have query

access to the model under attack (i.e., ask for predictions) and are

thus particularly important from a practical perspective, since this

minimal capability is inherent to the model functionality.

A traditional approach to the black-box generation of evasion

attacks exploits a subtle, surprising property known as transfer-
ability, i.e., the empirical observation that evasion attacks often

generalize across different models [20]. Hence, the attacker can

adopt the following two-step attack strategy:

(1) Surrogate Model Training: the attacker queries the target

model to extract information about its behavior and trains a

surrogate model approximating the target;

(2) Evasion Attack Crafting: the attacker crafts successful eva-
sion attacks against the surrogate model and feeds them to

the target model, hoping that they “transfer” to it, i.e., lead

to misclassification by the target.

This approach is appealing, because the attacker can train the sur-

rogate model such that crafting successful evasion attacks against

it is feasible using known algorithms. For example, evasion attack

crafting algorithms like the Fast Gradient Sign Method (FGSM) [11]

work for any differentiable model. Though some prominent ML

models are not differentiable, e.g., decision trees, the attacker can

train a differentiable surrogate model, attack it through FGSM and

then evade a non-differentiable target model via transferability.

In this paper, we question the effectiveness of the two-step attack

strategy proposed in previous work [20] and briefly reviewed above.

In particular, we observe that there is a tension between the two

steps of the attack strategy. On the one hand, the attacker needs

to query the target model multiple times in order to disclose its

behavior and train a faithful surrogate model. On the other hand,

the attacker wants to query the target model with as many evasion

attacks as possible to maximize the number of misclassifications.

This means that when the number of queries to the target model

https://doi.org/10.1145/3433210.3453114
https://doi.org/10.1145/3433210.3453114
https://doi.org/10.1145/3433210.3453114

is limited, e.g., because the attacker pays a price for each query or

wants to behave surreptitiously, the optimal attack strategy is far

from straightforward. When shall the attack strategy switch from

step 1 to step 2? And,more generally, why should the attacker follow

a fixed two-step strategy and not resort to a more sophisticated

approach which dynamically learns how to behave?

Here we propose to move away from the two-step attack strategy

of previous work and we present a new adaptive attack strategy,

which dynamically learns whether queries to the target model

should be leveraged for surrogate model training (step 1) or for eva-

sion attack crafting (step 2), thus making the two steps of the attack

intertwined. Our proposal subsumes the traditional two-step attack

strategy of prior work, making black-box evasion attacks more

effective and practical by automatically dealing with the delicate

tension discussed above.

Contributions. To sum up, we contribute as follows:

(1) We propose the first adaptive approach to the black-box

generation of evasion attacks against ML models. Our tech-

nique builds on a connection between the black-box evasion

problem and a traditional optimization problem, known as

Multi-Armed Bandit (MAB) [24]. In particular, we show how

the black-box evasion problem can be reduced toMAB, hence

it can be solved using existing approaches like the Thomp-

son sampling algorithm [23]. We call the resulting attack

strategy AMEBA (Adversarial Multi-armEd BAndit).

(2) We implement AMEBA and we show it at work on differ-

ent datasets, considering multiple ML models and attackers.

We experimentally show that, at worst, AMEBA accurately

approximates the behavior of the optimal two-step attack

strategy, where the attacker leverages an oracle to find the

best moment to switch from step 1 to step 2. At best, in-

stead, AMEBA leads to the creation of a large number of

evasion attacks which cannot be crafted even by the optimal

two-step attack strategy. This shows that future research on

adversarial ML should take adaptive attack strategies into

due consideration.

2 BACKGROUND
In this section we introduce the technical ingredients required to

appreciate the rest of the paper. In particular we first clarify the

notion of evasion attack, introducing appropriate terminology, and

we then review the MAB problem.

2.1 Evasion Attacks
Let X be a vector space of features and Y a finite set of class labels,

a classifier ℎ : X ↦→ Y is a function assigning a class label 𝑦 to each

element ®𝑥 ∈ X of the feature space (also called instance). The goal
of a classifier is approximating the behaviour of an unknown target
function 𝑓 : X ↦→ Y, which assigns the correct class label to every

instance. For instance, ℎ might try to approximate human under-

standing by discriminating between ham and spam emails based

on features like: length of the email, presence of suspicious words

from a blacklist, abuse of capitalization, etc. Classifiers are normally

trained using supervised learning algorithms, which exploit a set

of correctly labeled instances {(®𝑥𝑖 , 𝑓 (®𝑥𝑖))}𝑖 , called training set, to

identify the best-performing classifier out of a set of possible hy-

potheses. Technically, this is done by minimizing a loss function
which estimates the “cost” of the prediction errors performed by

the classifier on the training set.

Unfortunately, even well-performing classifiers which accurately

approximate the target function might become useless when they

are deployed in an adversarial setting, where an attacker actively

manipulates instances to force mispredictions [3]. Formally, an

attacker can be represented as a function 𝐴 : X → 2
X
, which

maps each instance into a set of possible perturbations, e.g., those

instances which are located within a given distance from the origi-

nal. We assume that 𝐴 is restricted to those perturbations which

share the same true label of the original instance ®𝑥 , i.e., ∀®𝑧 ∈ 𝐴(®𝑥) :
𝑓 (®𝑧) = 𝑓 (®𝑥). Remarkably, even small perturbations which are neg-

ligible to human experts might suffice to perform evasion attacks
against ML models, leading to mispredictions. For example, adding

just a few so-called “good words” to a spam message might fool a

spam filter into incorrectly marking the message as ham [17].

Definition 1 (Evasion Attack). Given a classifier ℎ and an instance

®𝑥 such that ℎ(®𝑥) = 𝑓 (®𝑥), an evasion attack against ®𝑥 is any instance

®𝑧 ∈ 𝐴(®𝑥) such that ℎ(®𝑧) ≠ 𝑓 (®𝑥).
Of course, crafting evasion attacks by enumerating 𝐴(®𝑥) might

be infeasible in practice. For instance, if ®𝑥 includes 30 binary features
and the attacker is able to flip 6 features at will, then |𝐴(®𝑥) | =

(
30

6

)
=

593775, leading to a combinatorial explosion of the number of

attacks. However, previous work identified heuristics to efficiently

craft evasion attacks against differentiable models, like the FGSM

algorithm [11] and its variants like Fast Gradient Value (FGV) [22].

For example, FGV operates as follows: for a given instance ®𝑥 with

true label 𝑦, the perturbation added to ®𝑥 to generate the evasion

attack 𝑧 is a scaled gradient of the loss function 𝐽 optimized by the

surrogate model
ˆℎ. In particular, given a fixed step 𝜀 > 0 we have:

®𝑧 = ®𝑥 + 𝜀 ·
∇®𝑥 𝐽 (®𝑥,𝑦)
∥∇®𝑥 𝐽 (®𝑥,𝑦)∥2

. (1)

This represents an ℓ2-norm attack where the instance ®𝑥 is moved

along the direction of the gradient of the loss function. In this work,

we use line search to find the smallest 𝜀 required to evade ˆℎ. Indeed,

such 𝜀 is equivalent to the ℓ2-distance between ®𝑥 and ®𝑧.
Transferability allows one to leverage heuristics like FGV to

attack arbitrary target models, even non-differentiable ones. The

attacker first queries the target modelℎ to collect a set of predictions

{(®𝑥𝑖 , ℎ(®𝑥𝑖))}𝑖 and uses it to train a differentiable surrogate model
ˆℎ.

The attacker then crafts an evasion attack ®𝑧 against the surrogate
ˆℎ using FGV and tries to evade the target model ℎ by feeding ®𝑧 to
it. This attack strategy is shown in Figure 1, where the left part

represents surrogate model training (step 1) while the right part

represents evasion attack crafting (step 2).

