Information Flow Security and Recursive Systems*

Annalisa Bossi, Damiano Macedonio, Carla Piazza, and Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari di Venezia
{bossi.mace.piazza,rossi}@dsi.unive.it

Abstract. Information flow security in a multilevel system aims at guaranteeing that no high level information is revealed to low level users, even in the presence of any possible malicious process. Persistent BND C (P_BND C, for short) is an information-flow security property which is suitable to deal with processes in dynamic contexts. In this work we show that P_BND C is compositional with respect to the replication operator. Then, by exploiting the compositionality properties of the class of P_BND C processes, we define a proof system which provides a very efficient technique for the stepwise development and the verification of recursively defined P_BND C processes.

1 Introduction

The design of large and complex systems that satisfy a given property strongly depends on the ability of dividing the task of the system into subtasks that are solved by system components. It is the classical divide-and-conquer approach, at the basis of any systematic development of complex systems. When security is the property of interest, difficulties can be encountered in applying this approach since secure systems might not be composed by secure components only. Nevertheless it is essential to know how properties of the components behave under composition. General theories of compositionality exist for properties like safety and liveness [25, 1] and compositionality results for information-flow based confidentiality properties have also been developed [18, 26, 15].

The problem of protecting confidential data in a multilevel system is one of the relevant issues in computer security. Information flow security assures confidentiality since it guarantees that no high level (confidential) information is revealed to users running at low levels [12, 17, 9, 22], even in the presence of any possible malicious process. To establish that information does not flow from high to low it is sufficient to establish that high behavior has no effect on what low level users can observe, i.e., the low level view of the system is independent of high behavior. This notion of information flow security, known

* This work has been partially supported by the MURST project “Modelli formali per la sicurezza” and the EU Contract IST-2001-32617 “Models and Types for Security in Mobile Distributed Systems” (MyThS).
as Non-Interference, has been introduced in [13], and subsequently developed by many authors in many different settings [9, 10, 21, 23, 14].

In this paper we consider the security property Persistent\textit{BND\textsubscript{C}} (\textit{P\textsubscript{BND\textsubscript{C}}}, for short), proposed in [11], and further studied in [4]. \textit{P\textsubscript{BND\textsubscript{C}}} is a security property based on Non-Interference suitable to analyze processes in completely dynamic hostile environments. In [11] it is proved that the \textit{P\textsubscript{BND\textsubscript{C}}} property is equivalent to an already proposed security property called SBSNII and studied in [9]. From the analysis presented in [9] two important problems emerge: how to verify the \textit{P\textsubscript{BND\textsubscript{C}}} property and how to construct \textit{P\textsubscript{BND\textsubscript{C}}} processes. The first problem has been considered in [11] and it has been shown to be decidable. The second problem has been analyzed in [4] where we exploit the compositionality properties of \textit{P\textsubscript{BND\textsubscript{C}}} processes to define a proof system which allows us to \textit{statically prove} that a process is \textit{P\textsubscript{BND\textsubscript{C}}} by just inspecting its syntax.

The proof system consists of two layers, a kernel which deals only with non-recursive processes and a second layer where a rather complex rule, involving many expensive checks, handles recursive processes. The system is correct but not complete, for instance it does not deal with recursive processes involving the parallel operator. The incompleteness and the complexity of the system is due to the lack of a compositionality result for constant definitions, which is the only way recursion is expressed in the SPA language, a variant of Milner's CCS [19].

In this paper we consider another form of recursion expressed using the replication operator (!) instead of constant definitions. The two approaches have the same expressive power in \textit{\pi-calculus} [20, 24], but as recently proved in [7], replication cannot supplant recursion in CCS. In this paper we show that the class of \textit{P\textsubscript{BND\textsubscript{C}}} processes is compositional with respect to the replication operator. This allows us to extend the kernel \textit{Core} of the proof system in [4] with a new inference rule for the replication, thus allowing us to deal also with recursive processes involving the parallel operator. Moreover, we prove a partial compositionality of \textit{P\textsubscript{BND\textsubscript{C}}} with respect to constant definitions, i.e., we identify a class of constant definitions which can be safely added to our language and treated by the extended proof system.

The paper is organized as follows. In Section 2 we introduce the language, and recall the definition of \textit{P\textsubscript{BND\textsubscript{C}}} process and its properties. In Section 3 we prove that \textit{P\textsubscript{BND\textsubscript{C}}} is compositional with respect to the replication operator, and then present a proof system which, by exploiting the new compositionality result, extends the kernel presented in [4] by adding recursion through replication in a very simple way. In Section 4 we (re)-introduce constant definitions. Finally, in Section 5 we draw some conclusions. All the proofs can be found in [5].

2 Basic Notions

2.1 The Language

In this section we report the syntax and semantics of the process algebra we consider. It is a variation of Milner's CCS [19], similar to SPA [9], where the
set of visible actions is partitioned into high level actions and low level ones in order to specify multilevel systems. Differently from [9], we use the replication (!) operator instead of the constant definitions. Intuitively, the process $!E$ (bang E) means $E[E] \ldots$, i.e., the parallel composition of as many copy as needed of the process E. In Section 4 we will reintroduce constant definitions.

