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Abstract. The theory of time-reversibility has been widely used to de-
rive the expressions of the invariant measures and, consequently, of the
equilibrium distributions for a large class of Markov chains which found
applications in optimisation problems, computer science, physics, and
bioinformatics. One of the key-properties of reversible models is that the
truncation of a reversible Markov chain is still reversible. In this work
we consider a more general notion of reversibility, i.e., the reversibility
modulo state renaming, called ρ-reversibility, and show that some of the
properties of reversible chains cannot be straightforwardly extended to
ρ-reversible ones. Among these properties, we show that in general the
truncation of the state space of a ρ-reversible chain is not ρ-reversible.
Hence, we derive further conditions that allow the formulation of the
well-known properties of reversible chains for ρ-reversible Markov chains.
Finally, we study the properties of the state aggregation in ρ-reversible
chains and prove that there always exists a state aggregation that asso-
ciates a ρ-reversible process with a reversible one.

1 Introduction

Reversibility of Markov chains at discrete or continuous time has been ex-
tensively studied in [13,25]. Given a stationary Markov chain X(t) we say that
it is reversible if for all t1, t2, . . . , tn, τ , (X(t1), . . . , X(tn)) has the same equilib-
rium distribution as (ρ(X)(τ − t1), . . . , ρ(X)(τ − tn)) where t1, . . . , tn, τ belongs
to the time domain, i.e., Z for discrete time Markov chains (DTMCs) and R
for continuous time Markov chains (CTMCs). Reversibility is a key-property for
studying the stationary behaviour of Markov chains and there are several ex-
amples of models with underlying reversible processes such as the loss networks
[14] which found applications for studying telecommunication systems, models
of wireless networks [5] just to mention a non exhaustive list of applications. In
many practical cases, reversibility allows for the derivation of an exact analysis
of the stationary behaviour of the model without resorting to simulation, ap-
proximate decompositions (see e.g., [6,3]) or limit-based analysis (see e.g., [4,7]).

However, the largest application field of reversible Markov chains is in queue-
ing theory. Queueing theory is the foundation of many works in operation re-
search (see, e.g., [23,16,8] just to mention some recent works) and some of them
are based on reversible models or their variation [13,1,12,24,2].



Markov chain reversibility is a special case of a more general notion of re-
versibility that we call ρ-reversibility. A ρ-reversible chain X(t) is stochastically
indistinguishable from X(τ − t) modulo a state renaming which is a bijective
function ρ from the chain’s state space S to itself. An example of such a chain is
shown in Figure 1 where we can easily see that the forward CTMC (Figure 1-(a))
is not reversible since a simple necessary structural condition for reversibility is
that whenever there is a transition from state s to state s′ there is also its in-
verse from s′ to s. Figure 1-(b) shows the transition diagrams of X(τ − t) and
we can observe that it is stochastically indistinguishable from X(t) modulo the
renaming of states ρ(1) = 2, ρ(2) = 1, ρ(3) = 4 and ρ(4) = 3.

Fig. 1: A simple ρ-reversible CTMC: (a) Forward process, (b) Reversed process.
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In this case function ρ is an involution. In the literature of stochastic pro-
cesses when ρ is an involution the notion of ρ-reversibility is known as dynamic
reversibility and has been studied in [13,25]. It is worth of notice that the con-
cept of ρ-reversibility is more general than that of dynamic reversibility, i.e.,
there exist Markov processes which are ρ-reversible but there does not exist any
involution for which they are also dynamically reversible [18,21].

Reversible Markov chains enjoy some important properties that can be read-
ily formulated also for ρ-reversible chains. Specifically, in both cases one may
decide if a chain is reversible/ρ-reversible by inspection of a base of minimal
cycles of the chain and the computation of a non-trivial invariant measure can
be done by performing only multiplications and using the detailed balance equa-
tions [13,25,19,21]. However, other important properties that hold for reversible
Markov chains do not straightforwardly hold for the ρ-reversible ones. Specifi-
cally, if S is the state space of a reversible CTMC, A ⊂ S and if the graph of
A is irreducible, then also the chain whose state space is A and the transitions
are only those of the original one for the states in A is reversible. We say in
this case that the resulting process is truncated to the set A. A similar result
holds if the transition rates from set S rA to A are changed by the same mul-
tiplicative factor. In this paper we prove that, in general, these results do not
hold for ρ-reversible and dynamically reversible chains, but they require some
further conditions that are trivially satisfied in the case of reversible chains. It
is worth to observe that, to the best of our knowledge, this is the first work that



studies the truncation properties for Markov chains that are reversible modulo
state renaming, including those that are know to be dynamically reversible. In
fact, in [13,25] the authors consider only the truncation of reversible processes.
We also investigate the definition of the aggregated process for reversible and
ρ-reversible chains and prove that they also are reversible or ρ-reversible.