2.2 Multi-Armed Bandit
The Multi-Armed Bandit (MAB) is a well-known optimization prob-

lem [24]. MAB is one of the several reinforcement learning ap-

proaches, where learning happens by interactions [26]. An agent
may perform some action in a given environment, which responds

to such action with a reward and by possibly changing its state. The
learning task is to find the sequence of actions which leads to the

Target Model

Surrogate Model

Target Model
FGSM / FGV

Surrogate Model

Step 1: Surrogate Model Training Step 2: Evasion Attack Crafting

Figure 1: Black-box evasion attack strategy through transferability

largest reward in the long run. The agent thus struggles between ex-

ploiting the best actions observed so far and exploring the revenue

of new actions. Different reinforcement learning scenarios have

been investigated, depending on the nature of the rewards (station-

ary or non-stationary, context-dependent or context-independent)

and the environment (which may be governed by a stochastic pro-

cess). MAB is one such reinforcement learning approach, where

the rewards are stationary and the environment is stateless.

Formally, given a set of 𝐾 ≥ 2 possible actions A, also called

arms, and 𝑇 ≥ 1 rounds, MAB requires to choose the sequence of

𝑇 actions from A which maximizes a reward. In its most common

formulation, known as MAB with stochastic bandits, the problem
relies on three assumptions:

(1) It is only possible to observe the reward for the selected

action and nothing else. In particular, rewards for the other

actions that could have been selected are unknown, even

after committing to an action.

(2) For each action 𝑎 ∈ A, there is a distribution 𝐷𝑎 over reals,

called the reward distribution. Every time 𝑎 is chosen, the

reward 𝑟 is independently sampled from 𝐷𝑎 . The reward

distributions are unknown and can only be estimated when

solving the problem.

(3) Per-round rewards are bounded: the standard range for re-

wards is the continuous interval [0, 1].
The reward distributions induce amean reward vector 𝜇 ∈ [0, 1]𝐾 ,

where 𝜇 (𝑎) = E[𝐷𝑎] is the mean reward of the action 𝑎. The goal of

MAB is thus finding the sequence of actions 𝑎1, . . . , 𝑎𝑇 ∈ A which

maximizes the cumulative reward
∑𝑇
𝑖=1 𝜇 (𝑎𝑖).

A simpler variant of MAB with stochastic bandits assumes a

Bernoulli distribution of rewards. In this formulation, each action

𝑎 has a probability of success 𝜃𝑎 and produces a reward of 1, called

success, with probability 𝜃𝑎 and a reward of 0, called failure, with
probability 1 − 𝜃𝑎 . The mean reward vector 𝜇 thus coincides with

the vector of the probabilities of success of each action, i.e., 𝜇 =

(𝜃1, ..., 𝜃𝐾). A well-known solution to this variant of the problem

is given by the Thompson sampling algorithm [23].

The key idea of Thompson sampling is that each action 𝑎 has

an independent prior belief over 𝜃𝑎 , the estimate ˆ𝜃𝑎 , and at each

round the action with the highest estimate is chosen. The estimate

Algorithm 1 Thompson sampling

1: for 𝑎 in A do
2: (𝑆𝑎, 𝐹𝑎) ← (1, 1) ⊲ Initialization

3: for 𝑡 = 1, ...,𝑇 do
4: for 𝑎 in A do
5: Sample

ˆ𝜃𝑎 ∼ 𝐵𝑒𝑡𝑎(𝑆𝑎, 𝐹𝑎)
6: 𝑎𝑡 ← argmax𝑎∈A ˆ𝜃𝑎
7: 𝑟𝑡 ← Perform(𝑎𝑡) ⊲ Get reward of 𝑎𝑡
8: (𝑆𝑎𝑡 , 𝐹𝑎𝑡) ← (𝑆𝑎𝑡 + 𝑟𝑡 , 𝐹𝑎𝑡 + (1 − 𝑟𝑡))

ˆ𝜃𝑎 is sampled from a Beta distribution with parameters 𝑆𝑎 and

𝐹𝑎 . These two parameters are often called pseudo-counts, since
𝑆𝑎 and 𝐹𝑎 increase by 1 with each observed success or failure,

respectively. Algorithm 1 presents the pseudocode of Thompson

sampling, where the Perform function takes the chosen action and

returns the corresponding reward (0 or 1).

3 ADAPTIVE BLACK-BOX ATTACKS
We first discuss our threat model, describing the attacker’s goals

and capabilities, and we then present the details of our adaptive

attack strategy. In particular, we show how the black-box evasion

problem can be reduced to the MAB problem.

3.1 Threat Model
We consider an attacker whose goal is to craft successful evasion

attacks against a target model ℎ, approximating an unknown target

function 𝑓 . We do not make any assumption on ℎ, but we assume

the attacker has black-box access to it. In particular, the attacker

can perform a limited number of queries to ℎ by asking for class

predictions on arbitrarily chosen instances. Queries can be used

either to train a (differentiable) surrogate model
ˆℎ or to attempt eva-

sion attacks against the target model ℎ, by feeding it with evasion

attacks working against
ˆℎ via transferability. Queries are limited

because the attacker might not have unconstrained access to the

target model for several reasons. For example, query access to the

target might require a payment, like in the case of the Google Cloud

Vision API
1
and Amazon Machine Learning,

2
or the target might

be equipped with an intrusion detection system which limits the

number of queries during the attack opportunity window.

More specifically, we assume the attacker has access to the fol-

lowing datasets:

• Dtrn: a set of instances {(®𝑥𝑖 , ℎ(®𝑥𝑖))}𝑖 labeled with the class

predictions of the target ℎ, used for surrogate model training.

For example, Dtrn might be a collection of known spam and

ham messages available to the attacker.

• Datk: a set of instances {(®𝑥𝑖 , 𝑓 (®𝑥𝑖))}𝑖 labeled with their true

labels, used for evasion attack crafting. For example, Datk
might be a set of spam messages that the attacker wants to

evade a spam filter.

• Dun: a set of unlabeled instances {®𝑥𝑖 }𝑖 , used to collect addi-

tional class predictions from the target ℎ. For example, Dun
might include messages that the attacker has written himself,

whose class predictions would be unknown.

We do not make any assumption on the instances in these three

datasets: they can be equal, overlapping or disjoint. We assume the

datasets are organized as queues, i.e., they have standard push and

pop operations.

We are finally ready to discuss how the attacker operates. We

assume the attacker first uses Dtrn to train the initial surrogate
ˆℎ

via supervised learning. Once this is done, the attacker can choose

between two possible actions:

(1) Train: the attacker pops an instance ®𝑥 ∈ Dun, queries ℎ to

learn the prediction 𝑦 = ℎ(®𝑥) and extends Dtrn with (®𝑥,𝑦).
The attacker then updates the surrogate

ˆℎ by retraining it

over the extended Dtrn.

(2) Attack: the attacker pops an instance (®𝑥,𝑦) ∈ Datk. If ˆℎ(®𝑥) =
𝑦, the attacker uses ®𝑥 to craft an evasion attack ®𝑧 against ˆℎ by
using an appropriate attack strategy, e.g., FGV. If a successful

evasion attack is found, i.e., if
ˆℎ(®𝑧) ≠ 𝑦, the attacker submits

®𝑧 to the target model ℎ and verifies whether ℎ(®𝑧) ≠ 𝑦.
The attacker stops when the maximum number of queries to

the target model ℎ has been performed. Note that the Attack ac-

tion might fail without querying ℎ in two cases: (i) when (®𝑥,𝑦)
is misclassified by

ˆℎ, or (ii) when it is impossible to turn ®𝑥 into a

successful evasion attack against
ˆℎ. In both cases, we assume that

(®𝑥,𝑦) is temporarily discarded and pushed back into Datk for later

use. The reason for this choice is that, since the Train action aims at

improving the quality of the surrogate model
ˆℎ, it might get easier

to evade
ˆℎ over time.