The syntax of our process algebra is based on the same elements as CCS that is: a set \mathcal{L} of visible actions such that $\mathcal{L} = I \cup O$ where $I = \{a, b, \ldots\}$ is a set of input actions and $O = \{\overline{a}, \overline{b}, \ldots\}$ is a set of output actions; a special action τ which models internal computations, i.e., not visible outside the system; a complementarily function $\delta : \mathcal{L} \rightarrow \mathcal{L}$, such that $\delta(a) = a$, for all $a \in \mathcal{L}$; $\text{Act} = \mathcal{L} \cup \{\tau\}$ is the set of all actions. The set of visible actions is partitioned into two sets, H and L, of high and low actions such that $\overline{H} = H$ and $\overline{L} = L$. A process E is a term built using the following productions:

$$E ::= 0 | a.E | E + E | E|E | E \setminus v | E[f]|E$$

where $a \in \text{Act}$, $v \subseteq \mathcal{L}$, $f : \text{Act} \rightarrow \text{Act}$ is such that $f(L) \subseteq H \cup \{\tau\}$, $f(H) \subseteq H \cup \{\tau\}$, $f(\overline{a}) = f(a)$ and $f(\tau) = \tau$.

Given a fixed set \mathcal{L} we denote by $\mathcal{E}\mathcal{L}$ the set of all processes, by \mathcal{E}_{H} the set of all high level processes, i.e., those constructed over $H \cup \{\tau\}$, and by \mathcal{E}_{L} the set of all low level processes, i.e., those constructed over $L \cup \{\tau\}$.

The operational semantics of processes is given in terms of a Labelled Transition System (LTS). In particular, the operational semantics of our language is the LTS $(\mathcal{E}, \text{Act}, \rightarrow)$, where the states are the terms of the algebra and the transition relation $\rightarrow \subseteq \mathcal{E} \times \text{Act} \times \mathcal{E}$ is defined by structural induction as the least relation generated by the inference rules reported in Figure 1.

In the paper we use the following notations. If $t = a_{1} \cdots a_{n} \in \text{Act}^{*}$ and $E \circ a_{1} \cdots \circ a_{n} E'$, then we say that E' is reachable from E and write $E \Rightarrow E'$, or simply $E \rightarrow E'$. We also write $E \xrightarrow{\tau} E'$ if $E(\overline{\tau})^{*} \rightarrow (\overline{\tau})^{*} \cdots (\overline{\tau})^{*} \rightarrow (\overline{\tau})^{*} E'$ where $(\overline{\tau})^{*}$ denotes a (possibly empty) sequence of τ labelled transitions. If $t \in \text{Act}^{*}$, then $t \in \mathcal{L}^{*}$ is the sequence gained by deleting all occurrences of τ from t. As a consequence, $E \xrightarrow{\overline{\tau}} E'$ stands for $E \xrightarrow{\tau} E'$ if $a \in \mathcal{L}$, and for $E(\overline{\tau})^{*} E'$ if $a = \tau$ (note that $\xrightarrow{\tau}$ requires at least one τ labelled transition while $\xrightarrow{\overline{\tau}}$ means zero or more τ labelled transitions). Given two processes E, F we write $E \equiv F$ when E and F are syntactically equal.

The concept of observation equivalence between two processes is based on the idea that two systems have the same semantics if and only if they cannot be distinguished by an external observer. This is obtained by defining an equivalence relation over \mathcal{E}^{1}. We report the definitions of weak bisimulation and strong bisimulation [9]. Intuitively, weak bisimulation equates two processes if they mutually simulate their behavior step by step, but it does not care about internal τ actions. So, when P simulates an action of Q, it can also execute some τ actions before or after that action.

Definition 1 (Weak Bisimulation). A symmetric binary relation $R \subseteq \mathcal{E}^{1} \times \mathcal{E}^{1}$ over processes is a weak bisimulation if $(E, F) \in R$ implies, for all $a \in \text{Act}$,
Fig. 1. The operational rules

- if $E \xrightarrow{a} E'$, then there exists F' such that $F \xrightarrow{a} F'$ and $(E', F') \in \mathcal{R}$;
- Two processes $E, F \in \mathcal{E}$ are weak bisimilar, denoted by $E \approx F$, if there exists a weak bisimulation \mathcal{R} containing the pair (E, F).

The relation \approx is the largest weak bisimulation and is an equivalence relation [19].

Strong bisimulation is stronger than weak bisimulation, since it considers the τ actions as all the other actions.

Definition 2 (Strong Bisimulation). A symmetric binary relation $\mathcal{R} \subseteq \mathcal{E} \times \mathcal{E}$ over processes is a strong bisimulation if $(E, F) \in \mathcal{R}$ implies, for all $a \in \text{Act}$,

- if $E \xrightarrow{a} E'$, then there exists F' such that $F \xrightarrow{a} F'$ and $(E', F') \in \mathcal{R}$;
- Two processes $E, F \in \mathcal{E}$ are strong bisimilar, denoted by $E \sim F$, if there exists a strong bisimulation \mathcal{R} containing the pair (E, F).

