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Figure 1: A subset of shapes from the benchmark. Participants are required to produce a point-wise correspondence (either sparse or dense)
between a full template in a neutral pose (left) and its deformed versions with missing parts. The dataset includes 8 shape classes, for a total
of 599 3D models. In this figure corresponding points have the same color, while shape boundaries are marked by a red contour.

Abstract
Matching deformable 3D shapes under partiality transformations is a challenging problem that has received limited focus in
the computer vision and graphics communities. With this benchmark, we explore and thoroughly investigate the robustness of
existing matching methods in this challenging task. Participants are asked to provide a point-to-point correspondence (either
sparse or dense) between deformable shapes undergoing different kinds of partiality transformations, resulting in a total of
400 matching problems to be solved for each method – making this benchmark the biggest and most challenging of its kind.
Five matching algorithms were evaluated in the contest; this paper presents the details of the dataset, the adopted evaluation
measures, and shows thorough comparisons among all competing methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis

1. Introduction

Shape correspondence is a fundamental problem in computer vi-
sion and graphics, with a wide range of applications ranging from
texture mapping to reconstruction [vKZHCO11]. A particularly
challenging setting arises when the shapes in question are allowed
to undergo non-rigid deformations, which are typically assumed
to be approximately isometric (such a model appears to be good
for, e.g., human body poses). Even more challenging is partial cor-
respondence, where one is shown only a subset of the shape and
has to match it to a deformed full version thereof. Instances of this
problem arise in numerous applications that involve real data ac-

† Organizers

quisition by 3D sensors, inevitably leading to missing parts due to
occlusions or partial view.

In the rigid setting (e.g., for 3D scan completion), partial cor-
respondence problems have been tackled by ICP-like approaches
such as [AMCO08, ART15]. Attempts to extend these ideas to the
non-rigid case [LSP08] had limited success due to sensitivity to ini-
tialization and to the underlying assumption of small deformations.
In the non-rigid realm, several metric approaches centered around
the notion of minimum distortion correspondence [BBK06] have
been proposed. Bronstein et al. [BB08, BBBK09] combine metric
distortion minimization with optimization over regular (i.e., con-
tiguous) matching parts. Rodolà et al. [RBA∗12, RTH∗13] relaxed
the regularity requirement by allowing sparse correspondences.
Sahillioğlu and Yemez [SY14] proposed a voting-based formula-
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Figure 2: Example shapes from the cuts (top) and holes (bottom)
datasets – the difference lies in the regularity of the missing parts.

tion to match shape extremities, which are assumed to be preserved
by the partiality transformation. The aforementioned methods are
based on intrinsic metric preservation and on the definition of spec-
tral features, hence their accuracy suffers at high levels of partial-
ity – where the computation of these quantities becomes unreliable
due to boundary effects and meshing artifacts. More recent works
include the alignment of tangent spaces [BWW∗14] and the design
of robust descriptors for partial matching [vKZH13]; in the context
of collections of shapes, partial correspondence has been consid-
ered in [HWG14,CRA∗16]. More recently, Masci et al. [MBBV15]
introduced a deep learning framework for computing dense corre-
spondences between deformable shapes, providing a generalization
of the convolutional networks (CNN) to non-Euclidean manifolds.
Later, Wei et al. [WHC∗15] focused on matching human shapes un-
dergoing changes in pose by means of classical CNNs, also tackling
partiality transformations.

Previous benchmarks only partly investigated the robustness of
matching methods to partiality transformations. The SHREC’11
track on robust correspondence [BBB∗11] included “partial” and
“view” classes to assess resilience to partiality. Relatively more
focus has been put in the area of retrieval (as opposed to corre-
spondence) from partial views of full rigid models, see, e.g., the
SHREC’13 track on shape-from-rangemap retrieval [SMB∗13]. A
parallel track of SHREC’16 [LRB∗16] investigates correspondence
between deformable shapes from simulated 3D acquisitions, but
concentrates on the topological changes that the meshes incur (i.e.,
topological “shortcuts”) rather than partiality.

