
SEED: A Framework for Extracting Social Events from
Press News

Salvatore Orlando
DAIS - Università Ca’ Foscari

Venezia, Italy
orlando@unive.it

Francesco Pizzolon
DAIS - Università Ca’ Foscari

Venezia, Italy
pizzolon.francesco@gmail.com

Gabriele Tolomei
DAIS - Università Ca’ Foscari

Venezia, Italy
gabriele.tolomei@unive.it

ABSTRACT
Everyday people are exchanging a huge amount of data
through the Internet. Mostly, such data consist of unstruc-
tured texts, which often contain references to structured in-
formation (e.g., person names, contact records, etc.). In
this work, we propose a novel solution to discover social
events from actual press news edited by humans. Con-
cretely, our method is divided in two steps, each one ad-
dressing a specific Information Extraction (IE) task: first,
we use a technique to automatically recognize four classes
of named-entities from press news: Date, Location, Pla-
ce, and Artist. Furthermore, we detect social events by
extracting ternary relations between such entities, also ex-
ploiting evidence from external sources (i.e., the Web). Fi-
nally, we evaluate both stages of our proposed solution on a
real-world dataset. Experimental results highlight the qual-
ity of our first-step Named-Entity Recognition (NER) ap-
proach, which indeed performs consistently with state-of-
the-art solutions. Eventually, we show how to precisely se-
lect true events from the list of all candidate events (i.e.,
all the ternary relations), which result from our second-step
Relation Extraction (RE) method. Indeed, we discover that
true social events can be detected if enough evidence of those
is found in the result list of Web search engines.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; I.5.4 [Pattern Recognition]: Applica-
tions—Text processing

Keywords
Information extraction; Named-entity recognition; Relation
extraction; Social event discovery

1. INTRODUCTION
In the last two decades, a huge amount of data are increas-

ingly become available due to the exponential growth of the
World Wide Web. Though heterogeneous, the vast major-
ity of these data are unstructured texts, which anyway often
refer to more structured information, such as person names,
company names, contact records, etc..

In this paper, we propose a solution to a real problem
raised up by a Web company, namely to detect structured in-

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

formation about social events from unstructured press news.
The company’s mission is to spread, advertise, and recom-
mend cultural events to people for their leisure time, mostly,
yet not only, through the Web. Concretely, it focuses on ital-
ian events occurring in several places and dates, performed
by several national and international artists.

So far, events are manually recognized by members of the
company’s editorial office before being published on the com-
pany’s Web site. In a nutshell, several journalists carefully
read and inspect long and ambiguous press news looking for
significant information about actual events. It turns out that
this process may be prolix and lead to a waste of working
hours. Thereby, the (semi-)automatic discovery of events
from press news is definitely a challenging task, which in
turn may help the company accelerate its whole business.

This is an instance of the more general Information Ex-
traction (IE) problem, which refers to the discovery of struc-
tured information from unstructured data sources (i.e., typ-
ically texts). More precisely, in this work we consider two
IE-related tasks: (i) Named-Entity Recognition (NER) and
(ii) Relation Extraction (RE). The former aims to extract
and classify entities from unstructured text. In our scenario,
this turns out to detecting the following classes of entities
from press news: Date, Location (i.e., municipalities in
Italy), Place (i.e., places affiliated with the company), and
Artist. The latter tries to identify relations between en-
tities. In our case, relations represent events by means of
3-ary tuples connecting our entity classes in the following
way: (Artist, Location, Date) and (Artist, Place, Da-
te). These two kinds of tuples well describe entertainment
events indicating that a specific artist is performing in a
certain place or location on a precise date.

In this work, we introduce Social Entertainment Event
Detection (SEED), a framework that achieves both the IE
tasks. Concerning the NER stage, SEED does not make
use of any statistical learning method. In fact, since entities
are well-known by the company, they can be extracted sim-
ply through regular expressions and perfect matching with
existing backend database of entities (i.e., gazetteers).

Conversely, the main novelty of this work regards the RE
task. Usually, solutions to RE limit their scope to an in-
dividual sentence of the single text document, which the
entities have been previously extracted from. However, in
our scenario, relations can span over the single sentence and
sometimes even across several press news. For instance, it
may happen that an artist, a place, and a date – which are
named in the same sentence – are not referring to a true
entertainment event.

1285

Instead, SEED infers and disambiguates relations between
previously discovered entities by exploiting the so-called“wis-
dom of the crowd”, namely by using the potential of the So-
cial Web. In particular, SEED extracts actual social events
from a set of candidates (i.e., triple of discovered entities).
Each candidate event is then ranked according to their rele-
vance on the Social Web. It turns out that such “relevance”
could be obtained from several existing Web sources, e.g.,
social networks, blogs, wikis, search engines, etc.

Here, we propose to ask a Web search engine for each
candidate event, and to assign it a relevance score that is
proportional to the ranking positions of those documents
returned as relevant by the search engine. The rationale
of this intuition is that very likely true events turn out to
retrieve several high-rankedWeb search results, thereby they
may obtain high relevance scores. On the other hand, events
that are formally correct (because referring to 3-ary relations
between valid entities) yet unreal have definitely less chance
of being assigned with top scores.

The remaining of this paper is organized as follows. In
Section 2 we discuss the most important related work con-
cerning both the IE-related tasks addressed. Section 3 de-
scribes some useful background concepts about NER and
RE. Furthermore, Section 4 introduces SEED, namely our
solution to the problem of discovering social events from
unstructured press news. To evaluate our framework, in
Section 5 we present the experiments we conducted on a
real-world collection of press news. Experimental results
are showed for SEED and for two baseline approaches used
for comparison. Finally, Section 6 summarizes our work and
highlights possible future research goals.