The relation \sim is the largest weak bisimulation and is an equivalence relation [19]. Moreover, two strongly bisimilar processes are also weakly bisimilar.

2.2 The P_{BNDC} Security Property

In this section we recall the Persistent Bisimulation-based Non Deducibility on Compositions (P_{BNDC}, for short) security property (see [11]). We start by
introducing an equivalence relation on low actions that is a sort of weak bisimulation which considers only the low actions. Hence, when two processes are weakly bisimilar on low actions they cannot be distinguished by a low level user.

Definition 3 (Weak Bisimulation on Low Actions). A symmetric binary relation \(\mathcal{R} \subseteq \mathcal{E}^I \times \mathcal{E}^I \) over processes is a weak bisimulation on low actions, if \((E, F) \in \mathcal{R}\) implies, for all \(a \in L \cup \{\tau\}\),

- if \(E \xrightarrow{a} E'\), then there exists \(F'\) such that \(F \xrightarrow{a} F'\) and \((E', F') \in \mathcal{R}\).

Two processes \(E, F \in \mathcal{E}^I\) are weakly bisimilar on low actions, denoted by \(E \approx_l F\), if there exists a weak bisimulation on low actions \(\mathcal{R}\) containing the pair \((E, F)\).

The relation \(\approx_l\) is the largest weak bisimulation on low actions and it is an equivalence relation [5]. Moreover, it holds \(E \approx_l F\) if and only if \(E \setminus H \approx_l F \setminus H\).

Using weak bisimulation on low actions we recall the notion of Bisimulation-based Non Deducibility on Compositions (BNDC, for short) [9] which is at the basis of \(P^l_{\text{BNDC}}\). The BNDC security property aims at guaranteeing that no information flow from the high to the low level is possible, even in the presence of an attacker. A system \(E\) is BNDC if for every high process \(\Pi\) a low user cannot distinguish \(E\) from \((E|\Pi)\), i.e., if \(\Pi\) cannot interfere [13] with the low level execution of \(E\).

Definition 4 (BNDC). Let \(E \in \mathcal{E}^I\). \(E \in \text{BNDC} \iff \forall \Pi \in \mathcal{E}^H, \ E \approx_l (E|\Pi)\).

In [11] it is shown that BNDC is not strong enough for systems in dynamic environments. To deal with these situations, the property \(P^l_{\text{BNDC}}\) is introduced. Intuitively, a system \(E\) is \(P^l_{\text{BNDC}}\) if it never reaches insecure states.

Definition 5 (P^l_{\text{BNDC}}). Let \(E \in \mathcal{E}^I\). \(E \in P^l_{\text{BNDC}} \iff E \Rightarrow E'\) implies \(E' \in \text{BNDC}\).

Although the decidability of BNDC is still an open problem, \(P^l_{\text{BNDC}}\) is decidable (in polynomial time) as shown in [11]. In [4] another decidable characterization of \(P^l_{\text{BNDC}}\) processes has been proposed. It allows us to express \(P^l_{\text{BNDC}}\) in terms of a local property of high level actions and it recalls the unwinding conditions proposed in other settings. Also if we are using a variation of the SPA, with replications instead of constant definitions, the characterization presented in [4] holds.

Theorem 1 (Unwinding). Let \(E \in \mathcal{E}^I\). \(E \in P^l_{\text{BNDC}} \iff E \Rightarrow E_i \xrightarrow{h_i} E_j,\) then \(E_i \xrightarrow{\cdot} E_k\) and \(E_j \approx_l E_k\).

The following lemma rephrases the corresponding lemma in [4] and it proves that the class of \(P^l_{\text{BNDC}}\) processes enjoys the following compositionality properties.

Lemma 1. The class of \(P^l_{\text{BNDC}}\) processes contains all the processes in \(\mathcal{E}^I \cup \mathcal{E}^H\) and is closed with respect to restriction, renaming, and parallel composition. Moreover, if \(E_i, F_j \in P^l_{\text{BNDC}}, a_i \in L\) and \(h_j \in H, i \in I\) and \(j \in J\), then \(\sum_{i \in I} a_i E_i + \sum_{j \in J} (h_j F_j + \tau F_j) \in P^l_{\text{BNDC}}\).
3 P_BNDC and Replications

In this section we first extend the compositionality result of Lemma 1 by proving that P_BNDC is closed also with respect to the replication operator. Then we present a proof system for P_BNDC processes.

3.1 Compositionality of P_BNDC wrt !

We start by observing that the processes reachable from !E have the form of a parallel composition of a finite number of processes reachable from E and !E.

Lemma 2. Let E ∈ E\(^1\) be a process. If !E ⊆ E\(^2\), then there exist n ≥ 0 and E\(_1\), ..., E\(_n\) such that E ≃ E\(_i\), for i = 1, ..., n and E\(^2\) ≡ E\(_1\)|E\(_2\)|...|E\(_n\)|E.

