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Abstract— We proposea new classof heuristics for the max-
imum clique problem (MCP) whosebasic ingredientsare: (1) a
parameterizedcontinuous formulation of MCP, (2) an instability
analysis of equilibria of imitation dynamics fr om evolutionary
gametheory, and (3) a principled way of varying a regularization
parameter during the evolution processso as to avoid inefficient
solutions. The resulting “annealed imitation” class is shown
to contain algorithms that are dramatically faster than and
as accurate as state-of-the-art neural network heuristics for
maximum clique.

I . INTRODUCTION

The maximum clique problem (MCP) is a well-known
graph-theoreticproblemwhich finds importantapplicationsin
many different domains.Since it is known to be NP-hard,
however, exact algorithmsareguaranteedto returna solution
only in a time which increasesexponentiallywith the number
of verticesin the graph.This makes them inapplicableeven
to moderatelylarge probleminstances.Moreover, a seriesof
recent theoretical results show that the problem is in fact
difficult to solve even in termsof approximation.In light of
thesenegative results,mucheffort hasrecentlybeendirected
towardsdevising efficient clique finding heuristics,for which
no formal guaranteeof performancemay be provided, but
areanyway of interestin practicalapplications.In the neural
network community, therehasalsobeenmuchrecentinterest
aroundthis important problem.We refer to [2] for a recent
review concerningalgorithms,applications,and complexity
issuesrelatedto the MCP.

In the mid-1960s,Motzkin and Straus[11] establisheda
remarkableconnectionbetweenthe MCP and a quadratic
programmingproblemon thestandardsimplex. TheMotzkin-
Straus formulation, and variations thereof, has motivated
various neural network heuristics for maximum clique. In
particular, replicatorequationsfrom evolutionarygametheory
have proven to be quite effective in solving this and related
combinatorialoptimizationproblems[1], [4], [12], [13], [15].

In this paper, we first introducea wide family of payoff-
monotonicdynamicalsystemsof which replicator equations
arejustaspecialinstance.Themodelsin this family enjoy pre-
cisely the samedynamicalpropertiesas replicatorequations,
andhencethey naturallysuggestthemselvesasheuristicsfor
themaximumcliqueproblem.However, asstandardreplicator
equations,they areinherentlyunableto escapefrom inefficient
local solutions.

We then focus on a well-known subclass of payoff-
monotonicdynamicswhich arisesin modeling the evolution
of behavior by way of imitation processes.We investigate

the propertiesof a parameterizedformulationof the Motzkin-
Strausprogramasa functionof its parameter. A detailedanal-
ysis of thesepropertiessuggestsan entire classof heuristics
for the MCP which is basedon the idea of properlyvarying
the parameterduring the im itation optimizationprocess,so
as to avoid unwantedinefficient solutions.A similar ideahas
beenproposedby Geeand Pragerin a different context [5].
Experimentsshow thatthis “annealedimitation” classcontains
algorithmswhich aredramaticallyfasterthanandasaccurate
as state-of-the-artneural network heuristics for maximum
clique.

I I . PAYOFF-MONOTONIC DYNAMICS AND THEIR

PROPERTIES

Evolutionary gametheory considersan idealizedscenario
wherebyin a large populationpairsof individualsarerepeat-
edlydrawn at randomto playasymmetrictwo-playergame.In
contrastto traditionalgametheoreticmodels,playersarenot
supposedto behave rationallyor to have completeknowledge
of the details of the game.They act insteadaccordingto a
pre-programmedbehavior pattern,or pure strategy, and it is
supposedthat some evolutionary selectionprocessoperates
over time on thedistribution of behaviors. We refer the reader
to [8], [16] for excellentintroductionsto thisrapidlyexpanding
field.

