Declarative Semantics of
Input Consuming Logic Programs

Annalisa Bossi1, Nicoletta Cocco1, Sandro Etalle2,3, and Sabina Rossi1

1 Università di Venezia, \{bossi, cocco, srossi\}@dsi.unive.it
2 University of Twente, s.etalle@utwente.nl
3 CWI, Amsterdam

Abstract. Most logic programming languages actually provide some kind of dynamic scheduling to increase the expressive power and to control execution. Input consuming derivations have been introduced to describe dynamic scheduling while abstracting from the technical details. In this paper we review and compare the different proposals given for denotational semantics of programs with input consuming derivations. We also show how they can be applied to termination analysis.

1 Introduction

1.1 Dynamic Scheduling in Logic Programming

In logic programming the selection rule determines which atom in a query is selected at each derivation step. The standard selection rule is the left-to-right rule of Prolog, simple to implement, but which can cause problems both with termination and with negation when selected atoms are not fully instantiated. Moreover there are situations, e.g., in the context of parallel executions or the test-and-generate paradigm, that require a more flexible control mechanism, where the selectable atoms are determined at runtime.

Most logic programming languages actually provide some kind of dynamic scheduling in order to increase the expressive power and to control execution. In practical systems, dynamic selection rules are implemented by means of constructs such as delay declarations and block declarations. Delay declarations, advocated by van Emden and de Lucena [46], were introduced explicitly in logic programming by Naish [37, 34]. Delay declarations associate conditions to atoms, indicating when their evaluation can proceed. Such conditions are based on instantiation. Typical delay declarations are \texttt{ground}(X) or \texttt{nonvar}(X) which specify that the associated atom can be selected for evaluation when its argument \(X\) is respectively a ground term or a non-variable term. Delay declarations can be also conjoined or disjoined to allow more complex control.

Gödel [26] and ECLiPSe [27] use delay declarations, while SICStus Prolog [28] employs block declarations (which are a special kind of delay declarations).

Also in concurrent logic languages, such as GHC [43], programs are augmented with guards in order to control the selection of atoms dynamically. For
example Moded Flat GHC [45] use conditions based on modes and instantiation constraints imposed on individual clauses.

To see how dynamic scheduling can be controlled by delay declarations, consider the following programs \texttt{APPEND} and \texttt{IN_ORDER}:

% \texttt{append(Xs,Ys,Zs)} ← \texttt{Zs} is the result of concatenating the lists \texttt{Xs} and \texttt{Ys}
% \texttt{append([H|Xs],Ys,[H|Zs])} ← \texttt{append(Xs,Ys,Zs)}.
% \texttt{append([],Ys,Ys)}.

% \texttt{in_order(Tree,List)} ← \texttt{List} is an ordered list of the nodes of \texttt{Tree}
% \texttt{in_order(tree(Label,Left,Right),Xs) ←}
% \texttt{in_order(Left,\texttt{Ls}),}
% \texttt{in_order(Right,\texttt{Rs}),}
% \texttt{append(\texttt{Ls},[Label|\texttt{Rs}],\texttt{Xs}).}
% \texttt{in_order(void,[\texttt{[]}]).}

together with the query

\texttt{Q:\ read_tree(Tree), in_order(Tree,List), write_list(List)}.

where \texttt{read_tree} and \texttt{write_list} are defined elsewhere. If \texttt{read_tree} cannot
read the whole tree at once - say, it receives the input from a stream - it would
be nice to be able to run the “processes” \texttt{in_order} and \texttt{write_list} on the
available input. This can be done properly if one uses a dynamic selection rule.
Prolog’s rule would call \texttt{in_order} only after \texttt{read_tree} has finished, while other
fixed rules would immediately diverge and/or have an unwanted behavior. For
instance, the fixed rule that selects always the second atom in a clause body,
and that selects the first one only when the body contains only one atom can
lead to nontermination, as the query \texttt{in_order(Tree,List)} can easily diverge.
In the above program, in order to avoid nontermination one can declare that
predicates \texttt{in_order, append} and \texttt{write_list} can be selected only if their first
argument is not just a variable. Formally,

\begin{verbatim}
 delay in_order(T,_)
 delay append(Ls,_,_)
 delay write_list(Ls,_,_)
\end{verbatim}

These declarations prevent \texttt{in_order, append} and \texttt{write_list} from being se-
tected “too early”, i.e., when their arguments are not “sufficiently instantiated”.
Note that instead of having interleaving “processes”, one can also select several
atoms in \texttt{parallel}, as long as the delay declarations are respected. This approach
to parallelism has been first proposed by Naish [36] and - as observed by Apt
and Luitjes [5] - “has an important advantage over the ones proposed in the
literature in that it allows us to parallelize programs written in a large subset of
Prolog by merely adding to them delay declarations, so \textit{without modifying the
original program}”.

Compared to other mechanisms for user-defined control, e.g., using the cut
operator in connection with built-in predicates that test for the instantiation of a
variable (var or ground), delay declarations are more compatible with the declarative character of logic programming. Nevertheless, many important declarative properties that have been proven for logic programs do not apply to programs with delay declarations. The problem is mainly related to the fact that delay declarations might cause deadlock situations, in which no atom in the query respects its delay declaration. For such programs the well-known equivalence between model-theoretic and operational semantics does not hold. As an example, consider the query \texttt{append(X,Y,Z)} with the execution mechanism described above: it does not succeed (it \textit{deadlocks}) and this is in contrast with the fact that (infinitely many) instances of \texttt{append(X,Y,Z)} are contained in the least Herbrand model of \texttt{APPEND}.

1.2 Semantics of Logic Programs with Dynamic Scheduling

By introducing dynamic scheduling we obtain more powerful and flexible programs but we are faced with the problem of finding new techniques for ensuring correctness and termination of such programs and more generally for analyzing them. The standard semantics and properties are no longer valid when an atom can be delayed under some condition, moreover it is not easy to extend such semantics also because of the possibility of floundering when no atom in the goal can be selected. Hence it is not surprising that not so many proposals have been given for a semantics for logic programs with dynamic scheduling despite of their practical importance.

The first proposal of an operational semantics for dynamic scheduling in the form of coroutining was given by Naish [35]. He defined \textit{SLDF resolution}, which is a straightforward generalization of SLD resolution, where execution of atoms may be suspended indefinitely. He also considered termination of such programs and observed that, if the set of callable atoms is closed under instantiation, termination properties are simplified. Moreover Naish stressed the importance of mode information for reasoning about termination of such programs. An operational semantics for constraint logic programs (CLP) with dynamic scheduling have been given also by Debray et al. [19].

Falaschi et al. [24,33,23] have defined a denotational semantics for CLP programs with dynamic scheduling where the semantics of a query is given by a set of closure operators (each operator corresponds to a sequence of rule choices). They start from an operational semantics for constraint logic programs with dynamic scheduling given in terms of derivations from the goals, which is similar to the one in [19] and in [32]. Then they give a semantics in terms of and-trees, which capture the structure of a derivation in a compositional way. An and-tree can be seen as a function mapping an initial constraint to its answer. The denotation of a sequence of atoms is then a set of closure operators, corresponding to the and-trees which have this sequence as root. Their denotational semantics is the analogue of the bottom-up Δ-semantics [13] for usual logic programs, where atoms are mapped to their set of answers.

