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Abstract—Motivated by our recent work on rooted tree matching, in this paper we

provide a solution to the problem of matching two free (i.e., unrooted) trees by

constructing an association graph whose maximal cliques are in one-to-one

correspondence with maximal common subtrees. We then solve the problem using

simple payoff-monotonic dynamics from evolutionary game theory. We illustrate

the power of the approach by matching articulated and deformed shapes described

by shape-axis trees. Experiments on hundreds of larger, uniformly random trees

are also presented. The results are impressive: despite the inherent inability of

these simple dynamics to escape from local optima, they always returned a globally

optimal solution.

Index Terms—Graph matching, combinatorial optimization, quadratic

programming, dynamical systems, evolutionary game theory, shape recognition.
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1 INTRODUCTION

GRAPH matching is a classic problem in computer vision and pattern
recognition, instances of which arise in areas as diverse as object
recognition, motion, and stereo analysis. A well-known approach to
solving this problem consists of transforming it into the equivalent
problem of finding a maximum clique in an auxiliary graph
structure, known as the association graph [2]. This framework is
attractive because it casts graph matching as a pure graph-theoretic
problem, for which a solid theory and powerful algorithms have
been developed. Note that, although the maximum clique problem
is known to be NP -hard, powerful heuristics exist which efficiently
find good approximate solutions and there exist several classes of
graphs for which the problem can be solved in polynomial time [5].

In many computer vision problems, the graphs at hand have a

peculiar structure: they are connected and acyclic, i.e., they are free

trees (see, e.g., [3], [16], [18], [26]). Other application domains where

free trees arise quite frequently are pattern recognition [9] and
biochemistry [1]. Note that, unlike “rooted” trees, in free trees

there is no distinguished node playing the role of the root and,

hence, no hierarchy is imposed on them. Since in the standard
association graph formulation the solutions are not constrained to

preserve connectedness, it is not clear how to apply the framework
in these cases and the extension of association graph techniques to

free tree matching problems is therefore of considerable interest.
Motivated by our recent work on rooted tree matching [21], in

this paper we propose a solution to this problem by providing a
straightforward way of deriving an association graph from two

free trees. We prove that in the new formulation there is a one-to-

one correspondence between maximal (maximum) cliques in the
derived association graph and maximal (maximum) subtree

isomorphisms. As an obvious corollary, the computational com-
plexity of finding a maximum clique in such graphs is therefore the

same as the maximum common subtree problem, which is known
to be polynomial in the number of nodes [11].

Following [20], [21], we use a recent generalization of the
Motzkin-Straus theorem [19] to formulate the maximum clique

problem as a quadratic programming problem. To (approximately)
solve it we employ payoff-monotonic dynamics, a class of simple
dynamical systems recently developed and studied in evolutionary
game theory [14], [23]. Such continuous solutions to discrete
problems are interesting as they can motivate analog and biological
implementations. It is worth remarking that traditional energy-
minimization graph matching algorithms such as [12] are not
applicable to the tree matching problem (either rooted or unrooted)
since they suffer from the very same problem as standard association
graph techniques, i.e., they fail to preserve connectedness.

We illustrate the power of our approach via several examples of
matching articulated and deformed shapes described by shape-axis
trees [18]. We also present experiments on hundreds of much
larger uniformly random trees and study the sensitivity of the
method to structural perturbations. The results are impressive:
despite the counterintuitive maximum clique formulation of the
tree matching problem and the inherent inability of these simple
dynamics to escape from local optima, they always found a
globally optimal solution.