2. RELATED WORK
Two main research issues are addressed in this work, both

related to Information Extraction (IE), which generally aims
at finding structured information from unstructured texts.
First, we focus on the problem of recognizing entities from
raw text (i.e., Named-Entity Recognition (NER)) [22]. Sec-
ond, we discuss how relationship between such discovered en-
tities may be extracted (i.e., Relation Extraction (RE)) [2].
In the following, we present a selection of related work that
are among the most relevant to both issues, separately.

2.1 Named-Entity Recognition (NER)
Knowledge-based methods. Knowledge-based meth-

ods are näıve techniques for recognizing named-entities thro-
ugh gazetteers, i.e., predefined dictionaries or databases of
entities. They usually work in two phases: first, they build
a large dictionary for each class of entities to be extracted;
then simple heuristics, such as exact match or similarity
score, are used to decide whether one or more tokens of the
unstructured document is an entity or not.

Mikheev et al. [21] have shown that, in that small-scale
domain of well-know entities, knowledge-based methods are
sufficient to obtain valuable results in NER. On the other
hand, these methods lack of flexibility because dictionaries
need to be continuously updated, and ambiguity resolution
of two entities belonging to different dictionaries is hard [13].

Rule-based methods. Most of the initial systems de-
signed for NER were based on hand-coded rules [18, 8].
Similarly to knowledge-based methods, these solutions per-
form consistently when the task is under a controlled do-
main. Rule-based systems are typically two-stage: entities

are firstly found starting from a collection of rules properly
designed by a language expert, and thereby checked and
corrected with some policies.

A generic rule is usually expressed in the form {Pattern →
Action}, where the pattern captures properties of the exam-
ined token (i.e., context, orthography etc.), and the action
labels the token found by the pattern.

A typical rule-based NER system is made up of several
rules, each of which can be applied for detecting one or more
entities. However, sometimes rules may rise conflicts when a
text segment, or part of it, is matched by two or more rules.
To resolve conflicts, several approaches have been proposed
so far: custom policies [8], ordered sets [18] and finite state
transducers [12].

If enough labeled examples of a class of entities are avail-
able, it is possible to automatically infer rules with learning
algorithms. The main goal of these algorithms is to iden-
tify the smallest set of rules which cover a large part of
the training labeled examples. Moreover, algorithms are di-
vided in two categories: (i) bottom-up, where specific rules
are generalized [7], and (ii) top-down, where a generic rule
is specialized [23]. Usually, for a specific domain no labeled
examples can be found, and rules are hand specified by a
language engineer. Anyway, if enough training corpus are
available, using rule learning algorithms is faster and lead
to better results than coding rules by hand.

Statistical methods. Statistical methods convert the
NER task to a problem of decomposing the unstructured in-
put document in text fragments and properly labeling them
in order to form entities. There exist various decomposition
models, which differ one from each other by their granu-
larity working level: (i) Token-level models, where the un-
structured document is viewed as a sequence of words sep-
arated by punctuation (e.g. dots, commas, quotes) form-
ing tokens; (ii) Segment-level models, where the input doc-
ument is divided into chunks (i.e. text segments composed
by several words) via natural language parsing techniques;
(iii) Grammar-based models where, inspired by Context Free
Grammars used to specify programming languages, a set of
production rules defined over terminals is used to express
the pattern of an entity.
The following solutions are all supervised learning meth-
ods, which therefore need hand-labeled training examples.
A well-established method is to use Conditional Random
Fields [15] to model a single joint distribution over the pre-
dicted labels of the input tokens. In typical extraction tasks,
a chain is suitable to capturing label dependencies and there-
fore the joint distribution can be treated with Markov ran-
dom fields [10] to express the interdependence, leading to the
conclusion that a label is influenced only by its precedent
label. Finally, in the training phase the Likelihood-based
method [17] or the Max-margin method [24] can be used,
while for the inference phase common methods are the Mean
Average Precision and the Expected Features Value metrics.

2.2 Relation Extraction (RE)
Supervised methods. When enough labeled examples

for a specific domain can be found, supervised methods
turned out to be suitable solution also for extracting re-
lations between entities. They set the RE problem as a
classification problem, whose goal is to identify a function
returning all the true relations of an unstructured document.
Here, we consider three main approaches.

1286

- Feature-based methods. These methods extract from the la-
beled examples semantic and syntactic features, such as the
strings representing the entities, the classes of the entities,
the strings occurring before, between and after the two en-
tities and the orthography of entities. These features are
in turn used to train a classifier over the labeled examples
that will be used to find relations between entities in other
documents [14]. The features selected to train the classifier
depends on the nature of the problem, and in general it is
hard to reach an optimal subset of relevant features.
- Kernel-based methods. Given two strings s1 and s2, in
string kernel methods their similarity score is computed with
a kernel function K(s1, s2) that relies on the number of sub-
strings that are common between them [16]. The function K
is trained over a classifier which models positive and negative
examples as context (i.e., words) around the two entities [5]
or as parse trees [26], and it is used to detect new instances
of the desired relation in new sentences.
- Shortest path. Sometimes the predicate between two enti-
ties in a sentence is enough to determine both if there is a
relation between entities and the nature of the relation [6].
In this approach, sentences are scanned with a dependency
parser generating a dependency parser tree, and the kernel
function taking as input shortest path between entities is
used to compare sentences in order to discover relations.