Such a denotational semantics can be used as a basis for the analysis of logic programs with dynamic scheduling, since closure operators can be abstracted by
descriptions which capture their behaviour. This idea was followed by Marriott et al. in [32] where a framework for global dataflow analysis for logic programming languages with dynamic scheduling is developed. Its main use is to give information on calling patterns. In [17] the analysis is further improved both in precision and in efficiency. From such proposals also optimization techniques for logic programs with dynamic scheduling have been derived, such as in [38].

A very elegant definition of an algebraic and logical semantics for constraint logic languages with dynamic scheduling have been given by Marriott in [31]. It corresponds to an operational semantics based on the one given by Naish in [35] generalized to arbitrary constraints. Delayed atoms are considered as constraints, then the soundness and completeness results for success and finite failure for CLP are extended to CLP with dynamic scheduling. The completeness result for finite failure is necessarily weaker.

In spite of these proposals some problems remain. Dynamic scheduling is often introduced to ensure the termination of the program, preventing possible diverging derivations. Nevertheless, while for pure Prolog programs (i.e., logic programs employing the fixed leftmost selection rule) there exist results characterizing when a program is terminating such as in [7, 18, 14] no such a characterization was derived for programs with dynamic scheduling from these semantics.

1.3 Semantics of Input Consuming Derivations

In order to provide a characterization of dynamic scheduling that is reasonably abstract and amenable to termination analysis, Smaus [40] introduced input consuming derivations. The definition of input consuming program relies on the concept of mode. A modal program is a program in which each atom’s arguments are partitioned into input and output ones. Output arguments are those which can be produced by the computation process, while input arguments should be only consumed. Roughly speaking, in an input consuming program only atoms whose input arguments are not instantiated through the unification step are allowed to be selected.

We believe that – in many cases – the adoption of “natural” delay declarations is equivalent to considering only input consuming derivations [11]. This is the case, for instance, of the programs mentioned in the example above together with their natural mode where the first position of in order is considered in input, while the second one is in output. In fact under normal circumstances, the adoption of the stated delay declarations enforces nothing but a restriction to input consuming derivations. Moreover also other control mechanisms, such as the one in Modeled Flat GHC, are similar to requiring an input consuming derivation step: the resolution of an atom with a definition must not instantiate the input arguments of the resolved atom.

Input consuming programs allow for simpler definitions of denotational semantics and have nice properties regarding termination. Henceforth they seem to be a reasonable and safe approximation to programs with general dynamic scheduling. In this paper we review and compare the different proposals given
for denotational semantics of programs with input consuming derivations. We also show how they can be applied to termination analysis.

1.4 Structure of the Paper

The paper is organized as follows. Section 2 contains some preliminary notations and definitions including input consuming programs. Section 3 introduces a first denotational semantics capturing computed answer substitutions of successful derivations. This semantics applies to well and nicely moded input consuming programs. In Section 4 a second denotational semantics for simply moded input consuming programs is presented which is able to model also intermediate results of partial derivations. Section 5 shows how these semantics have been used to characterize termination properties of input consuming programs. Section 6 concludes the paper.

2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results of logic programs and their semantics [1, 2, 29]. In this Section we introduce few notions that will be used in the sequel.

2.1 Terms and Substitutions

Let T be the set of terms built on a finite set of data constructors C and a denumerable set of variable symbols V. For any syntactic object o, we denote by $\text{Var}(o)$ the set of variables occurring in o. A syntactic object is linear if every variable occurs in it at most once. A substitution θ is a mapping from V to T. Given a substitution $\sigma = \{x_1/t_1, \ldots, x_n/t_n\}$, we say that $\{x_1, \ldots, x_n\}$ is its domain (denoted by $\text{Dom}(\sigma)$), and $\text{Var}\{(t_1, \ldots, t_n)\}$ is its range (denoted by $\text{Ran}(\sigma)$). Note that $\text{Var}(\sigma) = \text{Dom}(\sigma) \cup \text{Ran}(\sigma)$. We denote by ϵ the empty substitution: $\text{Dom}(\epsilon) = \text{Ran}(\epsilon) = \emptyset$. Given a substitution σ and a syntactic object E, we denote by $\sigma|_E$ the restriction of σ to the variables in $\text{Var}(E)$, i.e., $\sigma|_E(x) = \sigma(x)$ if $x \in \text{Var}(E)$, otherwise $\sigma|_E(x) = x$. If t_1, \ldots, t_n is a permutation of x_1, \ldots, x_n then we say that σ is a renaming. The composition of substitutions is denoted by juxtaposition, i.e., $\theta \sigma(x) = \sigma(\theta(x))$. The result of the application of a substitution θ to a term t is said an instance of t and it is denoted by θt.

We say that t is a variant of t', written $t \approx t'$, if t and t' are instances of each other. In this case there exists a renaming θ such that $t' = \theta t$. A substitution θ is a unifier of terms t and t' if $\theta t = t' \theta$. We denote by $\text{mgu}(t, t')$ any most general unifier (mgu, in short) of t and t'.

2.2 Programs and Derivations

Let P be a finite set of predicate symbols. An atom is an object of the form $p(t_1, \ldots, t_n)$ where $p \in P$ is an n-ary predicate symbol and $t_1, \ldots, t_n \in T$. Given
an atom \(A \), we denote by \(\text{Rel}(A) \) the predicate symbol of \(A \). A query is a finite, possibly empty, sequence of atoms \(A_1, \ldots, A_m \). The empty query is denoted by \(\Box \). Following the convention adopted in [2], we use bold characters to denote sequences of objects; so, for instance, \(t \) denotes a sequence of terms, while \(B \) is a query (i.e., a possibly empty sequence of atoms). A (definite) clause is a formula \(H \leftarrow B \) where \(H \) is an atom (the head) and \(B \) is a query (the body). When \(B \) is empty, \(H \leftarrow B \) is written \(H \leftarrow \) and is called a unit clause. A (definite) program is a finite set of clauses. We denote atoms by \(A, B, H, \ldots \), queries by \(Q, A, B, C, \ldots \), clauses by \(c, d, \ldots \), and programs by \(P \).

Computations are constructed as sequences of “basic” steps. Consider a non-empty query \(A, B, C \) and a clause \(c \). Let \(H \leftarrow B \) be a variant of \(c \) variable disjoint from \(A, B, C \). Let \(B \) and \(H \) unify with \(\text{mgu} \theta \). The query \((A, B, C)\theta \) is called a resolvent of \(A, B, C \) and \(c \) with selected atom \(B \) and \(\text{mgu} \theta \). A derivation step is denoted by \(A, B, C \Rightarrow_{P,c} (A, B, C)\theta \). The clause \(H \leftarrow B \) is called its input clause. The atom \(B \) is called the selected atom of \(A, B, C \).

If \(P \) is clear from the context or \(c \) is irrelevant then we drop the reference to them. A derivation is obtained by iterating derivation steps. A maximal sequence

\[
\delta : Q_0 \Rightarrow_{P,c_1} Q_1 \Rightarrow_{P,c_2} \cdots \Rightarrow_{P,c_{n+1}} Q_{n+1}
\]

is called a derivation of \(P \cup \{Q_0\} \) provided that for every step the standardization apart condition holds, i.e., the input clause employed is variable disjoint from the initial query \(Q_0 \) and from the substitutions and the input clauses used at earlier steps.

