Abstract Interpretation of Prolog Programs
with Cut and Built-ins

Agostino Cortesi Gilberto Filé Sabina Rossi
Dept. of Mathematics - University of Padova
Via Belzoni 7, I-35131 Padova ITALY
{cortesi, file, srossi}@pdmat1.unipd.it

Abstract

We are interested in the Abstract Interpretation of real Prolog programs and
in particular in handling the control primitive cut at the abstract level.
A cut can be executed during the abstract computation only if it is sure that the
same cut is executed in all the corresponding concrete computations. Therefore,
in order to execute cuts correctly during the static analysis, information about
the sure success or failure of the goals in the concrete computations must be
available. We call such information control information. Control information
can be inferred during the static analysis. In particular, we show that, with
the abstract domain EXP, defined in [CFil 91], one can easily infer control
information when treating the Prolog built-ins corresponding to tests on the
term instantiations. Assuming that control information is inferred during the
static analysis, we define a tabled interpreter for the Abstract Interpretation
of Prolog programs with cuts and built-ins. It executes a cut whenever the
control information guarantees that the same cut is also reached during the
concrete computations. This generic fixpoint algorithm always terminates on
finite abstract domains.

Introduction

Abstract Interpretation has been successfully developed in recent years for the static
analysis of programs. It has been applied to many types of languages. Originally,
flow-chart languages were considered [CCou 77]. Starting in the early 80's with
the work of Mellish [Mel 81] many researchers studied its application to logic program-
ning [JoSo 87, Bru 88, Deb 89, HeRo 89, MaSo 89, CFWi 91, GiHe 91, CFWi 92,
CCou 92] and more recently to concurrent constraint logic languages [MaSo 90,
Codo 90, CFM 90].

*Work supported by P.F. Sistemi Informatici e Calcolo Parallelo of CNR, grant 91.00026.69
Every Abstract Interpretation technique works roughly as follows: first one defines a simple (abstract) domain that represents the desired information and secondly one mimics the execution of the programs on this domain.

Our aim is to define a generic fixpoint algorithm for the Abstract Interpretation of real Prolog programs. In particular we are interested in handling the control primitive cut at the abstract level. In order to treat cuts during the abstract computation, information about the sure success of the goals in the concrete computations must be available. In fact, if a cut, that is not executed during the concrete computation (say, because of an earlier failure), is executed during the abstract one, then there may be concrete LD-derivations that are not simulated in the abstract computation, leading to an incomplete static analysis. One simple solution to this problem is to ignore the cuts during the abstract computation. However, it is interesting to be able to execute cuts also at the abstract level in order to eliminate from the abstract computation some useless LD-derivations and to obtain a more efficient and more precise static analysis. Obviously, it is safe to execute a cut during the abstract computation when it is sure that the same cut is executed in all the corresponding concrete computations. Therefore, information about the sure success or failure of the goals in the concrete computations must be inferred at the abstract level. Let us call this knowledge control information from now on.

One may wonder whether it is realistic to assume that control information can be inferred during a static analysis. We show that, with the abstract domain EXP [CFil 91] representing groundness and covering [Mel 81, Deb 89, MaSo 89], sharing [Deb 89, HeRo 89], freeness [Deb 89] and compoundness [Mel 81] substitution properties (but not real sophisticated type information), the inference process can be easy. More precisely, treating on EXP the Prolog built-ins that are tests on the term instantiations, control information about "sure success", "sure failure" and "unsure success" of the corresponding concrete tests can be produced. Assuming that control information is inferred during the abstract computation, we define a generic fixpoint algorithm for the Abstract Interpretation of Prolog programs with cuts and built-ins. This is done following the approach of [CoFi 91] in which both the concrete computation of a Prolog (and constraint) program P and its static analysis are obtained uniformly by executing them on different domains with the same general tabled interpreter I. In [CoFi 91], I is obtained by "adding a tabulation mechanism" to an interpreter that nondeterministically searches the SLD trees. Here we start from a standard Prolog interpreter St-I and add a tabulation mechanism to it. St-P is the obtained interpreter. St-P', in order to execute cuts safely, computes also control information that is consulted every time a cut is encountered in order to decide whether to execute it or to ignore it. St-P' is a generic fixpoint algorithm for the static analysis of Prolog programs.