Among the drawbacks that are common to all the super-
vised methods are the hardness of making them able to deal
with new kinds of relations. Indeed, to be effective these
methods need a huge amount of labeled data, which must
be provided for each new type of handled relation.

Semi-supervised methods. For some domains, finding
labeled data to be used to train classifiers used in super-
vised methods is too hard. When this happens, a common
solution – initially designed for entity disambiguation [25]
and successively generalized for the RE task [19] – uses an
iterative framework that relies on the output of weak learn-
ers as training data for the next iteration, giving by hand a
starting seed set. Next two systems fully depend on this.
- Dual Iterative Pattern Relation Expansion (DIPRE). The
DIPRE system [4] follows the iterative framework and it is
able to expand the seed set in order to find other instances of
a given binary relation over a collection of documents. Start-
ing from a given seed set containing entities in tuples form-
ing instances of the desired relation, DIPRE finds instances
of these tuples in the collection and regard the context of
each tuple by saving prefix, middle, suffix (respectively ten
characters before, characters between and ten characters af-
ter the entities) and order (i.e., order in which seed entities
are found in the sentence) for each tuple. Next step is the
hardest one: given initial tuples with their context, DIPRE
generates patterns from them by grouping by order andmid-
dle fields. Afterwards, for each group, the longest common
suffix and prefix is computed and, together with fields mid-
dle and order, they form a new pattern, which is used to
find new instances of the relation over the collection. New
instances will form new patterns and the same operations
stated above are performed until a convergence criteria is
reached, for example DIPRE can stop when no more occur-
rences were found in the collection or when the number of
occurrences has exceed a certain threshold.

- Snowball. One of the drawbacks of DIPRE is that when
patterns are generated, tuples are grouped with an exact
match. This means that even if the suffix or prefix of a tuple

differ by a single punctuation to the ones of another tuple,
the two tuples are not matched together. The “Snowball”
system [1] has been developed over the same framework and
aims to overcome this issue: it gives better performance than
DIPRE by using a NER system to tag entities, matching
tuples with a similarity function and grouping them with a
clustering algorithm. Finally, a confidence score is assigned
to each pattern and it is used to measure its quality, giving
more importance to instances extracted from patterns with
higher score than others.

- TextRunner.Unlike DIPRE and Snowball systems, which
work on a user-defined relation and require an initial seed to
expand instances of the given relation, the “TextRunner” [3]
system learns entities, classes, and relations without any hu-
man input, and it is composed of three key modules: (i) Self-
Supervised Learner : given a non-tagged corpus, this compo-
nent outputs a classifier which tags candidate instances of
extraction as reliable or not; (ii) Single-Pass Extractor : it
does not use a parser, but it extracts each candidate from
the corpus and sends it to the classifier, retaining candidates
labeled as reliable; (iii) Redundancy-Based Assessor : it as-
signs a probability to each retained candidate on the base of
a probabilistic model of redundancy in text.

Unsupervised methods. Downey et al. [9] propose an
unsupervised learning technique that is able to extract re-
lations from text without the need of a manually-labeled
training corpus. In fact, the authors present a combinato-
rial “balls-and-urns” model, which learns correct relations
on the basis of the KnowItAll hypothesis. This states that
relations that occur more frequently in distinct sentences
in a text corpus are also more likely to be correct. When
the text corpus considered is (a part of) the Web, this hy-
pothesis can find many correct relations due to redundancy :
individual facts/events are often repeated many times and
in many different ways on the Web. This is somewhat the
same assumption we used for ranking the set of candidates
relations as extracted by our RE module (see Section 4).

3. BACKGROUND CONCEPTS
In this section, we formalize both the NER and RE prob-

lems, separately. Hereinafter, we refer to D = {D1, . . . D|D|}
as a text corpora containing a set of text documents. How-
ever, we firstly introduce some basic concepts that are useful
to fully understand both the NER and RE issues.

3.1 Classes, Entities, and Mentions
Let us start our discussion from a concrete example and

consider the following text document:

"Larry Page and Sergey Brin founded Google Inc.
in 1998; in March 1999, the company moved its
offices to Palo Alto, California."

Assume that we are interested in finding those substrings
within such document referring to a predefined set of classes.
Similarly to the taxonomy of classes in object-oriented pro-
gramming, we call a class the abstract representation of a
concept, which cannot be directly instantiated.

According to this definition, possible examples of classes
from the text above are: Person, Company, and Place.
Thus, we refer to an entity as a concrete class, whereas we
call a mention each specific instance of a concrete class,
namely each specific way of expressing an entity within a

1287

document. For example, the mentions "Google Inc." and
"Big G" are two possible ways of naming the entity Google,
which in turn is a concrete class of the abstract concept of
Company.

Informally, the Named-Entity Recognition problem aims
at discovering the set of entities, as instances of a limited
set of classes, from the mentions contained in a particular
text document.

As a further step, it could be interesting to derive exist-
ing relations between entities by inspecting links connect-
ing their related mentions within a given text. Intuitively,
a relation may be represented by a predicate involving at
least two entities (i.e., a binary relation). According to this,
one possible relation derivable from our sample text is the
one explaining “who founded what”. This involves linking
the two entities Larry Page and Sergey Brin (both belonging
to the class Person, and mentioned as "Larry Page" and
"Sergey Brin", respectively) to the entity Google (which in-
stead belongs to the class Company, and it is referred to as
"Google Inc.").

Thus, given a predicate, the Relation Extraction problem
consists of linking two (or more) entities as long as they can
be related according to that predicate.