Derivations can be finite or infinite. If \(\delta : Q_0 \Rightarrow_{P,c_1} \cdots \Rightarrow_{P,c_{n+1}} Q_n \) is a finite prefix of a derivation, also denoted by \(\delta : Q_0 \Rightarrow Q_n \) with \(\theta = \theta_1 \cdots \theta_n \), we say that \(\delta \) is a partial derivation and \(\theta \) is a partial computed answer substitution of \(P \cup \{Q_0\} \). If \(\delta \) is maximal and ends with the empty query, then \(\theta \) is called computed answer substitution (c.a.s., for short). In this case we say that the derivation is successful. The length of a (partial) derivation \(\delta \), denoted by \(\text{len}(\delta) \), is the number of derivation steps in \(\delta \).

2.3 Modes & Input Consuming Programs

Modes are a common tool for verification. A mode is a function that labels as input or output the positions of each predicate in order to indicate how the arguments of such a predicate should be used.

Definition 1 (Mode). A mode for a predicate symbol \(p \) of arity \(n \), is a function \(m_p \) from \(\{1, \ldots, n\} \) to \(\{1, O\} \).

If \(m_p(i) = 1 \) (resp. \(O \)), we say that \(i \) is an input (resp. output) position of \(p \) (with respect to \(m_p \)). In the examples, we often indicate the mode by writing the atom \(p(m_p(1), \ldots, m_p(n)) \), e.g., \(\text{append}(1, I, O) \).

We assume that each predicate symbol has a unique mode associated to it; multiple modes may be obtained by simply renaming the predicates. We denote
by $\text{In}(Q)$ (resp. $\text{Out}(Q)$) the sequence of terms filling in the input (resp. output) positions of predicates in Q. Moreover, when writing an atom as $p(s, t)$, we are indicating that s is the sequence of terms filling in its input positions and t is the sequence of terms filling in its output positions.

The notion of input consuming derivation was introduced in [40] as a formalism for describing dynamic scheduling in an abstract way.

Definition 2 (Input Consuming Derivation).

- A derivation step $A, B, C \xrightarrow{\theta} (\text{A}, \text{B}, \text{C}) \theta$ is input consuming if $\text{In}(B) \theta = \text{In}(B)$.
- A derivation is input consuming if all its derivation steps are input consuming.

In the following sometimes we use ic-derivation for input consuming derivation and we call input consuming program (ic-program) a program when considered with respect to input consuming derivations only.

Example 3. Consider the program REVERSE with accumulator and the following modes: $\text{reverse}(I, O)$ and $\text{reverse}_{\text{acc}}(I, O, I)$.

\begin{align*}
\text{reverse}(Xs, Ys) & \leftarrow \text{reverse}_{\text{acc}}(Xs, Ys, []). \\
\text{reverse}_{\text{acc}}([], Ys, Ys) & \leftarrow \text{reverse}_{\text{acc}}(Xs, Ys, [X|Zs]).
\end{align*}

The following derivation δ of $\text{REVERSE} \cup \{\text{reverse}([X1,X2], Zs)\}$ is input consuming.

\begin{align*}
\delta: \text{reverse}([X1,X2], Zs) \Rightarrow \text{reverse}_{\text{acc}}([X1,X2], Zs, []) \Rightarrow \\
\text{reverse}_{\text{acc}}([X2], Zs, [X1]) \Rightarrow \text{reverse}_{\text{acc}}([], Zs, [X2,X1]) \Rightarrow \Box.
\end{align*}

Allowing only input consuming derivations is a form of dynamic scheduling, since whether or not an atom can be selected depends on its degree of instantiation at runtime. Given a non-empty query, if no atom is resolvable via an input consuming derivation step and no failure arises, then we say that the query deadlocks. Therefore, an ic-derivation can either be successful or finitely failing or infinite or deadlock. Each ic-derivation which is not a deadlock is also a SLD derivation.

2.4 Classes of Modeled Programs

In the sequel we are going to refer to classes of programs that in some way behave well with respect to the given mode. In particular, we are going to use the concepts of well moded program (Dembinski and Maluszynski [20]), of nicely moded program (Chadha and Plaisted [15]) and of simply moded program (Apt and Etalle [4]).

Definition 4 (Well, Nicely and Simply Modeled Program).
- **Well Moded.** A clause \(p(t_0, s_{n+1}) \leftarrow p_1(s_1, t_1), \ldots, p_n(s_n, t_n) \) is well moded if for all \(i \in [1, n+1] \)

\[
\text{Var}(s_i) \subseteq \bigcup_{j=0}^{i-1} \text{Var}(t_j).
\]

If we call *producing* positions the input positions of the head and the output positions of the body and *consuming* positions the other ones, then we can intuitively say that a clause is well moded if every variable in a consuming position occurs also in an earlier producing position (notice that the consuming positions in the head are the “last” ones in this particular order).

- **Nicely Moded.** A clause \(p(t_0, s_{n+1}) \leftarrow p_1(s_1, t_1), \ldots, p_n(s_n, t_n) \) is nicely moded if

 1. \(t_1, \ldots, t_n \) is a linear sequence of terms
 2. \(\text{Var}(t_0) \cap \text{Var}(t_1, \ldots, t_n) = \emptyset. \)
 3. and for all \(i \in [1, n] \)

\[
\text{Var}(s_i) \cap \bigcup_{j=i}^{n} \text{Var}(t_j) = \emptyset.
\]

Intuitively a clause is nicely moded if there are no conflicts among producing positions, (a variable may appear in at most one producing position with one exception: a variable may appear twice in a producing position of the head), and a variable may not be consumed before it is produced.

- **Simply Moded.** A clause \(p(t_0, s_{n+1}) \leftarrow p_1(s_1, t_1), \ldots, p_n(s_n, t_n) \) is simply moded if it is nicely moded and \(t_1, \ldots, t_n \) is a linear sequence of variables.

- A query \(Q \) is well (resp. nicely, simply) moded, if the clause \(q \leftarrow Q \) is well (resp. nicely, simply) moded, where \(q \) is a variable-free atom.

Note that an atomic query \(p(s, t) \) is well moded if \(s \) is a sequence of ground terms and it is nicely moded if \(t \) is linear and \(\text{Var}(s) \cap \text{Var}(t) = \emptyset. \)

- A program is well (resp. nicely, simply) moded, if all of its clauses are well (resp. nicely, simply) moded.

Hence the class of simply moded programs is a subclass of nicely moded ones and it includes both some well moded and some non-well moded programs.

In [42] permutation well (nicely) moded programs and queries are also defined, i.e., programs and queries which would be well (nicely) moded after a permutation of the atoms respectively in the bodies and in the queries.

Example 5.