3.2 Adaptive Attack Strategy via MAB
Previous work relies on a basic two-step attack strategy where a

sequence of Train actions is performed first, in order to build a rep-

resentative surrogate model, and then a sequence of Attack actions
is taken to craft evasion attacks [20]. We rather propose a dynamic

attack strategy where the attacker may intertwine Train and Attack
actions at will, so as to minimize the number of instances used to

build the surrogate
ˆℎ and to maximize the number of generated

1
https://cloud.google.com/vision/pricing?hl=en

2
https://aws.amazon.com/getting-started/projects/build-machine-learning-

model/services-costs/

evasion attacks against the target ℎ. Our adaptive attack strategy

operates by reduction to the Bernoulli MAB problem.

We let the available actions be A = {Train,Attack} and we let

𝑇 represent the number of available queries to the target model ℎ.

Each action consumes one query to the target model and actions are

interleaved up to the exhaustion of the query budget𝑇 . By adopting

a Bernoulli MAB model, we assume the two actions provide a

reward in terms of a binary outcome, i.e., success vs. failure. The

definition of the reward of the two actions is crucial to make sure

that the maximization of the cumulative reward of MAB matches

the goal of our black-box attack strategy, i.e., generating as many

successful evasion attacks as possible.

The key observation to make here is that the success rate of the

Attack actions depends on the quality of the surrogate model
ˆℎ. A

high quality surrogate model should provide similar predictions

to those of the target model ℎ, so as to increase the transferability

of the attacks. The quality of
ˆℎ, in turn, improves thanks to the

Train actions, which enrich the surrogate model’s training setDtrn.

The attacker thus aims at finding a sequence of Train and Attack
actions that maximizes both the number of evasion attacks against

the target model and the quality of the surrogate model. Hence, we

want to reward Attack actions leading to successful evasion attacks

and Train actions leading to improved surrogate quality.

For the Attack action, it is straightforward to define the notion

of success: we stipulate success when the crafted evasion attack ®𝑧
against the instance ®𝑥 with label 𝑦 transfers from the surrogate to

the target, i.e., when
ˆℎ(®𝑧) ≠ 𝑦 and ℎ(®𝑧) ≠ 𝑦. As to the Train action,

we want to define success when the surrogate model improves

its similarity with the target model. Since similarity cannot be

estimated on the basis of the single query encompassed by the Train
action, we pragmatically choose to compare the accuracy score of

ˆℎ over Dtrn before and after the Train action: if the accuracy score

increases according to 10-fold cross-validation, we report a success.

This is effective because Dtrn is populated with class predictions

from the target model, hence the accuracy score of the surrogate

on Dtrn is a reliable proxy of its similarity to the target.

The reason why the proposed reward scheme is effective is that,

when we have a low success rate of the Attack actions, the best

choice is to increase the number of the Train actions to improve the

quality of the surrogate and its transferability, which would lead

to increasing the success rate of the Attack actions. Iteration after

iteration, the Train actions do not provide any benefit anymore, as

the surrogate’s similarity to the target reaches a plateau, and the

Attack actions normally become the most valuable choice.

There are still a couple of subtle points to note though. First, the

proposed approach ignored the MAB assumption that the reward

distributions of the actions 𝐷𝑎 are permanent and independent,

since the surrogate model
ˆℎ is updated after every Train action and

its quality affects the probability of success of both actions. Yet, our

experimental evaluation (Section 4) shows the effectiveness of the

Thompson sampling algorithm for Bernoulli MAB, which is due to

the fact that the reward distributions do not negatively interfere,

but rather boost one another as discussed.

Moreover, while the Train action always performs one query to

the target modelℎ, the describedAttack actionmay not perform any

query to ℎ when the evasion attack against the surrogate
ˆℎ fails, i.e.,

there is a potential disconnect between the number of actions and

the number of actual queries to the target model ℎ. To close this gap,

we assume that this type of failure does not discourage the attacker,

who just moves to the next instance of Datk until a successful

evasion attack against
ˆℎ is found. This has the side-effect of giving

some instances a second chance in a future round, featuring an

updated surrogate model, which might be more similar to the target

and present higher transferability. In the extreme case where the

attacker cannot craft any successful evasion attack against
ˆℎ for

any of the instances in Datk, we assume that the Train action is

taken instead. This is a reasonable choice, because it is the only

option available to the attacker given the current surrogate, and at

the same time it ensures the invariant that each action consumes

exactly one query to the target model ℎ.

3.3 AMEBA
Having clarified these points, the reduction from the black-box

evasion problem into Bernoulli MAB is done, hence one can leverage

the Thompson sampling algorithm to implement an adaptive attack

strategy. The details of the resulting attack strategy, called AMEBA,

are formalized in Algorithm 2. Note that, although the pseudocode

relies on FGV for evasion attack crafting, any other algorithm for

the same task could be used.

The algorithm starts by initializing the pseudo-counts of the

two actions (lines 1–2). Then, at each of the 𝑇 rounds it selects the

action with the highest estimate of success. Lines 7–21 implement

the Attack action as previously discussed. First, the attacker iterates

throughDatk in search of an instance (®𝑥,𝑦) for which it is possible

to craft a successful evasion attack against the surrogate model
ˆℎ.

If such an attack ®𝑧 is found (line 17), it is submitted to the target

model gaining a reward 𝑟𝑡 = 1(ℎ(®𝑧) ≠ 𝑦), where 1(𝑝) equals 1 if
the predicate 𝑝 is true and 0 otherwise. In other words, 𝑟𝑡 = 1 if ℎ

misclassifies the perturbed instance ®𝑧 and 𝑟𝑡 = 0 otherwise.

If no evading instance is found, or if the estimated probability of

attack success
ˆ𝜃Attack is not greater than the estimated probability

of train success
ˆ𝜃Train, then the Train action is performed (lines 22–

30). In this case, a new instance ®𝑥 retrieved from Dun is submitted

to the target model ℎ to get the corresponding prediction and is

then used to enrich the training set Dtrn. A new surrogate model

is finally trained and used in the subsequent iterations. We set the

reward to 1 if we observe an increase of the cross-validation score

of the surrogate, to 0 otherwise.

4 EXPERIMENTAL EVALUATION
In this section we report on an experimental evaluation of AMEBA.

We first introduce the experimental setup, then we explain the

methodology and finally we present the key results of our analysis,

including a performance evaluation in terms of the running times

of our adaptive attack strategy.

4.1 Experimental Setup
We perform an experimental evaluation of AMEBA on three public

datasets: Spambase,
3
Wine Quality

4
and CodRNA.

5
All datasets are

3
https://archive.ics.uci.edu/ml/datasets/Spambase

4
https://archive.ics.uci.edu/ml/datasets/wine quality

5
https://www.openml.org/d/351

Algorithm 2 The AMEBA attack strategy

1: for 𝑎 in {Train,Attack} do
2: (𝑆𝑎, 𝐹𝑎) ← (1, 1) ⊲ Initialization

3: for 𝑡 = 1, ...,𝑇 do
4: Sample

ˆ𝜃Train ∼ 𝐵𝑒𝑡𝑎(𝑆Train, 𝐹Train)
5: Sample

ˆ𝜃Attack ∼ 𝐵𝑒𝑡𝑎(𝑆Attack, 𝐹Attack)
6: 𝑒𝑣𝑎𝑑𝑖𝑛𝑔← ⊥ ⊲ Evasion attack yet not found

7: if ˆ𝜃Attack > ˆ𝜃Train then ⊲ Attack action
8: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← |Datk |
9: while 𝑒𝑣𝑎𝑑𝑖𝑛𝑔 = ⊥ ∧ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 > 0 do
10: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 − 1
11: (®𝑥,𝑦) ← Pop(Datk)
12: ®𝑧 ← FGV((®𝑥,𝑦), ˆℎ) ⊲ Craft evasion attack

13: if ˆℎ(®𝑥) = 𝑦 ∧ ˆℎ(®𝑧) ≠ 𝑦 then ⊲ Confirm evasion

14: 𝑒𝑣𝑎𝑑𝑖𝑛𝑔← (®𝑧,𝑦)
15: else
16: Datk ← Push(Datk, (®𝑥,𝑦))
17: if 𝑒𝑣𝑎𝑑𝑖𝑛𝑔 ≠ ⊥ then ⊲ Found evasion attack on

