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When matching regions from “similar” images, one typically has the problem of missing
counterparts due to local or even global variations of segmentation fineness. Matching
segmentation hierarchies, however, not only increases the chances of finding counter-
parts, but also allows us to exploit the manifold constraints coming from the topological
relations between any two regions in a hierarchy. To define the topological relations we
represent a plane image I by a plane attributed graph G and derive a finite topology
O from G. In particular, segmenting I corresponds to taking a topological minor of G
which, in turn, is equivalent to coarsening O. Moreover, each finite topology involved is
a coarsening of the standard topology on IR2. Then, we construct a weighted association
graph GA, the nodes of which represent potential matches and the edges of which indi-
cate topological consistency with respect to O. Specifically, a maximal weight clique of
GA corresponds to a topologically consistent mapping with maximal total similarity. To
find “heavy” cliques, we extend a greedy pivoting-based heuristic to the weighted case.
Experiments on pairs of stereo images, on a video sequence of a cluttered outdoor scene,
and on a sequence of panoramic images demonstrate the effectiveness of our method.
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1. Introduction

Vision tasks such as detection, recognition, and tracking usually involve segmenta-
tion. Although, in general, the segmentation method must be chosen according to
the application (segmentation itself is an ill-defined problem), the following situa-
tion is quite common.

• The segmentation method allows for various levels of fineness.
• For selected levels of fineness the corresponding segmentations form a hierarchy

in the sense that a region from a coarser segmentation is the union of regions
from a finer segmentation.

• The optimal level of fineness, if any, is a local property.
• One-to-one correspondences between regions and real world objects are rare.

Often a region merely contains or is contained in a region corresponding to a real
world object.

Hence, it is often a good idea to consider segmentation hierarchies instead of single
segmentations determined by a fixed level of fineness.

For recognition tasks, another reason to employ hierarchies is that the objects to
be recognized are often also hierarchical. In the following, our perspective is purely
two-dimensional, i.e. we do not address problems (like occlusion) coming from the
fact that three-dimensional objects in a three-dimensional world are represented by
two-dimensional regions of two-dimensional images. As a consequence, the hierar-
chical relations of the objects and subobjects must also hold for the corresponding
regions. Recognizing the same hierarchical object in two segmentation hierarchies
thus means to find a one-to-one hierarchy-preserving mapping between regions of
one hierarchy and regions of the other hierarchy. Besides preservation of the hier-
archy, it is natural to require that topological relations as the (non-)neighborhood
relation and the (non-)enclosure relation are also preserved. For an example, see
Fig. 1.
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Fig. 1. The mapping A1 → A2, B1 → B2, C1 → C2 is topologically consistent.

In this paper we deal with ten topological relations between regions in a hi-
erarchy and we require that a matching between hierarchies preserves these re-
lations. Specifically, when matching region R1 and region S1 from the first hier-
archy to regions R2 and S2 from the second hierarchy, the relation between R1

and S1 must be the same as the relation between R2 and S2. We construct an



April 29, 2004 10:10 WSPC/115-IJPRAI 00326

Matching Segmentation Hierarchies 399

association graph GA whose nodes represent potential matches and whose edges
indicate topological consistency. Let σ(·, ·) denote a similarity measure between re-
gions and let the weight of a node in the association graph be given by the σ-value
of the corresponding potential match. Then, a matching between two hierarchies
that preserves all topological relations, and that has a maximal total σ, corresponds
to a maximal weight clique in GA.

To find “heavy” cliques, we employ an extension of the pivoting-based heuris-
tic PBH9 to the weighted case. PBH follows a multi-start strategy in which each
new start consists of a small clique. According to a look-ahead rule that evaluates
the conditions for further growth, the cliques are then enlarged iteratively. When
matching hierarchies via weighted association graphs, however, we can restrict the
multi-start strategy to “heavy” initial cliques. Moreover, it is natural to let each
initial clique contain the (potential) match of the two apexes and the (potential)
match of the background regions. Experimentally, we found that a single start suf-
fices and that the formation of the cliques then proceeds top-down with respect to
the hierarchical ordering of the regions.

The paper is organized as follows. In Sec. 2, we present the new framework for
segmentation hierarchies. The special case of segmentation in terms of watersheds
is addressed in Sec. 3. The definitions of the topological relations are given in Sec. 4
and the association graph is defined in Sec. 5. Here, we also present the extension
of PBH to the weighted case. Experimental results are given in Sec. 6.

2. Graph-Based Segmentation

Commonly, the smallest entities to be considered in a segmentation method are
pixels. For example, in most methods based on the intuitive idea of watersheds
(for a survey, see Ref. 13) the pixels serve both as elements of the watersheds and
as elements of the catchment basins. However, the natural elements to separate
(two-dimensional) regions are (one-dimensional) curves. Analogously, the natural
elements to separate (one-dimensional) curves are (zero-dimensional) points.
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Fig. 2. (a) Pixel image. (b) The corresponding plane graph has ten regions, one of which is
unbounded.

The plan for formulating a segmentation concept respecting dimensionality is
as follows. In Sec. 2.1, we define a plane image by means of a plane attributed
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graph G [see Fig. 2(a)] and in Sec. 2.2, we show how G can be constructed from a
pixel image. In Sec. 2.3, we derive a cellular complex and a variant O of the star
topology from G. Finally, in Sec. 2.4, merges of regions and merges of boundaries are
characterized in terms of two-dimensional, respectively one-dimensional, coarsening
operations on O.