Let
���������	�
�	������

be the set of available pure strategies
and, for all ��� �

, let �������� be the proportionof population
membersplayingstrategy � , at time � . Thestateof thepopula-
tion at a given instantis the vector � � ����� �
�	�	�
� ��� �"! , where
a prime denotestransposition.Clearly, populationstatesare
constrainedto lie in thestandardsimplex of the

�
–dimensional

EuclideanspaceIR
� (seeFig. 1):# �$� �%� IR�'& �(�*)�+ for all �,� � �.- ! � �$�/�

where
-0� � �1�	2
2	2
�	� ��! , andhence

- !3� �54 � �(� .
Let 6 � ��7 �98 � be the

�;:<�
payoff matrix. Specifically, for

eachpair of strategies � �>= � �
, 7 �98 representsthe payoff of

an individual playing strategy � againstan opponentplaying
strategy

=
. In biological contexts payoff is typically measured

in termsof Darwinianfitnessor reproductive success(i.e., the
player’s expectednumberof surviving offspring), whereasin
economicapplicationsthey usually representfirms’ profits or
consumers’utility. If thepopulationis in state� , theexpected
payoff earnedby an � -strategist is:? �@���A� � �B8C � 7D�98	�E8 � ��6.�A��� (1)
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Fig. 1. The simplex I in IRJ .
while the meanpayoff over the entirepopulationis? ���A� � �B �3C � � � ? � ���A� � � ! 6K� 2

(2)

In evolutionary gametheory the assumptionis madethat
thegameis playedover andover, generationaftergeneration,
and that the action of natural selection will result in the
evolution of the fittest strategies. If successive generations
blendinto eachother, the evolution of behavioral patternscan
be describedby a set of ordinary differential equations.A
generalclassof evolution equationsis given by:L� � � � ��M1� ���A� (3)

where a dot signifies derivative with respectto time, andM � � M � �
2	2
2�� M � � is a function with opendomaincontaining#
. Here, the function M � ( �N� �

) specifiesthe rate at which
purestrategy � replicates.It is usuallyrequiredthat thegrowth
function M is regular [16], which meansthat it is Lipschitz
continuousand that M ���A� � � � + for all �O� #

. The former
condition guaranteesus that the systemof differential equa-
tions (3) hasa uniquesolution throughany initial population
state.The condition M ���A� � � � + , instead,ensuresthat the
simplex

#
is invariantunder(3), namelyany trajectorystarting

in
#

will remainin
#

.
Payoff-monotonicgamedynamicsrepresenta wide classof

regular selectiondynamicsfor which useful propertieshold.
Intuitively, for a payoff-monotonic dynamics the strategies
associatedto higher payoffs will increaseat higher rate.
Formally, a regularselectiondynamics(3) is saidto bepayoff-
monotonicif: M1� ���A�QP MR8 ���A�OS ? � ���A�TP ? 8 ���A� (4)

for all �%� #
.

The following result, proved in [7], [13], generalizesthe
celebratedfundamentaltheoremof naturalselection[8], [16].

Theorem1: If the payoff matrix 6 is symmetric, then? ���A� � �U!V6.� is strictly increasingalong any non-constant
trajectoryof any payoff-monotonicdynamics.In otherwords,

L? ���*�������.)W+ for all � , with equalityif andonly if � � �*����� is a
stationarypoint. Furthermore,a vector � is an asymptotically
stablepoint if andonly if it is a strict local maximizerof ? ���A�
in

#
.

A well-known subclassof payoff-monotonicgamedynam-
ics is given by:L� � � � � XY[Z � ? � ���A���*\ �B8C � � 8 Z � ? 8 ���A���"]^ (5)

where

Z ��_`� is an increasingfunctionof _ . Thesemodelsarise
in modelingtheevolutionof behavior by way of imitation pro-
cesses,whereplayersare occasionallygiven the opportunity
to changetheir own strategies[7], [16].

When

Z
is the identity function, i.e.,

Z ��_`� � _ , we obtain
the standardreplicatorequations:L� � � � � XY ? � ���A��\ �B8C � � 8 ? 8 ���A�a]^ (6)

whosebasic idea is that the averagerate of increase
L�(�abR���

equalsthe differencebetweentheaveragepayoff of strategy �
andthe meanpayoff over the entirepopulation.

Another popular model ariseswhen

Z ��_�� �dcfehg
which

yields: L� � � � � XY c e
iRj>kml/n \ �B8C � � 8 c ehi
opk3l/n ]^ (7)

where q is a positive constant.As q tends to 0, the orbits
of this dynamicsapproachthoseof the standard,first-order
replicatormodel(6), slowed down by the factor q ; moreover,
for large valuesof q the model approximatesthe so-called
“best-reply” dynamics[7], [8].