Hence the set \{E\(_1\), ..., E\(_n\)\} of processes reachable from E characterizes the processes reachable from !E.

There is an interesting connection between the processes reachable from E and the processes reachable from !E when E is P_BNDC: if the sets \{F\(_1\), ..., F\(_n\)\} and \{G\(_1\), ..., G\(_n\)\} of processes reachable from E are pairwise weakly bisimilar on low actions, i.e., F\(_i\) ≃ G\(_i\), this relation is preserved also on the processes reachable from !E that they characterize.

Lemma 3. Let E be a P_BNDC process and ∀i ∈ {1,...,n} F\(_i\), G\(_i\) be reachable from E. If ∀i ∈ {1,...,n} F\(_i\) G\(_i\) then F\(_1\)|F\(_2\)|...|F\(_n\)|E ≃ G\(_1\)|G\(_2\)|...|G\(_n\)|E.

The two previous lemmas, together with the unwinding condition (see Theorem 1), allow us to prove that P_BNDC is compositional with respect to the replication operator.

Theorem 2. Let E ∈ E\(^1\) be a process. If E ∈ P_BNDC, then !E ∈ P_BNDC.

3.2 A Proof System for Processes with Replications

In [4] it has been presented a proof system which allows us to build P_BNDC processes in an incremental way. The proof system is composed by a set of rules whose conclusions are in the form E ∈ H\(P[A]\), where A is a set of constants. The intended meaning of the judgment is that E is a P_BNDC process provided that all the constants in A are P_BNDC. The set A plays the role of a set of assumptions: if it is empty then E is P_BNDC otherwise we are still working on our construction under open hypothesis. It is immediate to observe that the system described in [4] is correct also using set of processes, instead of set of constants, as assumptions. Hence, in this section the meaning of E ∈ H\(P[A]\) is that E is a P_BNDC process provided that all the processes in A are P_BNDC. We show how to exploit Lemma 1 and Theorem 2 in order to extend the system to the case of processes with replication. In particular, let us consider the proof system `System' whose rules are shown in Figure 2\(^1\).

\(^1\) We use E[F/G] to denote the process we obtain by replacing all the occurrences of G in E with F, where G denotes a process whose occurrences in E can be syntactically and unambiguously identified.
\begin{center}
\begin{tabular}{c c c}

\textbf{E} \in \mathcal{H}[\{E\}] & \text{\textbf{E} is a process} & \text{(Proc)} \\
\hline
\textbf{E} \in \mathcal{E}^L \quad \text{\textbf{E} \in \mathcal{E}^L} & \text{\textbf{E} \in \mathcal{H}[0]} & \text{\textbf{E} \in \mathcal{E}^H} & \text{\textbf{E} \in \mathcal{H}[0]} \\
\hline
\textbf{E} \in \mathcal{H}[A] & \text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} \\
\hline
\textbf{E} \setminus v \in \mathcal{H}[A] & \text{\textbf{E} \setminus v \in \mathcal{H}[A]} & \text{\textbf{E} \setminus v \in \mathcal{H}[A]} & \text{\textbf{E} \setminus v \in \mathcal{H}[A]} \\
\hline
\textbf{E}[F] \in \mathcal{H}[A \cup B] & \text{\textbf{E}[F] \in \mathcal{H}[A \cup B]} & \text{\textbf{E}[F] \in \mathcal{H}[A \cup B]} & \text{\textbf{E}[F] \in \mathcal{H}[A \cup B]} \\
\hline
\sum_{i \in I} a_i E_i + \sum_{j \in J} (h_j F_j + \tau F_j) \in \mathcal{H}[\bigcup \{A_i \cup J \subseteq B_j \} & \text{\sum_{i \in I} a_i E_i + \sum_{j \in J} (h_j F_j + \tau F_j) \in \mathcal{H}[\bigcup \{A_i \cup J \subseteq B_j \} & \text{\sum_{i \in I} a_i E_i + \sum_{j \in J} (h_j F_j + \tau F_j) \in \mathcal{H}[\bigcup \{A_i \cup J \subseteq B_j \} & \text{\sum_{i \in I} a_i E_i + \sum_{j \in J} (h_j F_j + \tau F_j) \in \mathcal{H}[\bigcup \{A_i \cup J \subseteq B_j \} \\
& \text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} \\
\hline
\text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} & \text{\textbf{E} \in \mathcal{H}[A]} \\
\hline
\text{\textbf{E}}[G] \in \mathcal{H}[A] & \text{\textbf{E}}[G] \in \mathcal{H}[A] & \text{\textbf{E}}[G] \in \mathcal{H}[A] & \text{\textbf{E}}[G] \in \mathcal{H}[A] \\
\hline
\text{\textbf{E}[F]} \in \mathcal{H}[A \cup B] & \text{\textbf{E}[F]} \in \mathcal{H}[A \cup B] & \text{\textbf{E}[F]} \in \mathcal{H}[A \cup B] & \text{\textbf{E}[F]} \in \mathcal{H}[A \cup B] \\
\hline
\end{tabular}
\end{center}

\textbf{Fig. 2.} The proof system \textit{System1}

\textbf{Theorem 3 (Correctness).} System1 is correct, i.e., if there exists a proof in System1 which ends with E \in \mathcal{H}[A], then E is P_{BNDP} provided that all the processes in A are P_{BNDP}.

