
Adversarial Training of Gradient-Boosted Decision Trees
Stefano Calzavara

Università Ca’ Foscari Venezia

stefano.calzavara@unive.it

Claudio Lucchese

Università Ca’ Foscari Venezia

claudio.lucchese@unive.it

Gabriele Tolomei

Sapienza Università di Roma

tolomei@di.uniroma1.it

ABSTRACT
Adversarial training is a prominent approach to make machine

learning (ML) models resilient to adversarial examples. Unfortu-

nately, such approach assumes the use of differentiable learning

models, hence it cannot be applied to relevant ML techniques, such

as ensembles of decision trees. In this paper, we generalize adver-

sarial training to gradient-boosted decision trees (GBDTs). Our

experiments show that the performance of classifiers based on ex-

isting learning techniques either sharply decreases upon attack or

is unsatisfactory in absence of attacks, while adversarial training

provides a very good trade-off between resiliency to attacks and

accuracy in the unattacked setting.

CCS CONCEPTS
• Information systems → Data mining; • Security and pri-
vacy → Formal methods and theory of security.

KEYWORDS
Adversarial learning; Decision trees; Tree ensembles

ACM Reference Format:
Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. 2019. Adver-

sarial Training of Gradient-Boosted Decision Trees. In The 28th ACM Inter-
national Conference on Information and Knowledge Management (CIKM’19),
November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3357384.3358149

1 INTRODUCTION
Machine learning (ML) has become a key component of many ser-

vices we use on a daily basis, yet it is now acknowledged that ML

is easily fooled by adversarial examples, i.e., carefully-crafted in-

puts designed to force prediction errors [5, 8, 10, 13]. Recall that

traditional ML is based on the empirical risk minimization principle:
given a training set Dtrain = {(®xi ,yi)}

n
i=1 of correctly labeled in-

stances and a set of hypothesesH , ML identifies the function f ∈ H

which assigns to the training instances ®xi the best approximation

of their labelsyi , with the understanding that f will generalize well

to unseen data. Formally, f is found by minimizing a loss function

ℓ, which measures the cost of the prediction errors over Dtrain:

f = argmin

h∈H

n∑
i=1
ℓ(h(®xi),yi). (1)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00

https://doi.org/10.1145/3357384.3358149

Adversarial examples consist in malicious corruptions of existing

instances that are crafted to be mis-classified by the ML model at

test time. The main goal of adversarial learning research is making

ML robust against adversarial examples, most notably through the

development of novel attacker-aware learning algorithms [1, 6].

A prominent adversarial learning approach is called adversarial
training [9]. Given a set of perturbations A defining the attacker’s

capabilities, adversarial training requires the minimization of the

loss function ℓ over Dtrain under the conservative assumption that

the attacker will always pick the perturbations inAwhichmaximize

the loss. More formally, adversarial training can be spelled out in

terms of the following optimization problem:

f = argmin

h∈H

n∑
i=1

max

®zi ∈A(®xi)
ℓ(h(®zi),yi). (2)

Though the adversarial training formulation in Equation 2 is

very elegant and appealing, it does not yield itself to standard op-

timization approaches, since it involves both a non-convex outer

minimization problem and a non-concave inner maximization prob-

lem. Previous research tackled this issue by showing that, for deep

neural networks, a pragmatically good approach is generating a sin-

gle adversarial instance ®zi for each training instance ®xi by means of

gradient-based methods, such as the Fast Gradient Sign Method [5]

and its multi-step variants [8]. Unfortunately, such gradient-based

approach assumes the use of differentiable learning models, hence

it cannot be applied to relevant ML techniques like ensembles of

decision trees, whose decision function is either flat or discontinuous
everywhere [2]. This is a major shortcoming, since decision tree en-

sembles proved extremely effective for non-perceptual tasks and are

one of the most successful techniques in Kaggle competitions [3].

Contributions: In this paper, we generalize adversarial training

to decision tree ensembles. In particular we start from the obser-

vation that decision trees are based on known thresholds, which
allow one to reduce the set of possible perturbations to a finite set

without loss of generality. This enables the use of differentiable

approximations of the maximum function in Equation 2, thus mak-

ing the optimization problem tractable. We then implement our

approach on top of the LightGBM framework for gradient-boosted

decision trees (GBDTs) and compare its performance on a public

dataset against two baselines: a traditional ensemble of GBDTs

and an ensemble of trees trained through adversarial boosting, a
state-of-the-art adversarial learning technique [7]. Our experiments

show that the performance of classifiers based on existing learning

techniques either sharply decreases upon attack or is unsatisfactory

in absence of attacks, while adversarial training provides a very

good trade-off between resiliency to attacks and accuracy in the

unattacked setting.