- The program `APPEND` of the introduction in the mode `append(I, I, O)` is well nicely and simply moded.
- `REVERSE` with accumulator of Example 3 is well nicely and simply moded.
- Furthermore, consider the following program `PALINDROME` in the mode `palindrome(I)`

\[
\text{palindrome}(Xs) \leftarrow \text{reverse}(Xs, Xs).
\]
together with the program REVERSE with the modes \texttt{reverse}(I,O). This program is well moded but not nicely moded (since \texttt{Xs} occurs both in an input and in an output position of the same body atom). However, since the program REVERSE is used here for checking whether a list is a palindrome, its natural modes are \texttt{reverse}(I,I) and \texttt{reverse}_acc(I,I,I). With these modes, the program PALINDROME is both well moded, nicely and simply moded.

Most programs are simply moded (see the mini-survey at the end of [4]) and often non simply moded programs can naturally be transformed into simply moded ones (see [10]).

The above notions of well, nicely and simply moded are “persistent” with respect to input consuming derivations. The following Lemma is a straightforward extension of [5, Lemma 30].

Lemma 6. In a input consuming derivation, every resolvent of a well (resp. nicely, simply) moded query and a well (resp. nicely, simply) moded clause is well (resp. nicely, simply) moded.

Notice that in the case of nicely and simply moded programs the above Lemma depends on the fact that only input consuming derivations are considered. Indeed, when “normal” SLD derivations are considered, it is easy to find an example in which the SLD resolvent of a nicely moded query and a nicely moded clause is not nicely moded. On the other hand, for well moded programs, any SLD resolvent of a well moded query with a well moded clause is well moded ([2]).

Finally, it is worth reminding that, when considering nicely (respectively simply) moded, input consuming programs, half of the famous switching Lemma still applies. The following Left-Switching Lemma that has been proven in [10].

Lemma 7. (Left-Switching) Let the program \(P \) and the query \(Q_0 \) be nicely moded. Let \(\delta \) be a (partial) input consuming derivation of \(P \cup \{Q_0\} \) of the form

\[
\delta : Q_0 \overset{\delta_1}{\longrightarrow} c_1 \ Q_1 \cdots Q_n \overset{\theta_{n+1}}{\longrightarrow}_{c_{n+1}} Q_{n+1} \overset{\theta_{n+2}}{\longrightarrow}_{c_{n+2}} Q_{n+2}
\]

where

- \(Q_n \) is a query of the form \(A, A, B, B, C \),
- \(Q_{n+1} \) is a resolvent of \(Q_n \) and \(c_{n+1} \) wrt. \(B \),
- \(Q_{n+2} \) is a resolvent of \(Q_{n+1} \) and \(c_{n+2} \) wrt. \(A\theta_{n+1} \).

Then, there exist \(Q'_{n+1}, \theta'_{n+1}, \theta'_{n+2} \) and a derivation \(\delta' \) such that

\(\theta_{n+1}\theta_{n+2} = \theta'_{n+1}\theta'_{n+2} \)

and

\(\delta' : Q_0 \overset{\delta'_1}{\longrightarrow} c_1 \ Q_1 \cdots Q_n \overset{\theta'_{n+1}}{\longrightarrow}_{c_{n+1}} Q'_{n+1} \overset{\theta'_{n+2}}{\longrightarrow}_{c_{n+2}} Q_{n+2} \)

where \(\delta' \) is input consuming and
2.5 The \mathcal{S}-semantics

The aim of the \mathcal{S}-semantics approach (see [13]) is modeling the observable behaviors for a variety of logic languages. The observable we consider here is the computed answer substitutions. The semantics is defined as follows:

$$S(P) = \{ p(x_1, \ldots, x_n) \theta \mid x_1, \ldots, x_n \text{ are distinct variables and}$$
$$\quad p(x_1, \ldots, x_n) \stackrel{\theta}{\rightarrow} P \Box \text{ is a SLD derivation} \}. $$

This semantics enjoys all the valuable properties of the least Herbrand model. To present the main results on the \mathcal{S}-semantics we need to introduce two further concepts: Let P be a program, and I be a set of atoms closed under variance.

- The immediate consequence operator for the \mathcal{S}-semantics is defined as:

$$T^S_P(I) = \{ H\theta \mid \exists H \leftarrow B \text{ variant of a clause of } P$$
$$\quad \exists C \in I, \text{renamed apart}\footnote{Here and in the sequel, when we write "C \in I, renamed apart wrt. some expression e", we naturally mean that I contains a set of atoms C', \ldots, C'', and that C is a renaming of C', \ldots, C'' such that C shares no variable with e and that two distinct atoms of C share no variables with each other.} \text{ wrt. } H, B$$
$$\quad \theta = \text{mgu}(B, C) \}. $$

- I is called an \mathcal{S}-model of P if $T^S_P(I) \subseteq I$.

Falaschi et al. [25] showed that T^S_P is continuous on the lattice of term interpretations, that is sets of possibly non-ground atoms, with the subset-ordering. They proved the following

- $S(P) = \text{least } \mathcal{S} \text{-model of } P = T^S_P \uparrow \omega$.

Therefore, the \mathcal{S}-semantics enjoys a declarative interpretation and a bottom-up construction, just like the Herbrand one. In addition, we have that the \mathcal{S}-semantics reflects the observable behavior in terms of computed answer substitutions, as shown by the following well-known result.

Theorem 8 ([25]). Let P be a program, \mathbf{A} be a query. The following statements are equivalent.

- There exists an SLD derivation $\mathbf{A} \stackrel{\sigma}{\rightarrow} P \Box$,
- There exists $\mathbf{A}' \in S(P)$ (renamed apart wrt. \mathbf{A}), such that $\sigma = \text{mgu}(\mathbf{A}, \mathbf{A'})$.

\[\text{\textcopyright{} 2023 by the American Mathematical Society.} \]
where \(\mathbf{A} \sigma \approx \mathbf{A} \theta \).

Example 9. Let us see this semantics applied to the programs APPEND and REVERSE so far encountered.

- \(S(\text{APPEND}) = \{ \text{append}([], x, x), \)
 \(\text{append}([x1], x, [x1|x]), \)
 \(\text{append}([x1,x2], x, [x1,x2|x]), \ldots \} \).
- \(S(\text{REVERSE}) = \{ \text{reverse}([], []), \)
 \(\text{reverse}([x1], [x1]), \)
 \(\text{reverse}([x1,x2], [x2,x1]), \ldots \)
 \(\text{reverse}_{\text{acc}}([], x, x), \)
 \(\text{reverse}_{\text{acc}}([x1], x, [x1|x]), \)
 \(\text{reverse}_{\text{acc}}([x1,x2], x, [x1,x2|x]), \ldots \} \).