The paper is structured as follows. Section 2 illustrates the preliminary no-
tions and the notation which are necessary to keep the paper self-contained.
In Sections 3 and 4 we prove the new results about process aggregation and
truncation, respectively. Finally, Section 5 concludes the paper.

2 Preliminaries

Let us consider a Markov chain X(t) defined on the state space S. For the
sake of brevity we study the continuous time case, i.e., t ∈ R. Given a stationary
CTMC X(t) the process X(τ− t), denoted by XR(t), is still a stationary CTMC
[13] and the equilibrium state probability π for X(t) is the same of that of XR(t).

In [19] the notion of reversibility for CTMC has been generalized to a notion
of reversibility under state renaming named ρ-reversibility.

Formally, a renaming ρ over the state space of a Markov chain is a bijection
from S to itself. For a Markov chain X(t) with state space S we denote by
ρ(X)(t) the same process where the state names are changed according to ρ.

The notion of ρ-reversibility is defined as follows.

Definition 1. (ρ-reversibility) [19,21] Let X(t) be a stationary CTMC with state
space S and ρ be a renaming on S. X(t) is said to be ρ-reversible if for all
t1, t2, . . . , tn, τ ∈ R, (X(t1), . . . , X(tn)) has the same equilibrium distribution as
(ρ(X)(τ − t1), . . . , ρ(X)(τ − tn)). Moreover, if ρ is the identity we say that X(t)
is reversible whereas if ρ is a non-trivial involution, i.e., ∀s ∈ S ρ(ρ(s)) = s but
ρ is not the identity, then X(t) is said to be dynamically reversible [13].

Notice that from Definition 1 and the fact that X(t) and XR(t) have the same
equilibrium state distribution, it follows that:

π(s) = π(ρ(s)) for all s ∈ S .

It is important to observe that a CTMC may be ρ1-reversible and ρ2-reversible
for some ρ1 6= ρ2. In [18] we prove that the extension of dynamic reversibility
to ρ-reversibility is non-trivial since there exist CTMCs such that they have a
function ρ for which they are ρ-reversible but there does not exist any involution
that makes them dynamically reversible.

The following proposition, proved in [19], gives necessary and sufficient con-
ditions for a CTMC to be ρ-reversible given a certain ρ.

Proposition 1. (ρ-detailed balance equations) Let X(t) be an ergodic CTMC
with state space S and infinitesimal generator matrix Q. Let ρ be a renaming on
S. X(t) is ρ-reversible if and only if there exists a collection of positive numbers



π(s), s ∈ S, summing to unity that satisfy the following system of ρ-detailed
balance equations:

π(s)q(s, s′) = π(ρ(s′))q(ρ(s′), ρ(s)) for all s, s′ ∈ S , (1)

where q(s, s′) denotes the transition rate from state s to s′, with s 6= s′. If such a
solution π exists then it is the equilibrium distribution of both X(t) and ρ(XR)(t)
and π(s) = π(ρ(s)) for all s ∈ S.

If the equilibrium distribution of X(t) is known, the following corollary gives
a straightforward way to decide if X(t) is ρ-reversible given a certain ρ.

Corollary 1. Let X(t) be an ergodic CTMC with state space S, infinitesimal
generator matrix Q and equilibrium distribution π. Let ρ be a renaming on
the state space S. If the transition rates of X(t) satisfy the following system of
equations:

π(s)q(s, s′) = π(s′)q(ρ(s′), ρ(s)) for all s, s′ ∈ S

then X(t) is ρ-reversible.

The previous methods to decide the property of ρ reversibility are based on
the computation or the knowledge of the equilibrium distribution. In contrast,
Kolmogorov’s critera are purely structural, i.e., they depend only on the struc-
ture of the underlying transition graph and on the transition rates and do not
require the solution of a linear system of equations.