This paper is organized as follows. Section 1 contains some preliminary definitions. In Section 2 we show how control information can be inferred by treating some Prolog built-ins on EXP. Section 3 contains the description of the tabled interpreter St-P'.
1 Preliminaries

The reader is assumed to be familiar with the basic concepts of Logic Programming, see for instance [Llo 87], [Apt 90]. If A is a relation, A^+ is the reflexive, symmetric and transitive closure of A. Let \mathbb{V} denote an arbitrarily large finite set of variables; Σ denotes a ranked alphabet of function and predicate symbols. Let $T(\Sigma, \mathbb{V})$ be the set of all terms constructed over Σ and \mathbb{V}. If t is a term, or an atom, or a clause, $\text{Var}(t)$ denotes the set of all the variables occurring in t. A substitution σ is a function $\mathbb{V} \rightarrow T(\Sigma, \mathbb{V})$. Subst denotes the set of all idempotent substitutions.

A program over a computation domain D is a finite ordered set of definite clauses of the form:

$$p(\overline{x}) \leftarrow A_1, \ldots, A_n$$

where $d \in D$, $p(\overline{x})$ is an atom with \overline{x} that is a variable vector, each A_i is either an atom $q(\overline{Y})$ with \overline{Y} that is a variable vector or a built-in or the primitive cut. Analogously a goal over a computation domain D is defined.

Observe that any Prolog program can be put in to this form where d will be a substitution.

The abstract domain EXP, defined in [CFil 91], synthesizes the groundness, covering, sharing, boundness and freeness substitution properties. Its elements are 5-tuples of the form $\Delta = (GR_\Delta, C_\Delta, SH_\Delta, B_\Delta, F_\Delta)$ such that $GR_\Delta, B_\Delta, F_\Delta \subseteq \mathbb{V}$, $C_\Delta \subseteq (\mathbb{V} \times \mathbb{V})$, $SH_\Delta \subseteq (\mathbb{V} \times \mathbb{V})$.

The abstraction on EXP of a substitution $\sigma \in \text{Subst}$ is the element Δ_σ defined componentwise by:

$$GR_\sigma = \{x \in \mathbb{V} : \text{Var}(\sigma x) = \emptyset\},$$
$$C_\sigma = \{\{S, S'\} \in \mathbb{V} \times \mathbb{V} : \text{Var}(\sigma S) \supseteq \text{Var}(\sigma S')\},$$
$$SH_\sigma = \{(x, y) \in \mathbb{V} \times \mathbb{V} : \text{Var}(\sigma x) \cap \text{Var}(\sigma y) \neq \emptyset\},$$
$$B_\sigma = \{x \in \mathbb{V} : \sigma x = f(t_1, \ldots, t_m)\text{ for a function } f \text{ of arity } m > 0\},$$
$$F_\sigma = \{x \in \mathbb{V} : \sigma x \text{ is a variable}\};$$

and the abstraction of an arbitrary set $\Sigma \subseteq \text{Subst}$, $\Sigma \neq \emptyset$, is the element Δ_Σ defined componentwise by:

$$GR_\Sigma = \cap\{GR_\sigma : \sigma \in \Sigma\},$$
$$C_\Sigma = \cap\{C_\sigma : \sigma \in \Sigma\},$$
$$B_\Sigma = \cap\{B_\sigma : \sigma \in \Sigma\},$$
$$SH_\Sigma = (\cup\{SH_\sigma : \sigma \in \Sigma\})^d,$$
$$F_\Sigma = \{x \in \mathbb{V} : x \in F_\sigma \forall \sigma \in \Sigma \text{ and if } (y, x) \in SH_\Sigma \text{ then } (\{y\}, \{x\}) \in C_\Sigma\}.$$