3.2 Named-Entity Recognition (NER)
We start focusing on a finite set of classes C = {c1, . . . , c|C|}.

Furthermore, we denote by E = {e1, . . . , e|E|} the union-set
of all the possible entities associated with all the classes
above. Similarly, we define M = {m1, . . . ,m|M|} as the
union-set of all the possible mentions referring to all the
entities. It turns out that |C| ≤ |E| ≤ |M|.

In addition, let g : E #−→ C be a function that maps
each entity to its corresponding class, and h : M #−→ E be a
function that maps each mention to its corresponding entity.

For the sake of our purposes, we assume each text docu-
ment D ∈ D is represented by a set of mentions MD ⊆ M,
as follows:

MD = {mi ∈ M | mi is contained in D}.

The ultimate goal of Named-Entity Recognition is to take as
input each document D (actually its representation MD),
and to provide as output a set E as follows:

ED =
⋃

mi∈MD

(h(mi), g(h(mi)).

It turns out that ED is the set of all the entities along with
their related classes, as derivable from the mentions MD

contained in D:

ED = {(ex, cy) | cy = g(ex)}.

3.3 Relation Extraction (RE)
From the set ED defined above, we can easily derive the

set ED,c that contains all and only those entities of a specific
class c ∈ C:

ED,c = {(ex, cy) ∈ ED | cy = c}.

Moreover, let (ĉ1, . . . , ĉk) be a k-tuple of classes (ĉi ∈ C and
k ≥ 2). We denote by TD the set of all the possible candidate
relations, defined as follows:

TD = ED,ĉ1 × . . .× ED,ĉk .

Thus, the final aim of the Relation Extraction is to detect
the set of the actual relations T̃D ⊆ TD, such that for each
k-tuple of T̃D a given k-ary predicate holds.

4. SEED: SOCIAL EVENT DISCOVERY

2. Relation Extractor 1. Named Entity Recognizer

P
re

ss
 n

ew
s

 Date tagger

 Location tagger

 Place tagger

 Artist tagger

Ta
gg

ed
do

cu
m

en
t

2.1 Candidates
Extraction

2.2 Candidates
Ranking

Fresh Social
Knowledge

Ranked
Candidates

1.1

1.3

1.4

1.5

 N

-G
ra

m
To

ke
ni

ze
r

1.
2

Figure 1: The SEED architecture.

In this section, we describe our proposed framework, called
Social Entertainment Event Detection (SEED), to discover
social events from unstructured press news.

Fig. 1 shows the overall system architecture. The frame-
work is composed of two conceptually-separated modules,
each one dedicated to a specific task. For each press news in
the whole collection, the Named-Entity Recognizer (NER)
module generates a tagged document. This first module in-
volves five sub-modules (1.1 – 1.5).

Concretely, module 1.2 splits the original text document
into n-gram tokens (i.e., blocks of n consecutive words) while
modules 1.1, 1.3, 1.4, and 1.5 tag it according to our set
of entity classes C = {Date, Location, Place, Artist}.
The tagged document output by the NER module has the
same structure of the original press news, but it is enriched
with tags associated with the entities we are looking for.

Furthermore, the tagged document is in turn used as the
input of the second module, namely the Relation Extrac-
tor (RE). There, the Candidate Extractor module (2.1) pro-
duces candidate tuples of relations we aim to extract, namely
3-ary tuples of classes as (Artist, Location, Date) and
(Artist, Place, Date), which stand for possible events.
Then, candidate tuples are processed by the Candidate Rank-
ing module (2.2), which ranks tuples by using an external
module called Fresh Social Knowledge (FSK).

The final output is therefore the list of so scored tuples.
Hopefully, highest ranked tuples represent valid instances of
our relations, and lead to the discovery of actual entertain-
ment events mentioned in the original press news.

In the following, we describe each module separately.

1) NER Module. By manually inspecting several press
news, we conclude the following about the classes of entities
we are interested to extract: (i) Artists are well-known and
basically identified by the mention of the artist/group band;
(ii) Places can be listed using the company’s database of
places; (iii) Locations can be devised from the Italian ver-

1288

sion of Wikipedia1, which contains an article for each mu-
nicipality in Italy; (iv) Dates have predefined formats.

Moreover, the domain we are operating in is “closed” and
well-defined, with no labeled corpus to work with and press
news written in Italian. Due to all these aspects, we resort to
adopting a knowledge-based approach for extracting entities
of classes Location, Place, and Artist. Instead, rule-
based method appears as the most suitable for detecting
entities of class Date through regular expressions.

Apparently, ambiguities may occur when using such sim-
ple approaches. In fact, we claim that handling disambigua-
tion is not crucial for our final scope.

Finally, the Named-Entity Recognizer module analyzes
the unstructured press news, and collects all the entities it
extracts, thereby generating the tagged document through
the following sub-modules.

For each press news D ∈ D it provides four sets, each one
related to a specific class ci ∈ C, where C = {Date, Location,
Place, Artist}, defined as follows:
EDat = {(ei, cd) | ei ∈ E , cd ∈ C ∧ cd = Date},
ELoc = {(ei, cl) | ei ∈ E , cl ∈ C ∧ cl = Location},
EPla = {(ei, cp) | ei ∈ E , cp ∈ C ∧ cp = Place},
EArt = {(ei, ca) | ei ∈ E , ca ∈ C ∧ ca = Artist},
where the final set ED = EDat ∪ ELoc ∪ EPla ∪ EArt.