2 SUBTREE ISOMORPHISMS AND MAXIMAL CLIQUES

Let G ¼ ðV ;EÞ be a graph, where V is the set of nodes (or vertices)
and E is the set of undirected edges. The order of G is the number
of nodes in V , while its size is the number of edges. Two nodes
u; v 2 V are said to be adjacent (denoted u � v) if they are connected
by an edge. The adjacency matrix of G is the n� n symmetric matrix
AG ¼ ðaijÞ defined as

aij ¼
1; if vi � vj
0; otherwise:

�
The degree of a node u, denoted degðuÞ, is the number of nodes
adjacent to it. A path is any sequence of distinct nodes u0u1 . . .un
such that, for all i ¼ 1 . . .n, uiÿ1 � ui; in this case, the length of the
path is n. If un � u0 the path is called a cycle. A graph is said to be
connected if any two nodes are joined by a path. The distance
between two nodes u and v, denoted by dðu; vÞ, is the length of the
shortest path joining them (by convention dðu; vÞ ¼ 1, if there is no
such path). Given a subset of nodes C � V , the induced subgraph
G½C� is the graph having C as its node set and two nodes are
adjacent in G½C� if and only if they are adjacent in G. A connected
graph with no cycles is called a free tree, or simply, a tree.

Trees have a number of interesting properties. One which turns
out to be very useful is that in a tree any two nodes are connected
by a unique path. Another useful property is that, given three
distinct vertices u; v; z of a tree, there exists a unique vertex x that
lies on the uv-path, on the uz-path and on the vz-path (see Fig. 1).
The vertex x is sometimes referred to as the median of u; v; z. Note
that the median of u; v; z can well be one of the vertices u; v; z.

Let T1 ¼ ðV1; E1Þ and T2 ¼ ðV2; E2Þ be two trees. Any bijection
� : H1 ! H2, with H1 � V1 and H2 � V2, is called a subtree
isomorphism if it preserves both the adjacency relationships
between the nodes and the connectedness of the matched
subgraphs. Formally, this means that, given u; v 2 H1, we have
u � v if and only if �ðuÞ � �ðvÞ and, in addition, the induced
subgraphs T1½H1� and T2½H2� are connected. A subtree isomorph-
ism is maximal if there is no other subtree isomorphism �0 : H 01 !
H 02 with H1 a strict subset of H 01, and maximum if H1 has largest
cardinality. The maximal (maximum) subtree isomorphism pro-
blem is to find a maximal (maximum) subtree isomorphism
between two trees. A word of caution about terminology is in
order here. Despite the name similarity, we are not addressing the
so-called subtree isomorphism problem, which consists of deter-
mining whether a given tree is isomorphic to a subtree of
a larger one. In fact, we are dealing with a generalization thereof,
the maximum common subtree problem, which consists of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 11, NOVEMBER 2002 1535

. The author is with the Dipartimento di Informatica, Università Ca’ Foscari
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determining the largest isomorphic subtrees of two given trees. We
shall continue to use our own terminology, however, as it
emphasizes the role of the isomorphism �.

The free tree association graph (FTAG) of two trees T1 ¼ ðV1; E1Þ
and T2 ¼ ðV2; E2Þ is the graph G ¼ ðV ;EÞ, where

V ¼ V1 � V2 ð1Þ

and, for any two nodes ðu;wÞ and ðv; zÞ in V , we have

ðu; wÞ � ðv; zÞ , dðu; vÞ ¼ dðw; zÞ: ð2Þ

Note that this definition of the association graph is stronger than the
standard one used for matching arbitrary relational structures [2].

A subset of vertices of a graph G is said to be a clique if all its
nodes are mutually adjacent. A maximal clique is one which is not
contained in any larger clique, while a maximum clique is a clique
having the largest cardinality. The maximum clique problem is to
find a maximum clique of G [5]. The main result of this section
establishes a one-to-one correspondence between maximal/max-
imum subtree isomorphisms and maximal/maximum cliques in
the FTAG. To prove it, we first need the following lemma.

Lemma 1. Let u1; v1; w1; z1 2 V1 and u2; v2; w2; z2 2 V2 be distinct
nodes of trees T1 ¼ ðV1; E1Þ and T2 ¼ ðV2; E2Þ, and suppose that the
following conditions hold:

1. w1 is on the u1v1-path and w2 is on the u2v2-path,
2. dðu1; w1Þ ¼ dðu2; w2Þ,
3. dðw1; v1Þ ¼ dðw2; v2Þ,
4. dðu1; z1Þ ¼ dðu2; z2Þ, and
5. dðv1; z1Þ ¼ dðv2; z2Þ.