https://doi.org/10.1145/3357384.3358149
https://doi.org/10.1145/3357384.3358149

2 ADVERSARIAL TREE LEARNING
Decision trees are binary trees which assign label predictions to

instances by performing thresholding over feature values. A deci-

sion tree t is inductively defined as either a leaf containing a label

prediction ŷ or a non-leaf node (f ,v, tl , tr), where f identifies a

feature,v is the corresponding threshold and tl , tr are decision trees.
At test time, the instance ®x traverses the tree t until it reaches the
leaf assigning its prediction. Specifically, for each visited non-leaf

node (f ,v, tl , tr), ®x falls into the left tree tl if xf ≤ v , while it falls
into the right tree tr otherwise.

Given a training setDtrain = {(®xi ,yi)}
n
i=1, traditional algorithms

for decision tree learning first compute the best label prediction

on Dtrain for a decision tree composed of a single leaf and then

assess if it is possible to reduce the loss by replacing such leaf

with a non-leaf node leading to two new leaves with predictions

ŷl , ŷr respectively. The best replacement is found by an exhaustive

search over all the possible features f and thresholds v occurring

inDtrain, computing the predictions ŷl , ŷr which minimize the loss

over Dl = {(®xi ,yi) ∈ Dtrain | xf ≤ v} and Dr = Dtrain \ Dl ,

respectively. The construction recursively proceeds on the new

leaves and stops when it is not possible to further reduce the loss or

a given termination criterion is met, e.g., the depth of the decision

tree exceeds a fixed bound.

The key observation of our adversarial training approach is that,

since it is possible to pre-compute all the possible thresholds which

will occur in any decision tree built from a given training setDtrain,

it is also possible to reduce the set of adversarial perturbations A to

a finite set A without loss of generality. Indeed, given any feature

f , it is possible to identify a partition of its range in the intervals:

(−∞,v1], (v1,v2], . . . , (vk−1,vk], (vk ,+∞),

wherev1, . . . ,vk are the possible values of the feature f observed in
Dtrain. By iterating such reasoning over all features, it is possible to

identify a partition of the feature space in a finite set of equivalence
classes, so that any two elements of the same class follow exactly

the same path upon decision tree traversal. This allows us to replace

the set of perturbations A in Equation 2 with the finite set A of the

(arbitrarily chosen) representatives of the equivalence classes.
One last issue in the optimization of Equation 2 is its non dif-

ferentiability, due to maximum function, which prevents us to ex-

ploit any standard gradient-based optimization technique, e.g., back-

propagation [12] or gradient boosting [4]. To overcome this issue

in a classifier-independent way, we propose instead the use of the

LogSumExp (LSE) function, which is a differentiable approximation

of the maximum. Recall that, given a set of values {w1, . . . ,wn },

we have LSE({w1, . . . ,wn }) = log(
∑n
i=1 e

wi). Hence, the adversar-

ial training problem in Equation 2 can be approximated by the

following differentiable optimization problem:

f = argmin

h∈H

n∑
i=1

log

©­«
∑

®zi ∈A(®xi)

eℓ(h(®zi),yi)
ª®¬ . (3)

The loss in Eq. 3 is differentiable provided that the instance-level

loss ℓ is differentiable. This is the case for most instance-level losses.

Remarkably, this method is agnostic from the choice of the specific

machine learning algorithm, e.g., it can be applied to both deep

{ "conditions": {
"name": "hours_per_week",
"operator": "greater_than",
"value": 0 },

"actions": {
"name": "perturb_hours_per_week",
"params": { "increment": 4,

"cost": 4,
"max-budget": 8 }

}
}

Table 1: Example of attack rule

neural networks and decision trees. Indeed, in our experimental sec-

tion, we apply the proposed technique to gradient boosted decision
trees [4], which are a powerful machine learning approach largely

ignored by the existing adversarial learning literature, despite its

effectiveness at dealing with non-perceptual tasks.

3 CASE STUDY: CENSUS INCOME
3.1 Experimental Setup
We implemented the adversarial training approach formalized in

Equation 3 on top of the LightGBM framework
1
for training gradient-

boosted decision trees (GBDTs). We compare our proposal against

two alternative approaches: (i) a traditional ensemble of GBDTs

as provided by LightGBM, which does not implement any built-in

protection against attacks at test time, but is supposed to provide

optimal performance in absence of attacks; and (ii) the adversarial
boosting approach, which makes GBDT classifiers attacker-aware

by performing multiple boosting rounds over a training set ex-

tended with the adversarial examples which are most effective up

to the previous boosting round. We implemented such approach on

top of LightGBM, following the description in the original paper [7].