Proposition 2. Let X(t) be an ergodic CTMC with state space S and infinites-
imal generator matrix Q, and ρ be a renaming on S. X(t) is ρ-reversible if and
only if for every finite sequence s1, s2, . . . sn ∈ S,

q(s1, s2) · · · q(sn−1, sn) q(sn, s1) =

q(ρ(s1), ρ(sn)) q(ρ(sn), ρ(sn−1)) · · · q(ρ(s2), ρ(s1))

and q(s) = q(ρ(s)) for every state s ∈ S.

The equilibrium distribution of a ρ-reversible CTMC can be computed as
stated in Proposition 3. Notice that Proposition 3 gives a numerically stable
method to compute a non-trivial invariant measure of the process since for each
state it requires the computation only of products.

Proposition 3. Let X(t) be an ergodic CTMC with state space S and infinites-
imal generator matrix Q, ρ be a renaming on S, and s0, s1, s2, . . . sn = s ∈ S be
a finite sequence of states. If X(t) is ρ-reversible then for all s ∈ S,

π(s) = Cs0

n∏
k=1

q(ρ(sk−1), ρ(sk))

q(sk, sk−1)
(2)

where s0 ∈ S is an arbitrary reference state and Cs0 ∈ R+.
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Fig. 2: A ρ-reversible CTMC.

Recall that a permutation ρ on a set S admits a unique decomposition into
cycles of different states:

(s, ρ(s), ρ(ρ(s)), . . . , ρn(s) ≡ s) .

The set of states in a cycle form an orbit. Then, every permutation can be
decomposed into a collection of cycles on disjoint orbits.

Example 1. If we consider the CTMC depicted in Figure 2 we can prove that it is
ρ-reversible where ρ is described by the following orbits: (1, 2, 3, 4); (5, 6, 7, 8); (9);
(10); (11).

Now, we review an aggregation technique for CTMCs that preserve the equi-
librium distribution, i.e., the equilibrium probability of the macro state is given
by the sum of the equilibrium probability of its elements in the original, non



aggregated, process. More formally, let ∼ be an equivalence relation over the
state space S of a CTMC X(t). In general, the process obtained by the observa-
tion of the macro state jump process is not a Markov process (for instance the
residence time in an aggregated state is not exponentially distributed) unless we

have a lumping [15]. However, we can still define CTMC X̃(t) corresponding to
a certain aggregation ∼ as follows: the state space is the set of the equivalence
classes S/ ∼ and its infinitesimal generator matrix Q̃ can be derived from the
following general aggregation equation for any Si, Sj ∈ S/ ∼ ,

q̃(Si, Sj) =

∑
s′∈Si π(s′)

∑
s∈Sj q(s

′, s)∑
s′∈Si π(s′)

(3)

The following proposition shows that the equilibrium distribution of the ag-
gregated process is such that the equilibrium probability of each macro-state
is the sum of the equilibrium probabilities of the states in the original process
forming it.

Proposition 4. Let X(t) be an ergodic CTMC with state space S and ∼ be an

equivalence relation over S. Let X̃(t) be the aggregated process with respect to

∼. Let π and π̃ be the equilibrium distributions of X(t) and X̃(t), respectively.
Then for all S ∈ S/ ∼,

π̃(S) =
∑
s∈S

π(s).

3 Aggregation of ρ-reversible processes

Aggregation is a technique for reducing the state space of a model and hence
for deriving some quantitative measures more efficiently. Unfortunately, for gen-
eral processes, an aggregation of states that respects the equilibrium distribu-
tions (i.e., the equilibrium probability of a macro state is given by the sum
of the equilibrium probabilities of the states that it aggregates) is as hard to
compute as the computation of the model equilibrium distribution as shown by
Equation (3). Strong lumping [15] is a structural approach to state aggregation,
i.e., the definition of the aggregated chain does not require the knowledge of
its equilibrium distribution. In this section we will show that also the class of
ρ-reversible CTMCs can be aggregated in a process whose transition rates can
be obtained without the knowledge of the equilibrium distribution and hence
can be performed efficiently. Before stating the results on the aggregation in ρ-
reversible (and hence also reversible) CTMCs, we need to introduce a definition
of compatibility of an aggregation with a renaming ρ. Intuitively, we say that an
aggregation ∼ respects renaming ρ if its equivalence classes are either singletons
or if they contain more states then they must cluster together all the states of
the corresponding orbits.