Then, dðw1; z1Þ ¼ dðw2; z2Þ.
Proof. Let xi denote the median of ui, vi, and zi (i ¼ 1; 2) and

suppose, without loss of generality, that x1 lies on the w1v1-path,
i.e., dðu1; w1Þ � dðu1; x1Þ or, equivalently, dðv1; w1Þ � dðv1; x1Þ.
It is easy to show that x2 is on the w2v2-path (see Fig. 2).
Indeed, suppose to the contrary that this is not the case, i.e.,

dðu2; x2Þ < dðu2; w2Þ or, equivalently, dðv2; x2Þ > dðv2; w2Þ. Then,
from 4) and 2) we get:

dðx1; z1Þ ÿ dðx2; z2Þ ¼ dðu2; x2Þ ÿ dðu1; x1Þ
< dðu2; w2Þ ÿ dðu1; x1Þ
¼ dðu1; w1Þ ÿ dðu1; x1Þ
� 0:

Hence, dðx1; z1Þ < dðx2; z2Þ. On the other hand, hypotheses 5)
and 3) yield:

dðx1; z1Þ ÿ dðx2; z2Þ ¼ dðv2; x2Þ ÿ dðv1; x1Þ
� dðv2; x2Þ ÿ dðv1; w1Þ
¼ dðv2; x2Þ ÿ dðv2; w2Þ
> 0

which implies dðx1; z1Þ > dðx2; z2Þ, a contradiction.
Therefore, wi is on the uizi-path (i ¼ 1; 2) and, hence,

dðw1; z1Þ ¼ dðu1; z1Þ ÿ dðu1; w1Þ
¼ dðu2; z2Þ ÿ dðu2; w2Þ
¼ dðw2; z2Þ

which proves the lemma. tu

Theorem 2. Any maximal (maximum) subtree isomorphism between two
trees induces a maximal (maximum) clique in the corresponding
FTAG and vice versa.

Proof. Let � : H1 ! H2 be a maximal subtree isomorphism between
trees T1 and T2, and let G ¼ ðV ;EÞ denote the corresponding
FTAG. Let C� � V be defined as C� ¼ fðu; �ðuÞÞ : u 2 H1g. From
the definition of a subtree isomorphism, it follows that�maps the
path between any two nodes u; v 2 H1 onto the path joining �ðuÞ
and �ðvÞ. This clearly implies that dðu; vÞ ¼ dð�ðuÞ; �ðvÞÞ for all
u 2 H1 and, therefore, C� is a clique. Trivially, C� is a maximal
clique because � is maximal and this proves the first part of the
theorem.

Suppose now that C ¼ fðu1; w1Þ; � � � ; ðun; wnÞg is a max-
imal clique of G and let H1 ¼ fu1; � � � ; ung � V1 and
H2 ¼ fw1; � � � ; wng � V2. Define � : H1 ! H2 as �ðuiÞ ¼ wi,
for all i ¼ 1 . . .n. From the definition of the FTAG and the
hypothesis that C is a clique, it is simple to see that � is a
one-to-one and onto correspondence between H1 and H2,
which trivially preserves the adjacency relationships between
nodes. The fact that � is a maximal isomorphism is a
straightforward consequence of the maximality of C.

To conclude the proof, we have to show that the subgraphs
that we obtain when we restrict ourselves to H1 and H2, i.e.,
T1½H1� and T2½H2�, are trees and this is equivalent to showing that
they are connected. Suppose by contradiction that this is not the
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Fig. 1. The median of three vertices.

