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Abstract. We expand on a recent paper by Courrieu which introduces three algorithms for determin- 
ing the distance between any point and the interpolation domain associated with a feedforward neural 
network. This has been shown to have a significant relation with the network’s generalization capa- 
bility. A further neural-like relaxation algorithm is presented here, which is proven to naturally solve 
the problem originally posed by Courrieu. The algorithm is based on a powerful result developed in 
the context of Markov chain theory, and turns out to be a special case of a more general relaxation 
model which has long become a standard technique in the machine vision domain. Some experiments 
are presented which conhrm the validity of the proposed approach. 

1. Introduction 

One of the ultimate criteria for judging the quality of a given neural network problem 
solution is its generalization ability, that is, how well will the network perform when 
presented with patterns never seen during learning? In a recent paper, Courrieu 
[6] attempted to provide an answer to this question. He demonstrated how the 
generalization performance of a feedforward neural network depends significantly 
on the location of the generalization patterns with respect to the network’s domain 
of validity, which corresponds to the convex hull of the set of learning points. He 
therefore posed the problem of calculating the distance between an arbitrary point 
and a given convex polytope, and developed three simple algorithms to accomplish 
this. The first is a conventional gradient descent procedure, the second is a four- 
layer recurrent neural network which essentially approximates the first, and the 
third makes use of a circumscribed sphere to approximate the polytope. 

In this paper, a further neural-like algorithm for solving the problem originally 
posed by Courrieu [6] is presented. Based on a powerful result of use in the theory 
of Markov processes, the proposed network model is proven to have an energy 
function which rules its dynamical behavior and drives the system towards low- 
energy configurations. This property is therefore exploited to make the network 
solve Courrieu’s problem in a completely natural fashion. Interestingly enough, the 
algorithm proposed here turns out to be but a special instance of a more general class 
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of parallel distributed models, generally known as relaxation labeling processes, 
which were heuristically introduced by Rosenfeld et al. [21] for solving certain 
constraint satisfaction problems arising in vision. Since then the algorithm has 
been successfully employed in a variety of difficult tasks in pattern recognition 
and computer vision, and is still attracting the interest of many investigators (see, 
e.g., [ 1 I]). Despite its heuristic derivation, the algorithm has been recently shown 
to possess interesting dynamical properties [17] and learning capabilities [ 191, and 
turns out to be closely related to certain mechanisms in the early stages of the 
human visual system [2, 231. It may be also of some interest to point out that the 
proposed dynamical scheme was independently derived and studied as a model of 
evolution in population genetics [8] and, based on such ideas, a similar strategy 
was more recently used to solve certain combinatorial optimization problems [ 141. 

The rest of the paper is organized as follows: Section 2 formally states the 
problem we intend to solve in terms of minimizing a convex functional over 
a certain polytope in Euclidean space. Section 3 presents the proposed neural 
network model, proves some interesting properties, and discusses how to configure 
the network so as to solve the problem. Some experimental results are presented in 
Section 4 which illustrate the effectiveness of the proposed approach. 

2. Problem Formulation 

Let G = {xt,... , x,} be a finite set of points in the Euclidean space !I?, and let 
conv(G) denote the convex hull of G, that is the smallest convex set containing G. 
Let K, denote the following polytope in $P (see Figure 1): 

: A, 2 0, all i = 1. = . . m, and 5 Xi 1 
, 

2=1 1 

and consider the n x m real matrix defined as X = [xl x2 . - . xm]. It is well 
known that conv(G) can be written as 

conv(G) = {v E !I? : v=XX forsome XEK,}. 

Courrieu [6] called the following measure 

WY, G) = An$ IW - ~112 
rn 

(1) 

the exterior&y of y to conv(G), which is nothing but the Euclidean distance 
between y and its closest point in conv(G). He experimentally demonstrated how 
the exteriority measure can provide useful information about the ability of neural 
networks to generalize well. Specifically, the generalization error was shown to 
become higher as the exteriority of the generalization points increases; on the other 
hand, low exteriority values do not necessarily imply that the network will respond 
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Figure I. The polytope x3. 

correctly, but in this case the generalization error is typically smaller than for larger 
exteriority values. In addition, Courrieu proposed a straightforward procedure for 
extracting the vertices of conv(G), which completely (and more economically) 
characterize the polytope. It is based on the observation that a point x E G is a 
vertex of conv(G) if and only if it has a nonzero exteriority to conv(G - (x)). 