Definition 2. An aggregation ∼ respects a renaming ρ on S if for each S ∈
S/ ∼ at least one of the following conditions is satisfied:



– |S| = 1, or
– s ∈ S implies ρ(s) ∈ S.

We stress on the fact that Definition 2 does not require that the state partitions
correspond to the orbits of ρ, but it states that if we aggregate two states, then
all the states in their orbits must belong to the same partition. However, states
that are not aggregated do not need to satisfy this conditions.

Example 2. Consider the CTMC with states space S = {s1, . . . s8} and let the
orbit of ρ be (s1, s2), (s3, s4), (s5, . . . , s8), then the following partitions of states
respects ρ:

– S1 = {s1, s2}, S2 = {s3, . . . , s8}
– S1 = {s1}, S2 = {s2}, S3 = {s3, s4}, S4 = {s5, . . . , s8}
– Si = {si} (the trivial partition)

Theorem 1 states that an aggregation ∼ of a ρ-reversible chain X(t) is ρ̃-
reversible for a certain renaming ρ̃ if ∼ respects ρ.

Theorem 1. Let X(t) be a ρ-reversible CTMC and let ∼ be an aggregation that

respects ρ according to Definition 2. Then, Markov chain X̃(t) is ρ̃-reversible
where ρ̃ is defined as follows:

ρ̃(Si) =

{
Sj if Si = {s} ∧ Sj = {ρ(s)} ,
Si if |Si| > 1 .

(4)

Let us analyse some consequences of Theorem 1. Let X(t) be a ρ-reversible
CTMC with state space S and ∼ be the equivalence relation over S such that
s1 ∼ s2 if and only if s1 and s2 belongs to the same orbit with respect to the
permutation ρ. Then clearly ∼ respects ρ according to Definition 2, ρ̃ is the
identity on S/ ∼ and S/ ∼ denotes the set of all orbits induced by ρ in S. In
this case we say that ∼ is the equivalence relation induced by ρ in S.

Corollary 2. Let X(t) be a ρ-reversible CTMC with state space S and infinites-
imal generator matrix Q. Let ∼ be the equivalence relation over S induced by ρ.
Then X̃(t) is reversible.

Proof. The proof follows from Theorem 1 and the observation that ρ̃ is the
identity (see Definition 1).

For this type of aggregation the transition rates of the aggregated process can
be calculated without the computation of the equilibrium state distribution π.

Proposition 5. Let X(t) be a ρ-reversible CTMC with state space S and in-
finitesimal generator matrix Q. Let ∼ be the equivalence relation over S induced
by ρ. Then, the infinitesimal generator matrix Q̃ of X̃(t) is defined as:

q̃(Si, Sj) =

∑
s′∈Si

∑
s∈Sj q(s

′, s)

|Si|
(5)

where |Si| denotes the cardinality of the orbit Si.



The next corollary follows immediately from Theorem 1 and states that any
aggregation of a reversible chain is still reversible.

Corollary 3. Let X(t) be a reversible CTMC, then for any aggregation ∼ on

its state space S we have that X̃(t) is still reversible.

Proof. Observe that if X(t) is reversible then ρ is the identity and hence any
aggregation ∼ respects ρ. The proof follows by observing that by definition also
ρ̃ is the identity and hence X̃(t) is reversible. ut

Example 3. Let us aggregate the ρ-reversible process of Figure 2 with respect to
relation ∼ induced by the orbits of the CTMC. Then, by Proposition 5 we can
straightforwardly derive the aggregated process of Figure 3. It is easy to observe
that the resulting CTMC is reversible.
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Fig. 3: Aggregation according to the orbits of the CTMC shown in Figure 2.

4 Truncation of ρ-reversible processes

The truncation of a reversible CTMC is a very useful technique to study
models in which some agents compete for a set of resources. For instance, consider
a reversible chain that models N agents performing a set of operations some of
which require a certain resource whose availability is M < N . In order to study
the equilibrium properties of the model, we may assume that the resource is
always available for all the agents and prove the reversibility of the underlying
process, then we have to exclude the transitions that would take the model to
states in which more than M resources are used simultaneously. In [13, Lemma
1.9, Corollary 1.10] the author proves that if the original process is reversible
then also the truncated one is reversible.