With this benchmark, we investigate the robustness of de-
formable shape matching algorithms to partiality and missing parts.
We do so on a big dataset (599 shapes) subdivided into 8 shape
classes (humans and animals) undergoing near-isometric transfor-
mations. Partiality here assumes a regular and irregular struc-
ture, resulting in two sets of shapes over which the evaluation
is performed separately (see Fig. 5). It is important to note that
the present benchmark is focused on the partial-to-full scenario,
namely matching a deformed partial shape to a full template in a
neutral pose (see Fig. 1). The partial-to-partial setting is deferred
to future investigation.

2. The dataset

The benchmark expands upon the datasets presented in [RCB∗16].
As base models, we use shapes from the TOSCA dataset [BBK08],
consisting of 76 nearly-isometric shapes subdivided into 8 classes
(the class gorilla was removed due to non-manifold artifacts). Each
class comes with a “null” shape in a standard pose (extrinsically
bilaterally symmetric), which is used as the full template mesh to
which partial shapes are matched during the evaluation. In order to
make the datasets more challenging and avoid compatible triangu-
lations, all shapes were remeshed to 10K vertices by iterative pair
contractions [GH97]. After remeshing, missing parts are introduced
in the following ways, giving rise to two different datasets:

Regular cuts. The template shape of each class was cut with a
plane at 6 different orientations. The six cuts were then transferred
to the remaining poses using the ground-truth correspondence, re-
sulting in 320 partial shapes in total.

Irregular holes. Given a shape and an “area budget” determining
the fraction of area to keep (40%, 70%, and 90%), we produced
additional shapes by an erosion process applied to the surface. Seed
holes were placed at 5, 25, and 50 Euclidean farthest samples over
the shape; the holes were then enlarged to meet the specified area
budget. The total number of shapes produced this way is 279.

See Fig. 5 for examples of shapes from the two datasets. Note
that all shapes are composed by exactly one connected component.
Shapes inside each dataset present different amounts of missing
surface, ranging approximately from 10% to 60% of missing area.

Due to the remeshing process, ground-truth matches between
each partial shape and the corresponding template are sub-vertex,
and specified in barycentric coordinates on the mesh triangles. Each
dataset is split into a training set (120 and 79 shapes) and a test set
(200 shapes per dataset). For the former, sub-vertex ground-truth
matches and symmetric left-right maps are provided for each shape;
the latter is used for the final evaluation.

3. Evaluation measures

Each participating method is asked to retrieve sub-vertex point-to-
point correspondences between each partial shape in the test set
and the full template from the corresponding class, amounting to
400 matching problems in total. Following standard practice, in-
trinsically symmetric solutions are accepted with no penalty. Both
sparse and dense solutions are considered in the evaluation.

Correspondence quality is measured according to the Princeton
benchmark protocol [KLF11]. Assume that a correspondence algo-
rithm produces a pair of points (x,y) ∈ M×N between partial
shape M and template N , whereas the ground-truth correspon-
dence is (x,y∗). Then, the inaccuracy of the correspondence is mea-
sured by the geodesic error:

ε(x) =
dN (y,y∗)

area(N )1/2
, (1)

and has units of normalized length on N (ideally, zero). Here dN
is the geodesic distance on the template shapeN . The value ε(x) is
averaged over all matching instances (M,N ). We plot cumulative
curves showing the percent of matches which have error smaller
than a variable threshold.
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4. Methods

Five methods were evaluated in the benchmark, namely: partial
functional correspondence [RCB∗16], the isometric embedding
method of [SY12], game-theoretic matching [RBA∗12], elastic net
matching [RTH∗13], and a learning technique based on random
forests [RRBW∗14]. None of the evaluated methods included sub-
vertex correspondences, i.e., all produced vertex-to-vertex solu-
tions.

4.1. Partial functional maps (PFM)

The matching technique proposed by Rodolà et al. [RCB∗16] as an
extension to the functional maps framework [OBCS∗12] in order
to deal with partial shapes.