2.6 Semantics of Input Consuming Programs

In the following two Sections we present two semantics for input consuming programs which are related to \(S \)-semantics. To define such semantics, the observables we focus on are the computed answer substitutions. First, we consider a semantics given by the computed answer substitutions of successful derivations. This corresponds to the \(S \)-semantics of logic programming [13] when restricted to a particular set of queries. Given a program \(P \) and a set of queries \(C \), this semantics can be defined formally as

\[
\mathcal{O}^s_p(P, C) = \{ \mathbf{A} \theta \mid \mathbf{A} \in C \text{ and there exists an ic-derivation } \mathbf{A} \xrightarrow{\theta} P \}.
\]

While this semantics appears very natural, it can be unsuitable for modeling the reactive nature of input consuming programs. In fact, as we mentioned in the introduction, input consuming derivations can be used to model dynamic scheduling and parallelism, and in this context it is very important to model the results of partial computations. Indeed, standard semantics for concurrent logic languages such as \(\text{cpl} \) [39,22] and \(\text{GHC} \) [44] often capture such intermediate results, or in any case, also the results of non-successful computations [16]. In fact, the (partial) result of a computation may trigger another computation by instantiating sufficiently the input positions of another atom so that it becomes resolvable. Because of this, when one wants to characterize for instance termination, the adoption of a semantics which is able to model intermediate results becomes essential, as shown in Section 5. Thus we also consider a semantics capturing the results of partial input consuming derivations. Given a program \(P \) and a set of queries \(C \), this semantics can be defined formally as

\[
\mathcal{O}^c_p(P, C) = \{ \mathbf{A} \theta \mid \mathbf{A} \in C \text{ and there exists an ic-derivation } \mathbf{A} \xrightarrow{\theta} P \}.
\]

where \(\mathbf{B} \) is any query.
3 Semantics of Well Modeled Input Consuming Programs

To characterize our semantics for ic-programs, we start from the simplest case: when one is interested only in the successful derivations. Then the observables (given by successful derivations) can be recondensed to the S-semantics of classical logic programs.

We show that the standard S-semantics is compositional and correct also for input consuming programs, provided that the programs are well and nicely modeϕ and that only nicely modeϕ queries are considered. The results reported in this Section are proved in [9].

Proposition 10. Let P be a well and nicely modeϕ program, A be a nicely modeϕ atomic query. The following statements are equivalent.

(i) There exists an input consuming derivation $A \xrightarrow{\alpha} P \Box$,
(ii) There exists $A' \in S(P)$ (renamed apart wrt. A), and $\sigma = \mathrm{mgu}(A, A')$ such that $\text{In}(A)\sigma \approx \text{In}(A)$,

where $A\sigma \approx A\theta$.

To extend Proposition 10 to arbitrary (non-atomic) queries we need the following definition.

Definition 11. Let $Q = \rho_1(s_1, t_1), \ldots, \rho_n(s_n, t_n)$. We define

$$V\text{In}^*(Q) := \bigcup_{i=1}^{n} \{x \mid x \in \text{Var}(s_i) \text{ and } x \notin \bigcup_{j=1}^{i-1} \text{Var}(t_j)\}.$$

$V\text{In}^*(Q)$ denotes the set of variables occurring in an input position of an atom of Q but not occurring in an output position of an earlier atom. Note that if Q is well modeϕ then $V\text{In}^*(Q) = \emptyset$.

Theorem 12. Let P be a well and nicely modeϕ program, A be a nicely modeϕ query and NM be the class of nicely modeϕ queries. The following statements are equivalent.

(i) There exists $A\theta \in \mathcal{O}_\text{NM}^c(P, \text{NM})$,
(ii) There exists $A' \in S(P)$ (renamed apart wrt. A), and $\sigma = \mathrm{mgu}(A, A')$ such that $A\sigma |_{V\text{In}^*(A)} \approx A$,

where $A\sigma \approx A\theta$.

Condition $A\sigma |_{V\text{In}^*(A)} \approx A$ above says that the substitution σ just renames the variables occurring in an input position of A but not occurring in an output position of an earlier atom. In case of an atomic query $A := A$, we might substitute this condition with the somewhat more attractive condition $\text{In}(A)\sigma \approx \text{In}(A)$ of Proposition 10.

Hence $S(P)$ is compositional and correct for input consuming programs, provided that programs are well and nicely modeϕ and that queries are nicely
moded. In other words, given the restrictions on programs and queries, the S-semantics is correct with respect to the observables given by the computed answer substitutions of successful ic-derivations.

Example 13. Consider the program APPEND of the Introduction with the moding $\text{append}(I_1, I_0)$. $S(\text{APPEND})$, given in Example 9, allows us to draw a number of conclusions:

- $\text{append}(X, b], Y, Z)$ has an input consuming successful derivation.
 In particular, it has an input consuming derivation with c.a.s. $\{Z/\{X, b\}[^1]\}$. This can be derived by just looking at $S(\text{APPEND})$, from the fact that $A = \text{append}(X_1, X_2], X_3, [X_1, X_2] X_3) \in S(P)$ and that $\text{append}(X, b], Y, Z)$ is - in its input positions - an instance of A.
- $\text{append}(Y, [X, b], Z)$ has no input consuming successful derivations.
 This is because there is no $A \in S(P)$ such that $\text{append}(Y, [X, b], Z)$ is an instance of A in the input positions.
- Observe that the query $\text{append}(Y, [X, b], Z)$ has infinite successful SLD derivations and no failures. Therefore it does not fail also when we consider ic-derivations. Since, as noted above, the query has no input consuming successful derivations, this implies that – in presence of input consuming derivations – $\text{append}(Y, [X, b], Z)$ will eventually either deadlock or run into an infinite derivation.

The previous results hold also in case the programs are permutation well and nicely moded and queries are permutation nicely moded (see [42]).

While in the context of SLD (not input consuming) derivations the S-semantics is also fully abstract, when considering input consuming program this is not so. Consider the following two trivial programs:

$$P1 = \{ \begin{array}{l}
 c1: p(X). \\
 c2: p(a). \\
\end{array} \}$$

$$P2 = \{ p(X). \}$$

In both programs the mode is $p(D)$. These two programs, despite being different, yield exactly the same computed answer substitutions for all queries when ic-derivations are considered. In fact the extra clause $c2$ in $P1$ can resolve an atom A only if A contains the term a in its input position, but in this case $c2$ behaves exactly as $c1$ does. Nevertheless, the $S(P1) = \{p(X), p(a)\} \neq \{p(X)\} = S(P2)$, demonstrating that the S-semantics is not fully abstract when considering ic-derivations. In the next Section we present a more complex semantics, which is also fully abstract for ic-derivations.

5 The only observable difference between $P1$ and $P2$ lies in the *multiplicity* of the answers: the query $q(a)$ succeeds twice in $P1$ and only once in $P2$, but answer multiplicity is not an observable we consider here.
4 Semantics of Simply Moded Input Consuming Programs

The semantics presented in the previous Section applies only when we are interested in the computed answer substitutions of successful derivations. As we discussed before, there are many situations in which we also want to model the (intermediate) results of partial derivations. For instance, this will be the case when – in the next Section – we study the termination of input consuming programs.

In this Section we define a somewhat more complex denotational semantics which has the advantage to model the observables given by both successful and partial derivations in a rather symmetric way. In addition, in exchange for a moderate syntactic restriction (instead of nicely moded programs and queries we have to consider simply moded ones) it allows us to drop the requirement that programs have to be well moded. The two semantics we are going to introduce are compositional, correct and fully abstract with respect to the operational semantics of input consuming simply moded programs and queries, i.e., $O^\text{ts}_p(P, SM)$ and $O^\text{ts}_p^\text{q}(P, SM)$, where SM is the class of simply moded queries. As in the standard S-semantics, we build a denotational semantics by means of a bottom-up construction.