In this section we study the same problem with ρ-reversible processes. The
main result that we derive is that, in general, the truncation of a ρ-reversible
process is not ρ-reversible. In fact, in order to prove the analogue result of Lemma
1.9 and Corollary 1.10 of [13] we require that the truncation respects the orbits
of ρ, i.e., each orbit is either entirely truncated or kept.



A reversible CTMC may be altered by changing the transition rates in such
a way that the equilibrium distribution is not changed. As observed in [13] if a
reversible CTMC X(t) has transition rate q(s, u) > 0 and q(u, s) > 0, then also
the CTMC X ′(t) whose transition rates are the same of X(t) with the exception
of q′(s, u) = cq(s, u) and q′(u, s) = cq(u, s) for c > 0 is still reversible. The
result follows immediately from Proposition 1 assuming ρ to be the identity. We
notice that this result is in general not applicable to ρ-reversible CTMCs since
the modification of q(s, u) to cq(s, u) changes the residence time of state i and
the definition of ρ-reversibility requires that all the states in the orbit of s must
have the same residence time.

Example 4. Let us consider the model of Figure 1-(a) and let us write the ρ-
detailed balance equation associated with the transition from state 1 to state
2:

π(1)q(1, 2) = π(ρ(2))q(ρ(2), ρ(1)) .

Notice that, since ρ(1) = 2 and ρ(2) = 1 we have that q(1, 2) = q(ρ(2), ρ(1)),
hence the detailed balance equation is satisfied even if we set q′(1, 2) = cα, for
c > 0 and c 6= 1. Nevertheless, the CTMC X ′(t) is not ρ-reversible since the
residence time in state 1 has mean (cα)−1 while in state 2 has mean α−1.

The following Lemma is the version of Lemma 1.9 in [13] for ρ-reversible CTMCs.

Lemma 1. Let X(t) be a ρ-reversible CTMC with state space S and let ∼ be an
equivalence relation that induces only two non-empty equivalence classes A ⊂ S
and S r A. Then, if ∼ respects ρ we have that for any positive constant c ∈ R
the chain X ′(t) whose transition rates q′(s, u) are defined as follows:

q′(s, u) =

{
cq(s, u) if s ∈ A ∧ u ∈ S rA
q(s, u) otherwise

is still ρ-reversible if the residence time of the states in X ′(t) are identically
distributed for all the states belonging to the same orbit. Moreover, if X ′(t) is
ρ-reversible, then the equilibrium distribution π′(s) for X ′(t) is:

π′(s) =

{
Bπ(s) if s ∈ A
Bcπ(s) if s ∈ S rA

,

where B is a normalising constant.

The following corollary follows from Lemma 1 where c = 0 and is the analogue
of Corollary 1.10 in [13].

Corollary 4. Let X(t) be a ρ-reversible CTMC with state space S and let ∼
be an equivalence relation that induces only two non-empty equivalence classes
A ⊂ S and SrA. Let ∼ respect ρ, and define the chain X ′(t) on the state space
A with transition rates:

q′(s, u) =

{
q(s, u) if s, u ∈ A
0 otherwise

.



Then if X ′(t) is irreducible and the residence time of every state s ∈ A is the
same of every other state u in the same orbit of s, we have that X ′(t) is ρ-
reversible. In this case the equilibrium probabilities of s ∈ A are:

π(s) =
π(s)∑
u∈S π(u)

.

Proof. The proof follows straightforwardly from Lemma 1. ut

Example 5. Let us consider a manufacturing system where K independent ma-
chines produce parts of a product that will be assembled once all the K com-
ponents are available. Let us assume that the time required to produce one
component from a machine is modelled by an independent and exponentially
distributed random variable with rate µ. The components wait for being assem-
bled in K join queues. This is usually reffered as a kitting process. In [17,20]
the authors proved that join queue lengths tend to grow infinitely due to the
variance of the component production time. Moreover, assuming that the assem-
bly operation is instantaneous, the underlying CTMC X(t) can be studied by
means of a dynamically reversible process. It is sufficient to encode the state as
a vector n = (n1, . . . , nK) of integer components that represent the difference in
the number of pieces produced by the k-th machine and its neighbour k+ where

k+ =

{
k + 1 if k < K

1 if k = K .