In this framework, shape correspondence is modeled as a linear
operator TF : L2(M)→ L2(N ), mapping functions on shapeM to
functions on shapeN via the composition TF ( f ) = f ◦T−1, where
T :M→N is a bijective mapping between the two shapes. As-
sume the two function spaces are equipped with orthogonal bases
{ϕi}i≥1 ∈ L2(M) and {ψi}i≥1 ∈ L2(N ). Then, since TF is a linear
operator, it can equivalently be represented by a matrix C with co-
efficients ci j = 〈TF (ϕi),ψ j〉. Seeking a functional correspondence
among the two shapes then amounts to determining the unknown
C that better preserves certain pointwise features or other mapping
constraints [OBCS∗12].

As a convenient choice for the aforementioned bases, it has been
proposed to adopt the eigenfunctions of the respective Laplacians
on the two shapes. In particular, the manifold Laplacian yields
an eigen-decomposition ∆Mϕi = λiϕi for i≥ 1, with eigenvalues
0= λ1 < λ2≤ . . . and eigenfunctions {ϕi}i≥1 forming an orthonor-
mal basis of L2(M). In case the two shapes to be compared are
related by a near-isometry, the equality ψi =±ϕi ◦T−1 holds (ap-
proximately) for all i≥ 1, which leads to the matrix representation
C of the functional map being diagonal, ci j = 0 if i 6= j.

In case one of the two shapes has holes or
missing parts, the functional representation
of the correspondence still has a meaningful
structure. LetM be a partial shape,N a full
shape, and let N ′ ⊂ N be the region of N
corresponding to M under a near-isometry
T :M→N ′. Then, for each eigenfunction
ϕi ofM there exists an eigenfunction ψ j of
N for some j ≥ i, such that ψ j ≈ ±ϕi ◦T−1 [RCB∗16]. In other
words, the eigenfunctions of the Laplacian are still compatible un-
der partiality, but some eigenfunctions of the full shape do not have
a corresponding counterpart on the partial shape. This results in a
matrix C manifesting a slanted diagonal structure (see inset), with
an angle depending on the area ratio of the two surfaces [RCB∗16].
Using this knowledge as a prior, the method alternates between op-
timizing for the correspondence C and for the matching part on the
full shape (see Fig. 3). As a result, the matching algorithm produces
dense correspondences for all shapes.

4.2. Scale-invariant isometric matching (IM)

This method by Sahillioğlu and Yemez [SY12] aims to solve a par-
ticular setting of the general correspondence problem where one

Figure 3: The partial functional maps (PFM) approach of
[RCB∗16] alternates between dense correspondence (bottom row)
and matching part (top row) until convergence.

of the two shapes to be matched is a nearly isometric part of the
other up to an arbitrary scale. The isometrically deformed partial
shape and its complete version are first sampled [HS85] into point
sets S and T , respectively, where |S| = |T | = 10. The method then
seeks for an optimal partial map φ : S→ T with minimum distor-
tion. Since two shapes are never perfectly isometric, even partly,
due to imperfections of the modeling process and geometry dis-
cretization errors, it is not usually possible to find a zero distortion
mapping. Hence the goal becomes minimization of the following
scale-invariant metric distortion function:

Diso(φ) =
1
|φ| ∑

(si,t j)

diso(si, t j), (2)

where diso(si, t j) is the contribution of the individual correspon-
dence (si, t j) to the overall distortion:

diso(si, t j)=
1(|φ′|
2

) ∑
((sa,tb),(sc,td))∈C(φ′)

|ρ(si, t j;sa, tb)−ρ(si, t j;sc.td)|

(3)
with φ

′ = φ−{(si, t j)} and C(φ′) denoting the set of all pairwise
combinations from φ

′. The ratio function ρ(si, t j;sk, tl) is then writ-
ten in terms of raw geodesic distances, for a given (sk, tl) ∈ φ:

ρ(si, t j;sk, tl) = max
(g(si,sk)

g(t j, tl)
,

g(t j, tl)
g(si,sk)

)
(4)

where g(., .) is the raw geodesic distance between two surface
points. This definition of metric distortion is based on the observa-
tion that the ratios between geodesic distances on a surface remain
unchanged under scaling and isometric deformations. Hence if S
and T are sampled consistently from the given arbitrarily scaled
(partially) isometric shapes, one can find an optimal mapping φ