2.1. Plane graphs and plane images

Throughout the paper a graph G = (V, E, ι) is given by a finite set V of elements
called vertices, a finite set E of elements called edges with E ∩ V = ∅ and an
incidence relation ι which associates with each edge e ∈ E a subset of V with one
or two elements. The vertices in ι(e) are called the end vertices of e.

Note that the definition includes graphs with self-loops (i.e. edges with only one
end vertex) and multiple edges (i.e. several edges with identical sets of end vertices).
A graph is called simple, if it has neither self-loops nor multiple edges.

The sequence W = (v0, e1, v1, e2, v2, . . . , ek, vk) with vi ∈ V , ei ∈ E is called a
walk in G, if vi−1, vi ∈ ι(ei) for all 1 ≤ i,≤ k. The vertices v0 and vk are called the
start vertex and the end vertex of W , respectively. A walk is called a circuit , if the
start vertex and the end vertex form the only pair of identical vertices.

In the following, we restrict ourselves to a special class of plane graphs, i.e.
plane graphs defined in terms of arcs and closed polygons. Arcs and closed polygons
are concatenations of finitely many straight line segments in IR2. While an arc is
homeomorphic to the closed unit interval [0, 1], a closed polygon is homeomorphic
to the unit circle in IR2.3 On one hand, the restriction to this special class of plane
graphs allows us to adopt the approach towards the definition of plane graphs
chosen in Ref. 3. On the other hand, the special class is general enough to deal with
pixel-based images, Voronoi- and Delaunay-diagrams. In this paper a plane graph
is a graph G = (V, E, ι) such that

• V ⊂ IR2.
• e1 ∩ e2 = ∅ for all e1 &= e2 ∈ E.
• For all e ∈ E the set e∪ ι(e) is either an arc or a closed polygon. The set e∪ ι(e)

is a closed polygon, if and only if e is a self-loop.
• For each e ∈ E such that the set e ∪ ι(e) is an arc and for each homeomorphism

he : [0, 1] (→ e ∪ ι(e) it holds that he{0, 1} = ι(e).

In contrast to Ref. 3, the end vertices of an edge do not belong to the edge. Thus, G
partitions IR2 into points from V , piecewise linear elements from E, and regions, i.e.
the connected components of IR2 \ (V ∪E). The unique unbounded region is called
background region and the set of all regions is denoted by V . If g is a mapping from
V to IR+

0 , the triple (G, V , g) is called plane image [with gray values g(·)]. Note
that the “gray values” may also reflect geometric region properties.
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2.2. From pixels to plane graphs

For the experiments in this paper we convert classical, pixel-based gray-level images
into plane images, the bounded regions of which correspond to the pixels. We choose
the plane image with the minimal set V of vertices. In particular, the corners of
the image need not be represented by vertices.

The corners of the pixels are interpreted as points in IR2 with integer coordinates
(i, j), 1 ≤ i ≤ M , 1 ≤ j ≤ N . Points that are corners of at least two pixels form
the vertex set V of G (see Fig. 2). For any two points p &= q ∈ V , let

L(p, q) := {p + λ(q − p) : 0 < λ < 1} (1)

denote the relatively open straight line segment connecting p and q in IR2. Further-
more, let

eul := L((2, 1), (1, 1))∪ {(1, 1)} ∪ L((1, 1), (1, 2))

eur := L((1, N − 1), (1, N)) ∪ {(1, N)} ∪ L((1, N), (2, N))
elr := L((M − 1, N), (M, N)) ∪ {(M, N)} ∪ L((M, N), (M, N − 1))

ell := L((M, 2), (M, 1)) ∪ {(M, 1)} ∪ L((M, 1), (M − 1, 1))

and set Ec := {eul, eur, elr, ell}. Defining the four-neighborhood N4 of (i, j) ∈ V by

N4(i, j) = {(m, n) ∈ {1, M}× {1, N} : |i − m| + |j − n| = 1}, (2)

the edges of G are given by E := Ec ∪ E4, where

E4 := {L(p, q) : p, q ∈ V , p ∈ N4(q)}. (3)

The incidence relations of the edges from Ec are set as follows.

ι(eul) := {(2, 1), (1, 2)},
ι(eul) := {(1, N − 1), (2, N)},
ι(eul) := {(M − 1, N), (M, N − 1)},
ι(eul) := {(M, 2), (M − 1, 1)} .

The definition of G is completed by setting

ι(L(p, q)) := {p, q} ∀L(p, q) ∈ E4 . (4)

For each bounded region v of G, i.e. relatively open square of side length one, g(v)
is set to the gray value of the corresponding pixel. The gray value of the background
region is set to a special value gb depending on the application. The segmentation
method proposed in the next section does not depend on gb.

Our concept of graph-based representations easily extends to surfaces with
topologies different from that of IR2. For example, the cylindric topology of
panoramic images suggests to construct a graph G which is embedded on a cylinder
as illustrated in Fig. 3. Thus, each pixel corresponds to exactly one region of G on
the mantle of a cylinder in IR3. However, we also consider the bottom and top disks
of the cylinder as regions of G. The latter are called background regions of G.
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Fig. 3. (Left) A panoramic image, and (right) the corresponding cylindrical graph with 26 regions.