Date tagger. This module takes care of tagging tokens rep-
resenting entities of class Date. To this end, it uses a set
of regular expressions that match with italian, well-known,
date formats (e.g., “DD-MM-YYYY”). However, this strategy
may be not sufficient to properly tag date entities. Any con-
flict is resolved by returning the token that longest match
with the expression. In addition, mentions like “tomorrow”
or “next week” are not yet recognized.
N-Gram tokenizer. This module performs text pre-pro-
cessing and cleaning (e.g., punctuation removal) on each in-
put press news. Moreover, it splits each original text doc-
ument into the corresponding set of word n-grams, namely
blocks of n consecutive words (n ∈ {1, . . . , 8}) in order to
ease the tasks performed by other modules.
Location tagger. This module tags entities of class Loca-
tion. In our scenario, those entities are generally name men-
tions of cities, districts, and municipalities in Italy. A list of
this kind of entities can be easily derived from Wikipedia,
which contains a single article for each existing municipal-
ity. Coherently, the total number of italian municipalities in
Wikipedia is 8, 092 over 110 districts.

This module takes as input the set of n-grams provided by
the N-Gram tokenizer, and for each one of them it performs
a search for an exact match on the dictionary. If a conflict
occurs between two n-grams, the longest match (i.e., the
match with the n-gram with the greatest n) is chosen.
Place tagger. The place tagger module tags entities of class
Place that are present in the original press news document.
Usually, this class of entities includes mentions of locals af-
filiated with the news agency that advertises its events and
build the correspondent press news.

The company maintains a relational table of known places.
Therefore, such table can be used to build a complete dictio-
nary of places. Like the above module, this takes the word
n-grams generated by the N-Gram tokenizer, and searches
for an exact match on each text segment. Again, conflicts
are resolved by returning the longest matches.

1
http://it.wikipedia.org/

Artist tagger. This module extracts entities of class Ar-
tist, starting from the word n-grams given as input. The
dictionary of artist entities is built from the Italian version
of Wikipedia by exhaustively scanning the articles related
to the corresponding italian top-category (i.e., “Artisti”2).
Currently, the dictionary contains 45, 723 entries. Still, the
longest match criteria is used to match n-grams.

2) RE Module. Current solutions to the RE problem usu-
ally try to discover relations between entities on a sentence-
by-sentence perspective. In other words, they split the input
text document into its composing sentences, and identify
relations only among entities that occur within each single
sentence. However, in our specific context, relations, namely
social events, may span over multiple sentences and even
across several press news.

The main novelty of this work particularly focuses on this
task, which we achieve by exploiting the so-called“wisdom of
the crowd”. Specifically, we claim that Social Web sources,
such as social networks, blogs, wikis, search engines, just
to name a few, may be useful to effectively discover events
from press news. In this way, we overcome the limitations of
state-of-the-art solutions, thereby going beyond the “same-
sentence” or even “same-document” boundaries when infer-
encing relations between entities.

The input of the Relation Extractor module is the tagged
document coming out from the Named-Entity Recognizer
module, while the output is the list of ranked candidate 3-
ary tuples of entities (and related classes) representing the
set of detected social events. To reach this goal, it relies on
the modules described in the following.
Candidate Extractor. This module takes as input the
tagged document from the NER module and generates a
set of candidate 3-ary tuples, representing all the possible
social events derivable from the set of discovered entities.
Specifically, it focuses on this 3-tuple of classes:

(Artist, Location or Place, Date).

From the 3-tuple above, it is straightforward to derive the
set of candidate events TD, as follows:

TD = {(a, lp, d) | a ∈ EArt, lp ∈ (ELoc ∪ EPla), d ∈ EDat}.

Candidate Ranking. This is the core module of the whole
SEED framework. Its task is to select the final set of 3-ary
tuples T̃D from the whole set of candidates TD, which are
supposed to refer to actual events (i.e., T̃D ⊆ TD). True
events are those 3-ary tuples of TD for which the ternary
predicate “who performs what when” holds.
To achieve this goal, an external Fresh Social Knowledge

(FSK) module is used to rank candidate events.
Concretely, given a candidate event t = (a, lp, d) ∈ TD,

the FSK assigns it a relevance score. More formally, FSK
uses a scoring function s : TD #−→ R that measures the
likelihood of each candidate tuple representing a true event.
Therefore, from the original set of candidate events TD, we
obtain a new set T ′

D whose elements are sorted in descending
order according to the scoring function s:

T ′
D = {ti ∈ TD | s(ti) ≥ s(ti+1) ∀i ∈ {1, . . . , |TD − 1|}}.

The final set T̃D of the most-likely true events is composed of
the top-K elements from T ′

D, i.e., t1, . . . , tK and K ≤ |TD|.
2
http://it.wikipedia.org/wiki/Categoria:Artisti

1289

Evidence of actual events are abundant in the Social Web
(e.g., posts on blogs, events on Facebook, timelines on Twit-
ter, etc.). Thereby, FSK may rely on such external sources
to derive relevance scores.

In the following, we examine and discuss three external
sources that could be exploited by FSK. However, due to
the limits of the first two solutions explained below, in the
experimental phase of this work we consider only the third
external Web source, namely a real-world Web search en-
gine, as a way of detecting true events.

- Encyclopedic knowledges.At first glance, Wikipedia could
be a suitable source because it has already proven to be use-
ful in handling disambiguation in many IE tasks [20, 11].
However, it represents a quasi-static knowledge base that is
updated by the community only when a fact or an event
has already happened. Conversely, our goal is to extract
entertainment events that are yet to come.