$\Delta = (GR_\Delta, C_\Delta, SH_\Delta, B_\Delta, F_\Delta)$ abstracts every $\Sigma \subseteq \text{Subst}$, $\Sigma \neq \emptyset$ such that $GR_\Sigma \supseteq GR_\Delta, C_\Sigma \supseteq C_\Delta, SH_\Sigma \supseteq SH_\Delta, B_\Sigma \supseteq B_\Delta$ and $F_\Sigma \supseteq F_\Delta$.

The abstract unification function Φ and the function for treating the built-ins on EXP, Θ, are defined as follows. Let γ be the concretization function, σ, σ_1 and σ_2 in Subst, A, B be two atoms.

Φ is from $(\text{EXP})^2 \times \text{Subst}$ to EXP such that, $\forall \sigma_1 \in \gamma(\Delta_1), \forall \sigma_2 \in \gamma(\Delta_2)$ and $\forall A, B$ with $\delta = \text{mgu}\{A = B\}$, then $\Phi(\Delta_1, \Delta_2, \delta) = \Delta'$ abstracts the result of the concrete
unification of the atom \(A \) under \(\sigma_1 \) with the atom \(B \) under \(\sigma_2 \) (see [CFil 91]).
\(\Theta \) is from \(EXP \times (\text{Built-ins}) \) to \(EXP \) such that \(\forall \sigma \in \gamma(\Delta), \Theta(\Delta, b) = \Delta' \) abstracts the result of the concrete computation of the built-in \(b \) under the activation substitution \(\sigma \) (see [CFR 92]).

2 Control Information Inferred by Treating Prolog’s Built-ins on EXP

When considering Abstract Interpretation over a domain, like \(EXP \), representing information on the instantiation of the program variables, the sure success or failure of the unification between two atoms can be inferred only in trivial cases. However, it is possible to obtain more interesting control information when one considers some built-ins of “real” Prolog [CIMe 84, LPA 88]. The reason of this is that some built-ins are tests on the instantiation of the variables. Hence in these cases, the abstract states of \(EXP \) allows us to answer the tests. We illustrate this point in the following example.

Example 2.1 Consider the behaviour of the goal \(\neg \text{var}(X) \) under an activation substitution \(\sigma \). By the declarative semantics of the built-in \(\text{var}(X) \), such a goal fails if \(\sigma(X) \) is not a free variable, otherwise it succeeds and its answer substitution is exactly \(\sigma \). No unification is made, but only a test about the freeness of \(X \) with respect to \(\sigma \).

Let us mimic this situation at the abstract level. Let \(\Delta \in EXP \) be an activation state. Three cases can apply.

1. If \(X \in (GR_\Delta \cup B_\Delta) \) then we are certain that \(X \) is not free with respect to any substitution \(\sigma \in \gamma(\Delta) \). According to the concrete case, also the abstract computation will signal sure failure.

2. If \(X \in F_\Delta \) then the built-in surely succeeds, because in this case \(X \) is free with respect to all substitutions in \(\gamma(\Delta) \).

3. Otherwise, \(\gamma(\Delta) \) may contain both substitutions \(\sigma \) such that \(X \) is free with respect to \(\sigma \) and substitutions \(\sigma' \) such that \(X \) is not free with respect to \(\sigma' \). In both cases \(\Delta \) would be modified into \(\Delta' \) stating that the variable \(X \) is free. Thus, whenever it is possible, the resulting abstract state \(\Delta' \) will be obtained from \(\Delta \) by modifying only its \(F \)-component, that will become \(F_\Delta \cup \{X\} \).