I I I . ANNEALED IMITATION DYNAMICS FOR MAXIMUM

CLIQUE

Let r � �>s �@t � be an undirectedgraph, where s ������	�
�	�u�����
is the set of verticesand

twv s : s is the set
of edges.A subsetof vertices x is called a clique if all its
verticesaremutuallyadjacent,i.e., for all � �>= �;x , with �.y�z=

,
we have ��� �>= �Q� t

. A clique is saidto bemaximalif it is not
containedin any largerclique,andmaximumif it is thelargest
clique in the graph.The maximumclique problemasksfor a
clique of maximumcardinality. Given a subsetof vertices x ,
we will denoteby �U{ its characteristic vector, which is the
point of

#
definedas� {� �}| � b ~ x�~ � if �*�;x+ � otherwise

where ~ x�~ denotesthe cardinalityof x .
Considerthe following family of (standard)quadraticpro-

grams:

maximize �/�U���A� � � ! ��6����z�����a�
subjectto ��� # (8)
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where 6K� � ��7 ��8 � is theadjacencymatrix of r , i.e., the
��:K�

symmetricmatrix definedas7 �98 �}| �1�
if ��� ��= ��� t��+ � otherwise

�� is the identity matrix, and � is an arbitrary real parameter.
The family includesas special casesthe original Motzkin-
Strausprogram[11] and its spurious-freeregularizedversion
proposedby Bomze [1] (correspondingto the cases� � +
and � � �� , respectively). The following theorem,which
generalizesa result proven in [1], establishesa connection
between the maximum clique problem and programs(8);
see[3], [14] for proof.

Theorem2: Let x bea subsetof verticesof a graph r , and
let �U{ be its characteristicvector. Then, for any +����O� �

,x is a maximal (maximum)clique of r if andonly if �U{ is
a local (global) solutionof (8). Moreover, all solutionsof (8)
arestrict andarecharacteristicvectorsof maximalcliquesofr .

By virtue of Theorem1, the previous result implies that
(characteristicsvectorsof) maximalcliquesare in one-to-one
correspondenceto asymptoticallystablepointsof any payoff-
monotonicdynamicsunder payoff 6 � ���[� , provided that+������ �

. This naturally suggestsusing payoff-monotonic
dynamicsasa usefulheuristicfor the maximumclique prob-
lem. Clearly, thereis no guaranteethat theconvergedsolution
will be a global maximizerof � � , and thereforethat it will
yield a maximumclique in r .

In an attempt to avoid local optima, we now follow [3]
andinvestigatethe stability propertiesof equilibria of payoff-
monotonicdynamicswhenthe parameter� is allowed to take
on negative values.Indeed,we shall restrict our analysisto
imitation dynamics(5).

For a given subsetof vertices x , let:� �>x�� �����/��"�� {W E¡
¢ { ���"��\O~ x�~
� �£2
(9)

where  E¡	¢ { ���"� �¤4 8 � { 7��98 denotesthe degree of vertex �
relative to x . Note that if x is a maximalclique then � ��x��Q¥+ . The next theoremshows that � ��x�� plays a key role in
determiningthe stability of equilibria of imitation dynamics.

Theorem3: Let x be a maximal clique of graph r ���s �t � , andlet �U{ be its characteristicvector. If � ��x����O�z��
, then �U{ is an asymptoticallystablestationarypoint under

any imitation dynamics(5) with payoff matrix 6 � 6K�£���[� ,
and hencea (strict) local maximizerof �/� in

#
. Moreover,

assumingx�y� s , if �z� � ��x�� then �U{ becomesunstable.
Proof. Assume without loss of generality that x ����1�
�	�
����¦��

and supposethat � ��x��§�¤�¨� �
. To simplify

notations,put � � �U{ . The Jacobianof any regular selection
(and henceimitation) dynamics

L� � � � ��M1� ���A� at � has the
following block triangularform:� ���A� �w©0ª ���A�¬«���A�® ¯ ���A�±° (10)

wherethe entriesof ª ���A� and «z���A� aregiven by � �h²
³ j kml/n²
´ o ,®
is the (possiblyempty)matrix containingall zeros,and¯ ���A� � diag

� M1µQ¶ � ���A� �
2	2
2
� M � ���A� �·2
We shall seethat the (relevant) eigenvaluesof

� ���A� are real
and negative. This implies that � is a sink and hence an
asymptoticallystablepoint [6]. The fact that � is a strict local
maximizerof � � in

#
follows directly from Theorem1.

The eigenvaluesof
� ���A� are thoseof ª ���A� togetherwith

thoseof
¯ ���A� , and since

¯ ���A� is diagonal its eigenvalues
coincide with its diagonalentries,i.e., M1µQ¶ � ���A� �
2	2	2h� M � ���A� .
This set of eigenvaluesgoverns the asymptoticbehavior of
the external flow under the systemobtainedby linearization
around � , andareusuallycalled transversal eigenvalues[8].