∗

such that Diso(φ
∗) = 0 (Fig. 4 left). To make the problem tractable,

Figure 4: Left: Demonstration of the scale-invariant distortion
measure Diso. The ratios between geodesic distances remain in-
variant under scaling and isometric deformation: ρ(si, t j;sa, tb) =
ρ(si, t j;sc, td). Right: Overview of the combinatorial matching al-
gorithm from [SY12].
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M = 5 evenly spaced vertices are sampled from S, and Diso is com-
puted for M!

(|T |
M

)
possible one-to-one mappings, promoting the

mapping that yields the minimum distortion as the optimal map-
ping φ

∗ (Fig. 4 right). Finally, this sparse correspondence φ
∗ is ex-

tended into a dense one of size 100 by filling a cost matrix based on
φ
∗ and running a minimum-weight perfect matching on it [Kol09].

4.3. Game-theoretic matching (GT)

The game-theoretic matching technique proposed by Rodolà et al.
[RBA∗12] estimates sparse correspondences between two shapes X
and Y by minimizing an intrinsic measure of distorion. Given two
pairs of corresponding points (x,y) and (x′,y′), the quality of the
correspondences can be quantified in terms of the intrinsic metric
dX and dY by measuring to which extent the distance between x and
x′ measured on X matches the distance between the corresponding
points y and y′ measured on Y ,

ε(x,y,x′,y′) = |dX (x,x
′)−dY (y,y

′)|. (5)

Here the authors adopt a relaxed notion of correspondence de-
fined in terms of an indicator function u : X×Y → [0,1] such that,
for every measurable subsets A⊆ X and B⊆ Y ,∫

A

∫
Y

udydx =
∫

A
dx;

∫
B

∫
X

udxdy =
∫

B
dy. (6)

Using this relaxed notion of correspondence, one obtains a class
of distortion metrics, known as Gromov-Wasserstein metrics, de-
fined as

D(X ,Y ) =
1
2

inf
u
‖ε‖Lp(u×u), (7)

where 1≤ p≤∞, and

‖ε‖p
Lp(u×u) = (8)∫

(X×Y )2
ε

p(x,y,x′,y′)u(x,y)u(x′,y′)dxdydx′dy′.

Given this formalization, the estimation problem is cast into an
evolutionary game-theoretic framework where strategies are mod-
eled as candidate assignments (x,y) ∈ X×Y based on some mea-
sure of pointwise similarity among the surface points. To this end,
Rodolà and coauthors [RBA∗12] use HKS [SOG09] descriptors
with the standard Euclidean distance since they demonstrate good
resilience to a variety of deformations. Then, they consider the
assignment constraint u ∈ ∆ where u≡ vec{U} is the correspon-
dence vector, constrained to lie in the standard mn-simplex

∆ = {u ∈ Rmn : uT1 = 1 and u≥ 0} . (9)

Finally, the correspondence estimation is turned into the maximiza-
tion of the mutual similarity between correspondence, captured by
a mn×mn matrix A whose elements measure the similarity be-
tween pairs of correspondences which, in terms of the Gromov-
Wasserstein metric with p = 2, results in setting a(i j)(i′ j′) =

exp(−αε
2
i ji′ j′). This gives rise to the maximization problem

maxuTAu s.t u ∈ ∆ . (10)

In this framework, the matching problem is better interpreted

as an inlier selection problem in which matches form a coherent
group according to the given pairwise distortion metric. In this sce-
nario players pre-programmed according to a fixed strategy are re-
peatedly selected from a common population to play a symmetric
two-player game. As the game is repeated, players adopting strate-
gies that yield larger payoffs are positively selected, resulting in a
selection process where inconsistent hypotheses are driven to ex-
tinction. This gives rise to sparse correspondences between the in-
volved shapes.