Fig. 2. Illustration of the hypotheses of Lemma 1 (see text for explanation).



case and let ui; uj 2 H1 be two nodes which are not joined by a
path in T1½H1�. Since both ui and uj are nodes of T1, however,
there must exist a path ui ¼ x0x1 . . .xm ¼ uj joining them in T1.
Let x� ¼ xk, for some k ¼ 1 . . .m, be a node on this path which is
not in H1. Moreover, let y� ¼ yk be the kth node on the path
wi ¼ y0y1 . . . ym ¼ wj which joins wi and wj in T2 (remember that
dðui; ujÞ ¼ dðwi; wjÞ and, hence, dðwi; wjÞ ¼ m). We now show
that the set fðx�; y�Þg [ C � V is a clique. To this end, let
ðu;wÞ 2 C. Since ðui; wiÞ and ðuj; wjÞ are also nodes inC, we have
dðui; uÞ ¼ dðwi; wÞ and dðuj; uÞ ¼ dðwj; wÞ. Furthermore, we have
that x� and y� are on the uiuj- and wiwj-paths, respectively, and
clearly dðui; x�Þ ¼ dðwi; y�Þ and dðx�; ujÞ ¼ dðy�; wjÞ. Therefore,
all the hypotheses of Lemma 1 are satisfied and this implies that
dðx�; uÞ ¼ dðy�; wÞ, which amounts to stating that node ðx�; y�Þ is
adjacent to ðu; wÞ, for all ðu;wÞ 2 C. This means that fðx�; y�Þg [ C
is a clique, thereby contradicting the hypothesis that C is a
maximal clique and proving the second part of the theorem.

The “maximum” part of the statement is proven similarly.tu

The FTAG is readily derived by using a classical representation

for graphs, i.e., the so-called distance matrix which, for an arbitrary

graph G ¼ ðV ;EÞ of order n, is the n� n matrix D ¼ ðdijÞ where

dij ¼ dðui; ujÞ, the distance between nodes ui and uj. Efficient,

classical algorithms are available for obtaining such a matrix [8].

3 A CONTINUOUS CHARACTERIZATION OF MAXIMAL

CLIQUES

After formulating the free tree matching problem as a maximum

clique problem, we now proceed (following [20], [21]) by mapping

the latter onto a continuous quadratic programming problem. Let

G ¼ ðV ;EÞ be an arbitrary graph of order n and let � denote the

standard simplex of IRn:

� ¼ x 2 IRn : e0x ¼ 1 and xi � 0; i ¼ 1 . . .nf g;

where e is the vector whose components equal 1 and a prime

denotes transposition. Given a subset of vertices C of G, we will

denote by xc its characteristic vector which is the point in � defined as

xci ¼
1=jCj; if i 2 C
0; otherwise;

�
where jCj denotes the cardinality of C.

Now, consider the following quadratic function

fGðxÞ ¼ x0AGxþ 1

2
x0x; ð3Þ

where AG ¼ ðaijÞ is the adjacency matrix of G. The following

theorem, recently proven by Bomze [4], expands on the Motzkin-

Straus theorem [19], a remarkable result which establishes a

connection between the maximum clique problem and certain

standard quadratic programs. This has an intriguing computa-

tional significance in that it allows us to shift from the discrete to

the continuous domain in an elegant manner.

Theorem 3. Let C be a subset of vertices of a graph G and let xc be its

characteristic vector. Then, C is a maximal (maximum) clique of G if

and only if xc is a local (global) maximizer fG in �. Moreover, all

local (and, hence, global) maximizers of fG in � are strict and are

characteristic vectors of maximal cliques of G.

In a formal sense, therefore, a one-to-one correspondence exists

between maximal cliques and local maximizers of fG in � on the

one hand, and maximum cliques and global maximizers on the

other hand.