For imitation dynamics(5) thegrowth functionsM � have the
following form:M ����A� � Z � ? ����A���¸\ �B¹ C � � ¹ Z � ? ¹ ���A���
but sincex is a(maximal)clique, ? ¹ ���A� � ? ���A� for all º£�;x ,
andtherefore M1� ���A� � Z � ? � ���A����\ Z � ? ���A�� 2
Moreover,

Z
is a strictly increasing function, and henceM1� ���A�£�}+ if and only if ? � ���A��� ? ���A� . Now, since x is a

maximalclique, ? ����A� � ��6 � �A��� �  E¡	¢ { ���"�b ¦ for all �,P ¦
,

and ? ���A� � � ¦ \ � �5���b ¦ . But, for all �<P ¦
we have E¡
¢ { ���a�[\ ¦ � � ¥ � �>x��Q��� , andthis yields ? �@���A�T� ? ���A� .

Henceall transversaleigenvaluesarenegative.
It remainsto show thattheeigenvaluesof ª ���A� arenegative

too. When 6 � 6 � �z��� we have:ª ���A� � Z !�� ? ���A��¦ ©/» � \ Z � ? ���A���Z ! � ? ���A�� \ ? ���A�a¼ -�- ! �����;\ � �"� °
where

-�- ! is the
¦½:�¦

matrix containingsall ones,andthe
eigenvaluesof ª ���A� are¾ � � Z !�� ? ���A���¦ ����\ � �
with multiplicity

¦ \ �
, and¾ � � Z !>� ? ���A��¦ ©/» � \ Z � ? ���A���Z ! � ? ���A�� \ ? ���A�"¼ ¦ ��;\ � °� \ Z � ? ���A���

with multiplicity 1. Since �O� �
and

Z
is strictly increasing,

we have
¾ � �O+ .

Since we analyzethe behavior of imitation dynamicsre-
stricted to the simplex

#
, we are interestedonly in the

eigenvaluesof
� ���A� associatedwith eigenvectorsbelongingto

the tangentspace
-�¿O���hÀ � IR

� & - ! Àz� + � . It is simple to
show [14] thattheeigenvectorassociatedwith

¾ � � \ Z � ? ���A��
is � , and if

À
is an eigenvector of

� ���A� associatedwith
an eigenvalue

¾ y� \ Z � ? ���A�� , then
- ! ÀÁ� 4 �1Â � � + .

Hence,the eigenvalue
¾ � can be neglectedin our analysis,

andthe remainingones,including the transversaleigenvalues,

57



areindeedall relevant.We have shown that theseeigenvalues
arenegative andthis concludesthe first part of the proof.

Finally, to concludethe proof, supposethat xÃy� s (i.e.,¦ � �
) and �5� � ��x�� �Ä���f� ��Å µ  E¡	¢ { ���"�Æ\ ¦ � �

. Then,
thereexists �*P ¦

suchthat
¦ \ � �����  E¡	¢ { ���a� andhence,

dividing by
¦

, we get ? � ���A�,\ ? ���A�0PÄ+ and then M1� ���A� �Z � ? � ���A��Ç\ Z � ? ���A����PÈ+ , which implies that a transversal
eigenvalueof

� ���A� is positive, i.e., � is unstable.