- Social networks. Other natural choices could be repre-
sented by Social Networks like Facebook3, which is increas-
ingly widespread and has well-documented APIs to work
with. Facebook also allows its users to create their own
events properly “structured” on a relational table with few
simple clicks. This apparently makes it the right choice for
selecting real events from the set of candidates. However,
the only field indexed on such event table – which in turn can
be queried – is the name of the event. Unfortunately, since
this is just a free-text field, users can freely fill it without
having to be compliant with any “standard structure”.

- Web search engines. Roughly, given a user query, a search
engine returns a ranked list of Web documents that are con-
sidered relevant to that query. Starting from a candidate
event t = (a, lp, d) ∈ TD, we build up a query qt, where
the search keywords are the concatenation of the mentions
corresponding to the entities of the tuple itself. The ob-
tained query is thus issued to the search engine, which in
turn replies with a ranked list of the top-most relevant re-
sults, i.e., R(qt) = ⟨r1, . . . , rl⟩.
The candidate ranking module takes R(qt) and scores each

candidate event t ∈ TD as follows.
Let ftit(e, r) and fsni(e, r) be the frequency counts of the

mentions of entity e as measured in the title and in the snip-
pet of a Web search result r ∈ R(qt), respectively. Even-
tually, the relevance score s(t) of the candidate t can be
computed as:

s(t) =

∑
r∈R(qt)

γ(r)

(
α
∏

e∈t ftit(e, r) + β
∏

e∈t fsni(e, r)

)

∑
t̂∈TD,r∈R(qt̂)

γ(r)

(
α
∏

e∈t̂ ftit(e, r) + β
∏

e∈t̂ fsni(e, r)

) ,

where α,β ∈ R are weights introduced for assigning differ-
ent importance depending on whether the matched entity
appears in the title or in the snippet of a Web search result.
Furthermore, γ(r) is a score assigned to each Web result for
taking care of the ranking position of the document where
a match with an entity occurs.

We called Linear SEED the approach giving the same
importance to each document retrieved by the search en-
gine, no matter what is its ranking position, i.e., γ(r) =
1, ∀r ∈ R(qt). Furthermore, we named Non-Linear SEED
the solution where more importance is given to top-retrieved
documents. The claim is that retrieved documents that are

3
http://www.facebook.com

ranked higher by the search engine should account for more
when computing the final relevance score for a candidate
event. In other words, having a candidate tuple matching
two retrieved documents, we want to give more importance
to the match occurred on the highest-ranked document.

Concretely, let rank(r) ∈ {1, . . . , l} denote the ranking
position of the result r on the Web search engine’s result
list R(qt). Each result r ∈ R(qt) for which a match with an
entity e occurs is scaled by a factor that is inversely propor-
tional to its ranking position, namely γ(r) = 1/rank(r).

So far, only the top-10 retrieved Web results are taken into
account for computing the final relevance scores of candidate
events (i.e., |R(qt)| = l = 10).

5. EXPERIMENTS
In this section we describe the experiments we conducted

as well as the results we obtained to evaluate our proposed
SEED framework.

To assess the validity of our solution, we took a sample
of 100 real italian press news, provided by the company’s
editorial office. Each press news was manually-labeled by a
member of the editorial office, who discovered a total amount
of 1, 222 entities, and 198 events (i.e., relations between en-
tities). Consistently with the structure of the paper, we
present the results separately for each task.

Named-Entity Recognition. To evaluate this task that
composes the first part of the system, we consider the set of
entities as manually-identified from the press news corpus,
and we compared them to the set of entities which were
automatically discovered by our NER module.

In particular, for each individual entity class we computed
the following indicators: (i) the fraction of entities that our
automatic NER system labeled correctly among all the en-
tities that it returned as labeled with that class (i.e., preci-
sion); (ii) the fraction of entities that our automatic NER
system labeled correctly among all the true entities that
have been manually-labeled with that class (i.e., recall). In
addition, we also computed the harmonic mean of the above
indicators, which is known as F-measure.

We started by evaluating the ability of our NER module
in recognizing entities of class Date, which were extracted
using a rule-based method, i.e., a set of regular expressions.
In Tab. 1 we show the precision, recall, and F-measure scores
obtained by our solution.

Date
Precision 0.760
Recall 0.811

F-measure 0.785

Table 1: Precision, Recall, and F-measure of the NER
module for the class Date.

Besides, entities of all the other classes have been discovered
by a knowledge-based method. Thereby, results obtained on
those are shown separately. Concretely, in Fig. 2 (a), (b),
(c) we present the precision, recall, and F-measure scores for
each entity class Location, Place, and Artist by varying
the n-grams used to split each input press news from n = 1
up to n = 8. Moreover, the plot depicted in Fig. 2 (d) shows
the same indicators yet aggregated for all the three classes.

1290

1 2 3 4 5 6 7 8
65

70

75

80

85

90

95

n−grams

sc
or

e
%

Location

precision
recall
f−measure

(a)

1 2 3 4 5 6 7 8
5

10

15

20

25

30

35

40

45

n−grams

sc
or

e
%

Place

precision
recall
f−measure

(b)

1 2 3 4 5 6 7 8
10

20

30

40

50

60

70

80

90

100

n−grams

sc
or

e
%

Artist

precision
recall
f−measure

(c)

1 2 3 4 5 6 7 8
30

40

50

60

70

80

90

n−grams

sc
or

e
%

Location, Place and Artist

precision
recall
f−measure

(d)

Figure 2: Precision, Recall, and F-measure of the NER module for the classes Location, Place, and Artist.