ˆℎ

18: 𝑎𝑡 ← Attack
19: (®𝑧,𝑦) ← 𝑒𝑣𝑎𝑑𝑖𝑛𝑔

20: 𝑟𝑡 ← 1(ℎ(®𝑧) ≠ 𝑦) ⊲ Check transferability on ℎ

21: (𝑆𝑎𝑡 , 𝐹𝑎𝑡) ← (𝑆𝑎𝑡 + 𝑟𝑡 , 𝐹𝑎𝑡 + (1 − 𝑟𝑡))
22: else ⊲ Train action

23: 𝑎𝑡 ← Train
24: 𝑜𝑙𝑑_𝑐𝑣_𝑠𝑐𝑜𝑟𝑒 ← CrossValScore(ˆℎ,Dtrn)
25: ®𝑥 ← Pop(Dun)
26: 𝑦 ← ℎ(®𝑥)
27: Dtrn ← Push(Dtrn, (®𝑥,𝑦))
28:

ˆℎ ← Train(Dtrn)
29: 𝑟𝑡 ← 1(CrossValScore(ˆℎ,Dtrn) > 𝑜𝑙𝑑_𝑐𝑣_𝑠𝑐𝑜𝑟𝑒)
30: (𝑆𝑎𝑡 , 𝐹𝑎𝑡) ← (𝑆𝑎𝑡 + 𝑟𝑡 , 𝐹𝑎𝑡 + (1 − 𝑟𝑡))

associated with a binary classification task and their main statis-

tics are shown in Table 1. For each dataset, we consider multiple

scenarios to cover a wide range of possible application settings and

threats. In particular, we train a Linear SVM model as surrogate

and we exploit it to craft black-box evasion attacks against three

different target models available in the state-of-the-art scikit-learn

library [21]:

(1) a decision tree ensemble trained using the Random Forest

algorithm. This is a non-differentiable model based on mul-

tiple, independently trained decision trees;

(2) a decision tree ensemble trained using the AdaBoost algo-

rithm. This is also a non-differentiable model, but it differs

from Random Forest because each tree 𝑡𝑖 is trained so as

to improve upon the shortcomings of the tree ensemble

𝑡1, . . . , 𝑡𝑖−1 including the previously trained trees;

(3) a logistic regression classifier. This is a simple differentiable

model, which is closer to Linear SVM and thus complemen-

tary to decision tree ensembles.

The choice of using Linear SVM as surrogate model is motivated

by previous work, which showed that such type of model allows for

the construction of effective black-box attacks with strong transfer-

ability [8]. We do not consider other surrogates, since Linear SVM

Table 1: Dataset statistics

Spambase Wine CodRNA
n. of instances 4601 6495 488565

n. of features 54 12 8

class distribution 39 ÷ 61 25 ÷ 75 67 ÷ 33

is already quite effective in our experiments and the attacker is

free to use it to carry out a real attack. To prove that our approach

generalizes to deep learning, we present additional experiments on

image classification in Appendix A.

As to evasion attack crafting, we use the attack against (multi-

class) SVM proposed in [19]. This attack is an adaptation of FGV

to SVM, where the loss function 𝐽 of Equation 1 is replaced by the

scoring function of the Linear SVM, whose gradient is the weight

vector ®𝑤 . For an instance ®𝑥 with binary label 𝑦 ∈ {−1, +1}, the
candidate evasion attack ®𝑧 is thus computed as:

®𝑧 = ®𝑥 − 𝜀 · 𝑦 · ®𝑤
∥ ®𝑤 ∥2

. (2)

Note that the sign of the perturbation depends on the class 𝑦 to

evade. For simplicity, we just focus on untargeted evasion attacks,

i.e., we assume that the attacker is willing to target any instance

of any class. Finally, we assume the attacker can perform at most

𝑇 = 1000 queries to the target model and we simulate two attack

scenarios of different magnitude (𝜀 in Equation 2). To mitigate

the bias coming from the choice of a specific number of queries,

Appendix B presents additional results for 𝑇 = 2000.

All the models are trained after normalizing features in the inter-

val [0,1] and using hyper-parameter tuning, a standard ML practice

used to identify the best-performing models. In particular, hyper-

parameter tuning is conducted by using grid search with the cross

validation score on the training set as performance measure, testing

the following hyper-parameters:

• Random Forest: number of trees ({64, 128, 256, 512, 1024})
and node splitting criterion (gini impurity and max entropy);

• AdaBoost: number of trees ({64, 128, 256, 512}), node split-
ting criterion (gini impurity and max entropy) and number

of leaves ({8, 16, 32, 64});
• logistic regression: regularization factor𝐶 (from 10

−4
to 10

4
).

We use 𝐶 = 0.50 as regularization factor of the Linear SVM used

as surrogate model. This choice is motivated by the fact that highly

regularized models typically provide better transferability [8].

4.2 Methodology
To assess the effectiveness of AMEBA, we proceed as follows. First,

each dataset D is partitioned into two sets Dtgt and Dsur using

stratified random sampling, i.e., they are randomly partitioned re-

specting the original class distribution. TheDtgt component is used

to train the target models: we reserve 1600 instances of Spambase,

3000 instances of Wine and 100000 instances of CodRNA for this

task. This amount of instances suffices to achieve high values of

accuracy for all the target models, as reported in Table 2.

The Dsur component, instead, is used to train the surrogate

model and craft evasion attacks. In particular, we partitionDsur into

Table 2: Accuracy scores of the target models

Spambase Wine CodRNA
Random Forest 0.96 0.99 0.97

AdaBoost 0.97 0.99 0.97

Logistic Regression 0.93 0.99 0.95

the setsDtrn,Datk andDun expected by AMEBA, again using strat-

ified random sampling. More precisely, these sets are constructed

as follows:

• Dtrn includes 100 instances used to train the initial surro-

gate model. Since the labels of Dtrn are provided by the

target model, we assume the attacker has spent 100 queries

for retrieving them. This size suffices to train a minimally

meaningful surrogate model to start AMEBA.

• Datk includes 900 instances correctly classified by the target

models, which are used to craft evasion attacks. The size

of Datk is motivated by the fact that the attacker cannot

perform more than 1000 queries to the target model and we

already provided him with 100 labeled instances of Dtrn to

build the initial surrogate model.

• Dun includes the remaining (unlabeled) instances, which

are used to learn class predictions from the target model

and improve the quality of the surrogate. Specifically, we let

Dun = {®𝑥 | ∃𝑦 : (®𝑥,𝑦) ∈ Dsur \ (Dtrn ∪ Datk)}.
Our main goal is comparing the performance of AMEBA against

a traditional two-step attack strategy, where there is a clear separa-

tion between surrogate model training (step 1) and evasion attack

crafting (step 2). However, performing such a comparison is far

from straightforward. The key challenge to deal with is that prior

work assumed the adoption of a two-step attack strategy, but did

not investigate when the transition from step 1 to step 2 should oc-

cur. Rather, prior work assumed the usage of a reasonably accurate

surrogate model in step 2, empirically built after a fixed number of

training rounds [20]. How to fix the number of training rounds is

left unspecified, yet this is a delicate point, given that the number

of available queries to the target model is limited.

To address this shortcoming, we compare AMEBA against mul-

tiple baselines, so as to cover multiple possible choices for the

number of queries spent for surrogate model training. Specifically,

we operate as follows: for each 𝑖 ∈ {0, 50, 100, . . . , 700}, we use

stratified random sampling to collect 𝑖 instances from Datk and we

add them to Dtrn, generating datasets D𝑖trn (of size 𝑖 + 100). This
allows us to simulate 15 possible attack scenarios where each D𝑖trn
is used for surrogate model training and the remaining instances in

Datk are used for evasion attack crafting. We never use more than

800 instances for surrogate model training, since otherwise less

than 200 instances would be available for evasion attack crafting,

which would significantly lower the attack opportunities. Ideally,

a powerful clairvoyant attacker would choose in advance the best

training size for the surrogate model, and therefore perform as

the best of the considered baselines. We would like to show that

AMEBA approximates such clairvoyant attacker, or even improves

over it, thus proving that adaptive attack strategies can subsume

static ones.