2.3. A variant of the star topology

Intuitively speaking, an edge from E always separates at most two elements from
V . Formally, the elements separated by e are the unique (and possibly identical)
elements v, w ∈ V such that v ∪ e ∪ w is an open subset of IR2. This defines a
mapping ι(·) from E to the one- or two-element subsets of V and thus a graph
G = (V , E, ι). The graph G is the dual of the graph G.3 Note that the edge sets of
G and G are identical. Thus, a (one-dimensional) element of E serves to relate a
pair of zero-dimensional elements from V and a pair of two-dimensional elements
from V . In terms of cellular complexes6 the elements of V , E and V play the roles
of zero-, one-, and two-dimensional cells, respectively. Formally, set

C := V ∪ E ∪ V and dim(c) :=






0 if c ∈ V,
1 if c ∈ E,
2 if c ∈ V .

Note that C contains finitely many subsets of IR2. Here and in the following it is
important to distinguish between a collection of sets and the union of the sets from
the collection. The union of sets from C is IR2.

Following Ref. 1, the star of a cell c is a set of cells containing c and the higher-
dimensional cells adjacent to c. Formally,

star(c) :=






{c} if c ∈ V ,
{c} ∪ ι(c)} if c ∈ E,
{c} ∪

⋃
(star(e) : c ∈ ι(e)) if c ∈ V.

The collection of open sets defining the so-called star topology is given by

Ostar := {C ⊂ C : star(c) ⊂ C ∀c ∈ C}. (5)

In contrast to Ref. 6, we adhere to the property of the cells being subsets of IR2.
Thus, the topologyO defined in Eq. (8) will be a coarsening of the standard topology
on IR2.

The union S(c) of all cells contained in star(c), i.e.

S(c) := {p ∈ IR2 : p ∈ c′ for some c′ ∈ star(c)} (6)
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is an open subset of IR2, where “open” means “open with respect to the stan-
dard topology on IR2”. Moreover, there exists a one-to-one correspondence between
subsets of C and the elements of

B := {B ⊂ IR2 : B =
⋃

c∈C

c for some C ⊂ C} . (7)

Finally, Ostar corresponds to

O := {B ∈ B : S(c) ⊂ B ∀c ⊂ B, c ∈ C} . (8)

Note that the elements of O are subsets of IR2, whereas the elements of Ostar are
subsets of C. Clearly, every (finite) intersection and every union of elements from
O is contained in O. Moreover, ∅, IR2 ∈ O. Consequently, O is a coarsening of the
standard topology on IR2.

2.4. Two- and one-dimensional coarsening

2.4.1. Two-dimensional coarsening

Removing an edge e with ι(e) = {v} ∪ {w} (possibly v = w) from G, the regions v
and w are replaced by the new region S(e) = v ∪ e ∪ w (see Fig. 4). Formally, the
collection of open sets after the merge is

O′ = {B ∈ O : B ∩ S(e) ∈ {∅, S(e)}} . (9)

e
v

w

(a) (b)

Fig. 4. (a) Before two-dimensional coarsening around e. (b) After two-dimensional coarsening.
All open sets are (not necessarily proper) supersets of S(e) = v ∪ e ∪ w, or they are disjoint from
S(e).

2.4.2. One-dimensional coarsening

If there exists a vertex u ∈ V such that u is the end vertex of exactly two edges
e1 &= e2 of G, e1 and e2 may be concatenated without modifying the regions of G
(see Fig. 5). Formally, setting e∗ := e1 ∪ {u}∪ e2, a new graph G∗ = (V ∗, E∗, ι∗) is
defined by

• V ∗ := V \ {u},
• E∗ := E ∪ {e∗} \ {e1, e2},
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• ι∗(e′) := ι(e) ∀e′ &= e∗, and
• ι∗(e∗) := ι(e1) ∪ ι(e2) \ {u}.

Since V ∗∪E∗ = V ∪E, it holds that G and G∗ have the same regions. The collection
O∗ of open sets, as defined by G∗, takes the form

O∗ = {B ∈ O : B ∩ e∗ ∈ {∅, e∗}}. (10)

u

v

w
e1

e2 *

v

w

e

(a) (b)

Fig. 5. (a) Before one-dimensional coarsening around u. (b) After one-dimensional coarsening.
All open sets are supersets of e∗ = e1 ∪ {u} ∪ e2 or they are disjoint from e∗. The regions, in
particular v and w, are not affected.

2.5. Segmentation hierarchies

Note that one-dimensional coarsening is the reverse operation of subdividing an
edge, i.e. placing a new vertex u on an edge e∗ and thus subdividing e∗ into two
edges, each of which has u as an end vertex (see Fig. 5). Thus, a sequence of two-
and one-dimensional coarsening operations on a plane graph G yields a plane graph
GM such that GM has a subdivision which is a subgraph of G. In other words, GM

is a topological minor of G.3 Conversely, any (possibly disconnected) topological
minor of G can be obtained by a sequence of one- and two-dimensional coarsening
operations. Thus, we may define segmentation hierarchies in terms of topological
minors.

Definition 1. (Segmentation hierarchy) Let Im
i=0 = (Gi, Vi, gi)m

i=0 be a sequence
of plane images such that Gi−1 is a topological minor of Gi, 1 ≤ i ≤ m. Then the
sequence Im

i=0 is called a segmentation hierarchy.