Our knowledge-based approach to NER presents a preci-
sion which is higher than recall. This seems reasonable, be-
cause our method works by finding exact matches: if a men-
tion of an artist, a place (or a location) perfectly matches
with an entry of the dictionary of entities then the corre-
sponding entity is detected, otherwise entity is not recog-
nized at all even if a slightly variation on its mention occurs.

Finally, Tab. 2 shows the overall scores of our NER task,
taking care of all the four classes considered. The F-measure
for the NER module is around 81%, which highlights the
quality of our approach, and confirms that for a closed do-
main like the one where we operated, knowledge-based meth-
ods and rule-based methods are truly effective.

Overall NER task
Precision 0.823
Recall 0.792

F-measure 0.807

Table 2: Overall Precision, Recall, and F-measure of the
NER task.

Relation Extraction. In Section 4, we discuss on how
the power of the Social Web could be exploited to extract
actual events. To this end, we figured out that Web search
engines might be effective tools to distinguish between real
versus fake events. In particular, during this stage we made
use of the Google4 search engine to detect actual relations

4
http://www.google.it

between discovered entities (i.e., events). In addition, the
following two baselines approaches were also evaluated.
- Baseline 1. This is the simplest event discovery method
that works as follows. The idea is that if an artist, a place
(or a location), and a date are named in the same sentence
of a press news, then a tuple containing them might refer to
a true event and thus it is worth to be returned.
- Baseline 2. The rationale for this baseline is to exploit
the frequency of entities to extract real events. Indeed, if
an artist, a place (or a location), and a date are named
more than the others in a press news, this might indicate
that very likely the event is formed by such entities, and the
correspondent tuple is thereby returned. A simple count
over the entities found by the NER module is performed,
and tuples composed of entities whose frequency is higher
than the others are thereby returned.

As for the NER step, evaluation of any RE method was
conducted by comparing the set of manually-labeled events
extracted from press news with those automatically provided
by our solution. The set of manually-identified events is
the golden set (i.e., the set of true events) that we used
for measuring the quality of the two baselines and our RE
module by means of precision, recall, and F-measure. To
this end, Tab. 3 shows the precision, recall, and F-measure
for all the tested RE approaches.

The first baseline presents a precision of almost 60% and
a low recall (i.e., about 23%). This is reasonable because
the vast majority of our relations cannot be detected by
working on a sentence-by-sentence perspective. The quite

1291

Precision Recall F-measure
Baseline 1 0.591 0.146 0.234
Baseline 2 0.274 0.506 0.356

Linear SEED 0.627 0.798 0.702
Non-Linear SEED 0.632 0.796 0.705

Table 3: Overall Precision, Recall, and F-measure of the
RE task.

good precision score is due to the fact that sentence that
appears in only one tuple likely represents a true event.

The second baseline behaves exactly the opposite: it has
a decent recall score (i.e., about 50%) and a low precision
(i.e., ≈ 27%). This is due to the fact that this method is
based on entity counts, and extracts relations for entities
whose frequency is higher than the others. It turns out that
such relations may contain actual events yet together with
a lot of fake ones (i.e., high false positive rate).

Finally, to evaluate the RE module of our proposed frame-
work SEED, we considered two aspects both concerning each
result r retrieved by the Google search engine: (i) the score
γ(r), and (ii) the ratio m = α/β between the weights that
were given to the title and the snippet of r, respectively. In
any case, true events were identified by extracting the top-2
3-tuples from the set of candidates TD.
In Fig. 3 we show results of Linear approach (i.e., γ(r) =

1), while Fig. 4 depicts the performance of Non-Linear me-
thod (i.e., γ(r) = 1/rank(r)), both varying m.

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

m

sc
or

e
%

Linear SEED

precision
recall
f−measure

Figure 3: Precision, Recall, and F-measure for Linear
SEED.

As revealed by these plots, best results were obtained
when α ≥ β, namely when more importance were given to
entity matches occurring in the document’s title instead of
those occurring in the snippet.

Linear SEED presents a good precision and a high recall,
with a F-measure of about 70.1%. Even if wrong entities
were detected by the NER module, this method was still able
to understand the right relation, distinguishing also right
entities from wrong ones.

Non-Linear SEED had almost the same performance of
the Linear SEED, with a F-measure of about 70.5%. Its
slightly better performance could result from the higher γ(r)

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

m

sc
or

e
%

Non−Linear SEED

precision
recall
f−measure

Figure 4: Precision, Recall, and F-measure for Non-
Linear SEED.

scores assigned to high-ranked Web results, which eventually
turned out to be the most relevant to extract true events.

6. CONCLUSION AND FUTURE WORK
In this paper we proposed SEED, a framework to auto-

matically discovery social events from a collection of un-
structured press news provided by the editorial office of a
real-world Web company. Social events were represented by
3-ary relations between specific classes of entities. In partic-
ular, we focused on four classes, i.e., Date, Location, Pla-
ce, and Artist, and we considered an event any relation of
the form (Artist, Location, Date) and (Artist, Pla-
ce, Date).

The SEED framework is made up of two main modules,
each one addressing a specific Information Extraction (IE)
task. From a side, it uses a (i) Named-Entity Recognizer
(NER) module to extract entities from unstructured texts.
On the other hand, it realizes a (ii) Relation Extractor (RE)
module to discovery relations among previously discovered
entities. Since entities were well-defined in the company’s
domain, no complex, statistical-learning method has been
adopted to approach the NER task. Instead, regular ex-
pressions, and perfect matching with an existing backend
database of entities (i.e., gazetteers) were used.