We evaluate the performance of the attack strategies in terms of

the following two measures:

(1) absolute number of successful evasion attacks against the tar-

get model, i.e., number of mispredictions forced on correctly

classified instances;

(2) transferability, i.e., the percentage of successful evasion at-

tacks out of all the attempted evasion attacks against the

target model.

The first measure is the most important for the attacker consid-

ered in our threat model, who wants to craft as many successful

evasion attacks as possible, yet we also keep an eye on the sec-

ond measure, given that it has been extensively studied in the

literature [8, 19]. Note that, since AMEBA relies on probabilistic

sampling, the two measures are computed as the average of the

results obtained in 10 different runs.

4.3 Experimental Results
We start by commenting the results on the Spambase dataset, which

are shown in Figure 2. The outer bars represent the number of eva-

sion attacks successfully crafted against the surrogate model, while

the inner bars show those which turned out to be effective on the

target model as well; the lines, instead, show the value of trans-

ferability. On the Spambase dataset, the results for Random Forest

and AdaBoost are very similar, and AMEBA outperforms the best-

performing baseline in terms of successful evasion attacks. For

example, in the case of Random Forest with perturbation 𝜀 = 0.10,

AMEBA generates 395 successful attacks, while the best-performing

baseline only produces 245 successful attacks (+61%). We also ob-

serve that, when the amount of perturbation 𝜀 increases from 0.10

to 0.15, crafting successful evasion attacks becomes easier and the

difference between AMEBA and the best-performing baseline de-

creases. However, AMEBA still significantly improves over the

baseline in terms of absolute number of successful evasion attacks:

560 vs. 462 in the case of Random Forest (+21%).

An important observation supported by our experiments is that,

while the transferability always tends to grow with the number of

queries spent for surrogate model training, it is hard to identify the

optimal amount of queries which maximizes the number of success-

ful evasion attacks. Indeed, though transferability improves with

larger training sizes, the number of queries available for evasion

attack crafting correspondingly becomes smaller, thus reducing

the attack opportunities and enforcing a delicate trade-off on how

queries to the target model should be spent. AMEBA automati-

cally deals with this problem, while keeping a very high value of

transferability, i.e., from 78% to 84% on Random Forest. Though the

transferability of the best-performing baseline ranges from 89% to

94% on Random Forest, this reduction in transferability is largely

compensated by the increased amount of successful attacks.

The results for logistic regression confirm the trends which we

observed for the other target models, but are interesting because

they also show a counter-intuitive phenomenon. Specifically, we

observe that the transferability of evasion attacks against logistic

regression is significantly lower than for the other two target mod-

els, which was quite unexpected given that logistic regression is

a differentiable model bearing stronger similarities to the surro-

gate model (Linear SVM). This is just one of the many surprises

that transferability might hide [8]. For the case 𝜀 = 0.10, AMEBA

generates 326 successful evasion attacks, as opposed to the 186 at-

tacks of the best-performing baseline on logistic regression (+75%).

Observe also that the transferability of the two attack strategies is

extremely close: 66% vs. 70% when considering the baseline which

produces the highest number of successful evasion attacks. Similar

considerations apply to the case 𝜀 = 0.15.

We now comment on the results for the Wine Quality dataset,

shown in Figure 3. The first observation here is that the results

on the three target models are very close and, notably, crafting

successful evasion attacks is generally harder than for the Spam-

base dataset, in terms of both absolute numbers and transferability.

Nevertheless, AMEBA still works better than the best-performing

baseline in all cases. For example, in the case of Random Forest with

perturbation 𝜀 = 0.20, the best-performing baseline produces 230

successful evasion attacks, while AMEBA generates 241 success-

ful attacks (+5%). This result is already positive, since the attacker

does not know what the optimal baseline is. When the amount

of perturbation 𝜀 increases from 0.20 to 0.25, evading the target

model becomes easier and the gap between AMEBA and the best-

performing baseline becomes more apparent. In particular, AMEBA

can generate 454 successful evasion attacks, as opposed to the 406

attacks of the best-performing baseline (+12%). The transferability

of the evasion attacks generated by AMEBA is very close to that of

the best-performing baseline in the case of decision tree ensembles,

and particularly for Random Forest, while the gap is bigger for

logistic legression. However, transferability is still reasonably high

in general, ranging from 65% at worst to 71% at best.

Finally, we report in Figure 4 the results for the CodRNA dataset.

The results are again very positive and even show improvements

over the other datasets: AMEBA does not just generate a higher

number of successful evasion attacks than the best-performing base-

line, but it also improves over most baselines in terms of transfer-

ability. For example, in the case of Random Forest with perturbation

𝜀 = 0.10, the best-performing baseline produces 290 successful eva-

sion attacks, while AMEBA can craft 411 successful attacks (+42%).

The evasion attacks crafted by AMEBA have a transferability of 64%,

which is very close to the transferability of the baseline producing

the largest number of successful attacks (65%). When moving to

𝜀 = 0.15, the best-performing baseline identifies 475 successful eva-

sion attacks, while AMEBA produces 560 successful attacks (+18%).

The evasion attacks crafted by AMEBA have a transferability of

75%, a value which improves over most baselines and is quite close

to the transferability of the baseline producing the largest number

of successful attacks (78%).

4.4 Why AMEBAWorks?
To better understand why AMEBA is effective in crafting evasion

attacks, we also carry out some additional analyses. In the first

one, we focus on the alternation between the Train and the Attack
actions chosen by AMEBA. Figure 5 presents the results of our

analysis on the Spambase dataset. The figure uses red and blue

lines to show the trend of the average reward for the Attack and
the Train actions respectively; the background of the plots shows

instead which of the two actions was taken at each round. The

figure shows some interesting trends and, to appreciate them, we

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

Ev
ad

in
g

in
st

an
ce

s

Spambase RandomForest, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(a)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

Ev
ad

in
g

in
st

an
ce

s

Spambase AdaBoost, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(b)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

Ev
ad

in
g

in
st

an
ce

s

Spambase Logistic Regression, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(c)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

Ev
ad

in
g

in
st

an
ce

s

Spambase RandomForest, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(d)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700
Ev

ad
in

g
in

st
an

ce
s

Spambase AdaBoost, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(e)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

Ev
ad

in
g

in
st

an
ce

s

Spambase Logistic Regression, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(f)

Figure 2: Experimental results on the Spambase dataset

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

50

100

150

200

250

300

350

Ev
ad

in
g

in
st

an
ce

s

Wine RandomForest, = 0.20

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(a)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

50

100

150

200

250

300

350

Ev
ad

in
g

in
st

an
ce

s

Wine AdaBoost, = 0.20

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(b)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

50

100

150

200

250

300

350

400

Ev
ad

in
g

in
st

an
ce

s

Wine Logistic Regression, = 0.20

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(c)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

Ev
ad

in
g

in
st

an
ce

s

Wine RandomForest, = 0.25

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(d)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

Ev
ad

in
g

in
st

an
ce

s

Wine AdaBoost, = 0.25

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(e)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

Ev
ad

in
g

in
st

an
ce

s

Wine Logistic Regression, = 0.25

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(f)

Figure 3: Experimental results on the Wine Quality dataset

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

Ev
ad

in
g

in
st

an
ce

s

Codrna RandomForest, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(a)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

Ev
ad

in
g

in
st

an
ce

s

Codrna AdaBoost, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(b)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

Ev
ad

in
g

in
st

an
ce

s

Codrna Logistic Regression, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(c)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