The removal of e from G corresponds to the contraction of e in G and vice versa
(see Fig. 6). The most general framework for the duality between deletion and
contraction is provided by the theory of matroids.12 Technically, the coarsening
operations can be done by the iteratively parallel method dual graph contraction
described in Ref. 7. In particular, it suffices to specify the conditions for edge
contractions in G and in G. For the experiments in this paper we adapted a C++

software called dgc-tool which was developed by the PRIP-group at the Vienna
University of Technology.
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e

Fig. 6. Duality of deletion and contraction. The deletion of e from G corresponds to the contrac-
tion of e in G.

3. Morphological Segmentation

Morphological segmentation methods rely on the intuitive idea of flooding a topo-
graphic surface in order to find the watersheds and to determine the catchment
basins.10 The topographic surface, in turn, is often derived from the original image
by means of an edge filter.11 In contrast to classical approaches,13 our graph-based
approach allows to explicitly represent the one-dimensional region borders and the
zero-dimensional region corners. Thus, we avoid the confusion of dimensions in
many classical approaches arising from the fact that the watershed lines (a line
should have dimension one) are in fact composed of (two-dimensional) pixels.

Let (G, V , g) be a plane image. According to the concept outlined in Sec. 2, the
closed 1D-watersheds of (G, V , g) will be given by the edges of a topological minor
GM of G. In particular, any edge of GM will be contained in some circuit.

Our graph-based concept allows us to employ edge filters, whose responses refer
to (one-dimensional) edges instead of (two-dimensional) pixels. Let E ′ denote the
set of edges, the star of which does not contain a background region (inner edges).
Then, an edge filter is a mapping f : E′ (→ IR+

0 . The following is independent of f ,
as long as f is a strictly increasing function of the absolute gray value difference

f1(e) := |g(v) − g(w)| , where ι(e) = {v} ∪ {w}. (11)

The definition of the closed 1D-watersheds is motivated by the aim to guarantee
a fixed reduction factor larger than one with respect to the non-background regions.
Formally this means that there exists r > 1 such that the number of non-background
regions in G is at least r times the number of non-background regions in GM . Thus,
the topological minor obtained after at most logr(|V |) steps (after each step f(·)
is updated) will have but one non-background region. A reduction factor larger
than one not only guarantees to arrive at segmentations with a small number of
regions, as is indispensable for the methods introduced in the next sections. It also
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guarantees that the whole segmentation hierarchy can be computed in O(log(|V |))
parallel steps.5

Besides forming a circuit, the edges of a closed 1D-watershed are required to
fulfill a local criterion in terms of the responses f(·) (see Fig. 7). Recall that for

50

20

50

30 10
20

20

w

e
v

(a) (b) (c)

Fig. 7. (a) Image with responses of an edge filter indicating absolute differences of mean gray
values. (b) The closed 1D-watersheds of (a). (c) Illustration to the definition of enclosure.

an edge e we have that star(e) = {e} ∪ {v} ∪ {w}, where v and w are (possibly
identical) elements of V . The set δ(v) of edges bounding v is defined by

δ(v) := {e ∈ E : star(e) ∩ {v} = {v}}. (12)

Note that δ(v) may be disconnected (see Fig. 7). In the following we will formulate a
local criterion for an inner edge not to be on a 1D-watershed. A closed 1D-watershed
will then be defined as a circuit, the edges of which are maximal concatenations of
edges that do not fulfill the criterion. In particular, an edge e ∈ E ′ with (possibly
identical) end vertices v and w in G is not on a 1D-watershed, if the response on
e is minimal with respect to all responses on edges from δ(v) or with respect to
all responses on edges from δ(w). Formally, the minimal response of f in δ(v) is
denoted by minf (δ(v)) and the local criterion takes the form

f(e) = min
f

(δ(v)) ∨ f(e) = min
f

(δ(w)). (13)

Definition 2. (GM , closed 1D-watershed of (G, V , g) w.r.t. f) Let Ef be the set
of edges from G that do not fulfill Eq. (13) and let Gf be the plane subgraph of G
that is induced by Ef . The closed 1D-watersheds of (G, V , g) with respect to f are
the edges of the unique topological minor GM = (VM , EM , ιM ) of G such that the
following holds.

(1) For each edge e of each circuit of Gf there exists an edge e∗ ∈ EM with e ⊂ e∗.
(2) No vertex in VM has a degree smaller than three.

It is natural to set the gray value g1 of a region arising from a merge of the regions
v1, . . . , vk of G to the size-weighted mean of the gray values g(vi), 1 ≤ i ≤ k. An-
other application of the edge filter f , this time on (GM , VM , g1), brings us back
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to the initial situation. We can now compute a topological minor of GM , the
edges of which are the closed 1D-watersheds of (GM , VM , g1) with respect to f , and
so on.

When matching segmentation hierarchies we are interested in hierarchies with
regions that “grow slowly” as one ascends to higher levels. Indeed, this increases
the chances of finding counterparts when the hierarchies are matched. Moreover,
we wish to prevent merging via small regions. Specifically, let v1, v2, and v3 be
three regions of G such that v1, v3 are large, v2 is small, and the gray value of v2

lies in between those of v1 and v3. Then, it may happen that v1 and v3 are merged
via v2.