For convenience, the problem of evaluating E (y, G) is translated into the equiv- 
alent (but more manageable) constrained quadratic programming problem 

minimize C(X) = ~ I I x A  - Y I I ;  
subject to X € K,. 

It is a well-known fact that the functional C is convex (strictly convex indeed 
if the vectors XI, . - . , x, happen to be linearly independent), and this implies that 
all local minima of C are also global minima. Any descent procedure is therefore 
guaranteed to approach the global optimal solution in this case, without the risk of 
becoming trapped into poor local minima. 

It is interesting to note that a similar optimization problem, known as the 
problem of 'optimal stability', also arises in the context of learning in perceptron 
networks; there the goal is to derive the network's weights so as to ensure larger 
basis of attraction [ l ,  12,221. Moreover, our problem turns out to be closely related 
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to that of determining whether a given set of prototype vectors can be stored in a 
Hopfield-style associative memory [ 10, Theorem 6.11. 

3. Estimating Exteriority by Relaxation 

The proposed neural network model for calculating the exteriority of a point y to 
a given convex hull polytope conv(G) consists of m pairwise interconnected com- 
putational units, one for each point in G. Let wij be the strength of the connection 
from unit i to unit j, and let si denote an external input signal associated with unit 
i. It is assumed that both the weights and the external signals are nonpositive, i.e., 
WQ 2 0 and si 5 0, for all i, j = 1 . . . !r~l Note that unipolar networks, like the 
one we are proposing here, turn out to be advantageous in many applications, espe- 
cially when hardware implementation is a concern [7]. In the following discussion, 
W will denote the m x m real-valued nonpositive matrix having wij as its (i, j) 
entry, and s will represent the m-dimensional nonpositive vector of the external 
signals. 

Let (pi (t) represent the state of unit i at time t, and define the state of the network 
as a whole at time t to be the vector a(t) = (ai (t), . . . , a,(t))T, where ‘T’ denotes 
transposition. The system works as follows. It starts out with an initial state vector 
a(O) E K, and iteratively and synchronously updates its own state according to 
the following dynamical equation 

ai(t + 1) = $)qt@) ) i= l...m 

& mj (t> 
j=l 

(2) 

where 

qi(t)=~wijcTJ(t)+si, i=l...m 
j=l 

(3) 

is the net input to unit i at time t. The process evolves until a fixed point is reached, 
i.e., until a(t + 1) = a(t). 

Because of the normalization factor present in Equation (2) and the unipolarity 
condition, the network performs essentially a mapping of the domain K, onto 
itself, provided that a(O) E Ic,. Levinson et al. [13], in a rather different context, 
offered a simple geometrical interpretation for transformations like (2). Let X be 
a point in Km, and let q denote the m-vector composed of the q2’s, as defined 
in (3). Moreover, let z be the m-vector whose ith component is given by the 
component-wise product between X and q, i.e., zi = X,qi. Then, it is readily seen 
that the vector obtained by applying the transformation (2) to X is simply the 
intersection of the vector z - or its extension - with the hyperplane defined by 
Czn=,Xi-l=O.A s an aside, we note that output normalization has now become 
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a common practice within the neural network community; this can be regarded 
as a multi-input generalization of the more familiar logistic nonlinearity, and can 
be easily implemented into physical circuitry [5]. It can also be considered as a 
form of ‘soft’ competition among hypotheses, an approach that contrasts with the 
classical winner-take-all view [ 151. 

In a very interesting paper, Baum and Eagon [3] proved a powerful theorem 
which turns out to be the basis of the work reported in this paper. Here, we present 
Baum and Eagon’s result in a slightly different and simplified form. 