4.4. Elastic net (EN)

The elastic net matching framework by Rodolà et al. [RTH∗13] is a
direct generalization of spectral matching [LH05] and of the game-
theoretic matching technique [RBA∗12]. As in the GT matching
framework, sparse correspondences between two shapes X and Y
are estimated by minimizing the intrinsic distortion of a set of
correspondences represented in terms of the same fuzzy indica-
tor function u : X×Y → [0,1] used in the previous approach. The
distortion is, thus, measured in terms of the Gromov-Wasserstein
metrics (7) resulting in the relaxed Quadratic Assignment Problem
(QAP)

minU vec{U}T A vec{U} (11)

s.t. U1� 1, UT 1� 1, U� 0 ,

where vec{U} is the m2n2-dimensional column-stack vector repre-
sentation of the correspondence matrix U, A is the mn×mn non-
negative symmetric cost matrix registering the pairwise distortion
terms a(i j)(i′ j′) = exp(−αε

2
i ji′ j′), and � denotes element-wise in-

equality.

In order to incorporate a notion of stability into the matching
process, the author cast the problem as one of model-fitting, seek-
ing a good approximation of the true relationship between the two
shapes, i.e., the optimal correspondence x?, with deviation mea-
sured in the Gromov-Wasserstein distance. Problems of this kind
are often studied with the tools of regression analysis, where the
interest shifts to the extraction of the relations connecting the vari-
ables underlying the possible assignments {xi}i=1...n. Here candi-
date matches act as explanatory variables, while we seek to find the
combination that best describes the data in the minimal distortion
sense. Under this view, these variables may be correlated, and it can
be of interest to determine groups of highly correlated predictors,
as they will likely form consistent matches.

In this view, spectral matching can be directly related to ridge
regression, whose L2 penalty is known to generally improve con-
ditioning of the problem, yet always keeping all the predictors in
the model. Similarly, the game-theoretic technique is equivalent to
lasso regression, where the sparsity-inducing L1 regularizer (9) per-
forms continuous shrinkage and automatic variable selection.

The elastic net framework attempts to strike a balance be-
tween these two behaviors. This is obtained by substituting the L1

and L2 constraints with a family of constraints known as elastic
net [ZH05]. This regularization technique shares with the lasso the
ideal property of performing automatic variable selection, and most
notably it is able to select entire groups of highly correlated vari-
ables. The elastic net criterion is defined as a convex combination
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of the lasso and ridge penalties:

(1−α)‖x‖1 +α‖x‖2
2 , α ∈ [0,1] . (12)

It becomes ridge regression for α = 1, and the lasso for α = 0.
This penalty function is singular at 0 and strictly convex (differ-
ently from the lasso) for α > 0, thus possessing the characteristics
of both penalties.

This leads to the following family of relaxations for the QAP:

min
x

xT Ax (13)

s.t. (1−α)‖x‖1 +α‖x‖2
2 = 1, x� 0 ,

with α ∈ [0,1] regulating the trade-off between size of the cor-
respondence and matching error, allowing to fine tune the model
complexity ranging from the highly selective pure lasso for α = 0
to the more tolerant ridge behavior for α = 1.

The value α = 0.8 was used in these evaluations; being essen-
tially a variant of the GT approach, the method produces sparse
correspondences.

4.5. Random forests (RF)

A modified version of the learning-based technique described in
[RRBW∗14]. This approach uses the training set of 199 shapes to
train a collection of random forests, one forest per shape class. Each
decision tree in the forest assigns, to each point of a test shape, a
probability distribution defined on a discrete label set, where each
label identifies a set of corresponding points from the training data.
The path along each tree is determined by means of binary deci-
sion functions that evaluate a prescribed point feature with random
parametrizations. This randomized feature selection allows to re-
tain the full power of the intrinsic feature without resorting to a pre-
defined parametrization, which might not be optimal for all points
of the shape; at the same time it limits the correlation among trees,
thus ensuring good generalization.