Theorem3 providesuswith an immediatestrategy to avoid
unwantedlocal solutions, i.e., maximal cliques that are not
maximum.Supposethat x is a maximalclique in r that we
want to avoid. By letting ��� � �>x�� , its characteristicvector�U{ becomesan unstablestationarypoint of any imitation
dynamicsunder �/� , and thus will not be approachedby any
interior trajectory. Hence,if thereis a clique

¯
suchthat still� � ¯ ���}� holds, there is a (more or less justified) hope to

obtain in the limit �UÉ , which yields automaticallya larger
maximalclique

¯
. Unfortunately, two othercasescouldoccur:

(a) no other clique Ê satisfies� ��Ê��<�Ë� , i.e., � has a too
large absolutevalue; (b) even if thereis sucha clique, other
attractorscouldemergewhich arenot characteristicvectorsof
a clique (note that this is excludedif �ÌP5+ by Theorem2).
The properchoiceof the parameter� is thereforea trade-off
betweenthe desireto remove unwantedmaximalcliquesand
the emergenceof spurioussolutions.

Insteadof keepingthe value of � fixed, our approachis
to start with a sufficiently large negative � and adaptively
increaseit during the optimizationprocess,in muchthe same
spirit as simulatedor mean-fieldannealingprocedures.Of
course,in our casethe annealingparameterhasno interpre-
tation in terms of a hypotheticaltemperature.The rationale
behindthis ideais thatfor valuesof � thataresufficiently neg-
ative only the characteristicvectorsof large maximalcliques
will be stable attractive points for the imitation dynamics,
togetherwith a set of spurioussolutions.As the value of �
increases,spurioussolutionsdisappearand at the sametime
(characteristicvectors of) smaller maximal cliques become
stable.Weexpectthatat thebeginningof theannealingprocess
thedynamicsis attractedtoward “promising” regions,andthe
searchis further refinedasthe annealingparameterincreases.

In summary, a high-level descriptionof the proposedalgo-
rithm is as follows:

1. Start with a sufficiently large negative � ;
2. Let Í be the barycenter of

#
and set � � Í ;

3. Run any imitation dynamics starting from � , under6 � ���[� , until convergence and let � be the con-
verged point;

4. Unless a stopping condition is met, increase � and
goto 3;

5. Select Î� with +±�wÎ��� �
(e.g. Î� � �� ), run any imita-

tion dynamics starting from current � under 6K���}Î�[�
until convergence, and extract a maximal clique from
the converged solution.

Thelaststepin thealgorithmis necessaryif wewantto extract

also the verticescomprising the clique found, as shown in
Theorem2.

It is clearthat for the algorithmto work, we needto select
an appropriateannealingschedule.To this end, we employ
the following heuristic suggestedin [3]. Supposethat the
underlying graph is a random one in the sensethat edges
are generatedindependentlyof each other with a certain
probability Ï (in applications,Ï will be replacedby the actual
graphdensity),and supposethat x is an unwantedclique of
size

¦
. Take Ð�PO+ small,say0.01,andconsiderthequantity:� µ ��� \O� � \�Ï/� ¦ \OÑ ¦ ÏE� � \%Ï/�EÐ/Ò (11)

where Ó �$� b/ÔÕ� � \ ¦ � . In [3] it is proven that � ��x�� exceeds� µ with probability
� \�Ð . Thusit makessenseto use � µ as

a heuristicproxy for the lower boundof � ��x�� , to avoid being
attractedby a clique of size

¦
.

Furthermore,a well-known result due to Matula (see,
e.g., [9]) accuratelypredictsthe size of the maximumclique
in randomgraphswith sufficiently many vertices.Letª � �¸� Ï/� � Ô�ÖV× ¢ � �pØ � \�Ô�ÖV× ¢ � �pØ ÖV× ¢ � �pØ � �Ô¸Ö3× ¢ � �@Ø cÔ � �£2

(12)
Matula proved that, as

��ÙÛÚ
, the size of the maximum

clique in an
�

-vertex Ï -randomgraphis either Ü ª � �¸� Ï/�aÝ orÞ ª � �¸� Ï/�aß with probability tendingto 1.
Thepreviousresultssuggestusa sortof “two-level” anneal-

ing strategy: thelevel of cliquesize,which in turn inducesthat
of the “actual” annealingparameter. More precisely, if we do
not have any a priori information aboutthe expectedsize of
the maximumclique, we can useMatula’s formula ª � �¸� Ï/�
to have an initial (more or lessaccurate)estimateof it. Let¦¤� Þ ª � �¸� Ï/��ß ; by settingthe initial value for � (step1 of
our algorithm) at someintermediatevalue between� µ and� µ�à � , e.g, � � � � µ � � µ�à � �b/Ô , we expect that only the
characteristicvectorsof maximal cliqueshaving size

¦
will

survive in � � , togetherwith many spurioussolutions.After
the initial cycle, we decrease

¦
, recalculate� µ and � µ�à �

andupdate� � � � µ � � µ�à � �b1Ô in step4 as in the previous
step.Thewholeprocessis iterateduntil either

¦
reaches1 or� becomesgreaterthanzero.