Both objectives are attained at the same time by introducing directions of con-
tractions in G and

(1) setting the attribute of a directed edge to the product of the f -value of the
corresponding undirected edge and the size of the region at the source of e,

(2) contracting an edge only if it points from a smaller to a larger region,
(3) never contract two edges with the same source.

The result of this procedure is a segmentation hierarchy as defined at the end of
Sec. 2. For an example, see Fig. 10.

4. Topological Relations and Consistent Pairs

The plan of the section is as follows. A subset relation, a neighborhood relation, an
enclosure relation, and combinations thereof (see Fig. 8) are defined for pairs of

B
A

A B B
A

(a) (b) (c)

B
A

A B B
A

(d) (e) (f)

Fig. 8. The 10 topological relations. The thick lines indicate the edges defining the neighborhood
relations. (a) A ∼⊂ B. (b) A ∼ | B. (c) A ∼! B, B ∼" A. (d) A &∼⊂ B, B &∼⊃ A. (e) A &∼ | B.
(f) A &∼! B, B &∼" A.
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Table 1. Topological relations from the hierarchy
in Fig. 9(a). Merging A with B results in D.

A B C D IR2

A = ∼! &∼! &∼⊂ &∼⊂
B ∼" = ∼! ∼⊂ &∼⊂
C &∼" ∼" = ∼" &∼⊂
D &∼⊃ ∼⊃ ∼! = &∼⊂
IR2 &∼⊃ &∼⊃ &∼⊃ &∼⊃ =

Table 2. Topological relations from the hierarchy in Figs. 9(b).

A B C D E F G H

A = ∼ | ∼ | &∼ | ∼! &∼! ∼⊂ ∼ |
B ∼ | = &∼ | ∼ | ∼! &∼! ∼⊂ ∼ |
C ∼ | &∼ | = ∼ | ∼! &∼! ∼ | ∼⊂
D &∼ | ∼ | ∼ | = ∼! &∼! ∼ | ∼⊂
E ∼" ∼" ∼" ∼" = ∼! ∼" ∼"

F &∼" &∼" &∼" &∼" ∼" = &∼" &∼"

G ∼⊃ ∼⊃ ∼ | ∼ | ∼! &∼! = ∼ |
H ∼ | ∼ | ∼⊃ ∼⊃ ∼! &∼! ∼ | =

A

C
B

B

F
E

A
C D H

F
E

G

(a) (b) (c)

Fig. 9. (a) Merging A and B first results in the topological relations of Table 1. All merging
operations between (b) and (c) (in two single or one parallel step) yield the same topological
relations. See Table 2.

regions from possibly different topological minors in a segmentation hierarchy.
Then, we specify what it means that a pair of regions from one hierarchy is topo-
logically consistent with a pair from another hierarchy.

In the following, let (Gi, Vi, gi)m
i=0 be a segmentation hierarchy with Gi =

(Vi, Ei, ιi) for all i. Furthermore, let v ∈ Vi for some i and let w &= v, w ∈ Vj

for some j. Besides v ⊂ w or v ⊃ w the regions v and w potentially fulfill the
relations defined below.

• The regions v and w are said to be neighbors: v ∼ w, if there exists an edge
e0 ∈ E0 such that S(e0) ∩ v &= ∅ and S(e0) ∩ w &= ∅.
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• The region v is said to enclose w: v % w, if there exists a closed polygon e ∈ Ei

for some i such that w is contained in the interior of e and v is contained in the
exterior of e [Fig. 7(d)].

• The region v is said to be apart from the region w: v | w, if

(v &⊂ w) ∧ (v &⊃ w) ∧ (v /%w) ∧ (v /& w). (14)

From v &= w, it follows that the five relations v ⊂ w, v ⊃ w, v % w, v & w, and
v | w exclude each other and cover all possibilities. Moreover, each of the five
relations may occur together with the neighborhood relation and together with the
complement of the neighborhood relation. Thus, there are ten combinations of the
(non-) neighborhood relation with the other five relations and these ten relations
cover all possibilities (see Fig. 8). In the following, a combination of the (non-)
neighborhood relation with one of the other five relations is denoted by the symbol
of the (non-) neighborhood-relation followed by the symbol for the other relation.
Examples of the topological relations are given in Tables 1 and 2.

Definition 3. (Topological consistency) Let (G1
i, V

1
i , g1

i)
k1
i=0 and (G2

i, V
2
i ,

g2
i)

k2
i=0 be two segmentation hierarchies. Furthermore, let v1 ∈ V

1
i for some i,

w1 ∈ V
1
j for some j, v2 ∈ V

2
k for some k, and w2 ∈ V

2
l for some l. The pair

(v1, v2) is said to be topologically consistent with the pair (w1, w2), if the topolog-
ical relation between v1 and w1 is the same as the topological relation between v2

and w2.

5. Consistent Mappings and Association Graphs

When matching regions from two segmentation hierarchies we require that the
topological relations of the mapped regions are preserved. In other words, we are
looking for consistent mappings defined as follows.