4 MATCHING FREE TREES WITH MONOTONE GAME

DYNAMICS

Evolutionary game theory considers an idealized scenario whereby

in a large population pairs of individuals are repeatedly drawn at

random to play a symmetric two-player game. In contrast to

traditional game theoretic models, players are not supposed to

behave rationally or to have complete knowledge of the details of

the game. They act instead according to a preprogrammed

behavior pattern, or pure strategy, and it is supposed that some

evolutionary selection process operates over time on the distribu-

tion of behaviors. We refer the reader to [14], [23] for excellent

introductions to this rapidly expanding field.
Let J ¼ f1; � � � ; ng be the set of available pure strategies and, for

all i 2 J , let xiðtÞ be the proportion of population members playing

strategy i, at time t. The state of the population at a given instant is

the vector x ¼ ðx1; � � � ; xnÞ0. Clearly, population states are con-

strained to lie in the standard simplex �. For a given population

state x 2 �, we shall denote by �ðxÞ the support of x, i.e., the set of

nonextinct strategies:

�ðxÞ ¼ fi 2 J : xi > 0g:

Let A ¼ ðaijÞ be the n� n payoff matrix. Specifically, for each

pair of strategies i; j 2 J , aij represents the payoff of an individual

playing strategy i against an opponent playing strategy j. If the

population is in state x, the expected payoff earned by an

i-strategist is:

�iðxÞ ¼
Xn
j¼1

aijxj ¼ ðAxÞi ð4Þ

while the mean payoff over the entire population is

�ðxÞ ¼
Xn
i¼1

xi�iðxÞ ¼ x0Ax: ð5Þ

In evolutionary game theory the assumption is made that the

game is played over and over, generation after generation, and that

the action of natural selection will result in the evolution of the

fittest strategies. A general class of evolution equations is given by

the following set of ordinary differential equations:

_xxi ¼ xigiðxÞ; ð6Þ

where a dot signifies derivative with respect to time, and g ¼
ðg1; . . . ; gnÞ is a function with open domain containing �. Here, the

function gi (i 2 J) specifies the rate at which pure strategy i

replicates. It is usually required that the growth function g is

regular [23], which means that it is Lipschitz continuous and that

gðxÞ � x ¼ 0 for all x 2 �. The former condition guarantees us that

the system of the differential equation (6) has a unique solution

through any initial population state. The condition gðxÞ � x ¼ 0,

instead, ensures that the simplex � is invariant under (6), namely,

any trajectory starting in � will remain in �.
Payoff-monotonic game dynamics represent a wide class of

regular selection dynamics for which useful properties hold.

Intuitively, for a payoff-monotonic dynamics the strategies asso-

ciated to higher payoffs will increase at a higher rate. Formally, a

regular selection dynamics (6) is said to be payoff-monotonic if

giðxÞ > gjðxÞ () �iðxÞ > �jðxÞ ð7Þ

for all x 2 �.
In an unpublished paper [13], Hofbauer shows that the average

population payoff is strictly increasing along the trajectories of any

monotone game dynamics, provided that payoffs are symmetric.

This result generalizes the celebrated fundamental theorem of
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natural selection [14], [23]. Here, we provide a different proof

adapting a technique from [10].

Theorem 4. If the payoff matrix A is symmetric, then �ðxÞ ¼ x0Ax is

strictly increasing along any nonconstant trajectory of any payoff-

monotonic dynamics. In other words, _��ðxðtÞÞ � 0 for all t, with

equality if and only if x ¼ xðtÞ is a stationary point.

Proof. For x 2 �, let

�þðxÞ ¼ fi 2 �ðxÞ : giðxÞ � 0g

and

�ÿðxÞ ¼ fi 2 �ðxÞ : giðxÞ < 0g:

Clearly, �þðxÞ [ �ÿðxÞ ¼ �ðxÞ. Moreover, let

�ðxÞ ¼ minf�iðxÞ : i 2 �þðxÞg

and

�ðxÞ ¼ maxf�iðxÞ : i 2 �ÿðxÞg:

Because of payoff-monotonicity, note that �ðxÞ � �ðxÞ. Note

also that _xxi � 0 if and only if i 2 �þðxÞ.
Now, since A is symmetric, we have

_��ðxÞ
2
¼
X
i2�ðxÞ

_xxi�iðxÞ

¼
X

i2�þðxÞ
_xxi�iðxÞ þ

X
i2�ÿðxÞ

_xxi�iðxÞ

� �ðxÞ
X

i2�þðxÞ
_xxi þ �ðxÞ

X
i2�ÿðxÞ

_xxi

¼ ð�ðxÞ ÿ �ðxÞÞ
X

i2�þðxÞ
_xxi

� 0;

where the last equality follows from
P

_xxi ¼ 0. Finally, note that

_��ðxÞ ¼ 0 if and only if �iðxÞ is constant for all i 2 �ðxÞ which

amounts to saying that x is stationary [23, Proposition 4.7]. tu
A well-known subclass of payoff-monotonic game dynamics is

given by

_xxi ¼ xi fð�iðxÞÞ ÿ
Xn
j¼1

xjfð�jðxÞÞ
 !

; ð8Þ

where fðuÞ is an increasing function of u. These models arise in

modeling the evolution of behavior by way of imitation processes,

where players are occasionally given the opportunity to change

their own strategies [13], [23].
When f is the identity function, i.e., fðuÞ ¼ u, we obtain the

standard replicator equations

_xxi ¼ xi �iðxÞ ÿ
Xn
j¼1

xj�jðxÞ
 !

ð9Þ

whose basic idea is that the average rate of increase _xxi=xi equals

the difference between the average payoff of strategy i and the

mean payoff over the entire population.
Another popular model arises when fðuÞ ¼ e�u which yields

_xxi ¼ xi e��iðxÞ ÿ
Xn
j¼1

xje
��jðxÞ

 !
; ð10Þ

where � is a positive constant. As � tends to 0, the orbits of this

dynamics approach those of the standard, first-order replicator

model (9), slowed down by the factor �; moreover, for large

values of � the model approximates the so-called “best-reply”
dynamics [13], [14].

In light of their dynamical properties, payoff-monotonic
dynamics naturally suggest themselves as simple heuristics for
solving the maximal subtree isomorphism problem. Let T1 ¼
ðV1; E1Þ and T2 ¼ ðV2; E2Þ be two free trees and let AG denote the
adjacency matrix of their FTAG G. By putting

A ¼ AG þ
1

2
I; ð11Þ

where I is the identity matrix, we know from Theorem 4 that any
payoff-monotonic dynamics, starting from an arbitrary initial state,
will iteratively maximize the function fG defined in (3) over the
simplex and will converge with probability 1 to a strict local
maximizer which, by virtue of Theorem 3, will then correspond to the
characteristic vector of a maximal clique in the FTAG. As stated in
Theorem 2, this will in turn induce a maximal subtree isomorphism
between T1 and T2.

5 EXPERIMENTAL RESULTS

In this section, we present experiments of applying payoff-
monotonic dynamics to the free tree matching problem. In our
simulations, we used the following discrete-time models:

xiðtþ 1Þ ¼ xiðtÞ�iðtÞPn
j¼1 xjðtÞ�jðtÞ

ð12Þ

and

xiðtþ 1Þ ¼ xiðtÞe��iðtÞPn
j¼1 xjðtÞe��jðtÞ

; ð13Þ

which correspond to well-known discretizations of (9) and (10),
respectively, [14], [23]. For the latter dynamics, the value � ¼ 10
was used.

Both the first-order and the exponential processes were started
from the simplex barycenter and stopped when either a maximal
clique (i.e., a local maximizer of fG) was found or the distance
between two successive points was smaller than a fixed threshold. In
the latter case, the converged vector was randomly perturbed and
the algorithms restarted from the perturbed point. Because of the
one-to-one correspondence between local maximizers and maximal
cliques, this situation corresponds to convergence to a saddle point.