The example above suggests that the result of an abstract test \(\Theta(\Delta b) \), where \(\Delta \in EXP \) and \(b \) is the built-in, can be one of the following three: (i) \((\perp, s)\) meaning "sure failure"; (ii) \((\Delta, s)\) meaning "sure success"; (iii) \((\Delta', u)\) meaning "unsure success" with outcome the abstract state \(\Delta' \). It satisfies the following correctness conditions: in case (i) \(\forall \sigma \in \gamma(\Delta) \) the goal \(\neg b \), under the activation substitution \(\sigma \), fails; in case (ii) \(\forall \sigma \in \gamma(\Delta) \), the goal \(\neg b \), under the activation substitution \(\sigma \), succeeds and the corresponding answer substitution \(\sigma' \) belongs to \(\gamma(\Delta) \); in case (iii) \(\forall \sigma \in \gamma(\Delta) \), if the goal \(\neg b \), under the activation substitution \(\sigma \), does not fail and if \(\sigma' \) is the corresponding answer substitution then \(\sigma' \in \gamma(\Delta') \).
Thus one can assume that the result of $\Theta(\Delta, b)$ is always a pair (Δ, i), instead of the single value Δ, where the second component i can be s for "sure" or u for "unsure". The information i is called control information.

In this way, most of Prolog's built-ins can be treated in EXP obtaining control information from them. For details see [CFR 92].

3 The Tabled Interpreter St-I'

Using control information, we define a tabled interpreter for the static analysis of Prolog programs, treating cuts and built-ins.

Given a goal G, over a domain D of the form $:\neg d, A_1, \ldots, A_n$ with $A_1 = p(\bar{X})$, then the left-most call pattern of G is

$$\text{lf}(G) = [p(\bar{X}), \Pi(d, \bar{X})]$$

where $\Pi(d, \bar{X})$ is the projection of d on the variables of \bar{X}.

Observe that the left-most call-pattern of a goal is defined only if its left most symbol is an atom.

A left-most call pattern $[p(\bar{X}), d]$ with $\bar{X} = (X_1, \ldots, X_n)$ is called equivalent to the left-most call pattern $[p(\bar{Y}), d']$ with $\bar{Y} = (Y_1, \ldots, Y_n)$, noted $[p(\bar{X}), d] \equiv [p(\bar{Y}), d']$, when $d\{X_1/Y_1, \ldots, X_n/Y_n\} = d'$.

The idea of the tabled computation is as follows: collect in a table all the left-most call patterns of the goals found so far in the computation, and whenever a new goal G is produced, check whether the table already contains a left-most call pattern $\text{lf}(G')$ equivalent to $\text{lf}(G)$. In this case use for expanding G the solutions of $\text{lf}(G')$ that have been collected in the table. G' is called solution node and G look-up node. In a case this tabulation mechanism is not according to the depth-first left-to-right computation rule. It is when G and G' are goals of the same derivation, but $\text{lf}(G)$ is not part of the proof of $\text{lf}(G')$. The situation is the following:

$$\text{where } s \text{ represents a solution for } \text{lf}(G').$$

In this case, by means of the tabulation mechanism just described, the solutions of $\text{lf}(G')$ are used for expanding G and thus they are all computed before of the corresponding solutions of $\text{lf}(G)$. This is not according to the depth-first computation rule, by means of that, in this case G would be completely solved before of G'.

In order to perform a tabulation mechanism according to that rule, when this situation occurs, we change the roles of G and G' as follows. G becomes a solution node and G' is turned into a look-up node, in such a way that G is completely solved before of
and, when the computation backtracks to \(G' \), the solutions of \(\text{if}(G') \) are used to continue the computation of \(G \).