Definition 4. (R1, R2, Consistent H1 −H2-Mapping M on U1) Let H1 := Ik1
i=0

= (G1
i , V

1
i , g

1
i)

k1
i=0 and H2 := J k2

i=0 = (G2
i, V

2
i , g

2
i)

k2
i=0 be two segmentation hierar-

chies, and let

Rj := {V j
i : 0 ≤ i ≤ kj}, j = 1, 2. (15)

A H1−H2-mapping M on U1 ⊂ R1 is a one-to-one mapping M from U 1 to a subset
of R2. It is called consistent, if for any v1, w1 ∈ U1 the pair (v1, w1) is topologically
consistent with the pair (M(v1), M(w1)).

Let σ : R1 × R2 ↔ IR+ be a similarity measure between regions. It extends to a
similarity measure Σ of a consistent mapping M on U 1 by

Σ(M) =
∑

v1∈U1

σ(v1, M(v1)) . (16)

A consistent H1−H2 mapping M on U1 is said to be a maximal similarity mapping,
if there exists no consistent H1 − H2 mapping on a proper superset of U 1. M is
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said to be a maximum similarity mapping, if no H1 − H2-mapping has a higher
Σ(M)-value than that of M .

Let G be a simple graph (see Sec. 2.1) with vertex set V and edge set E. A
subset Vc of V is called a clique of G, if for all u &= v ∈ Vc there exists e ∈ E with
ι(e) = {u, v}. Let the vertices of G be equipped with weights ω : V → IR+. Then,
a clique Vc is said to have maximal weight , if no proper superset of Vc is a clique of
G. A clique Vc of G is said to have maximum weight, if no clique of G has a higher
total weight than that of Vc.

In the following we will define a simple graph, the cliques of which correspond
to consistent mappings.

Definition 5. (Topological association graph GA of H1 and H2) The topological
association graph of the segmentation hierarchies H1 := (G1

i, V
1
i , g

1
i)

k1
i=0 and H2 :=

(G2
i, V

2
i , g

2
i)

k2
i=0 is the graph GA = (VA, EA, ιA) defined by

• VA = (
⋃k1

i=1 V
1
i ) × (

⋃k2
i=1 V

2
i ),

• EA = {{v, w} : v &= w ∈ VA, v is topologically consistent with w, and
• ιA(e) = e ∀e ∈ EA.

Theorem 1. Let σ(·, ·) be a similarity measure between regions, let M be a H1 −
H2-mapping on U1, and let GA = (VA, EA, ιA) be the topological association graph
of H1 and H2. Furthermore, let the weight of a vertex (v1, v2) ∈ VA be given by
σ(v1, v2)). Then, M is consistent, if and only if the set Vc := {(v1, M(v1)) : v1 ∈
U1} is a clique of GA. In this case, M is a maximal similarity measure, if and only
if Vc is a maximal clique of GA. The same equivalence holds if maximal is replaced
by maximum.

The above theorem follows directly from the construction of GA.
To find “heavy” cliques in GA, we extend the pivoting-based heuristic (PBH) in

Ref. 9 to the weighted case. Originally, PBH was used to solve a linear complemen-
tarity formulation2 of a standard quadratic program which, in turn, is equivalent
to the maximum clique problem.

We chose PBH, because it gave good results on related graph matching
problems.4 Moreover, it is particularly suited to hierarchical matching, since there
is a natural starting point for the clique enlargement (see below).

PBH follows a multi-start strategy in which each new start consists of a small
clique. According to a look-ahead rule that evaluates the conditions for further
growth, the cliques are then enlarged iteratively. For the unweighted case Locatelli
et al.8 gave the following combinatorial interpretation of the look-ahead rule in
Ref. 9.
For enlarging the current clique, always take a candidate whose degree is maximal
in the subgraph induced by all candidates.

To arrive at high values of Σ(M), we extend this rule. If GA = (VA, EA, ιA) is
the topological association graph, C ⊂ V denotes the set of candidates to enlarge
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the current clique, NC(c) denotes the neighborhood of a vertex c in the subgraph
of GA induced by C, i.e.

NC(c) = C ∩
⋃

(ι(e) : c ∈ ι(e)), (17)

then the extended look-ahead rule says the following.

For enlarging the current clique, always take a candidate c such that
∑

c′∈NC(c)

σ(c′) is maximal. (18)

The hierarchies suggest a good starting point for the formation of the clique, i.e.
the potential matches of the apexes and the background regions. Note that in case
of panoramic images we have two pairs of background regions. Formally, the initial
two-element clique in case of plane images takes the form

C0 := {(a1, a2), (b1, b2)} (19)

where the ai [bi] stand for the apexes [background regions] of the ith hierarchy.
Thus, the original multi-start strategy of PBH turns into a single start strategy.

6. Results

The aim of the experiments is to roughly define the field in which the requirement
of topological consistency in conjunction with ad hoc similarity measures is suf-
ficient to yield plausible matches. In Sec. 6.1, we apply our method to two pairs
of stereo images. While the experiment on the first pair shows that our method
is capable of finding plausible matches without using the epipolar constraint, the
second experiment demonstrates the limits of our approach. In Sec. 6.2, we use our
method to match frames from a video sequence of a cluttered outdoor scene. Again,
two experiments are performed, one on two close frames and one on two distant
frames. These experiments demonstrate that, as expected, our method is strong
when the topological relations between the regions are preserved, and that it fails
wherever occlusion modifies the topological relations. Finally, the experiments in
Sec. 6.3 show that our method is robust even to severe distortions between pairs of
panoramic images.