IV. EXPERIMENTAL RESULTS

In this section we presentexperimentsof applying our
annealedimitationheuristicsto a selectionof DIMACSbench-
mark graphs.1 In our simulations, we used the following
discrete-timemodelsin steps3 and5 of the algorithm:� � ���A� � � � �(�@����� ? �p�����4 �8C � � 8������ ? 8D����� (13)

and � � ���U� � � � � � ����� cfehi j kmá�n4 �8C � � 8 ����� c ehi o kmá�n (14)

1Datacanbe found at http://dimacs.rutgers.edu.
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TABLE I

PERFORMANCE OF THE ANNEALED IMITATION HEURISTICS (AIH) AND MFA-CM OVER A SELECTION OF DIMACS GRAPHS (SEE TEXT

FOR EXPLANATION). THE TIMES REPORTED IN THE MFA-CM COLUMN REFER TO AN IMPLEMENTATION ON A 32-PROCESSOR

CONNECTION MACHINE CM-5, WHILE THE TIMES IN THE OTHER COLUMNS WERE OBTAINED ON A 200 MHZ PENTIUM I I -BASED

MACHINE.

Clique size Iterations Time (secs)
AIH AIH AIH MFA AIH AIH AIH AIH AIH AIH MFA

Graph n â 1st e =3 e =7 CM 1st e =3 e =7 1st e =3 e =7 CM
c-fat2001 200 12 12 12 12 6 324 146 85 1.15 0.55 0.37 3.1
c-fat2002 200 24 24 24 24 24 41 31 17 0.21 0.14 0.12 2.9
c-fat2005 200 58 58 58 58 58 37 25 18 0.21 0.16 0.15 2.9
brock2001 200 21 18 18 19 19 1135 349 153 8.12 2.02 1.11 2.8
brock2002 200 12 8 8 9 9 268 125 87 2.41 0.87 0.66 2.75
brock2003 200 15 11 11 12 11 542 205 271 3.48 1.09 1.69 2.75
brock2004 200 17 14 14 14 14 1367 555 255 19.62 4.98 2.30 2.75
brock4001 400 27 21 22 23 24 1025 308 1054 20.2 20.2 63.88 18.3
brock4002 400 29 19 19 22 21 1288 361 180 26.75 17.47 6.06 22.0
brock4003 400 31 18 21 21 22 1278 301 152 23.79 16.11 5.78 20.9
brock4004 400 33 22 23 22 23 608 382 356 13.35 24.71 15.55 19.0
brock8001 800 23 16 15 17 16 602 237 135 62.93 44.18 28.47 151.7
brock8002 800 24 16 18 18 16 529 308 281 57.22 115.07 67.96 134.7
brock8003 800 25 16 18 19 16 794 322 192 95.95 93.99 38.51 153.7
brock8004 800 26 17 17 16 15 648 224 118 66.19 62.65 25.4 147.1
san2000.7 1 200 30 15 15 15 — 1364 679 391 8.36 2.68 1.74 —
san2000.7 2 200 18 12 12 12 — 1426 925 658 8.47 4.07 2.95 —
san2000.9 1 200 70 45 45 45 42 3518 1495 852 20.77 6.04 3.7 2.75
san2000.9 2 200 60 40 40 38 — 3520 1595 781 24.66 7.03 3.71 —
san2000.9 3 200 44 32 30 31 33 1613 761 777 10.12 3.49 4.09 2.76
sanr2000.7 200 18 16 17 18 18 687 279 586 5.07 1.67 6.07 2.75
sanr2000.9 200 42 37 38 41 41 1890 737 442 10.61 3.34 2.61 2.6
sanr4000.5 400 13 11 11 11 — 321 173 84 6.76 9.24 3.2 —
sanr4000.7 400 ã 21 17 21 21 — 658 1014 615 14.15 102.2 34.05 —

which arewell-known discretizationsof equations(6) and(7),
respectively. As for the exponentialdynamics,herewe report
resultsobtainedusing q �Ìä

and q �5å
.