The state space of the model is S = {n :
∑K
k=1 nk = 0 ∧ nk ∈ Z}. The expected

queue length becomes finite [20] if we can modulate the rates of the component
production machines as follows:

µ(nk) =

{
µ

nk+1 if nk ≥ 0

µ otherwise .

Such a CTMC is dynamically reversible and hence ρ-reversible according to the
following renaming function:

ρ(n) = ρ(n1, . . . , nK) = (nK , . . . , n1) = nR ,

and the equilibrium distribution is given by the expression [20]:

π(n) =
1

GK

1∏K
i=1(niδni>0)!

, (6)

where δni>0 = 1 if ni is positive, 0 otherwise and GK is a normalising constant.
Let us assume that we want to change the model such that we impose that

the difference between the number of components given by production like k and
k+ is smaller or equal to T , i.e. nk ≤ T for all k = 1, . . . ,K. The machine that
saturates its join queue according to this condition is stopped and will restart



working when its neighbour will complete a job. This means that under the
immediate assembly time assumption, the maximum join-queue length that we
can observe is (K−1) ·T . Clearly, the CTMC X ′(t) underlying such a model is a
truncation of the original one, where A = {n ∈ S, nk ≤ T for all k = 1, . . . ,K}.
To prove that X ′(t) is still ρ-reversible, we use Corollary 4 and we have to show
that:

– The partition respects ρ,
– The residence time of n ∈ A and nR have the same mean in X ′(t).

The first point is easy to prove since if n ∈ A then also nR ∈ A and vice versa.
The second one is trivial since the sum of the arrival rates of the components
in n and nR are the same. Therefore, Equation (6) is an invariant measure for
X ′(t).

5 Conclusion

In this paper we have studied the aggregation and truncation properties of
Markov chains which are reversible modulo a renaming of states. In physics
(see e.g., [10,9,11]) and computer science (e.g., [22,20]) we can find numerous
applications of this theory in the formulation known as dynamic reversibility.
By the notion of ρ-reversibility, we generalised this definition to arbitrary state
renaming functions and showed that the extension is non-trivial, i.e., there are
Markov chains which are not dynamically reversible but are ρ-reversible for some
ρ which is not an involution. In this paper we have established an important
link between ρ-reversibility and the well-known notion of Kelly’s reversibility by
showing that a certain aggregation of a ρ-reversible chain originates a reversible
chain. Although this aggregation is not a strong lumping in the sense of Kemeny
and Snell work [15], we still have that the aggregated process can be constructed
without the computation of the equilibrium distribution of the original chain.
Finally, we have revised the well-know results about the truncation of reversible
processes in the context of ρ-reversibility and have shown some results that
generalise them. Specifically, while the truncation of a reversible chain is always
reversible (provided that the irreducibility of the transition graph is maintained)
we need some further conditions in order to prove that the truncation of a ρ-
reversible chain is also ρ-reversible. These conditions are always trivially satisfied
for reversible chains.
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A Proofs of the results

Proof of Theorem 1

Proof. By Proposition 1 and Definition 1, to prove that X̃(t) is ρ̃-reversible it is
sufficient to show that for all Si, Sj ∈ S/ ∼ with i 6= j,

π̃(Si)q̃(Si, Sj) = π̃(ρ̃(Sj))q̃(ρ̃(Sj), ρ̃(Si)) .

By Equation (3) and Proposition 4, this is equivalent to:(∑
s∈Si

π(s)

) ∑
s∈Si π(s)

∑
s′∈Sj q(s, s

′)∑
s∈Si π(s)

= ∑
s′∈ρ̃(Sj)

π(s′)

∑s′∈ρ̃(Sj) π(s′)
∑
s∈ρ̃(Si) q(s

′, s)∑
s′∈ρ̃(Sj) π(s′)

,

which can be written as:∑
s∈Si

∑
s′∈Sj

π(s)q(s, s′) =
∑

s′∈ρ̃(Sj)

∑
s∈ρ̃(Si)

π(s′)q(s′, s) . (7)

We now proceed by considering four cases.