5.1 Matching Shape-Axis Trees

Recently, Liu et al. [18] introduced a new representation for shape

based on the idea of self-similarity. Intuitively, given a closed planar

shape, they consider two different parameterizations of its contour,

namely, one oriented counterclockwise, ÿðsÞ ¼ fxðsÞ : 0 � s � 1g,
and the other clockwise, ÿ̂ÿðtÞ ¼ fx̂xðtÞ ¼ xð1ÿ tÞ : 0 � t � 1g. By

minimizing an appropriate cost functional they find a “good” match

between ÿ and ÿ̂ÿ and then define the shape axis (SA) as the loci of

middle points between the matched contour points. From a given

SA, it is possible to construct a unique free tree, called the SA-tree, by

grouping the discontinuities contained in the SA. In Fig. 3, the

SA-tree construction process for a few example shapes is illustrated.
The proposed matching algorithms were tested on a selection of

17 shapes (SA-trees) representing six different object classes (horse,
human, bird, dog, sheep, and rhino). We matched each shape
against each other (and itself) and in all the 289 trials both
algorithms returned the maximum isomorphism, i.e., a maximum
clique in the FTAG. This is a remarkable fact, considering that
replicator dynamics are unable to escape from local solutions.
Similar findings on related problems are discussed in [20], [21]. As
far as the computational time is concerned, both dynamics took
only a few seconds to converge on a 350MHz AMDK6-2 processor,
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the exponential one being slightly faster than the linear one (but

see below for a rather different picture).

5.2 Matching Larger Trees

Encouraged by the results reported above, we proceeded by testing

our algorithms over much larger (random) trees, with the aim of

studying their sensitivity to structural perturbations. Random

structures represent a useful benchmark not only because they are

not constrained to any particular application, but also because it is

simple to replicate experiments and, hence, to make comparisons

with other algorithms.
In this series of experiments, the following protocol was used. A

hundred 100-node free trees were generated uniformly at random

using a procedure described by Wilf in [24]. Then, each such tree was

subject to a corruption process which consisted of randomly deleting

a fraction of its terminal nodes, thereby obtaining a tree isomorphic to

a proper subtree of the original one. Various levels of corruption (i.e.,

percentage of node deletion) were used, namely, 2 percent,

10 percent, 20 percent, 30 percent, and 40 percent. This means that

the order of the pruned trees ranged from 98 to 60. Overall, therefore,

500 pairs of trees were obtained, for each of which the corresponding

FTAG was constructed, as described in Section 2. To keep the order of

the association graph as low as possible, its vertex set was

constructed as V ¼ ðu;wÞ 2 V 0 � V 0 0 : degðuÞ � degðwÞf g, assuming

jV 0j � jV 0 0j, the edge setE being defined as in (2). It is straightforward

to see that when the first tree is isomorphic to a subtree of the second,

Theorem 2 continues to hold. This simple heuristic may significantly

reduce the dimensionality of the search space. We also made

experiments with unpruned FTAG’s but no significant difference

in performance was noticed apart, of course, heavier memory

requirements.
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Fig. 3. Illustration of the SA-tree construction. (a) Three shapes, (b) their shape-
axis model, and (c) the corresponding SA-trees.

Fig. 4. Results obtained over 100-node random trees with various levels of corruption, using the first-order dynamics (12). (a) Percentage of correct matches. (b) Average

computational time taken by the replicator equations.



As in the previous series of experiments, both the linear and the

exponential dynamics were used, with identical parameters and

stopping criterion. After convergence, we calculated the propor-

tion of matched nodes, i.e., the ratio between the cardinality of the

clique found and the order of the smaller subtree and then we

averaged. Fig. 4a shows the results obtained using the linear

dynamics (12) as a function of the corruption level. As can be seen,

the algorithm was always able to find a correct maximum

isomorphism, i.e., a maximum clique in the FTAG. Fig. 4b plots

the corresponding (average) CPU time taken by the processes, with

corresponding error bars (simulations were performed on the same

machine used for the shape-axis experiments).
In Fig. 5, the results pertaining to the exponential dynamics (13)

are shown. In terms of solution’s quality, the algorithm performed

exactly as its linear counterpart, but this time it was dramatically

faster. This confirms earlier results reported in [20].