We implemented a simple domain specific language to express

the attacker’s capabilities in terms of rewriting rules subject to a

budget limitation. For example, the rule in Table 1 states that any

person who actively works can cheat on her number of working

hours by increasing their value by 4, provided that 4 units of budget

are spent. Since the rule also enforces that no more than 8 units

of budgets can be spent on such corruption attempts, adversarial

perturbations can only add at most 8 working hours to the original

feature value. Note that this simple model allows one to easily

model both categorical and numerical features.

3.2 Training and Evaluation
In our experiments, we consider the Census Income dataset from

the UCI ML Repository
2
, containing demographic information on

approximately 48k people. The prediction task is to guess whether

the yearly income of a person exceeds $50,000 (positive class) or not

(negative class), based on the following set of features: age, work

class, sampling weight, education level, marital status, occupation,

race, sex, capital gain, capital loss, working hours per week, and

native country. After removing the limited number of instances

including missing values, the dataset is split into 60%÷20%÷20%

portions: a training set of ≈27k instances, a validation set and a test

1
https://github.com/microsoft/LightGBM

2
https://archive.ics.uci.edu/ml/datasets/census+income

https://github.com/microsoft/LightGBM
https://archive.ics.uci.edu/ml/datasets/census+income

Precision Recall F1
No atk Atk No atk Atk No atk Atk

GBDT 0.763 0.625 0.635 0.635 0.693 0.630

Adv. Boosting 0.842 0.822 0.505 0.505 0.631 0.626

Adv. Training 0.764 0.653 0.663 0.663 0.710 0.658
Table 2: Experimental results (best results in boldface)

set of ≈9k instances each. These datasets are moderately skewed,

with around 3/4 of the instances belonging to the negative class.

For each model of interest, we train a classifier over the training

set and we use the validation set for hyperparameter tuning. We

use the logistic loss ℓ(h(®x),y) = log(1 + e−yh(®x)) as the underlying
loss function and we eventually select the best performing classifier

based on the value of its objective function on the validation set.

Finally, we assess the performance of the resulting classifiers by

computing the following standard measures on the test set: pre-

cision, recall, and F1, both in absence and in presence of attacks.

Evaluation under attack is performed by generating all the repre-

sentatives of the equivalence classes mentioned in Section 2.

3.3 Threat Model
The goal of the attacker is fooling the classifier into mispredicting

a yearly income higher than $50,000 and improperly qualify for

a loan, i.e., we let the attacker target just the negative instances.

Specifically, we let the attacker corrupt the following features: work
class: if the attacker never worked, she can pretend that she works

without pay (cost = 1, max budget = 1);marital status: if the attacker
is divorced or separated, she can pretend she never married (cost =

1, max budget = 1); occupation: any occupation can be presented

as a generic “other service” (cost = 1, max budget = 1); education
level: the attacker can cheat on her education level by lowering it

at most twice (cost = 1, max budget = 2); working hours per week:
the attacker can cheat on her working hours per week by adding

at most 8 hours at chunks of 4 (cost = 4, max budget = 8); capital
gain: the attacker can cheat on her capital gain by adding at most

$2,500 at chunks of $500 (cost = 50, max budget = 250).

We assign different values of budget units to the attacker: 5, 15,

150 and 300. Notice that the two extreme values respectively model

an attacker who can only corrupt the four categorical features and

an attacker who has enough budget to fully run all the attacks.

3.4 Experimental Results
Table 2 shows our validity measures on the trained MLmodels, both

in absence and in presence of attacks: for the sake of readability,

we just report the results of the evaluation against the strongest

attacker. Notice that the value of recall does not change upon attack,

since the attacker targets just the negative instances.

The numbers provide several interesting insights: the first obser-

vation we make is that, although traditional GBDT was expected

to provide the best performance in absence of attacks, it turns

out that adversarial training actually works better in terms of F1.
We conjecture that this might be due to a phenomenon similar to

regularization [11], i.e., the introduction of attacks in the optimiza-

tion problem solved at training time provides better generalization

power to the learned models, as if they had been exposed to addi-

tional training data. Though this might suggest that the attacker

is not powerful enough to perform effective attacks which signifi-

cantly deviate from the training data, observe that the performance

of standard GBDT sharply decreases upon attack, with the F1 score
lowering from 0.693 to 0.630. As expected, adversarial training pro-

vides much better performance against attacks than standard GBDT,

with the F1 score sitting at 0.658. Remarkably, adversarial training

provides the best performing classifier in terms of F1 score both
in absence and in presence of attacks, thus striking a very good

trade-off between accuracy and security. The only measure where

adversarial training is worse than its competitors is precision, where

adversarial boosting provides a significant improvement. However,

this is due to the fact that adversarial boosting completely sacrifices

recall in the name of precision, as testified by the lowest value

of F1. The reason behind this behavior is that, since attacks only

operate on the negative class, adversarial boosting sees a very large

number of negative instances at training time, which push it into

over-predicting the negative class to achieve a larger accuracy. This

does not happen in the case of adversarial training, which optimizes

a custom objective function and thus avoids such drawback of data

augmentation techniques like adversarial boosting.