All images were scaled to approximately 15,000 pixels and the generation of the
hierarchy was always calculated as specified in Sec. 3. Moreover, to reduce memory
requirements, we restricted each hierarchy to its upper 14 levels. The weight of a
node in the association graph corresponding to the potential match (R1, R2) was
always set to

σ(R1, R2) = ((1 − dx)(1 − dy)(1 − dg)(1 − ds))α (20)

where dx and dy stand for the normalized absolute deviation of the barycenters
in x and in y, dg stands for the normalized absolute difference of the mean gray
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values,

ds =
min(area(R1), area(R2))
max(area(R1), area(R2))

(21)

and α = 0.3 is an empirical value. Typically, the topological association graph
is very dense. To save memory, we neglect an edge e between potential matches
(R1, R2) and (S1, S2), if the relative location of R1 with respect to S1 deviates
significantly from the relative location of R2 with respect to S2. Formally, e is
neglected, if

‖b(R1) − b(S1) − (b(R2) − b(S2))‖2 > DEV (22)

where b(R) ∈ IR2 stands for the barycenter of region R and DEV is a threshold
(set to 22 in the experiments on the highly distorted panoramic images, and to 7,
otherwise).

To evaluate the advantages of fully hierarchical matching over flat matching
between the base levels only, we performed both kinds of experiments. In all ex-
periments the total similarity from fully hierarchical matching was about twice of
that from flat matching.

6.1. Results on stereo images

For the first experiment we chose the stereo pair “arch” [Figs. 10(a) and 11(a)] from
the CMU/VASC Image Database at “http://vasc.ri.cmu.edu/idb/html/stereo/”,
because the scene has a simple structure. Note, however, that the arch is segmented
differently in the left and the right images. In particular, the left pillar of the arch in
the right image does not fuse with the rest of the arch (Fig. 11). Nevertheless (part
of) all salient arc components could be matched (Fig. 12). The second experiment
was performed on the stereo pair “cart-alt” (Fig. 13). The images stem from the
CMU/VASC Image Database at “http://vasc.ri.cmu.edu/idb/html/cart-alt/”. The
result of the matching was rather poor, i.e. the matched regions are isolated, small,
and corresponding regions often have a low similarity. Comparing the levels of the
two hierarchies (see, for example, the bottom row of Fig. 13), the problem seems
to be that there are indeed few corresponding regions in the two hierarchies.

6.2. Results on a video sequence

For the experiments in this section we extracted the second, the fifth, and the
tenth frame from a translating video sequence with a stabilized background
(see Figs. 14, 15 and 17). It is named “gard 7 9 A” and can be found at
“www.lans.ece.utexas.edu/∼strehl/res2/gard.html”. In Ref. 14, it is explained how
the stabilized background was generated. The reasons for our choice were the
following.

• Due to the stabilized background, a pair of corresponding regions not affected
by the moving foreground, i.e. by the tree, must have similar locations. Thus, we
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(a) 16384 (b) 149 (c) 102

(d) 71 (e) 48 (f) 37

(g) 27 (h) 19 (i) 11

(j) 7 (k) 5 (l) 4

(m) 3 (n) 2 (o) 1 region(s)

Fig. 10. Segmentation hierarchy on the left image of the arch pair. (a) Original image.
(b–o) Levels 14, 13, . . ., 1.
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(a) 16384 (b) 154 (c) 107

(d) 79 (e) 53 (f) 38

(g) 25 (h) 18 (i) 12

(j) 9 (k) 6 (l) 4

(m) 3 (n) 2 (o) 1 region(s)

Fig. 11. Segmentation hierarchy on the right image of the arch pair. (a) Original image.
(b–o) Levels 14, 13, . . ., 1.
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Fig. 12. Matching the segmentation hierarchy shown in Figs. 10(b)–10(o) against the segmenta-
tion hierarchy shown in Figs. 11(b)–11(o). Correspondences with respect to the fully hierarchical
match are given by the letters.

Fig. 13. Problematic stereo pair “cart-alt”. The left (right) column refers to the left (right) image.
The upper (lower) row depicts segmentations with 28 regions each.

can check whether the numerous hierarchical and topological relations between
the regions are compatible with the location constraint.

• Visually, the regions of the flower garden are shaped irregularly and the bound-
aries are rather fuzzy. Hence, it is not surprising that the frames 2 and 5 are
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(a) 13630 (b) 119 (c) 91

(d) 64 (e) 45 (f) 31

(g) 22 (h) 15 (i) 13

(j) 9 (k) 6 (l) 4

(m) 3 (n) 2 (o) 1 region(s)

Fig. 14. Segmentation hierarchy on the second frame of the gard 7 9 A sequence. (a) Original
image. (b–o) Levels 14, 13, . . ., 1.

segmented differently. For example, compare Figs. 14(f) and 15(f). We wish to
see how our method copes with this difficult situation, i.e. how it selects regions
from various levels of the hierarchies to compensate for the differences between
corresponding levels.