\textbf{Corollary 1.} Let E \in \mathcal{E}. If there exists a proof of E \in \mathcal{H}[\emptyset], then E is P_{BNDP}.

\textbf{Example 1.} Consider the process CH defined as

\[CH \equiv ((i_{n_0} (\text{out}_0 \cdot \sigma \cdot 0 + \tau \cdot \sigma \cdot 0) + i_{n_1} (\text{out}_1 \cdot \sigma \cdot 0 + \tau \cdot \sigma \cdot 0) + \sigma (i_{n_0} (\text{out}_0 \cdot \sigma \cdot 0 + \tau \cdot \sigma \cdot 0) + i_{n_1} (\text{out}_1 \cdot \sigma \cdot 0 + \tau \cdot \sigma \cdot 0))) \mid \{\sigma, \sigma\} \]

where \(i_{n_0}, i_{n_1}, \sigma, \sigma \in L\) and \(\text{out}_0, \text{out}_1 \in H\). This process CH is a channel which may accept a value 0 (or 1) through the low level input \(i_{n_0}\) (or \(i_{n_1}\)). When it holds a value, it may deliver it through a high level output \(\text{out}_0\) (or \(\text{out}_1\)). The channel can transmit values infinitely many times. In fact, when the \(\sigma_1\) action is reached the process resumes itself and recursively repeats the sequence of actions.

This process is a variation of the channel described in [19]. It is easy to see that we can derive the judgement CH \in \mathcal{H}[\emptyset] in System1.

This example shows that System1 is more powerful than Core of [4], in fact Core cannot handle any recursive process. In [4] we introduced a more complex rule to deal with recursion.
4 Adding Constant Definitions

In this section we add some constant definitions to our language. Then, exploiting the compositional property of P_{BNDC} with respect to the replication operator, we prove a compositional property result for P_{BNDC} with respect to the constant definitions we consider. We do not add all constant definitions, since in CCS, differently from π-calculus [24], replication is not expressive enough to represent all constant definitions [7].

4.1 Definitions using Replications

In standard CCS [19] complex recursive systems are defined parametrically, as $Z \equiv E[Z]$, where Z is a process identifier and $E[Z]$ a process expression which may contain “calls” to Z as well as to other parametric processes.

Example 2. Consider the process Z recursively defined as $Z \equiv a.Z + b.0$. Intuitively this process can perform either an action a and return in its initial state or an action b and terminate. Similarly it is possible to consider two mutually defined processes X and Y where X performs an action a and then calls Y; while Y performs an action b and calls X. Their definitions are

$X \equiv a.Y \quad Y \equiv b.X$

This way of defining recursive processes was taken as basic in [9] and in other previous works on P_{BNDC} [see 4]. In the context of the π-calculus in [20], an encoding is defined which eliminates a finite number of constant definitions using replication. As already noticed in [24], the same encoding applied to full CCS does not work (see also Remark 1). In what follows we identify a fragment of CCS on which the encoding is correct.

Let $Act = \mathcal{L} \cup \{\tau\}$ be a set of actions, with \mathcal{L} partitioned into the two sets H and L, as described in Section 2.1. Let \mathcal{C} be a finite set of constants. Consider all the processes D which can be obtained using the following productions:

$$D ::= 0 \mid a.D \mid D + D \mid D[D] \mid Z$$

where $Z \in \mathcal{C}$ is a constant which must be associated to a definition $Z \equiv D$. Let \mathcal{D} be the set of processes defined with this syntax. Given a process D, $const(D)$ denotes all the constants which occur in D. We say that a process D is constant-free if $const(D) = \emptyset$.

In order to define the semantics of the processes in \mathcal{D} we add to the rules of Figure 1 the following rule to deal with constant definitions.

$$\text{Constant} \quad \frac{}{Z \xrightarrow{\tau} D} \text{ if } Z \equiv D$$

This rule tells us that if $Z \equiv D$ then Z performs a τ transition and then behaves as D.

8
Example 3. Let Z be the constant defined in Example 2. By applying once the rule Constant we obtain that $Z \leadsto a.Z + b.0$, then either $a.Z + b.0 \xrightarrow{b} 0$ or $a.Z + b.0 \xrightarrow{b} Z$. In the second case we can apply again the rule Constant.

All the processes in E^{def} can be translated into an equivalent (bisimilar) process of the language E presented in Section 2.1 (i.e., into a process with restriction and replication and without constant definition).