1. Assume that Si = {s} and Sj = {s′}, then Equation (7) becomes:

π(s)q(s, s′) = π(ρ(s′))q(ρ(s′), ρ(s)) ,

where we have used the definition of ρ̃ for singletons. This is true since
by hypothesis X(t) is ρ-reversible and hence satisfies the ρ-detailed balance
equation.

2. Assume Si = {s} and |Sj | > 1, and recall that ρ̃(Sj) = Sj by definition.
Then Equation (7) can be rewritten as:∑

s′∈Sj

π(s)q(s, s′) =
∑
s′∈Sj

π(s′)q(s′, ρ(s)) .

Since ∼ respects ρ we have that ρ restricted to the elements of Sj is still a
bijection and hence we can write:∑

s′∈Sj

π(s)q(s, s′) =
∑
s′∈Sj

π(ρ(s′))q(ρ(s′), ρ(s)) ,

which is true by the hypothesis of ρ-reversibility of X(t).
3. Assume |Si| > 1 and hence ρ̃(Si) = Si and Sj = {s′}, then Equation (7) can

be written as: ∑
s∈Si

π(s)q(s, s′) =
∑
s∈Si

π(ρ(s′))q(ρ(s′), s) .



Since ρ restricted to the elements of Si is a bijection, then we have:∑
s∈Si

π(s)q(s, s′) =
∑
s∈Si

π(ρ(s′))q(ρ(s′), ρ(s)) ,

which is an identity.
4. Assume |Si| > 1 and |Sj | > 1, and hence ρ̃(Si) = Si and ρ̃(Sj) = Sj . Then

we can rewrite Equation (7) as:∑
s∈Si

∑
s′∈Sj

π(s)q(s, s′) =
∑
s∈Si

∑
s′∈Sj

π(s′)q(s′, s) .

Since ρ restricted to Si and to Sj is still a bijection because ∼ respects ρ,
we can rewrite the previous equation as:∑

s∈Si

∑
s′∈Sj

π(s)q(s, s′) =
∑
s∈Si

∑
s′∈Sj

π(ρ(s′))q(ρ(s′), ρ(s)) .

which is true by hypothesis. ut

Proof or Proposition 5

Proof. By the general aggregation Equation (3), for any Si, Sj ∈ S/ ∼ ,

q̃(Si, Sj) =

∑
s′∈Si π(s′)

∑
s∈Sj q(s

′, s)∑
s′∈Si π(s′)

, (8)

SinceX(t) is ρ-reversible and each Si ∈ S/ ∼ is an orbit for ρ, it holds that π(s) =
π(s′) for all s, s′ ∈ Si. Let us denote by π(Si) the equilibrium probability of each
s belonging to the orbit Si. Hence,

∑
s′∈Si π(s′) = |Si|π(Si) and Equation (8)

can be written

q̃(Si, Sj) = π(Si)

∑
s′∈Si

∑
s∈Sj q(s

′, s)

|Si|π(Si)
(9)

proving the statement. ut

Proof of Lemma 1

Proof. To prove the lemma we use Proposition 1. In fact, let us consider two
states s, u ∈ A, then the corresponding ρ-detailed balance equation isBπ(s)q(s, u) =
Bπ(ρ(u))q(ρ(u), ρ(s)) since we have by assumption that the partition respects
ρ and hence also ρ(t), ρ(s) ∈ A. This equation is satisfied because X(t) is
ρ-reversible. If s, u ∈ S r A the corresponding detailed balance equation is
Bcπ(s)q(s, u) = Bcπ(ρ(u))q(ρ(u), ρ(s)) that is also satisfied for the same rea-
sons. Let us consider s ∈ A and u ∈ S r A, then we have that the tran-
sition rates are modified and hence Bπ(s) (cq(s, u)) = Bcπ(ρ(u))q(ρ(u), ρ(s))
which is an identity since ∼ respects ρ. Finally, we have to consider the case
of s ∈ S r A and u ∈ A. The corresponding detailed balance equation is
Bcπ(s)q(s, u) = Bπ(ρ(u)) (cq(ρ(u), ρ(s))) which is satisfied by hypothesis. The
fact that the residence times in the states belonging to the same orbits of ρ in
X ′(t) are identically distributed is an assumption of the lemma. ut
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