• The moving foreground disturbs the hierarchical and topological relations of its
neighbors. Hence, we expect that the matching of the regions “near” the moving
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(a) 13630 (b) 128 (c) 86

(d) 59 (e) 42 (f) 29

(g) 20 (h) 13 (i) 9

(j) 7 (k) 5 (l) 4

(m) 3 (n) 2 (o) 1 region(s)

Fig. 15. Segmentation hierarchy on the fifth frame of the gard 7 9 A sequence. (a) Original
image. (b–o) Levels 14, 13, . . ., 1.

foreground is worse than for the other regions. If so, this would be another indi-
cation that the matches found by our method correspond to relations in the real
world.

The correspondences from matching the second with the fifth frame are de-
picted in Fig. 16. The manifold neighborhood relations between matched regions



April 29, 2004 10:10 WSPC/115-IJPRAI 00326

418 R. Glantz, M. Pelillo & W. G. Kropatsch

B
D

C
E F

H
I

J

K
L

A

M R

N

O

P Q

R

S
T

U

V

W

B

C
D

E

H I

F
J

K

M

A

L V

N

O

P Q
S

T

W

R

U

Fig. 16. Matching the segmentation hierarchy shown in Figs. 14(b)–14(o) against the segmenta-
tion hierarchy shown in Figs. 15(b)–15(o). Correspondences with respect to the fully hierarchical
match are given by the letters.
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Fig. 17. Matching the two distant frames 2 and 10 from the gard 7 9 A sequence. The left (right)
column refes to frame 2 (10). The upper and lower rows show the original images and the matched
regions (fully hierarchical match), respectively.

and the good agreement of the mean gray values make the result a consistent and
reliable one. Note also that the poorly matched central part of the images coin-
cides with the part influenced by the moving foreground, i.e. the tree. Indeed, since
our method relies on corresponding topological relations, we cannot expect good
matches wherever occlusion occurs.

Matching the distant second and tenth frames (Fig. 17), the neighborhood re-
lations of the matched regions are still numerous. However, the shape and the size
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(a) 13932 (b) 127 (c) 83

(d) 53 (e) 38 (f) 28

(g) 20 (h) 15 (i) 11

(j) 8 (k) 5 (l) 4

(m) 3 (n) 2 (o) 1 region(s)

Fig. 18. Segmentation hierarchy on cmppath.23. (a) Original image. (b–o) Levels 14, 13, . . . , 1.

of corresponding regions vary considerably. Since the agreement between the mean
gray values of corresponding regions is still good, we assume that the matches
are mostly correct and the variations of the shape and the size are due to “real”
distortions.

6.3. Results on panoramic images

For the experiments in this section we used a sequence of panoramic images provided
by the Cognitive Vision Group at the Computer Vision Laboratory, University of
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(a) 13932 (b) 100 (c) 71

(d) 50 (e) 37 (f) 27

(g) 19 (h) 15 (i) 11

(j) 8 (k) 5 (l) 4

(m) 3 (n) 2 (o) 1 region(s)

Fig. 19. Segmentation hierarchy on cmppath.25. (a) Original image. (b–o) Levels 14, 13, . . . , 1.

Ljubljana and the Center for Machine Perception, CTU, Prague (http://lrv.fri.uni-
lj.si/ matjazj/backyard/testimgs/). The sequence simulates a path of a mobile robot
through a lab. We focused on the close pair cmppath.23 , cmppath.25 and the more
distant pair cmppath.25 , cmppath.30 . (Figs. 18–20).

Clearly, the matching results of the close pair are better, since the matched
regions (in both images) cover more area, exhibit more neighborhood relations, and
corresponding regions agree well with respect to size, shape and mean gray value.
However, also many correspondences between the distant pairs seem to agree with
correspondences in the real world.
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(a) 13932 (b) 101 (c) 69

(d) 47 (e) 35 (f) 24

(g) 18 (h) 13 (i) 9

(j) (k) 5 (l)

(m) 3 (n) 2 (o) 1 region(s)

Fig. 20. Segmentation hierarchy on cmppath.30. (a) Original image. (b–o) Levels 14, 13, . . . , 1.
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Fig. 21. Matching the segmentation hierarchy shown in Figs. 18(b)–18(o) against the segmenta-
tion hierarchy shown in Figs. 19(b)–19(o). Correspondences with respect to the fully hirarchical
match are given by the letters.
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Fig. 22. Matching the segmentation hierarchy shown in Figs. 19(b)–19(o) against the segmenta-
tion hierarchy shown in Figs. 20(b)–20(o). Correspondences with respect to the fully hierarchical
match are given by the letters.

7. Conclusions and Outlook

We showed how to build a weighted association graph, the maximal weight cliques
of which correspond to topologically consistent one-to-one mappings with maximal
total region similarity between two segmentation hierarchies. Topological relations
between any two regions from the same hierarchy were defined by means of rep-
resenting the hierarchy by a stack of topological minors. In particular, taking a
topological minor corresponds to coarsening a variant of the star topology. We ap-
plied the new method to matching stereo images, matching frames from a video
sequence of a cluttered outdoor scene, and matching frames from a sequence of
panoramic images. In all cases, requiring topological consistency over the whole
hierarchy and using ad hoc similarity measures was sufficient to arrive at plausible
matches. Moreover, using segmentation hierarchies instead of single segmentations
turned out to improve the results considerably. Thus, our concept to formulate and
exploit topological consistency in hierarchies is widely applicable. Furthermore, by
using weighted association graphs, our concept allows to incorporate further con-
straints as the epipolar constraint or prior knowledge about the kind of distortions.
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