We briefly recall how the encoding which removes the constant definitions works. Let Z_1, \ldots, Z_n be n constants defined as $Z_i \overset{\text{def}}{=} D_i$, where for all $i = 1, \ldots, n$ const$(D_i) \subseteq \{Z_1, \ldots, Z_n\}$. Let $S = \{\sigma_1, \overline{\sigma}_1, \ldots, \sigma_n, \overline{\sigma}_n\}$ be a new set of actions disjoint from Act. We associate to the constant Z_i the actions σ_i and $\overline{\sigma}_i$ and we introduce the notation2:

$$\tilde{Z}_i \overset{\text{def}}{=} [\sigma_i D_i[\overline{\sigma}_1.0 / Z_1, \ldots, \overline{\sigma}_n.0 / Z_n]].$$

where in D_i each constant Z_j is replaced by the constant-free expression $\overline{\sigma}_j \cdot 0$. Since const$(D_i) \subseteq \{Z_1, \ldots, Z_n\}$, \tilde{Z}_i is a constant-free expression.

Definition 6 (Encoding of E^{def}). Let $D \in E^{\text{def}}$ be a process with const$(D) \subseteq \{Z_1, \ldots, Z_n\}$. Its encoding $[D]$ is the constant-free process

$$[D] \overset{\text{def}}{=} (D[\overline{\sigma}_1.0 / Z_1, \ldots, \overline{\sigma}_n.0 / Z_n] \tilde{Z}_1 \ldots \tilde{Z}_n) \setminus S.$$

In particular, when D is one of the Z_i's we obtain

$$[Z_i] \overset{\text{def}}{=} (\overline{\sigma}_1.0 \tilde{Z}_1 \ldots \tilde{Z}_n) \setminus S.$$

Example 4. Let Z be the constant defined in Example 2. The encoding of Z is $[Z] \equiv ([\overline{\sigma}_1.0][Z] \setminus S$, but $\tilde{Z} = ([\sigma_0 ((a.Z + b.0)[\overline{\sigma}_1/Z])] \equiv ([\sigma_0 ((a.\overline{\sigma}_1.0 + b.0)])$ hence we obtain $[Z] \equiv ([\overline{\sigma}_1.0]([\sigma_0 ((a.\overline{\sigma}_1.0 + b.0)]) \setminus S$. Note that \tilde{Z} and $[Z]$ are different.

Remark 1. In the encoding, the action $\overline{\sigma}_i$ is used to make a “call to the procedure” Z_i which is represented by \tilde{Z}_i. The encoding does not work in the full CCS, since the scope of the restrictions and renamings is not enlarged to the \tilde{Z}_i. Consider for instance a constant Z defined as $Z \overset{\text{def}}{=} a.Z$ and the process $E \equiv [Z] \setminus \{a\}$. The process E can only perform an a action, then it terminates. If we apply our encoding we obtain $[E] \equiv ([\overline{\sigma}_1.0] \setminus \{a\}) \equiv ([\sigma_0 ((a.\overline{\sigma}_1.0)] \setminus S$. Differently from E, the process $[E]$ performs an a, and then it is able to perform an action a, since in \tilde{Z} the action a is allowed. Actually, we can overcome this problem and define a correct translation for E (see Definition 7). Another process which cannot be translated is obtained using two mutual recursive constant definitions

$X \overset{\text{def}}{=} (a.X \, \overline{\sigma} Y) \setminus \{a, \overline{\sigma}\} \quad Y \overset{\text{def}}{=} (b.Y \, a.\overline{\sigma} X) \setminus \{b, \overline{\sigma}\}$

2 We use the notation $D[Z_1, \ldots, Z_n]$ when we want to stress the fact that the constants Z_1, \ldots, Z_n can occur in D.

9
The process $F \equiv X$ can perform only b and τ actions. Its encoding would be the process $[F]$ defined as

$$(\overline{\sigma X} 0 | (a.\overline{\sigma X} 0 | b.\overline{\sigma X} 0 \setminus \{a, b\}) | (\overline{\sigma Y} ((b.\overline{\sigma X} 0 | b.\overline{\sigma X} 0) \setminus \{a, b\})) \setminus S.$$

The process $[F]$ can perform also a actions, since the restriction on a is not applied to Y. The solution we will apply later to enlarge the encoding cannot be applied to this process.

The following theorem states the observational equivalence between D and $[D]$ when D belongs to \mathcal{E}_{def}. Since $D \in \mathcal{E}_{\text{def}}$ and $[D] \in \mathcal{E}$ the bisimulation we establish is a relation on $\mathcal{E}_{\text{def}} \times \mathcal{E}$.

Theorem 4. For each $D \in \mathcal{E}_{\text{def}}$ it holds $D \sim [D]$.

The actions σ_i's introduced in the encoding are neither high nor low level actions. They are used only in the encoding, in order to obtain constant free-processes, but they are not visible outside because of the outermost restriction. Indeed, they are introduced only to fire infinitely many times the actions of the D_i's. Nevertheless, we have to decide how to treat them in the definition of the attackers and in the definition of the low level observational equivalence. We consider this issue in the next section.

Before moving to our security property we show how to apply the encoding to a richer language in which restriction and renaming can be used “outside” the recursive definitions. In particular, consider all the processes E defined by the following productions:

$$E ::= 0 \mid a.E \mid E + E \mid E[E/E \setminus \{f\}] \mid E \mid Z$$

where $Z \in \mathcal{C}$ is a constant which must be associated to a definition $Z \equiv D$, with $D \in \mathcal{E}_{\text{def}}$. Let $\mathcal{E}_{\text{def}}!$ be the set of processes defined with this syntax.