6 CONCLUSIONS

We have developed a formal approach for matching connected and

acyclic relational structures, i.e. free trees, by constructing an

association graph whose maximal cliques are in one-to-one

correspondence with maximal subtree isomorphisms (i.e., maximal

common subtrees). The framework is general and can be applied in

a variety of computer vision problems as well as in other domains:

we have demonstrated its potential for shape matching. The

solution is found by using payoff-monotonic dynamical systems,

which make them amenable to hardware implementation and offer

the advantage of biological plausibility. Since it is difficult to

establish theoretical bounds on the quality of the solutions found,

extensive experiments on hundreds of uniformly random trees

have been conducted, focusing on the issue of sensitivity to

structural errors. As in previous work on graph isomorphism [20]

and rooted tree matching [21], the results are impressive: despite

the counterintuitive maximum clique formulation of the tree

matching problem, and the inherent inability of these simple

dynamics to escape from local optima, they nevertheless were

always able to find a globally optimal solution. This apparently

nonaccidental regularity raises intriguing questions about the

connections between standard notions of computational complex-

ity and the “elusiveness” of global optima in a continuous setting.
Before concluding, we note that there exists a different approach

to comparing graphs (and, in particular, trees) which, instead of

looking for maximal common substructures as we do, is based on

the idea of computing their edit-distance, namely, the minimum

cost to transform one graph into another by elementary edit

operations. This idea is attractive especially when the structures

being matched are subject to significant structural distortions.

Unfortunately, it turns out that computing the edit-distance on free

trees is NP-hard [25], although it is solvable in polynomial time by

restricting ourselves to ordered trees, where each node is assigned a

cyclic ordering of its incidente edges [15]. Moreover, determining

the set of elementary edit operations and the associated costs

depends heavily on the application domain and can be problematic

(see [16], [17] for some examples of edit operations motivated by

shape matching problems). This choice is in fact crucial as two

graphs that are similar under one cost function may be quite

dissimilar using another one, and the optimal node correspon-

dences may vary considerably. It is worth mentioning that Bunke [7]

has shown that on generic graphs, under certain assumptions
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Fig. 5. Results obtained over 100-node random trees with various levels of corruption, using the exponential dynamics (13). (a) Percentage of correct matches.

(b) Average computational time taken by the replicator equations.



concerning the edit-costs, determining the maximum common

subgraph is equivalent to computing the graph edit-distance.

Moreover, new graph-distance metrics have recently been proposed

based on the maximum common subgraph [6].
In order to deal with graphs arising from realistic computer

vision problems, the framework presented here can be extended

along several lines. For instance, in many applications the

underlying graphs have nodes with an associated vector of

symbolic and/or numeric attributes and one should incorporate

into the matching algorithm a mechanism to deal with attribute

perturbations. Following our previous work on rooted tree

matching [21], this can be done in a straightforward and elegant

way by placing weights on the nodes of the FTAG which quantify

the similarity of attribute vectors. The matching problem is then

transformed into that of finding a clique of largest weight rather

than cardinality, which corresponds to a subtree isomorphism of

maximal similarity. Again, this can be done efficiently using

monotone game dynamics. Moreover, in practical applications, the

matching algorithm should also be robust under structural

perturbations. For example, the medial axis representation is

known to be prone to erroneous branches (see, e.g., [26] for a

discussion on shape representation and matching). The approach

described here can indeed cope with certain types of perturbations

such as the addition or deletion of nodes in both trees, for we aim

at finding a maximal common substructure rather than looking at

perfect isomorphisms, and the experimental results presented in

the paper do confirm this. However, it would not work

satisfactorily in the presence of more complex distortions like,

e.g., the merging of two nodes. To cope with such problems, it is

simple to formulate error-tolerant versions of our matching

framework following the lines suggested in [22] for rooted

attributed trees, where many-to-many node correspondences are

allowed. All this will be the subject of future investigations.
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