Conversely, the main novelty of this work regards the RE
task. Indeed, SEED infers and disambiguates relations be-
tween previously discovered entities by exploiting the so-
called “wisdom of the crowd”, namely by using the potential
of the Social Web. SEED extracts actual social events from
a set of candidates that were ranked according to their rel-
evance on the Social Web.

In a nutshell, we issued to a Web search engine a query
built from the terms (i.e., mentions) representing the entities
in each candidate event, and we assign to such candidate a
relevance score that is proportional to the ranking positions
of those documents returned as relevant. The rationale for
this intuition is that very likely true events turn out to re-
trieve several high-ranked Web search results, thereby they
may obtain high relevance scores.

Experimental results have shown that the NER module
behave consistently with state-of-the-art approaches while

1292

RE module outperforms existing solutions that usually work
on a sentence-by-sentence perspective.

Possible future works we are interested in exploring con-
cern designing a more effective NER solution and exploiting
other social media – for instance nearly real-time microblogs
like Twitter – to improve the performance of the RE task.

7. ACKNOWLEDGMENTS
This research was partially supported by the National

PON Project TETRis - no. PON01 00451. In addition, au-
thors would like to thank 2night S.p.A. for having provided
the dataset used during the experimental phase of this work.

8. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting

relations from large plain-text collections. In DL ’00,
pages 85–94. ACM, 2000.

[2] N. Bach and S. Badaskar. A review of relation
extraction. Literature Review for Language and
Statistics II, 2007.

[3] M. Banko, M. J. Cafarella, S. Soderland,
M. Broadhead, and O. Etzioni. Open Information
Extraction for the Web. PhD thesis, University of
Washington, 2009.

[4] S. Brin. Extracting patterns and relations from the
world wide web. The World Wide Web and Databases,
pages 172–183, 1999.

[5] R. Bunescu and R. Mooney. Subsequence kernels for
relation extraction. Advances in Neural Information
Processing Systems 18, pages 171–178, MIT Press,
2006.

[6] R. C. Bunescu and R. J. Mooney. A shortest path
dependency kernel for relation extraction. In
HLT/EMNLP ’05, pages 724–731. Association for
Computational Linguistics, 2005.

[7] M. E. Califf and R. J. Mooney. Bottom-up relational
learning of pattern matching rules for information
extraction. Journal of Machine Learning Research,
4:177–210, 2003.

[8] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. Gate: an architecture for development of
robust hlt applications. In ACL ’02, pages 168–175.
Association for Computational Linguistics, 2002.

[9] D. Downey, O. Etzioni, and S. Soderland. Analysis of
a probabilistic model of redundancy in unsupervised
information extraction. Artificial Intelligence,
174(11):726–748. Elsevier Science Publishers Ltd.,
2010.

[10] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and
B. Taskar. 5 probabilistic relational models.
Introduction to Statistical Relational Learning, page
129, 2007.

[11] X. Han, L. Sun, and J. Zhao. Collective entity linking
in web text: a graph-based method. In SIGIR ’11,
pages 765–774. ACM, 2011.

[12] C.-N. Hsu and M.-T. Dung. Generating finite-state
transducers for semi-structured data extraction from
the web. Information Systems, 23(9):521–538. Elsevier
Science Publishers Ltd., 1998.

[13] N. Jahan, S. Morwal, and D. Chopra. Named entity
recognition in indian languages using gazetteer

method and hidden markov model: A hybrid
approach. IJCSET, March 2012.

[14] N. Kambhatla. Combining lexical, syntactic, and
semantic features with maximum entropy models for
extracting relations. In ACL ’04, page 22. Association
for Computational Linguistics, 2004.

[15] J. Lafferty, A. McCallum, and F. C. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. ICML, June
2001.

[16] H. Lodhi, C. Saunders, J. Shawe-Taylor,
N. Cristianini, and C. Watkins. Text classification
using string kernels. Journal of Machine Learning
Research, 2:419–444, 2002.

[17] R. Malouf et al. A comparison of algorithms for
maximum entropy parameter estimation. In COLING
’02, pages 1–7. Association for Computational
Linguistics, 2002.

[18] D. Maynard, V. Tablan, C. Ursu, H. Cunningham,
and Y. Wilks. Named entity recognition from diverse
text types. In RANLP ’01, pages 257–274. Association
for Computational Linguistics, 2001.

[19] R. McDonald. Extracting relations from unstructured
text. Rapport technique, Department of Computer and
Information Science-University of Pennsylvania, 2005.

[20] R. Mihalcea and A. Csomai. Wikify!: linking
documents to encyclopedic knowledge. In CIKM ’07,
pages 233–242. ACM, 2007.

[21] A. Mikheev, M. Moens, and C. Grover. Named entity
recognition without gazetteers. In EACL ’99, pages
1–8. Association for Computational Linguistics, 1999.

[22] S. Sarawagi. Information Extraction. Foundations and
Trends in Databases, 1(3):261–377, March 2008.

[23] S. Soderland. Learning information extraction rules
for semi-structured and free text. Machine Learning,
34(1):233–272. Kluwer Academic Publishers, 1999.

[24] B. Taskar, V. Chatalbashev, D. Koller, and
C. Guestrin. Learning structured prediction models: A
large margin approach. In ML ’05, pages 896–903.
ACM, 2005.

[25] D. Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In ACL ’95, pages
189–196. Association for Computational Linguistics,
1995.

[26] D. Zelenko, C. Aone, and A. Richardella. Kernel
methods for relation extraction. Journal of Machine
Learning Research, 3:1083–1106, 2003.

1293