Since the constants are defined using processes in \mathcal{E}_{def}, by Theorem 4, we have that $Z \sim [Z]$. Observing that \sim is a congruence on our language we immediately get that the following encoding can be applied to the processes in $\mathcal{E}_{\text{def}}!$.

Definition 7 (Encoding of $\mathcal{E}_{\text{def}}!$). Let $E \in \mathcal{E}_{\text{def}}!$ be a process with $\text{const}(E) \subseteq \{Z_1, \ldots, Z_n\}$ its encoding $\llbracket E \rrbracket$ is the constant-free process

$$\llbracket E \rrbracket \equiv E[[Z_1]/Z_1, \ldots, [Z_n]/Z_n].$$

Corollary 2. For each $E \in \mathcal{E}_{\text{def}}!$ it holds $E \sim \llbracket E \rrbracket$.

Example 5. Consider the constant Z and the process E defined in Remark 1. The process E is in $\mathcal{E}_{\text{def}}!$. Its encoding is $\llbracket E \rrbracket \equiv ((\overline{\sigma 0}|(\sigma a.\overline{\sigma 0})\setminus S)\setminus \{a\}$. Now, we can correctly obtain that E performs a τ transition, then it terminates.

The constants X and Y of Remark 1 do not belong to $\mathcal{E}_{\text{def}}!$. In fact, in order to translate X we would need a correct encoding of Y, and this is not possible without a correct encoding of X, i.e., we enter in a loop. We can conclude that \mathcal{E}_{def} is still not expressive as CCS with constant definitions. On the other hand, Corollary 2 says that \mathcal{E}_{def} is expressive as \mathcal{E}. The relation between \mathcal{E}_{def} and $\mathcal{E}_{\text{def}}!$ is still an open problem; we conjecture that $\mathcal{E}_{\text{def}}!$ is more powerful.
4.2 P_{BNDC} and Definitions

Let $Act = L \cup H \cup \{\tau\}$ as defined in Section 2.1. Let S be a new set of (synchronization) actions such that $S \cap Act = \emptyset$ and $S = S$, i.e., S is closed with respect to the complementation operation. In what follows we consider as set of actions $Act' = L \cup H \cup \{\tau\} \cup S$. Moreover, we require that if f is a relabelling function, then $\forall \sigma \in S$, $f(\sigma) = \sigma$. As previously observed the actions of S do not represent ‘real’ actions, but they are only instrumental for the encoding. The processes we start with have no actions in S, while their encodings do. For this reason it is necessary to decide how to treat S with respect to our security notions. In order to keep the compositional property of P_{BNDC} it is convenient to assimilate them to low level actions. Therefore, the high level attacker cannot perform them and the low level user can observe them. In this way we can treat in a compositional way also processes in which these actions occur. In particular, we extend the concept of weak bisimulation on low actions considering the actions in S as if they were actions in L. With a slight abuse of notation from now on we say that two processes $E, F \in E^{\text{def}}$ (built also using actions in S) are weakly bisimilar on low actions, denoted by $E \approx_{\text{w}} F$, if there exists a symmetric binary relation $R \subseteq E^{\text{def}} \times E^{\text{def}}$ such that if $(E, F) \in R$, then for all $a \in L \cup S \cup \{\tau\}$,

- if $E \overset{a}{\rightarrow} E'$, then there exists F' such that $F \overset{a}{\rightarrow} F'$ and $(E', F') \in R$.

Clearly \approx_{w} is still the largest weak bisimulation on low actions and it is an equivalence relation. Moreover it is still true that $E \approx_{\text{w}} F$ iff $E \parallel H \approx F \parallel H$.

Using this definition of \approx_{w} the notions of $BNDC$ and P_{BNDC} can be consistently transposed. Notice that using these extended definitions Theorem 1 and Theorem 2 continue to hold. As far as Lemma 1 is concerned some trivial changes are necessary. In particular, let $E_{HS}^{\text{def}} (E_{HL}^{\text{def}})$ be the set of all processes in $E^{\text{def}}_H (E^{\text{def}}_L)$ constructed over $H \cup S \cup \{\tau\}$. Similarly, let $E_{HS}^{\text{def}} (E_{HL}^{\text{def}})$ be the set of all processes constructed over $L \cup S \cup \{\tau\}$ and $E_{HS}^{\text{def}} (E_{HL}^{\text{def}})$ be the set of all processes constructed over $L \cup H \cup \{\tau\}$. In the first sentence of Lemma 1 it is necessary to consider constant-free processes in $E_{HS}^{\text{def}} \cup E_{HL}^{\text{def}}$. In the third sentence the actions a_i’s can range over $L \cup S \cup \{\tau\}$. Moreover, from Theorem 4 we immediately get the following result.