4.1 Simply Local Substitutions and Simply Local Models

When input consuming derivations are applied to simply moded programs and queries, important properties follow from the way clauses become instantiated along the derivations. The notion of simply local substitution is introduced in [12] to reflect this instantiation mechanism. A clause $c = H \leftarrow B_1, \ldots, B_n$ becomes instantiated by its “caller” (the atom that is resolved using c) and its “callee” (the clauses used to resolve the body atoms of c). Thus, a simply local substitution is defined as the composition of several substitutions, $\sigma_0, \sigma_1, \ldots, \sigma_n$, one for each atom in the given clause, such that σ_n binds the input variables of the head of the clause, and each σ_i $(i > 0)$ creates a binding from the output variables to input terms of $B_i \sigma_0, \ldots, \sigma_{i-1}$.

Definition 14 (Simply Local Substitution). Let θ be a substitution. We say that θ is simply local with respect to the clause $H \leftarrow B_1, \ldots, B_n$ if there exist substitutions $\sigma_0, \sigma_1, \ldots, \sigma_n$ and disjoint sets of fresh (with respect to c) variables v_0, v_1, \ldots, v_n such that $\theta = \sigma_0 \sigma_1 \cdots \sigma_n$ where

- $\text{Dom}(\sigma_0) \subseteq \text{Var}(\text{In}(H))$ and $\text{Ran}(\sigma_0) \subseteq v_0$,
- for $i \in [1..n]$,
 - $\text{Dom}(\sigma_i) \subseteq \text{Var}(\text{Out}(B_i))$ and $\text{Ran}(\sigma_i) \subseteq \text{Var}(\text{In}(B_i) \sigma_0 \sigma_1 \cdots \sigma_{i-1}) \cup v_i$.

The substitution θ is simply local with respect to a query B if θ is simply local with respect to the clause $q \leftarrow B$ where q is any variable-free atom.
Example 15. Consider the program APPEND together with the mode $\text{append}(I, I, O)$ and its recursive clause

$$c : \text{append}([H|Xs], Ys, [H|Zs]) \leftarrow \text{append}(Xs, Ys, Zs).$$

The substitution $\theta = \{Xs/\mathcal{H}, Ys/\mathcal{W}, Zs/\mathcal{U}\}$ is simply local with respect to c. In fact $\theta = \sigma_0\sigma_1$ where $\sigma_0 = \{Xs/\mathcal{H}, Ys/\mathcal{W}\}$ and $\sigma_1 = \{Zs/\mathcal{U}\}$. Consider now the query

$$Q : \text{append}(a, X, c|1, Ys, Zs), \text{append}(Zs, [b], Ls).$$

The substitution $\theta = \{Zs/\{a, X, c|Ys\}\}$ is simply local with respect to Q. In fact $\theta = \sigma_1\sigma_2$ where $\sigma_1 = \{Zs/\{a, X, c|Ys\}\}$ and σ_2 is the empty substitution.

The denotational semantics defined in [12] is based on a restricted notion of model. Here and in the sequel we consider sets of moded atoms closed under variance.

Definition 16 (Simply Local Model). Let M be a set of moded atoms. We say that M is a simply local model of a clause $c : H \leftarrow B_1, \ldots, B_n$ if for every substitution θ simply local with respect to c,

$$\text{if } B_1\theta, \ldots, B_n\theta \in M \text{ then } H\theta \in M.$$

(1)

M is a simply local model of a program P if it is a simply local model of each clause of it.

Clearly a simply local model is not necessarily a model in the classical sense, since the substitution θ in (1) is required to be simply local. For example, given the program $\{q(1), p(X) \leftarrow q(X),\}$ with modes $q(I), p(O)$, a model must contain the atom $p(1)$, whereas a simply local model does not necessarily contain $p(1)$, since $\{X/1\}$ is not simply local with respect to $p(X) \leftarrow q(X)$.

A minimal simply local model exists and it is bottom-up computable by applying the following operator [12].

Definition 17. Given a program P and a set of moded atoms I, we define

$$T^S_P(I) = I \cup \{H\theta \mid \exists c : H \leftarrow B \text{ variant of a clause of } P, \theta \text{ is simply local with respect to } c, B\theta \in I\}.$$

T^S_P is monotonic and continuous on the lattice where set of moded atoms are ordered by set inclusion. Powers of an operator T are defined in the standard way as follows: $T^0(I) = I$, $T^i(I) = T(T^i(I))$, and $T^\omega(I) = \bigcup_{i=0}^\omega T^i(I)$.

In the following we denote by SM_P the set of all simply moded atoms of the extended Herbrand universe of P. In [12] it is proven that if P is simply moded and $I \subseteq SM_P$ then

$$T^S_P(I)$$

is the least simply local model of P containing I (2)

This allows us to define our models.
Definition 18. Let P be a program, we define

- M^SL_P is the least simply local model of P,
- PM^SL_P is the least simply local model of P containing SM_P.

The existence of these models is guaranteed by (2), in fact (2) also shows how to construct them, as it implies that

$$M^\text{SL}_P = T^\text{SL}_P \uparrow \omega(\theta), \text{ and } PM^\text{SL}_P = T^\text{SL}_P \uparrow \omega(SM_P) \quad (3)$$

4.2 Relation among Denotational and Operational Semantics

To relate the M^SL_P and PM^SL_P to $O^\text{ic}_P(P, SM)$ and $O^\text{ic}_P(P, SM)$ we need to relate T^SL_P to the results of input consuming derivations; this is achieved in the following Lemma, proved in [12].

Lemma 19. Let the program P and the query A be simply moded and $I \subseteq SM_P$ be a set of moded atoms. The following statements are equivalent.

(i) There exists an input consuming derivation $A \xrightarrow{\varrho} P \cdot C$ with $C \subseteq I$,
(ii) There exists a substitution θ simply local with respect to A, such that $A\theta \subseteq T^\text{SL}_P \uparrow \omega(I)$,

where $A\theta \approx A\theta$.

We can now prove that M^SL_P and PM^SL_P fully characterize the semantics of ic-derivations for simply moded programs and queries, namely they are equal to $O^\text{ic}_P(P, SM)$ and $O^\text{ic}_P(P, SM)$, respectively.

Theorem 20. Let P be simply moded. Then

(i) $M^\text{SL}_P = O^\text{ic}_P(P, SM)$.
(ii) $PM^\text{SL}_P = O^\text{ic}_P(P, SM)$.

Proof. Immediate by (3), Lemma 19 and the definitions of $O^\text{ic}_P(P, SM)$ and $O^\text{ic}_P(P, SM)$.

An example follows.

Example 21. Let us consider again the program APPEND.

1. First let us consider its successful ic-derivations. Hence we have to build $M^\text{SL}_{\text{APPEND}}$

$$M^\text{SL}_{\text{APPEND}} = \{\text{append}([t_1, \ldots, t_n], s, [t_1, \ldots, t_n|s]) \mid n \in \mathbb{N}, \text{and } t_1, \ldots, t_n, s \text{ are any terms}\}.$$

Notice that this model is different from $S(\text{APPEND})$, reported in Example 9. We are going to relate $S(P)$ and M^SL_P later in this Section.
2. Now let us consider the results of partial derivations. Recall that PM^S_{APPPEND} is obtained by repeatedly applying T^S_{APPPEND} to each simply moded atom. Simply moded atoms are $\text{append}(s,t,x)$ where s and t are arbitrary terms but x is a variable not occurring in s or in t. We obtain

$$PM^S_{\text{APPPEND}} = M^S_{\text{APPPEND}} \cup \{\text{append}(s,t,x) : x \text{ is a fresh variable}\} \cup \{\text{append}([t_1, \ldots, t_m | s], t, [t_1, \ldots, t_m | x]) : x \text{ is a fresh variable}\}$$

where s, t, t_1, \ldots, t_m are arbitrary terms.