To provide a more complete picture of the performance of the

trained models, we also plot their security evaluation curves for the
F1 score in Figure 1. Since both adversarial boosting and adversarial

training are parametric with respect to the choice of the attacker’s

budget used for training, we provide one curve per training budget.

We first highlight that adversarial boosting is quite sensitive to

the chosen budget: when small training budgets are used its per-

formance significantly decreases under stronger attacks, though

this phenomenon essentially disappears when using large training

budgets. In our experiments adversarial boosting exhibits close

yet worse performance than standard GBDT in terms of F1 score,
while the quality of the proposed adversarial training approach

is consistently better than its competitors, independently of the

budget given to the attacker. Last, we show in Figure 2 the value

of precision and recall for the different models, when varying the

attacker’s budget considered for training and for evaluation. The

plots confirm that adversarial boosting is highly unbalanced to-

wards precision, while GBDT and adversarial training provide a

much better trade-off between the two measures; still, adversarial

training is consistently better than GBDT in all the plots.

4 CONCLUSION
Adversarial training is a popular approach to make ML models

resilient to adversarial examples, yet its original formulation cannot

be applied to train decision tree ensembles. In this paper, we showed

how to generalize such approach to this important class of models

and we validated its effectiveness on a public dataset. As future

work, we plan to extend our experimental evaluation to additional

datasets and explore novel adversarial learning techniques based

on revised algorithms for decision tree learning, which optimize

the construction by avoiding the generation of the full set of the

attack representatives.

ACKNOWLEDGMENTS
This work was supported in part by the MIUR under grant “Dipar-

timenti di eccellenza 2018-2022” of the Department of Computer

Science of Sapienza University.

(a) train b = 5 (b) train b = 15 (c) train b = 150 (d) train b = 300

Figure 1: F1 score measured on Dtest against different train/test attacker’s budgets.

(a) train b = 5; test b = 0 (b) train b = 5; test b = 5 (c) train b = 15; test b = 0 (d) train b = 15; test b = 15

(e) train b = 150; test b = 0 (f) train b = 150; test b = 150 (g) train b = 300; test b = 0 (h) train b = 300; test b = 300

Figure 2: Precision and recall measured on Dtest against different train/test attacker’s budgets.

REFERENCES
[1] Biggio, B., and Roli, F. Wild patterns: Ten years after the rise of adversarial

machine learning. CoRR abs/1712.03141 (2017).
[2] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and

Regression Trees. Wadsworth, 1984.

[3] Chollet, F. Deep Learning with Python, 1st ed. Manning Publications Co.,

Greenwich, CT, USA, 2017.

[4] Friedman, J. H. Greedy function approximation: a gradient boosting machine.

Annals of statistics (2001), 1189–1232.
[5] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing

adversarial examples. CoRR abs/1412.6572 (2014).
[6] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I. P., and Tygar, J. D.

Adversarial machine learning. In AISec (2011), pp. 43–58.
[7] Kantchelian, A., Tygar, J. D., and Joseph, A. D. Evasion and hardening of tree

ensemble classifiers. In ICML (2016), pp. 2387–2396.

[8] Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial machine learning

at scale. CoRR abs/1611.01236 (2016).
[9] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep

learning models resistant to adversarial attacks. CoRR abs/1706.06083 (2017).
[10] Moosavi-Dezfooli, S., Fawzi, A., and Frossard, P. Deepfool: A simple and

accurate method to fool deep neural networks. In CVPR (2016), pp. 2574–2582.

[11] Ng, A. Y. Feature selection, l1 vs. l2 regularization, and rotational invariance. In

ICML ’04 (2004), ACM, pp. 78–.

[12] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Parallel distributed

processing: Explorations in the microstructure of cognition, vol. 1. Cambridge,

MA, USA, 1986, ch. Learning Internal Representations by Error Propagation,

pp. 318–362.

[13] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,

I. J., and Fergus, R. Intriguing properties of neural networks. CoRR abs/1312.6199
(2013).

	Abstract
	1 Introduction
	2 Adversarial Tree Learning
	3 Case Study: Census Income
	3.1 Experimental Setup
	3.2 Training and Evaluation
	3.3 Threat Model
	3.4 Experimental Results

	4 Conclusion
	Acknowledgments
	References