Corollary 3. Let Z_1, \ldots, Z_n be constants defined as $Z_i \overset{\text{def}}{=} D_i$, with $D_i \in E_{HL}^{\text{def}}$ for $i = 1, \ldots, n$. If for all $i = 1, \ldots, n$ it holds $\text{const}(D_i) \subseteq \{Z_1, \ldots, Z_n\}$ and $[Z_i] \in P_{BNDC}$, then all the Z_i’s are P_{BNDC}.

4.3 Extension of the Proof System to Processes with Definitions

In order to deal with the language extended with the actions in S and with the constant definitions we have to modify some of the rules of the proof system described in Section 3.2 and to add new rules to deal with constant definitions. In particular, we change the rules (Low) and (Choice) by considering $L \cup S$ instead of L and by adding “E is constant-free” to the rules (Low) and (High).

Then we add the following rules to deal with constant definitions
\[E \setminus S \in \mathcal{H}P[\emptyset] \quad (\text{High2}) \]
\[
\vdash [X_i] \in \mathcal{H}P[A] \\
\begin{aligned}
X_i \in \mathcal{H}P[A] \\
(X_i \equiv D_i)_{i=1}^n, D_i \in \mathcal{E}^{\text{def}}_{\mathcal{H}L}
\end{aligned} \\
(\text{Const})
\]

where \([X_i]\) is a constant-free process.

We call System \(\text{System}^{\text{def}}\) the modified system. Corollary 3 ensures its correctness.

Example 6. Consider the channel \(C\) as defined in [3] (see [19]) and its encoding,
\[
C = in_0.(\text{out}_0.C + \tau.C) + in_1.(\text{out}_1.C + \tau.C) \\
[C] \equiv (\sigma.0![(\sigma.(\tau.(\sigma.X.0 + h.X) + h.X))]) \setminus S
\]
It is easy to see that we can derive \(C \in \mathcal{H}P[\emptyset]\) in our extended proof system. Notice that the process \(CH\) described in Example 1 is exactly the process we obtain after a \(\tau\) transition of \([C]\).

Corollary 4. Let \(E \in \mathcal{E}^{\text{def}}\) be a process. If there exists a proof of \(E \in \mathcal{H}P[\emptyset]\) in System \(\text{System}^{\text{def}}\), then \(E\) is \(P_{\text{BNDC}}\).

By exploiting the result of Corollary 2 we can add the derived rule below, which can be used to shorten derivations involving constant definitions:
\[
\vdash [E] \in \mathcal{H}P[A] \\
E \in \mathcal{E}^{\text{def}}_{\mathcal{H}L} \\
(\text{Trans})
\]

Example 7. Let \(Z\) be defined as \(Z \equiv \text{id}.Z + h.l.0 + \tau.l.0\) and consider the process \(E \equiv \text{id}.Z\), where \(l \in L\) and \(h \in H\). By applying rule (Trans) we can directly prove that \([Z]\) is \(P_{\text{BNDC}}\) without explicitly prove that \([E]\) is \(P_{\text{BNDC}}\).

Example 8. Consider the two processes \(X\) and \(Y\) mutually defined as follows
\[
X \equiv \text{id}.X | Y \\
Y \equiv \tau.X + h.X
\]
where \(l \in L\) and \(h \in H\). Their encodings in \(\mathcal{E}^1\) are
\[
[X] \equiv (\sigma.X.0)(\sigma.(\text{id}.X.0 + h.X.0)) \setminus S \\
[Y] \equiv (\sigma.Y.0)[(\sigma.Y.0 + h.Y.0)](\sigma.(\tau.X.0 + h.X.0)) \setminus S
\]
It is easy to derive the judgements \([X] \in \mathcal{H}P[\emptyset]\) and \([Y] \in \mathcal{H}P[\emptyset]\) in System1, hence we conclude that \(X\) and \(Y\) are \(P_{\text{BNDC}}\) processes.

It is worth noticing that the system proposed in [4] cannot treat the process of Example 8. In fact, as already observed in the introduction, the system of [4] does not deal with recursive processes involving the parallel operator.
5 Conclusions

In this paper we study the class of P_{BNDL} processes written in a variant of Security Process Algebra (SPA) where recursive processes are defined by means of replications instead of constant definitions. The modified language is slightly less powerful than the original one, but the loss of expressive power is largely compensated by the compositionality result obtained.

We proved that the class of P_{BNDL} processes is compositional with respect to replication. This result allows us to define a proof system which provides a very efficient technique for the stepwise development and the verification of recursively defined P_{BNDL} processes. We also identify a class of constants definitions which can be safely added to our language and treated by an extended proof system.

We are currently working on extending the results on information flow security obtained for SPA to π-calculus, where the two forms of recursion are equivalent. Our feeling is that we could reach the same compositional results reached in SPA language, by choosing a good extension for the P_{BNDL} class.

As already noticed in [4], there are many other approaches to the verification of information flow properties. In the literature we found only another example of a proof system for security proposed by Martinelli [16] which deals only with finite processes. Other verification techniques for information flow security are based on types (see, e.g., [23,14]) and control flow analysis (see, e.g., [2,6]). However, most of them are concerned with different models, e.g., trace semantics (see, e.g., [8,18]).

References