In this implementation of [RRBW∗14], the WKS [ASC11] fea-
ture is replaced with the HKS [SOG09], which is a local feature
and, as such, less susceptible to the boundary effects induced by
partiality. The feature is a T -dimensional vector per point, where
each dimension is expressed as the nonlinear combination:

f j(x) =
k

∑
i=1

e−λit j
ϕi(x)

2 , (14)

where λi and ϕi for i= 1, . . . ,k are respectively the Laplacian eigen-
values and eigenfunctions of the shape, and t j for j = 1, . . . ,T are
diffusion times. k and T constitute the parameters of the random
forest, which is trained over 15 trees. A separate forest is trained
for each class of the dataset (for a total of 8 forests), and is subse-
quently applied to the corresponding class during the test phase.

As a regularization step, the landmark-based procedure followed
in [RRBW∗14] is substituted with a simple “low-pass” filtering of
the forest prediction: The predicted correspondence is converted
into a functional map by using the first 90 Laplacian eigenfunc-
tions on both shapes (see Section 4.1), and the underlying point-
wise map is then recovered by nearest neighbors in the spectral do-
main [OBCS∗12]. This approach produces dense correspondences
for all shapes in the benchmark.

Figure 5: Some examples of good solutions obtained by the com-
peting methods on the cuts (left pairs) and holes (right pairs)
benchmarks. From top to bottom: PFM, RF, IM, EN, GT.

5. Results

In Fig. 6 we show quantitative comparisons of all matching algo-
rithms using the error measure defined in Section 3, while in Fig. 7
we evaluate the behavior of each method across increasing amounts
of partiality. Qualitative examples of the solutions obtained by each
method are given in Fig. 5, and average numbers of matches are re-
ported in Table 1.
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Figure 6: Comparisons on the cuts (left) and holes (right) datasets.
Each curve (solid for dense methods, dashed for sparse) is aver-
aged over all shapes in all classes (200 shapes per dataset).

An immediate result that is evident from the plots is that the
two considered datasets yield wildly different results, with holes
being the more challenging of the two. This is especially evident
on PFM, where the performance drops by 10%, and RF, where the
drop in accuracy is as big as 40%. The latter technique in partic-
ular becomes the worst performing method among all competitors
on the holes dataset. The reason for this behavior is probably to
be found in the fact that the two approaches make use of spectral
quantities: In particular, RF suffers from the negative effect that
the presence of boundaries exerts on the chosen point descriptors,
which increases with the length of the boundary. This effect is less
pronounced in the case of PFM, since the latter method makes use
of extrinsic, local descriptors as data (see [RCB∗16] for details),
whose calculation is only marginally influenced by the presence of
boundaries.

In contrast, methods based on minimizing the metric distortion
(IM, EN, GT) give results of comparable quality on both datasets.
However, average accuracy is not very high due to the distortion
that the considered metrics undergo in the presence of missing sur-
face regions.

6. Discussion and conclusions

Compared to the traditional “full-to-full” counterpart, the problem
of partial shape matching has received surprisingly limited focus
from the community. However, in this era of 3D data acquisition,
the problem is gaining more and more practical relevance and is
one of the key challenges that need to be tackled.

With this benchmark we explored some of the current ap-
proaches, and compared them across a big dataset and at various

PFM RF IM EN GT
cuts dense dense 61.3 87.8 51.0

holes dense dense 78.2 112.6 76.4

Table 1: Average number of matches obtained by each method on
the two datasets.
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Figure 7: Correspondence quality of each method at increasing
levels of partiality (measured as percentage of missing area).

amounts of partiality. Overall, methods based on minimizing met-
ric distortion (IM, GT, EN) seem to have limited success; this is
probably due to the instability of the metrics under the topological
changes induced by partiality on one hand, and to the sensitivity of
the point features used to simplify the problem on the other. Meth-
ods based on machine learning (RF) demonstrate more resilience
due to the presence of (dense) training data, which serves as an ex-
ample for the kind of transformations that the matching system is
likely to encounter. This suggests a possible avenue for further re-
search in the direction of machine learning techniques applied to
shape analysis. Finally, the method based on partial functional cor-
respondence (PFM) yields the best results thanks to the strong prior
on the structure of the map relating partial to full shape. However,
how to extend these results to the case of partial-to-partial match-
ing remains an open question, and an interesting direction of future
research.
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