Theorem 1 (Baum-Eagon) Let P(A) be a polynomial in the variables {Xi} with 
nonpositive coejjfkients, and let X be a point of the domain K,. Define the mapping 
p = M(X) as 

x BP(X) 
Pa= - 2 a, 

gqp ’ 
i= l...m. (4) 

3 3x1 

Then P(M(X)) < P(A), unless M(X) = A. 

Indeed, Baum and Eagon’s result was originally proven for the special case of 
homogeneous polynomials. In a subsequent paper, however, Baum and Sell [4] 
extended the original theorem to nonhomogeneous polynomials, and proved that 
the inequality still holds for all points lying on the segment connecting X and M (A). 
They also provided an analysis of the asymptotic behavior of the transformation M 
in the vicinity of local extrema. As noted by Baum and Sell [4], the mapping defined 
previously makes use of first derivatives only and yet is able to make finite steps 
while decreasing P. This contrasts sharply with conventional gradient methods, for 
which a decrease in the objective function is guaranteed only when infinitesimal 
steps are taken, and determining the optimal step size entails computing higher- 
order derivatives. The Baum-Eagon inequality provides an effective iterative means 
for optimizing polynomial functions over a domain of probability values and, in 
fact, it has served as the basis for many statistical estimation procedures. More 
recently, its usefulness in the field of speech recognition has been proven extensively 
u31. 

Now, let us turn to our neural network model, and suppose that the weight 
matrix is symmetric (wi, = wJZ). By simply applying the Baum-Eagon Theorem, 
we can assert that the network possesses the following strict Liapunov (or energy) 
function which is minimized in Ic, as the process evolves: 

1 T L(X) = TX WA + sTX + K ) 

where K is an arbitrary constant (of either sign). Put another way, we have 

L(a(t + 1)) < L(a(t)) , all t 2 0 (6) 
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unless a(t + 1) = a(t). This property follows immediately from the fact that, when 
W is symmetric, we get 

WA) - m w..x. +s. 
dXi c 23 3 a > i= l...m 

j=l 
(7) 

which means that the mapping performed by the network is identical to that defined 
in the Baum-Eagon Theorem. 

Returning to our original problem, recall that calculating the exteriority of a 
point y to a given convex hull polytope conv(G) amounts to minimizing in Ic, a 
quadratic polynomial which is explicitly written as 

C(X) = kXTXTXA - yTXX + ;YTY. (8) 

In light of the above discussion, it is therefore easy to map the problem of estimating 
the exteriority measure onto a relaxation network of the type described above. To 
accomplish this, in fact, simply put 

W=XTX (9) 

and 

s=-XTy. (10) 

The network, starting from an initial state a(O), will iteratively minimize C and will 
eventually converge to a fixed point U* E Km which corresponds to a minimum 
of the cost function.’ Owing to the convexity of C, g* will be also the global 
minimum of C, so that 

E(Y,G) = JG (11) 

irrespective of the starting point. However, since the process cannot leave the bound- 
ary of Km, it is preferable that the relaxation search begin with an interior point, i.e., 
ai > 0 for all i. A reasonable choice, also adopted in the experiments reported 
in the next section, can be to start the process with a(O) = (l/m, 1 /m, . . . , l,/m)T 
which corresponds to the center of Km. 

As a final remark, observe that Equations (9) and (10) do not guarantee that 
W and s will contain nonpositive values, as required. Fortunately, this problem 
can be easily overcome by performing a simple linear scaling. Let 6 and B be the 
maximum positive values of W and s, respectively, (put iii = 0 and S = 0 if no 
such values exist) and construct the matrix W’ as wij = wij - ti, and the vectors’ 
as s: = s, - d. Trivially, both W’ and s’ contain nonpositive values. Now, consider 
the polynomial C’(x) = $XTW’X + s’~X + K. By direct computation, it is simple 
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to see that C’(X) < C’(p) if and only if C(X) < C(p), for all X,,U E K,. This 
means that if we have a descent procedure for C’ in Km, then this will be also a 
descent procedure for C, and vice versu. Put another way, should W or s contain 
positive values, the network with weight matrix IV’ and external inputs s’ not only 
will minimize C’, but also the original cost C (and, indeed, all those functions 
which agree with C’ in Ic,, up to a constant). 