Consider now the query $\text{append}([a, b, c | X], Y, Z)$. It is straightforward to check that the substitution $\theta = \{Z/|a, b|Z\}$ is simply local with respect to it, and that $\text{append}([a, b, c | X], Y, Z) \theta \in PM^S_{\text{APPPEND}}$. Therefore, by using Theorem 20, we can conclude that there exists a partial derivation starting in $\text{append}([a, b, c | X], Y, Z)$, with computed answer θ. Following the same reasoning, one can also conclude that the query has a partial derivation with computed answer $\theta' = \{Z/|a|Z\}$.

4.3 Relation among S-semantics and Denotational Semantics for IC-programs

In this section we compare the denotational semantics M^S_{B} with the S-semantics $S(P)$ of simply moded programs.

First, we need a new definition: let I be a set of moded atoms, the input closure of I is defined as:

$$\text{InCl}(I) = \{A\theta | A \in I \text{ and } \text{Var}(A) \cap \text{Var}(\theta) \subseteq \text{Var}(\text{In}(A))\}$$

So the input closure of an atom is obtained by instantiating its input positions in all possible ways, provided that no new links are created between the input and the output positions.

Theorem 22. Let P be a well and simply moded program, then

$$M^S_{\text{B}} = \text{InCl}(S(P))$$

Proof. First observe that the class of simply moded programs is contained in the class of nicely moded programs, hence Theorem 12 holds also when we consider well and simply moded programs and simply moded queries.

- $M^S_{\text{B}} \subseteq \text{InCl}(S(P))$. Let A be simply moded and $A\theta \in M^S_{\text{B}}$ then, by Theorem 20, $A\theta \in \text{Cl}^S(P, SM)$. By Theorem 12 there exists $A' \in S(P)$ (renamed apart wrt. A), and $\sigma = \text{mgu}(A, A')$ such that $\text{In}(A)\sigma \approx \text{In}(A)$ and $A\sigma \approx A\theta$. Since A is simply moded, we can choose σ such that $\text{Dom}(\sigma) \cap \text{Var}(A') \subseteq \text{Var}(\text{In}(A'))$. Therefore $A\theta \approx A\sigma = A'\sigma \in \text{InCl}(S(P))$.

- $M^S_{\text{B}} \supseteq \text{InCl}(S(P))$. Let $A' \in \text{InCl}(S(P))$ and $A' = p(s, t) \in S(P)$. There exist a simply moded atom $A = p(s', z)$, renamed apart wrt. A', and a substitution σ such that $\sigma = \text{mgu}(A, A')$, $\text{In}(A)\sigma = \text{In}(A)$ and $A\sigma \approx A'\theta$. By Theorem 12 there exists θ' such that $A\theta \in \text{Cl}^S(P, SM)$ and $A\theta \approx A\sigma \approx A'\theta$. Hence, by Theorem 20, $A'\theta \in M^S_{\text{B}}$.

17
5 Semantic-Based Verification of Termination

There have been only few proposals which tackled the specific problem of verifying the termination of logic programs with dynamic scheduling. Namely by Apt and Luitjes [5], Marchiori and Teusink [30] and Smaus. Input consuming derivations were indeed introduced by Smaus in [40] to simplify the study of program properties which depend on selection rules and in [41] he started to study in particular the problem of termination of input consuming derivations.

In [10] and [12] we study two classes of programs terminating with respect to input consuming derivations and well-formed queries. The two classes differ in various aspects. First of all, two different classes of well-formed queries are considered: nicely moded queries in [10], simply moded queries in [12]. To give an uniform presentation, in [12] we consider a parametric class of programs in which all input consuming derivations terminate. The parameter is a given class C of queries.

Definition 23 (Input Termination wrt. a class C of queries). Let C be a class of queries. A program is called input terminating with respect to C if all its input consuming derivations started in a query in C are finite.

The second difference among the two classes of terminating programs in [10] and [12] is in the termination proof style. The first class follows the style of [3, 8] and it uses a simple (syntactic) termination condition, but it is also a rather restrictive class. The second class follows the style of [6, 7], that is based on a more complex model theoretic approach, and it uses the semantics introduced in Section 4; this is a significantly larger class of programs.

Let us consider first the more restrictive and simple class introduced in [10]: the class of nicely moded quasi recurrent programs. Its definition is based on the notion of well moded level mapping, first introduced in [21]. Here we use its extension ([10]) to all the terms on B^E_P, the extended Herbrand base of P, that is the set of equivalence classes of all (possibly non-ground) atoms, modulo renaming, whose predicate symbols appear in P.

Definition 24 (Moded Level Mapping). Let P be a program and B^E_P be the extended Herbrand base for the language associated with P. A function $\mid \mid$ is a moded level mapping for P if:

- it is a function $\mid \mid : B^E_P \rightarrow \mathbb{N}$ from atoms to natural numbers;
- for any t and u, $\mid \mid p(s, t) \mid = \mid \mid p(s, u) \mid$.

For $A \in B^E_P$, $\mid A \mid$ is the level of A.

Definition 25 (Quasi Recurrancy). Let P be a program.

- A clause of P is called quasi recurrent with respect to a moded level mapping $\mid \mid$ if for every instance of it, $H \leftarrow A, B, C$

 \[
 \text{if } \text{Rel}(H) \simeq^6 \text{Rel}(B) \text{ then } |H| > |B|.
 \]

\footnote{Given two predicate symbols defined in a program P we denote by $p \simeq q$ the fact that the definitions of the two predicates are mutually recursive.}
- P is called quasi recurrent with respect to $\mid \mid$ if all its clauses are. P is called quasi recurrent if it is quasi recurrent with respect to some moded level mapping $\mid \mid : B^n_\mu \to \mathbb{N}$.

Theorem 26. Let P be a nicely moded program. If P is quasi recurrent then P is input terminating with respect to the class of nicely moded queries.

The proof of this Theorem can be found in [10].

Thus, the quasi recurrent condition is a sufficient condition for input termination of nicely moded programs and nicely moded queries. But it is not a necessary condition: there are nicely moded programs input terminating on all nicely moded queries which are not quasi recurrent as shown by the following simple example taken from [10].

Example 27. Consider the following program with moding $p(1,0)$.

$$
\begin{align*}
p(x,a) & \leftarrow p(x,b).
p(x,b).
\end{align*}
$$

This program is clearly input terminating, however it is not quasi recurrent. If it was, we would have that $|p(x,a)| > |p(x,b)|$, for some moded level mapping $\mid \mid$ (otherwise the first clause would not be quasi recurrent). On the other hand, since $p(x,a)$ and $p(x,b)$ differ only for the terms filling in their output positions, by definition of moded level mapping, $|p(x,a)| = |p(x,b)|$. Hence, we have a contradiction.