For eachgraphconsidered,the algorithmwasrun by using
the two-level annealingscheduledescribedat the end of the
previoussection.For eachinternalcycle (step3), theimitation
processeswere iterateduntil the (squared)distancebetween
two successive statesbecamesmaller than

� + à �aæ . At the
final cycle (step 5), the parameter Î� was set to

� b/Ô , and
the dynamicswere stoppedwhen either a maximal clique
(i.e., a local maximizer of � � � � on

#
) was found or the

distancebetweentwo successive points was smaller than a
fixedthreshold,which wassetto

�¸� + à �"ç (
�

beingthenumber
of vertices in the graph). In the latter casethe converged
vectorwasperturbedandthealgorithmrestartedfrom thenew
perturbedpoint. Becauseof the one-to-onecorrespondence
betweenlocal maximizersandmaximal cliquesthis situation
correspondsto convergenceto a saddlepoint.

In [9], Jagotadevelopedseveral variationsof the Hopfield
model,bothdiscreteandcontinuous,to approximatemaximum
clique. The best results were obtained using a stochastic
steepestdescentdynamicsanda mean-fieldannealing(MFA)
algorithm.His heuristicsrank amongthe mostpowerful ones
in the neural-network literature.Thesealgorithms,however,
were excessively slow and this motivated Jagotaet al. [10]
to improve their runningtime. Specifically, theMFA heuristic
wasimplementedon a ConnectionMachine,anda crudetwo-
temperatureannealingstrategy wasused.The resultingMFA-
CM algorithm was found to perform nearly as well as the
original version,while being considerablyfaster(on a 400-

vertex testgraphMFA-CM wasabout20 timesfaster).
Table 1 shows the performancefigures obtainedby our

annealedimitation heuristics(columns AIH) and by MFA-
CM (data for the latter algorithm are from [10]). Columns
marked with

�
and è contain the numberof verticesin the

graphandthesizeof themaximum clique(or a lower bound),
respectively. Thelabels“1st” refersto thefirst-orderreplicator
dynamics(13) whereaslabels“ q �Ää

” and “ q �éå
” refer to

theexponentialdynamics(14).Columns“Clique size” contain
the size of the clique found by the competingalgorithms,
and columns“Iterations” list the total numberof iterations
performedby AIH (no suchdataareavailablefor MFA-CM).
Computingtimes(columns“Time”) for our algorithmsreferto
a (non-optimized)C implementationon a machineequipped
with a 200 MHz PentiumII processor. As for the MFA-CM
thetimeslistedin thetablerefer to a 32-processorConnection
MachineCM-5 implementation.

Several conclusionscan be drawn from theseexperiments.
Firstly, it is clearthat theexponentialversionof thealgorithm
not only performed typically less iterations than its linear
counterpart,but it producedquite often better results (and
only once worse). Also, as expected,it is evident that the
parameterq governs the speedof the imitation dynamics:
usually, thehigherthe q thefastertheprocess.In discrete-time
simulations,however, largevaluesof q canleadto oscillatory
behavior [12], [14]. Finally, it is impressive thatour heuristics
performon averageaswell asMFA-CM in termsof quality of
solutions,while beingdramaticallyfaster. Again,notethatour
simulationswere performedon a sequentialmachine,while
MFA-CM wasexecutedon a 32-processorone.
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V. CONCLUSIONS

We have introduced a wide class of heuristics for the
maximumcliqueproblem(MCP) whosebasicingredientsare:
(1) a parameterizedcontinuousformulation of MCP, (2) an
instability analysisof equilibria of imitation dynamicsfrom
evolutionarygametheory, and(3) a principledway of varying
a regularizationparameterduring the evolution processso as
to avoid inefficient local solutions.Experimentson various
benchmarkgraphshave shown that this “annealedimitation”
classcontainsalgorithmswhich are dramaticallyfasterthan
and as accurateas state-of-the-artneural network heuristics
for maximum clique. More extensive experimental results
that confirm thesefindings can be found in a forthcoming
paper[14].
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