Ev
ad

in
g

in
st

an
ce

s

Codrna RandomForest, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(d)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

Ev
ad

in
g

in
st

an
ce

s
Codrna AdaBoost, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(e)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

600

700

800

Ev
ad

in
g

in
st

an
ce

s

Codrna Logistic Regression, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(f)

Figure 4: Experimental results on the CodRNA dataset

0 100 200 300 400 500 600 700 800 900
Round

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

Spambase RandomForest, = 0.10
Attack Action
Train Action

(a)

0 100 200 300 400 500 600 700 800 900
Round

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

Spambase AdaBoost, = 0.10
Attack Action
Train Action

(b)

0 100 200 300 400 500 600 700 800 900
Round

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

Spambase Logistic Regression, = 0.10
Attack Action
Train Action

(c)

0 100 200 300 400 500 600 700 800 900
Round

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

Spambase RandomForest, = 0.15

Attack Action
Train Action

(d)

0 100 200 300 400 500 600 700 800 900
Round

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

Spambase AdaBoost, = 0.15
Attack Action
Train Action

(e)

0 100 200 300 400 500 600 700 800 900
Round

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

Spambase Logistic Regression, = 0.15
Attack Action
Train Action

(f)

Figure 5: Actions and mean rewards on the Spambase dataset

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

50

100

150

200

250

Ev
ad

in
g

in
st

an
ce

s

Spambase RandomForest, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(a)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

50

100

150

200

250

Ev
ad

in
g

in
st

an
ce

s

Spambase AdaBoost, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(b)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

50

100

150

200

250

300

Ev
ad

in
g

in
st

an
ce

s

Spambase Logistic Regression, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(c)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

Ev
ad

in
g

in
st

an
ce

s

Spambase RandomForest, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(d)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

Ev
ad

in
g

in
st

an
ce

s
Spambase AdaBoost, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(e)

Ours100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Training instances

0

100

200

300

400

500

Ev
ad

in
g

in
st

an
ce

s

Spambase Logistic Regression, = 0.15

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(f)

Figure 6: Experimental results on the Spambase dataset (without queue for instance reuse)

recall that AMEBAworks better against tree ensembles than against

logistic regression on the Spambase dataset. When the perturbation

is smaller (𝜀 = 0.10) and the target model is quite vulnerable to eva-

sion (Random Forest and AdaBoost), AMEBA shows the expected

trend: it first performs a number of Train actions to improve the

quality of the surrogate model, then it primarily moves to theAttack
action and tries to capitalize over it. The use of the Train action

thus becomes sporadic and only returns popular at the end of the

run, where the only instances which are left in Datk do not allow

for the creation of evasion attacks working against the surrogate

model. In the case of logistic regression, instead, AMEBA starts

with some Attack actions and then resorts to training, given the

encountered challenges of evasion; only after the mean reward of

the Attack action exceeds that of the Train action, AMEBA switches

back to evasion attack crafting. Note that, when the perturbation

becomes larger (𝜀 = 0.15), evasion attack crafting becomes easier

on all target models and AMEBA normally privileges the Attack
action over the Train action.

To conclude our analysis of the inner workings of AMEBA, we

carry out a last experiment to understand the impact of organiz-

ing Datk as a queue for evasion attack crafting. Recall that, when

AMEBA cannot craft an evasion attack for a given instance, that in-

stance is pushed back into Datk for later use rather than discarded.

The intuition here is that, since the surrogate model is refined over

time, instances leading to a failure at a given round might lead

to successful evasion attacks in a later round. Figure 6 shows the

results we would get on the Spambase dataset if we did not organize

Datk as a queue and rather discarded instances which cannot evade

the surrogate when they are first chosen for evasion attack crafting.

Observe that AMEBA would turn out to be less effective than the

best-performing baseline in the case of tree ensembles, where it

used to outperform it (cf. Figure 2). This confirms that adaptive at-

tack strategies have an inherent potential to outperform traditional

two-step attack strategies, where a large number of instances can

never be used to craft successful evasion attacks.

4.5 Performance Evaluation
AMEBA can be more computationally expensive than traditional

two-step attack strategies proposed in prior work, most notably

because the number of training rounds is dynamically chosen, hence

the surrogate model might be trained a large number of times. In

particular, recall that the surrogate model is retrained after each

Train action. However, supervised learning algorithms for simple

models like Linear SVMare very efficient andAMEBA is fast enough

for practical usage. To prove this claim, we compute the total time

spent to carry out an adaptive attack through AMEBA (up to query

budget exhaustion) and the average time spent to craft a successful

evasion attack against the target model.

Our experiments show that the performance of AMEBA are per-

fectly appropriate for practical use. Table 3 shows our performance

measurement for the the different experimental settings, averaged

over 10 runs performed on a standard commercial machine. It is

possible to see that the attacker can use AMEBA to carry out an

adaptive black-box attack using 𝑇 = 1000 queries to the target

model just in a matter of minutes, i.e., in around 10 minutes in the

worst case (607 seconds). Remarkably, the average time spent to

Table 3: Performance evaluation of AMEBA. The Total Time column reports the total running time of AMEBA, while the
Average column reports the average time to perform a successful evasion attack. Times are expressed in seconds.

Spambase Wine Quality CodRNA
𝜀 = 0.10 Total Time Average 𝜀 = 0.20 Total Time Average 𝜀 = 0.10 Total Time Average

Random Forest 607 1.53 Random Forest 392 1.63 Random Forest 312 0.76

AdaBoost 317 0.81 AdaBoost 214 0.96 AdaBoost 193 0.46

Log. Regression 243 0.75 Log. Regression 241 0.92 Log. Regression 103 0.24

𝜀 = 0.15 Total Time Average 𝜀 = 0.25 Total Time Average 𝜀 = 0.15 Total Time Average
Random Forest 267 0.48 Random Forest 191 0.42 Random Forest 261 0.46

AdaBoost 150 0.28 AdaBoost 176 0.37 AdaBoost 133 0.23

Log. Regression 99 0.23 Log. Regression 143 0.30 Log. Regression 61 0.11

craft a successful evasion attack is very low, since it is less than

2 seconds in the worst case and less than 1 second in most cases.

This also confirms that the adoption of the Thompson sampling

algorithm is an effective choice in terms of running times.

4.6 Discussion
Overall, our experimental evaluation shed light on two important,

general observations, which motivate the importance of designing

adaptive attack strategies like AMEBA. The first point is that finding

the optimal trade-off between surrogate model training and evasion

attack crafting is far from straightforward. By considering multiple

baselines with a different number of training rounds, we showed

that the effectiveness of black-box evasion attacks has the shape of

a bell curve whose maximum may be hard to predict (see Figure 2

and Figure 3). This means that there is no immediate way to know

when is the right time to switch from surrogate model training to

evasion attack crafting, i.e., the effectiveness of traditional two-step

attack strategies can be significantly affected by such choice.

The second observation we make is that adaptive attack strate-

gies like AMEBA do not just approximate the best-performing

baseline, which would already be a relevant achievement given the

challenges discussed above, but have the potential to outperform

them, as we observed on the Spambase dataset. The key point here

is that a traditional two-step attack strategy commits to a specific

surrogate model: if the surrogate is not good enough to craft evasion

attacks for a given instance, that instance cannot evade the target

model and must be discarded. Instead, an adaptive attack strategy

dynamically refines the surrogate model, hence instances which

cannot be attacked at a given round might evade the target model

at a later round: this point can be appreciated by comparing the

results in Figure 2 against those in Figure 6. Note that the ability of

optimally using the available instances for evasion attack crafting

is particularly important when the collection of labeled instances

is costly and hard for the attacker, e.g., due to the lack of publicly

available datasets.

Finally, we note that AMEBA is a novel attack, yet it is essentially

an optimization of traditional attack strategies based on transfer-

ability. Finding provably robust defenses against transferability is

still an open problem [29]. We do not expect AMEBA to fundamen-

tally change the landscape of the research on such defenses, but we

advocate the adoption of adaptive attack strategies to make their

security evaluation more meaningful in practice.