This new tabulation mechanism can be added to the standard Prolog interpreter, \(St-I \). It performs loop-check as follows. Consider the situation:

in which \(\text{if}(G) \equiv \text{if}(G') \), \(\text{if}(G) \) is part of the proof of \(\text{if}(G') \), and \(s_1, \ldots, s_n \) are the solutions of \(\text{if}(G') \) computed so far. In this case the solutions of \(\text{if}(G') \) are used for expanding \(G \), and when there are no more solutions in the table to consider, then a loop is detected. This is because the next alternative for \(\text{if}(G) \) would be the same that, in the proof of \(\text{if}(G') \), has produced it.

What happens when cuts occur in the goals?

It is clear that, for treating cuts correctly, the solutions in the table associated to a \(\text{if}(G) \) such that \(G' \) contains cuts, cannot be used for expanding another goal \(G \) with equivalent \(\text{if}(G) \) that is not part of the proof of \(\text{if}(G') \). This is true independently of whether \(G \) contains cuts or not. In fact in this case, the solution list of \(\text{if}(G') \) could have been shortened because of a cut. Therefore, if \(G' \) contains cuts, then \(St-P' \) solves \(\text{if}(G) \) independently of \(\text{if}(G') \). However, if \(\text{if}(G) \) is part of the proof of \(\text{if}(G') \), then \(St-P' \) uses the solutions of \(\text{if}(G') \) for expanding \(G \) because if \(G' \) contains cuts then they have no effect on the computation of \(\text{if}(G) \). Thus the loop-check mechanism is performed also when cuts occur in the goals.

At the abstract level, when a cut becomes the left most element of a goal \(G \), then it can be safely executed only if it is sure that the same cut is executed in all the corresponding concrete derivations.

Example 3.1 Let \(P \) be the program over the concrete domain of substitutions:

1. \(p(X):-r(Y), q(Y), !. \)
2. \(p(X):-\{X/a\}. \)
3. \(q(Y):-\{Y/a\}. \)
4. \(r(Y):-\{Y/b\}. \)

and \(G \) be the goal \(:-p(X) \).

At concrete level the cut is not executed because of a previous failure and the answer substitutions \(\{x/a\} \) is computed. Let us now mimic the computation of \(P \) with \(G \) over the abstract domain \(GR = \text{gr}(V) \) obtained from \(EXP \) by considering only the first component of its elements. \(GR \) synthesizes the groundness properties of substitutions.

The abstract program \(P' \) over \(GR \) corresponding to \(P \) is:
(1) \(p(X) :- \emptyset r(Y), q(Y), !. \)

(2) \(p(X) :- \{ X \}. \)

(3) \(q(Y) :- \{ Y \}. \)

(4) \(r(Y) :- \{ Y \}. \)

and the abstract goal \(G' \) corresponding to \(G \) is \(:- \emptyset p(X) \).

It is easy to see that computing on \(GR \), the cut is executed. In fact the unification of \(:- \emptyset q(Y) \) with the head of the third clause succeeds and the computation proceeds by executing the cut. This leads to an incomplete analysis.

In order to treat cuts correctly at the abstract level, control information must be available. Suppose that control information is inferred. In this example, unifying \(:- \emptyset p(X) \) with the head of the first clause, one obtains the resolvent \(:- (\emptyset, s), r(Y), q(Y), ! \) where \(s \) means that the concrete unification surely succeeds. Then considering the head of the first clause one obtains the resolvent \(:- (\{ Y \}, s), q(Y), ! \). However it is not sure that the unification of \(:- (\{ Y \}, s), q(Y) \) with the head of the third clause succeeds in the concrete computation. Therefore the resolvent of this unification is \(:- (\{ Y \}, u), ! \), meaning that it is not sure that the cut occurs in the concrete computation. In this case \(St-I' \) ignores the cut.

As shown in the example above, \(St-I' \) uses the control information that can be inferred during the static analysis to perform the following correctness rule: at the abstract level a cut is executed only when it is sure that the same cut is executed in all the corresponding concrete derivations.

\(St-I' \) is a generic fixpoint algorithm for the abstract interpretation of Prolog programs with cuts and built-ins.

References