4. A Numerical Example 

In order to assess the validity of the proposed algorithm in estimating the exteriority 
measure. some simulations were carried out over a simple toy problem. The task 
consisted of calculating the exteriority of an input point in the square [-2,2] x 
[-2,2] to the convex hull of the set G = ((-1, -l), (-1, I), (1,-l), (1, I)} 
(which is the square [- 1, l] x [- 1, 11). To accomplish this, a four-neuron relaxation 
network was constructed with weight matrix and external signals obtained as 
described before. Next, a thousand points were generated randomly in the square 
[-2,2] x [-2,2], and g iven as input to the network (via the external signals, as 
seen in the previous section). The process was allowed to iterate until the (squared) 
distance between two successive state vectors became smaller than E = 10p7. A 
median number of 8 1 iterations were needed for the relaxation network to converge. 

To evaluate the goodness of the solutions found by the relaxation process, the 
following quality measure introduced by Protzel(l990) was adopted: 

(12) 

where C,,, is the average cost function calculated by collecting a sufficient number 
of random points in K,, Crelaz is the cost value of a given solution found by the 
network, and C,,, represents the global optimal value of the cost function, which 
is proportional to the square of the ‘real’ exteriority of the input point, determined 
in a separate calculation. In our problem, the true exteriority is readily calculated 
according to the following straightforward procedure: 

E(y G)= $7:’ 

ifly I 1 and Iy2( L 1 
if 1~11 > 1 and ly2l I 1 

> 

(i 
.2 

(IYlI L II2 + (Iv21 - v2 7 

if/y11 I 1 and Iv21 > 1 

. If lyll > 1 and Iv21 > 1 

where yi and y2 represent the coordinates of the input point y. Notice that, from 
the definition of Q, we have Q = 0 if Crelas = Cave, and Q = 1 if CrelaZ = C,,,. 

For each of the thousand relaxation runs, the quality measure Q was calculated 
and then averaged. The average value of Q was found to be 9.9998 x lo-‘, which 
clearly illustrates how the network is always able to find the globally optimal 
solution and can provide very accurate estimates of the exteriority measure. As 
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observed before, this is not surprising because of the convexity of the energy 
function. 

5. Concluding Remarks 

In this paper, a unipolar relaxation neural network has been presented which is 
able to estimate the distance between an arbitrary input point and a given convex 
polytope. As shown by Courrieu [6], this measure can be helpful in predicting 
the generalization performance of artificial neural networks. The validity of the 
proposed model has been demonstrated both theoretically and experimentally. 

The neural network algorithm developed here exhibits a number of advantages 
over the neural-like counterpart developed by Courrieu, which essentially approxi- 
mates a gradient procedure. First, in contrast with Courrieu’s model which consists 
of four layers of highly-specialized units, ours has a much more simple and homo- 
geneous architecture and therefore lends itself well to physical implementation. A 
second difference between the two models which is worth mentioning is that the 
one presented here does not make use of any working parameter. This is not true 
for Courrieu’s algorithm, which needs a parameter that defines the size of the steps 
taken along gradient direction. As Courrieu himself admitted, the choice of this 
parameter poses some problems for too small a value slows down convergence, 
while too high a value can result in a divergent oscillation of the iterative process. 
A further nice feature of the proposed neural network is the existence of an energy 
function which monotonically decreases along network’s trajectories. This makes 
the model far more general than presented here and suggests using it for solving 
arbitrary optimization problems, in exactly the same way as Hopfield and Tank 
[9] did with their popular neural algorithm. As a matter of fact, some experiments 
conducted recently with a similar (but more general) parallel relaxation algorithm 
have demonstrated the effectiveness of this kind of models in solving well-known 
intractable optimization problems [16, 181. 
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Notes 

1. The nonnegative case can be treated in a completely analogous way and will be therefore ignored 
in what follows. 

2. In practice, the process can be stopped when 

lb(t + 1) - 4t)II; < E 
where E is a small predetermined constant which affects the precision of the solution found. 
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