5 RELATEDWORK
Practical black-box evasion attacks against ML have first been pro-

posed by Papernot et al. [20]. They introduced the two-step attack

strategy based on surrogate model training and evasion attack craft-

ing, which was considered in the present paper and leveraged by

other prominent work in the area [16, 19]. However, none of these

papers discussed how to optimally switch from step 1 to step 2

during the attack and rather assumed the application of a fixed

number of surrogate training rounds. An alternative black-box at-

tack strategy, known as query-only, avoids the surrogate model

training step and rather tries to directly estimate the gradient of

the target model by performing multiple queries to it [4, 5]. These

two attack strategies are complementary: the former is efficient

in terms of the number of queries to the target model, but pro-

duces evasion attacks with relatively low success rate; the latter,

instead, crafts very effective evasion attacks, but requires many

more queries to the target model just to evade a single instance.

This has been discussed in prior work proposing combinations of

transferability-based attacks and query-only attacks, trying to get

the best of the two worlds [7, 14, 27]. This line of work can directly

take advantage of the adaptive approach proposed by AMEBA.

Recent papers focused on how to reduce the number of queries

required by query-only attacks through different optimizations,

while preserving their effectiveness [1, 6, 12, 13]. Though this line

of research is promising, the number of queries required by query-

only attacks are still orders of magnitude higher than what can

be achieved via surrogate model training. Most notably, observe

that the same surrogate can be used to attack all the instances of

interest, which makes evasion attacks based on surrogates inher-

ently cheaper and harder to detect. This motivates the still strong

interest in transferability by the research community [8, 18, 25, 31].

In particular, we highlight here an important point: even adver-

sarially trained models might be vulnerable to black-box evasion

attacks based on transferability, as noted by Tramèr et al. [29]. The
same paper empirically showed that enriching the training set with

evasion attacks from different surrogate models can improve ro-

bustness against such attacks. However, as noted by the authors in

an addendum from April 2020, recent work proposed more sophis-

ticated techniques to craft evasion attacks, which can circumvent

their defense technique [9, 10, 30]. These recent advances in the

area focused on the design of new evasion attack crafting algo-

rithms, which provide better transferability, but they still assume

the existence of a pre-trained surrogate model. As such, they play

a complementary role with respect to our study, which instead

focuses on how to deal with the inherent tension between surro-

gate model training and evasion attack crafting in a query-limited

setting. We expect our results to immediately generalize to other

algorithms for evasion attack crafting besides the FGV algorithm

which we used. In the end, our paper proposes a different angle on

the design space which can be explored to improve the effectiveness

of black-box evasion attacks against ML.

6 CONCLUSION
We proposed AMEBA, the first adaptive approach to the black-box

generation of evasion attacks against ML models. AMEBA exploits

a formal reduction to the Bernoulli MAB problem to identify the

best sequence of adversarial actions to evade a target classifier via

transferability. We experimentally showed that AMEBA can out-

perform traditional attack strategies and effectively solve a delicate

trade-off in the use of queries to the target model overlooked by

previous work. We recommend the adoption of adaptive attack

strategies like AMEBA when evaluating the security of ML models

against black-box attacks from now on.

We foresee several avenues for future work. First, we would like

to experiment with different rewards for the Train action in our

reduction to MAB, since the cross-validation score is just one of

many plausible measures to consider. Then, we would like to extend

our experimental evaluation to more sophisticated attack strategies,

where instances for surrogate model training are not randomly

chosen, but rather crafted to maximize the similarity between the

surrogate and the target [20]. Finally, we plan to generalize our

approach to the case where the output of the target model is not just

a class label, but rather a confidence score or a probability vector.

This additional amount of information might support the design

of more sophisticated heuristics to assign the rewards of the two

actions in our reduction to MAB.

REFERENCES
[1] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. 2018. Practical Black-Box

Attacks on Deep Neural Networks Using Efficient Query Mechanisms. In ECCV
(Lecture Notes in Computer Science, Vol. 11216). Springer, 158–174.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion Attacks against

Machine Learning at Test Time. In ECML PKDD (Lecture Notes in Computer
Science, Vol. 8190). Springer, 387–402.

[3] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognit. 84 (2018), 317–331.
[4] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-Based Ad-

versarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.

In ICLR. OpenReview.net.
[5] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.

ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Net-

works without Training Substitute Models. In AISec@CCS. ACM, 15–26.

[6] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jinfeng Yi, and Cho-Jui

Hsieh. 2019. Query-Efficient Hard-label Black-box Attack: AnOptimization-based

Approach. In ICLR. OpenReview.net.
[7] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Im-

proving Black-box Adversarial Attacks with a Transfer-based Prior. In NeurIPS.
10932–10942.

[8] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,

Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why Do Adversarial

Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks.

In USENIX Security. USENIX Association, 321–338.

[9] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and

Jianguo Li. 2018. Boosting Adversarial Attacks With Momentum. In CVPR. IEEE
Computer Society, 9185–9193.

[10] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Evading Defenses to

Transferable Adversarial Examples by Translation-Invariant Attacks. In CVPR.
Computer Vision Foundation / IEEE, 4312–4321.

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In ICLR. OpenReview.net.
[12] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-box

Adversarial Attacks with Limited Queries and Information. In ICML. PMLR,

2142–2151.

[13] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. 2019. Prior Convictions:

Black-box Adversarial Attacks with Bandits and Priors. In ICLR. OpenReview.net.
[14] Mika Juuti, Buse Gul Atli, and N. Asokan. 2019. Making Targeted Black-box

Evasion Attacks Effective and Efficient. In AISec@CCS 2019. ACM, 83–94.

[15] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

Based Learning Applied to Document Recognition. Proc. IEEE 86 (12 1998), 2278

– 2324.

[16] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving into Trans-

ferable Adversarial Examples and Black-box Attacks. In ICLR. OpenReview.net.
[17] Daniel Lowd and Christopher Meek. 2005. Good Word Attacks on Statistical

Spam Filters. In CEAS. http://www.ceas.cc/papers-2005/125.pdf

[18] Muzammal Naseer, Salman H. Khan, Muhammad Haris Khan, Fahad Shahbaz

Khan, and Fatih Porikli. 2019. Cross-Domain Transferability of Adversarial

Perturbations. In NeurIPS. 12885–12895.
[19] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. 2016. Trans-

ferability in Machine Learning: from Phenomena to Black-Box Attacks using

Adversarial Samples. CoRR abs/1605.07277 (2016). arXiv:1605.07277 http:

//arxiv.org/abs/1605.07277

[20] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay

Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine

Learning. In AsiaCCS. ACM, 506–519.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[22] Andras Rozsa, Ethan M. Rudd, and Terrance E. Boult. 2016. Adversarial Diversity

and Hard Positive Generation. In CVPR Workshops. IEEE Computer Society, 410–

417.

[23] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen.

2018. A Tutorial on Thompson Sampling. Foundations and Trends in Machine
Learning 11, 1 (2018), 1–96.

[24] Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Foundations
and Trends in Machine Learning 12, 1-2 (2019), 1–286.

[25] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daumé III, and Tudor

Dumitras. 2018. When Does Machine Learning FAIL? Generalized Transferability

for Evasion and Poisoning Attacks. In USENIX Security. USENIX Association,

1299–1316.

[26] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[27] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. 2020. Hybrid Batch At-

tacks: Finding Black-box Adversarial Examples with Limited Queries. In USENIX.
USENIX Association, 1327–1344.

[28] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In ICLR. OpenReview.net.
[29] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh,

and Patrick D. McDaniel. 2018. Ensemble Adversarial Training: Attacks and

Defenses. In ICLR. OpenReview.net.
[30] Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. 2020.