A full characterization can be obtained only by further restricting the class of programs, passing from nicely moded to simply moded and input-recursive programs.

Definition 28 (Input-Recursive Program). Let P be a program.

- A clause $H \leftarrow A, B, C$ of P is called input-recursive if

 $$
 \text{if Rel}(H) \simeq \text{Rel}(B) \text{ then } \text{Var}(\text{In}(B)) \subseteq \text{Var}(\text{In}(H)).
 $$

- A program P is called input-recursive if all its clauses are.

Input-recursive is a syntactic condition on a clause requiring that the set of variables occurring in the arguments filling in the input positions of each recursive call in the clause body is a subset of the set of variables occurring in the arguments filling in the input positions of the clause head. The class of input-recursive programs has strong similarities with the class of primitive recursive functions. It does not include programs such that quicksort, permute, transpose and we can compare it with the class of recurrent logic programs, that is programs whose termination does not depend on the so-called inter-argument relations.

Quasi recurrence fully characterizes input termination of simply moded and input-recursive programs with respect to nicely moded queries.
\textbf{Theorem 29.} Let P be a simply moded and input-recursive program. P is quasi recurrent if and only if P is input terminating with respect to the class of nicely moded queries.

The proof of this Theorem can be found in [10].

To consider a larger class of input terminating programs we can follow the same approach pursued by Apt and Pedreschi in defining acceptable programs and use a model to capture the inter-argument relations between the atoms in a query. Intuitively, the model represents all the possible contexts in which a specific atom in a query can be called. Standard models suffice when standard left-to-right derivations are considered, that is when the contexts depends only on the computed answers of the atoms occurring on the left of the considered one. When input consuming derivations are considered, the description of all the possible contexts is much more complex since there may be atoms in the query which are only partially computed when the considered atom is selected. Hence a computed answer semantics does not provide enough information, that is why we need to capture partial computed answers of input consuming derivations.

The semantics defined in [12] and the concept of simply local model give us the right tools and allow us to identify a large class of input terminating programs which includes also programs employing a non-trivial recursion scheme such as quicksort, \texttt{permute}, transpose. In fact, based on the notion of simply local models, in [12] we introduced the notion of simply acceptable programs which corresponds to the notion of acceptable programs introduced in [6].

\textbf{Definition 30 (Simply Acceptable Program).} Let P be a program and M a simply local model of P containing SM_P.

- A clause c of P is \textit{simply} acceptable with respect to a moded level mapping $\| \|$ and M if for every variant $H \leftarrow A, B, C$ of c and every substitution θ simply local with respect to c,

 \[\text{if } A\theta \in M \text{ and } \text{Rel}(H) \simeq \text{Rel}(B) \text{ then } |H\theta| > |B\theta|. \]

- P is \textit{simply} acceptable with respect to M if there exists a moded level mapping $\| \|$ such that each clause of P is simply acceptable with respect to $\| \|$ and M. We also say that P is \textit{simply} acceptable if it is simply acceptable with respect to some M and moded level mapping $\| \|$.

Simple acceptability fully characterizes input termination of simply moded programs with respect to simply moded queries.

\textbf{Theorem 31.} Let P be a simply moded program. P is simply acceptable if and only if it is input terminating with respect to simply moded queries.

The following example shows how we can use the above Theorem to reason about termination of a program.

\textbf{Example 32.} Consider the following \texttt{PERMUTE} program

\begin{verbatim}

\end{verbatim}
permute([X|Xs], Ys) ← insert(Zs, X, Ys), permute(Xs, Zs).
permute([], []). insert([X|Xs], Ys).
insert([U|Xs], X, [U|Zs]) ← insert(Xs, Zs).

We consider it with two different modes.

1. First, consider the mode permute(O, I), insert(O, O, I).
 Notice that the program is not input terminating in this mode: by repeatedly selecting the rightmost atom, the query permute(Xs, Ys) generates an infinite input consuming derivation. By Theorem 31, we can prove it by showing that PERMUTE in this mode cannot be simply acceptable with respect to \(PM_{\text{permute}} \) and a moded level mapping which is invariant under renaming. First note that \(PM_{\text{permute}} \) contains every atom of the form insert(Us, U, t) where Us and U are disjoint from t, i.e., every simply moded atom whose predicate is insert. Therefore, in particular, insert(Us, U, Vs) \(\in PM_{\text{permute}} \). The substitution \(\theta = \{ Ys/Xs, Zs/U, X/U \} \) is simply local with respect to the first clause. Therefore, for this clause to be simply acceptable, by Theorem 31, there would have to be a moded level mapping, invariant under renaming, such that \(|\text{permute}(Us, Vs)| > |\text{permute}(Xs, Us)| \). This is a contradiction since a moded level mapping depends only on the input arguments (the second argument of permute) and we are considering a level mapping invariant under renaming.
 Thus Theorem 31 can be used to diagnose a program, in that we can pinpoint why it does not input terminate.

2. Now consider the program PERMUTE together with the mode permute(I, O), insert(I, I, O).
 In this case, in order to make the program simply moded we have to permute the two body atoms of the first permute clause\(^7\). I.e., permute is redefined as
 \[
 \text{permute}(X|Xs, Ys) \leftarrow \text{permute}(Xs, Zs), \text{insert}(Zs, X, Ys).
 \]
 \[
 \text{permute}([], []). \text{insert}([X|Xs], Ys).
 \]
 Notice that the program is now input terminating with respect to simply moded queries. This is in fact the natural mode of the PERMUTE program.
 To demonstrate the termination one can apply Theorem 31 using any simply local model containing \(SM_F \) together with the following moded level mapping:
 \[
 |\text{permute}(l, .)| = \text{len}(l),
 \]
 \[
 |\text{insert}(l, ., .)| = \text{len}(l).
 \]
 \(^7\) Actually, everything we state applies to the class of permutation simply moded programs, i.e., those programs and queries that are simply moded possibly after a permutation of body atoms. For the sake of notation simplicity, we avoid to refer to this in a structural way.
6 Conclusion

In this paper, we have illustrated two denotational semantics proposed in [9] and in [12] for input consuming derivation in logic programs and we have shown how these semantics have been used for studying termination properties of such programs.

The two semantics are quite orthogonal to each other: while the first one (introduced in [9]) models exclusively the results of successful derivations and requires programs to be well moded and nicely moded, the second one (introduced in [12]) models also the results of incomplete derivations and requires programs and queries to be simply moded.

As mentioned in the Introduction, in the context of parallel and concurrent programs, one can have derivations that never succeed, and yet compute substitutions [36]. Thus we have provided a denotational semantics also for such programs, which goes beyond the usual success-based SLD resolution mechanism of logic programming.

Input consuming derivations bear a certain resemblance with derivations in the language of Modeled (Flat) GHC [45]. Actually, input consuming programs can be seen as a simplified version of modeled (F)GHC. We want to note however that Modeled (F)GHC is a full-fledged programming paradigm, while input consuming programs are meant for abstraction purposes.

As a concluding remark, we want to stress the relation between ic-programs and programs that use delay declarations. A significant class of programs with delay declarations whose derivations are input consuming derivations has been identified in [11].

References