Skip Connections Matter: On the Transferability of Adversarial Examples Gener-

ated with ResNets. In ICLR. OpenReview.net.
[31] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and

Alan L. Yuille. 2019. Improving Transferability of Adversarial Examples With

Input Diversity. In CVPR. Computer Vision Foundation / IEEE, 2730–2739.

http://www.ceas.cc/papers-2005/125.pdf
https://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277

A DEEP LEARNING RESULTS
To show that our proposal generalizes to deep learning models,

which are increasingly used for perceptual tasks like image recog-

nition, we also carry out an additional experiment on the standard

MNIST dataset.
6
In particular, we use 40000 instances of MNIST to

train four deep learning models from the literature as targets. The

models are taken from [27] and its shared code.
7
Specifically, we

train the following targets:

• a standard Convolutional Neural Network (CNN), which is

a simple model for image classification;

• the Model A and Model C networks, which are more sophis-

ticated models exhibiting near-perfect accuracy on MNIST;

• a variant of the Model A network where we remove the drop-

out layers. Since drop-out layers provide robustness against

noise, we might expect this network to be more vulnerable

to evasion attacks than Model A.

We use the Caffe
8
variant of a traditional LeNet [15] network as

surrogate in all cases. This model has roughly the same complexity

of the target CNN, while being significantly smaller than the other

target models in terms of number of parameters. We report in

Table 4 the architectures of all the networks for reference.

We assume a perturbation 𝜀 = 3.0, creating images which are

still recognizable by humans. We provide examples of perturbed

images in Figure 7. Finally, we assume the attacker can perform

𝑇 = 3000 queries to the target model. We assign a larger budget to

the attacker in this experiment, because neural network models are

more complex and require more data to be trained.

(a) (b) (c)

Figure 7: Examples of perturbed images

The target models are trained for a maximum number of 200

epochs with Adam, a learning rate of 10
−3

and batch size 128. The

effective number of epochs is selected by stopping the training

process after 50 epochs in which the validation loss has not im-

proved. We extract 10000 instances from the MNIST dataset as a

validation set for early-stopping. All target models achieve at least

99% accuracy on a randomly sampled test set of 10000 instances.

The surrogate model is trained for 15 epochs with Adam, a learning

rate of 10
−3

and batch size 32. We train both the target models and

the surrogate using data augmentation, with a random rotation of

±20 degrees of the digit at most, a random right and left shift of 0.2

6
http://yann.lecun.com/exdb/mnist/

7
https://github.com/suyeecav/Hybrid-Attack

8
https://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-

lenet.ipynb

of the total width of the image at most and a random zoom in the

range 0.8 - 1.2 (the value 1 leaves the instance unmodified).

Figure 8 presents the results of the experimental evaluation.

It is immediate to observe that AMEBA outperforms the best-

performing baseline in terms of absolute number of successful

evasion attacks. The percent increase with respect to the best-

performing baseline ranges from +22% to +40% across the four

target models. At the same time, the transferability of the evasion

attacks crafted by AMEBA is roughly the same of what is achieved

by the baseline. Surprisingly, our results show that Model A is easier

to evade than its variant without drop-out layers. We conjecture

this might come from the observation that random noise is not

necessarily a good approximation of adversarial noise [3].

B IMPACT OF THE NUMBER OF QUERIES
Figure 9 shows additional experimental results under the assump-

tion that the attacker can perform 2000 queries to the target model,

rather than just 1000. This is useful to show that our experiments

are not biased by the chosen number of queries, which is an as-

sumption on the attacker’s power: indeed, we observe a similar

figure with respect to the plots in Section 4. For space reasons, we

only report the results for the smaller of the two perturbations 𝜀

that we considered in the original experiments. We observe that

increasing the number of queries used for training typically pro-

vides a better transferability for the baseline: most cases show a

monotonic increase in transferability. However, a better transfer-

ability does not necessarily lead to a larger number of successful

evasion attacks: the best-performing baseline in terms of successful

evasion attacks typically uses a relatively low number of queries in

the training phase, so that more evasion attempts are possible. Our

experiments clearly show that the amount of successful evasion

attacks generated by AMEBA still outperforms the best-performing

baseline, for all datasets and models. For example, in the case of the

Random Forest model trained over the Spambase dataset, the best-

performing baseline crafts 644 successful evasion attacks, while

AMEBA can produce 902 successful attacks (+40%). At the same

time, the transferability of the evasion attacks produced by AMEBA

stays in a very acceptable range, from 60% at worst to 78% at best

across the different settings.

Table 4: Neural network architectures used in this work.

CNN Model A Model C LeNet
Conv(32, 3, 3) + Relu Conv(64, 5, 5) + Relu Conv(128, 3, 3) + Relu Conv(20, 5, 5) + Relu

Conv(64, 3, 3) + Relu Conv(64, 5, 5) + Relu Conv(64, 3, 3) + Relu MaxPool(2,2)

MaxPool(2,2) Dropout(0.25) Dropout(0.25) Conv(50, 5, 5) + Relu

Dropout(0.25) FC(128) + Relu FC(128) + Relu MaxPool(2,2)

FC(128) + Relu Dropout(0.5) Dropout(0.5) FC(500) + Relu

Dropout(0.5) FC(10) + Softmax FC(10) + Softmax FC(10) + Softmax

FC(10) + Softmax

Ours 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Training instances

0

500

1000

1500

2000

2500

Ev
ad

in
g

in
st

an
ce

s

Mnist CNN, = 3.00

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(a)

Ours 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Training instances

0

500

1000

1500

2000

2500

Ev
ad

in
g

in
st

an
ce

s

Mnist Model A, = 3.00

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(b)

Ours 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Training instances

0

500

1000

1500

2000

2500

3000

Ev
ad

in
g

in
st

an
ce

s

Mnist Model C, = 3.00

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(c)

Ours 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Training instances

0

500

1000

1500

2000

2500

Ev
ad

in
g

in
st

an
ce

s

Mnist Model A no dropout, = 3.00

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(d)

Figure 8: Experimental results on the MNIST dataset

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

Ev
ad

in
g

in
st

an
ce

s

Spambase RandomForest, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(a)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

Ev
ad

in
g

in
st

an
ce

s

Spambase AdaBoost, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(b)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

Ev
ad

in
g

in
st

an
ce

s

Spambase Logistic Regression, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(c)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

100

200

300

400

500

600

700

800

Ev
ad

in
g

in
st

an
ce

s

Wine RandomForest, = 0.20

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(d)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000
Ev

ad
in

g
in

st
an

ce
s

Wine AdaBoost, = 0.20

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(e)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

Ev
ad

in
g

in
st

an
ce

s

Wine Logistic Regression, = 0.20

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(f)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

1400

1600

Ev
ad

in
g

in
st

an
ce

s

Codrna RandomForest, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(g)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

1400

1600

Ev
ad

in
g

in
st

an
ce

s

Codrna AdaBoost, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sf

er
ab

ilit
y

AMEBA - Transferability
Baseline - Transferability

(h)

Ours 200 400 600 800 1000 1200 1400 1600 1800
Training instances

0

200

400

600

800

1000

1200

1400

1600

Ev
ad

in
g

in
st

an
ce

s

Codrna Logistic Regression, = 0.10

AMEBA - Surrogate
AMEBA - Target
Baseline - Surrogate
Baseline - Target

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

ab
ilit

y

AMEBA - Transferability
Baseline - Transferability

(i)

Figure 9: Experimental results for 𝑇 = 2000 queries

	Abstract
	1 Introduction
	2 Background
	2.1 Evasion Attacks
	2.2 Multi-Armed Bandit

	3 Adaptive Black-Box Attacks
	3.1 Threat Model
	3.2 Adaptive Attack Strategy via MAB
	3.3 AMEBA

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Methodology
	4.3 Experimental Results
	4.4 Why AMEBA Works?
	4.5 Performance Evaluation
	4.6 Discussion

	5 Related Work
	6 Conclusion
	References
	A Deep Learning Results
	B Impact of the Number of Queries

